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Multimodal neuroimaging provides a rich source of data for identifying brain regions

associated with disease progression and aging. However, present studies still typically

analyze modalities separately or aggregate voxel-wise measurements and analyses to

the structural level, thus reducing statistical power. As a central example, previous works

have used two quantitative MRI parameters—R2* and quantitative susceptibility (QS)—to

study changes in iron associated with aging in healthy andmultiple sclerosis subjects, but

failed to simultaneously account for both. In this article, we propose a unified framework

that combines information from multiple imaging modalities and regularizes estimates

for increased interpretability, generalizability, and stability. Our work focuses on joint

region detection problems where overlap between effect supports across modalities

is encouraged but not strictly enforced. To achieve this, we combine L1 (lasso), total

variation (TV), and L2 group lasso penalties. While the TV penalty encourages geometric

regularization by controlling estimate variability and support boundary geometry, the

group lasso penalty accounts for similarities in the support between imaging modalities.

We address the computational difficulty in this regularization scheme with an alternating

direction method of multipliers (ADMM) optimizer. In a neuroimaging application, we

compare our method against independent sparse and joint sparse models using a

dataset of R2* and QSmaps derived fromMRI scans of 113 healthy controls: our method

produces clinically-interpretable regions where specific iron changes are associated with

healthy aging. Together with results across multiple simulation studies, we conclude that

our approach identifies regions that are more strongly associated with the variable of

interest (e.g., age), more accurate, andmore stable with respect to training data variability.

This work makes progress toward a stable and interpretable multimodal imaging analysis

framework for studying disease-related changes in brain structure and can be extended

for classification and disease prediction tasks.

Keywords: ADMM, geometric regularization, group lasso, joint region, lasso, multiple sclerosis, sparse detection,

total variation
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1. INTRODUCTION

Following progressive developments in healthcare, the
subpopulation of individuals over 60 years old has become
the fastest growing worldwide (lr1, 2015). Thanks also in part
to rapid advancements in neuroimaging and data storage
technology, it is not surprising that much work in recent years
has been devoted to studying structural changes in the brain
during natural aging and disease progression (e.g., Alzheimer’s
and Parkinson’s diseasesWyss-Coray, 2016 andmultiple sclerosis
Elkady et al., 2017) as well as differences between healthy and
non-normative subjects, particularly in the elderly population.

The naturally high dimensionality of neuroimaging data and

their inherent spatial correlation structures present significant

challenges to the above goals. Implications of these challenges
are apparent in the drawbacks (Davatzikos, 2004) of voxel-
based analyses (Ashburner and Friston, 2000) and motivate
many of the dimension reduction and regularization techniques
commonly applied to neuroimaging data. These methods include
pattern identification and discrimination (Fan et al., 2007),
which rely on sample sizes not feasible in small neuroimaging
studies, and sparse regularization for feature extraction or
selection (Batmanghelich et al., 2011; Sabuncu and Van Leemput,
2012; He et al., 2016; Yu et al., 2019; Su et al., 2020).
Despite successful applications of the latter to medical data
(Krishnapuram et al., 2005; Zou and Hastie, 2005; Ryali et al.,
2010), these approaches are unstable with respect to selected
or extracted features. In the presence of spatial correlation
structures, such as in neuroimaging data where each voxel carries
similar information to its neighbors, sparsity comes at the severe
detriment of interpretability. To address this, approaches to
shape regularization have been developed, notably, total variation
(TV) penalties which penalize spatial gradients to encourage a
model to apply similar weights to neighboring voxels.

Nonetheless, incorporating multimodal imaging data into
analytic techniques remains a difficult problem in general.
Previous neuroimaging studies have demonstrated that the
simultaneous analysis of multiple imaging modalities can
improve statistical power (Elkady et al., 2017), although methods
for efficiently doing so are limited. As a result, most studies either
analyze different imaging modes independently (Betts et al.,
2016) or aggregate voxel-wise observations to the structural level
(Cherubini et al., 2009). This approach is inefficient from the
perspective of both statistical power and estimate interpretability.

As a focal example and application for this article, we
consider specific iron changes in deep gray matter (DGM), which
have been histologically associated with healthy aging in the
brain (Hallgren and Sourander, 1958). Gradient-echo magnetic
resonance imaging (MRI) is used extensively in vivo due to its
sensitivity to such changes (Peters, 2002). Transverse relaxation
rate (R2*) and quantitative susceptibility (QS), both voxel-wise
measures derived from gradient-echo MRI, are typically used for
this purpose (Haacke et al., 2010; Acosta-Cabronero et al., 2016).
Several studies have demonstrated a positive association between
iron levels and age in healthy controls using quantitative MRI
methods, although they consider only a single MRI measure or
anatomical structure (Cherubini et al., 2009; Haacke et al., 2010;

Acosta-Cabronero et al., 2016). The combined use of R2* and QS
has only recently been introduced, for the purpose of improving
statistical power in delineating iron and non-iron changes in
studies of multiple sclerosis (Elkady et al., 2017). This earlier
study, however, only combines modalities in an initial feature
selection stage rather than in a single model.

Related works have similarly investigated, with the previously-
discussed methodological limitations, the complex associations
between QS and R2* measures, iron, and myelin in brain
structures. Through a biochemical and histological analysis of
postmortem brains using Pearson correlation (e.g., between
myelin and R2*) and linear mixed effect regression (e.g., of
R2* on iron and myelin intensities) on region- or structurally-
aggregated measures, Hametner et al. (2018) showed that R2*
is only weakly sensitive to myelin in white matter regions that
do not contain iron, but is strongly sensitive to iron in the
basal ganglia and white matter regions that do contain iron. The
authors further demonstrated that QS also has mixed sensitivities
to iron and myelin in white matter. Taege et al. (2019) applied
region of interest-based (i.e., structurally-aggregated) regression
analyses using R2* and QS to investigate deep gray matter
microstructure in the context of multiple sclerosis. Mangeat et al.
(2015) used two-dimensional independent components analysis
of magnetization transfer, cortical thickness, B0 orientation, and
R2* to extract information about the fraction of myelin in white
matter. Bergsland et al. (2018) used QS and diffusion metrics
to perform separate univariate statistical analyses of thalamic
white matter tracts and used non-parametric correlation analysis
to combine these measures and quantify their association with
clinical disease metrics.

While all the previous works provide useful insight into the
structure and composition of the brain, the use of region-based
analyses relies of the typically incorrect assumption of intra-
region homogeneity. Furthermore, these works generally do not
jointly incorporate multiple imaging modes as model covariates.
These are general limitations in the application of traditional
statistical methods to high-dimensional neuroimaging data. In
this work, we aim to address these limitations in the context of
region-detection problems.

In this article, we propose a unified, multimodal framework
for joint region detection associated with a numerical variable
of interest such as age. We formulate this problem in terms
of sparse regression with L1 (lasso), TV, and L2 group lasso
penalties, with the last of these combining information across
multiple modalities. These penalties have been widely used in the
development of robust methods for medical data (He et al., 2016;
Yu et al., 2019). Together, the penalties regularize spatial effect
estimates for better interpretability, both within and between
modalities. This work is concerned primarily with joint region
detection, such as in our focal R2*-QS-age problem, where
overlap between effect supports across modalities is encouraged
but not strictly enforced. To address the computational difficulty
in implementing these penalties together, we propose an
optimization procedure using the alternating direction method
of multipliers (ADMM) algorithm.

Our work addresses the need for multimodal neuroimaging
techniques for joint region detection that can provide
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interpretable estimates accounting for similarities in spatial
effect supports. In our focal example, it is critical to account for
both R2* and QS since, voxel-wise, both are positively associated
with iron accumulation (Langkammer et al., 2012): the increased
statistical power in multimodal MRI analysis has previously
detected subtle pathological changes in neurological diseases
such as multiple sclerosis (Elkady et al., 2017) and will similarly
improve the detection of aging-related neurodegenerative effects.
Generally, our approach emphasizes the interpretability and
stability of support estimates in terms of spatial smoothness
and variability (with respect to perturbations in training data),
respectively. Our estimators are much less affected by spatial
correlation structures that would otherwise result in severe
undersegmentation in other sparse analyses. Furthermore,
our work easily accommodates multiple anatomical regions
simultaneously: this contrasts with traditional voxel-based
analyses, which are generally known to have unsuitable
performance when considering multiple regions due to their
disregard for spatial correlation (Ashburner and Friston, 2000).
In the limited literature addressing multimodal data (Michel
et al., 2011; Gramfort et al., 2013), our formulation using sparse
regularization is novel.

2. MATERIALS AND METHODS

2.1. Sparse Regression and Image
Regularization
We first present more detail on the components of our
proposed framework and define the two other models
against which the proposed method will be compared. For
notational simplicity, we ignore intercept terms in the following
subsections and only consider two modalities, although our
setup generalizes immediately.

Let X1 and X2 be n × p matrices corresponding to the
two imaging modalities (e.g., R2* and QS) after columnwise
standardization. These matrices have i-th row xxx⊤1i and xxx⊤2i ,
respectively, corresponding to vectorized, observed image data
for the i-th subject. In general, p can be smaller than the number
of voxels in the image due to the application of a mask (that is
constant across subjects). Let βββ1 and βββ2 denote corresponding
voxel effects that are to be estimated, and yyy an observed length-n
vector of a continuous variable corresponding to the n subjects.
Loosely, we are interested in associations of X1 and X2 with yyy,
where p≫ n.

2.1.1. Sparse Regression
The traditional (least squares) linear regression problem in this

setting takes the form (β̂ββ1, β̂ββ2) = argminβββ1 ,βββ2‖yyy − X1βββ1 −

X2βββ2‖
2
2. This estimator is unstable and has extremely high

variability, attributable to overfitting in this high-dimensional
setting. Furthermore, this estimator typically yields estimates
with only non-zero entries, making it useless for region
identification. To address both these problems, we introduce a
sparsity assumption on βββ = (βββ⊤

1 ,βββ
⊤
2 )

⊤ by adding an L1 (lasso)
penalty to the previous problem, as an approximation of the L0
penalty used in (NP-hard) best subset selection (Tibshirani, 1996;
Huo and Ni, 2007). The lasso penalty is widely-established in

both statistical theory and application as a method for variable
selection (Tibshirani, 1996; Tibshirani et al., 2005; Simon et al.,
2013): loosely-speaking, when applied in 3D imaging contexts,

this penalty identifies voxels of interest by shrinking entries of β̂ββ
corresponding to “non-significant” voxels to zero.

The sparse regression problem becomes

argmin
βββ1 ,βββ2

‖yyy− X1βββ1 − X2βββ2‖
2
2 + λ1‖βββ1‖1 + λ1‖βββ2‖1, (1)

where the hyperparameter λ1 controls the balance between
model fidelity and model sparsity. We use the same
hyperparameter λ1 for both βββ1 and βββ2 since X1 and X2

are standardized.
While the sparse regression problem in (1) is typically

encountered in models for predicting y, that is not our primary
interest here. We are instead concerned with associations of X1

and X2 with yyy: in a neuroimaging context, we wish to identify
regions with MRI measures X that vary together with age yyy. In
particular, the unpenalized, least squares model maximizes the
square sample correlation between yi and xxx⊤1iβββ1 + xxx⊤2iβββ2, but
requires further regularization to become practically usable.

2.1.2. TV Regularization
While the previous sparsity assumption solves initial problems
in estimating βββ , it does not suitably address estimate
interpretability. In neuroimaging contexts, since measures

from nearby voxels tend to be correlated, β̂ββ will select isolated
voxels rather than contiguous, compact regions that are more
amenable to interpretation (Kandel et al., 2013; Dubois et al.,
2014; Eickenberg et al., 2015).

To encourage interpretability, we add an image-based penalty
to (1). Both TV (Michel et al., 2011; Baldassarre et al., 2012;
Gramfort et al., 2013; Dohmatob et al., 2014; Dubois et al.,
2014; Eickenberg et al., 2015) and GraphNet (Ng et al., 2010;
Grosenick et al., 2013; Kandel et al., 2013; Watanabe et al.,
2014) penalties have been explored in sparse regression and
classification contexts: we use the former as it has demonstrated
superior performance with respect to variable selection (Michel
et al., 2011; Gramfort et al., 2013; Eickenberg et al., 2015). The
anisotropic TV penalty (Tibshirani et al., 2005; Watanabe et al.,
2014) is an L1 penalty on the gradient of an image, which we
denote by

‖∇βββ‖1 = ‖∇1βββ‖1 + ‖∇2βββ‖1 + ‖∇3βββ‖1,

where ∇i (for i = 1, 2, 3) denotes a gradient taken along the
i-th orthogonal coordinate direction. The resulting penalized
problem is

argmin
βββ1 ,βββ2

‖yyy− X1βββ1 − X2βββ2‖
2
2 + λ1‖βββ1‖1 + λ1‖βββ2‖1

+λ2‖∇βββ1‖1 + λ2‖∇βββ2‖1, (2)

where λ2 is another hyperparameter.

2.1.3. Sparse Group Lasso Regularization
The TV penalty in (2) addresses the interpretability of βββ1

and βββ2 estimates separately rather than jointly. The latter is a
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natural consideration in neuroimaging when interested in the
joint support, e.g., regions that are associated with age for both
R2* and QS modalities, or if prior knowledge suggests that the
effect supports should overlap.We introduce an additional sparse
group lasso regularization term to this end.

Group lasso methods apply a penalty to pre-specified groups
of variables and are widely used. To encourage overlap in the two
estimate supports, we consider p groups of size 2, each composed
of voxel-wise measures at the same location. The sparse group
lasso penalty (Simon et al., 2013) in this case is given by

λ3

p
∑

j=1

√

β2
1j + β2

2j.

In contrast, the standard group lasso (Tibshirani, 1996) applies
an L1 penalty to the estimates in each group rather than the
L2 penalty above, forcing all estimates in a group to be both
either zero or non-zero. This is an undesireably hard constraint
in our setting.

The resulting penalized problem and our proposed estimator
is given by

argmin
βββ1 ,βββ2

‖yyy− X1βββ1 − X2βββ2‖
2
2 + λ1‖βββ1‖1 + λ1‖βββ2‖1

+λ2‖∇βββ1‖1 + λ2‖∇βββ2‖1 + λ3

p
∑

j=1

√

β2
1j + β2

2j. (3)

2.2. Optimization
The optimization problem in (3) is difficult to solve due to the
non-differentiability of the L1 norm appearing in the lasso and
TV penalties, to which standard gradient-based methods do not
apply. Various numerical methods and have been explored for
settings with these two penalties, including for logistic regression
(Dohmatob et al., 2014).

In this work, we apply the ADMM algorithm (Boyd et al.,
2011), an efficient convex optimization scheme amenable to
parallel computing. Its computational benefits rely on splitting
a given problem into two convex sub-problems. In the present
case, denoting βββ = (βββ⊤

1 ,βββ
⊤
2 )

⊤, (3) can be written as

argmin
βββ ,ααα

L(βββ)+ ‖3⊤ααα‖1 (4)

subject to βββ = Aααα,

where L(βββ) = ‖yyy − X1βββ1 − X2βββ2‖
2
2 + λ3

∑p
i=1

√

β2
1j + β2

2j is a

smooth function of βββ , A = [Ip | D
⊤]⊤, 3 = [λ1Ip | λ2I3p]

⊤, and
D is the 3-dimensional differential operator (Rohr, 1997).

The ADMM algorithm solves (4) using the iterative updates

βββ(t+1) = argmin
βββ

Lρ(βββ ,ααα
(t),ηηη(t))

ααα(t+1) = argmin
ααα

Lρ(βββ
(t+1),ααα,ηηη(t))

ηηη(t+1) = ηηη(t) + ρ(ααα(t+1) − Aβββ(t+1)),

where ηηη is an auxiliary variable and Lρ(βββ ,ααα,ηηη) = L(βββ) +

‖3⊤ααα‖1 + ηηη⊤(βββ − Aααα) +
ρ
2 ‖βββ − Aααα‖22 is the augmented

Lagrangian with parameter ρ.
The βββ-update step minimizes a smooth function (noting that

ααα andηηη are held fixed) and can be performed using standard first-
order methods. The ααα-update step, on the other hand, features
a non-smooth objective function containing both L2 and L1
penalties on ααα. This update admits a closed-form solution using
the soft thresholding operator Sλ(x) = sgn(x)(|x| − λ), namely,

α
(t+1)
i = S3ii

(

(Aβββ(t+1) − ηηη(t))i

)

.

For termination criterion, we follow the suggestion of Boyd et al.

(2011) based on the problem’s primal residuals rrr
(t)
primal

= ααα(t) −

Aβββ(t) and dual residuals rrr
(t)
dual

= ρA⊤(ααα(t) − ααα(t−1)), namely,

‖rrr
(t)
primal

‖2 ≤ ǫprimal and ‖rrr
(t)
dual

‖2 ≤ ǫdual,

for positive primal and dual tolerances ǫprimal and
ǫprimal, respectively.

2.3. Models and Hyperparameter Tuning
In all subsequent analyses, we compare performance between
three models. The first is an independent sparse (IS) model,
composed of one model for each imaging modality, each fit with
lasso and TV regularization. For this model, “predictions” for
yyy are taken as averages across the independent models. Second,
we consider a joint sparse (JS) model, given in (2), including all
imaging modalities together with lasso and TV penalties. Third,
we consider our proposed sparse group lasso (SGL)method in (3)
including all imaging modalities and lasso, TV, and sparse group
lasso regularization.

Generally, three hyperparameters λ1, λ2, and λ3 require
tuning. We reparameterize these in terms of λ, r1,2, and r3 as

(λ1, λ2, λ3) = λ(r1,2(1− r3), (1− r1,2)(1− r3), r3)

and use the Bayesian information criterion (BIC) (Fan and
Tang, 2013), calculated on the full training dataset, as a
performance criterion to choose optimal hyperparameter values.
In all analyses, results using the generalized information criterion
(GIC) (Fan and Tang, 2013) are similar.

In the following simulation studies, (λ, r1,2, r3) are tuned on a
grid over [e−9, 0] × [0.1, 0.9] × [0, 0.9]. As further restrictions,
the IS model enforces r3 = 0 and the SGL model restricts
r1,2 = 0.05 and r3 = 0.6. Tuning in the subsequent
neuroimaging analysis restricts the maximum value of λ to e−1,
but is otherwise identical.

2.4. Data, Analyses, and Evaluation
2.4.1. Synthetic Data and Simulation Study
Because ground truth for the support regions is not available
in real-world imaging, we use synthetic data to more
comprehensively investigate the performance of our proposed
method. Our setup generalizes that in Zhang et al. (2018)
by including a second imaging modality and inter-modality
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FIGURE 1 | True supports for three of the 10 simulations considered. Purple

represents the joint support, while red and cyan are support regions unique to

exactly one imaging mode.

correlation. In all simulation studies, we use training datasets of
size n = 100, which is comparable to the n = 113 used in our
real-world MRI application.

Imaging data for the first mode is generated with size 32×32×
8. The true support is represented by four disjoint 8×8×4 regions
(which we call “blocks”). Imaging data for the second mode is
generated similarly: however, to simulate (partial) overlap in the
support between the two modes, we allow block size for the
second mode to vary uniform randomly over {6, 7, 8, 9, 10}2 ×

{4, 5}. Example supports are provided in Figure 1.
Background noise is independently generated from a N (0, I)

distribution. Voxel measures within a block are correlated only
with voxels from the same block and from the corresponding
block in the othermode. This inter-voxel correlation is controlled
by a spatial coherence parameter ρ that decreases with L0
distance, and is further multiplied by an inter-mode correlation
parameter η for measures in different modes.

The true effect βββ is set to 0.1, 0.2, 0.3, or 0.4 in each block, for
varying signal strength, and 0 elsewhere. The simulated response
is generated as yyy = 0.01+X1βββ1+X2βββ2+εεε, where εεε ∼ N (000, In),
following the notation in section 2.

We consider two small-sample (n = 100, p = 32 × 32 ×

8 × 2 = 16384) simulation settings: a “low correlation” (ρ =

0.5, η = 0.2) and a “high correlation” setting (ρ = 0.8, η =

0.5). In each case, we run two analyses. The first examines
overall performance averaged over 10 simulations, each using
independently-generated true supports. The second examines
estimate stability over five independent datasets generated using
the same true support (i.e., for 10 possible inter-simulation
comparisons). From here on, we refer to these two analyses as
simulation study #1 and simulation study #2, respectively.

Intuitively, simulation study #1 assesses average performance
across a variety of ground truths. On the other hand, simulation
study #2 assesses estimate stability across different training
datasets for a single, fixed ground truth.

2.4.2. Neuroimaging Data, Pre-processing, and

Analyses
The neuroimaging data used in this work is from an in-house
study of multiple sclerosis and controls (Walsh et al., 2014;
Elkady et al., 2017), similar to that used in Zhang et al. (2018)
but composed of only n = 113 control scans (mean age 40.25
with SD 10.91, minimum 21.8, and maximum 65.1), of which
40 were obtained from male subjects. Our primary interest is in

FIGURE 2 | Deep gray matter (DGM) structures considered in this study. The

DGM mask applied to the data is shown in gray in all sub-panels. The caudate

(blue), putamen (red), thalamus (green), and globus pallidus (purple) are

highlighted in each sub-panel.

identifying regions of the brain in which variability in iron levels
is associated with age. We focus on four subcortical deep gray
matter (DGM) structures: the caudate, putamen, thalamus, and
globus pallidus, shown in Figure 2 (Zhang et al., 2017, 2018).
We use R2* and QS modalities, as both are known to be highly
sensitive to changes in non-heme iron (Wang and Liu, 2015).

Imaging was conducted using a 4.7 T system (Varian Inova,
Palo Alto, CA), with two imaging sequences obtained per session.
R2* andQSmaps were calculated using three-dimensional multi-
echo gradient echo acquisitions (acquisition time = 9.4 min,
repetition time 44 ms, number of echoes = 10, time to first
echo = 2.93 ms, echo spacing = 4.1 ms, monopolar readout,
flip angle = 10◦, number of contiguous slices = 80, field of
view = 160 × 256 × 160 mm3, voxel size 1 × 1 × 2 mm3).
R2* maps were computed using a mono-exponential temporal
fit of image magnitude, while QS maps were calculated using
an image phase inversion (Bilgic et al., 2012) following phase
unwrapping using FSL PRELUDE and background field removal
using regularization-enabled sophisticated harmonic removal of
phases (RESHARP) (Sun and Wilman, 2013). An anatomical
MRI sequence was acquired by 3D T1w volumetric imaging
using magnetization-prepared rapid gradient-echo (MPRAGE)
(acquisition time = 4.8 min, flip angle = 108◦, TE/TR =

4.5/8.5ms, inversion time to start of readout= 300ms, sequential
phase encoding, number of contiguous slices = 84, voxel size =
0.9× 0.9× 2 mm3).

Prior to analysis, the MRI data was pre-processed and aligned
with an in-house unbiased template using ANTs (ANTS, 2011),
built from T1w, R2*, and QS data from 10 healthy controls. Pre-
processing involved intra-subject alignment of the R2* and QS

Frontiers in Human Neuroscience | www.frontiersin.org 5 February 2021 | Volume 15 | Article 641616

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Pietrosanu et al. Multimodal Group-Regularized Stable Anatomy Detection

TABLE 1 | Performance results for simulation study #1, averaged over 10 independent simulations.

Method Setting MAE Test R2 Dice

Train Test Full Joint

IS LC 0.187 (0.140) 29.286 (7.895) 0.732 (0.144) 0.427 (0.236) 0.552 (0.152)

HC 0.147 (0.102) 27.840 (7.334) 0.762 (0.139) 0.532 (0.151) 0.596 (0.128)

JS LC 0.127 (0.056) 29.060 (6.078) 0.734 (0.124) 0.380 (0.148) 0.537 (0.112)

HC 0.127 (0.056) 29.066 (6.072) 0.734 (0.123) 0.380 (0.149) 0.537 (0.113)

SGL LC 0.128 (0.055) 8.310 (4.682) 0.998 (0.001) 0.641 (0.107) 0.824 (0.032)

HC 0.129 (0.055) 8.309 (4.682) 0.998 (0.001) 0.641 (0.107) 0.823 (0.031)

“LC” and “HC” denote the low correlation (ρ = 0.5, η = 0.5) and high correlation (ρ = 0.8, η = 0.5) settings, respectively. “IS,” “JS,” and “SGL” refer to the independent sparse, joint

sparse, and proposed sparse group lasso models, respectively. All results are presented in the form “mean (SD).” Entries with the best mean results for the LC and HC settings in each

column are in bold.

maps with the T1w map. Non-linear registration in the template
space was accomplished by applying SyN (ANTS, 2011) to the
multimodalMRI data. Observation row vectorsxxx⊤i were obtained
by taking voxels within a DGM mask manually traced on the
atlas, shown in Figure 5. Data matrix columns were standardized
before analysis.

2.5. Evaluation Methodology
For simulation study #1, we report prediction mean absolute
error (MAE) on the training set (n = 100) and both MAE and
R2 on the independent testing set (n = 500). Since the true
support is known for synthetic data, we also report Dice scores
between the estimated and true supports (called “full Dice”) as
well as between the estimated and true joint supports (called
“joint Dice”). Here, “joint” refers to the region of overlap in the
supports of the two imaging modes.

For simulation study #2, we additionally report Dice scores
between estimated supports obtained from different training
datasets. This performance measure quantifies the stability of the
estimated support with respect to training set variability.

In the neuroimaging analysis, we consider a 23-fold cross-
validation approach due to the small sample size. We report
training and testing set MAE, testing set R2, and pairwise
Dice scores between the supports estimated using each
training dataset.

3. RESULTS

3.1. Simulation Studies
Results for simulation study #1 are provided in Table 1. Figure 3
gives example visualizations of the estimated and true supports
for one simulation. These results are similar between the high
and low correlation settings. Full and joint Dice scores are
significantly higher for the proposed SGL model, with 1.4–
4.9 times lower variability across simulations, suggesting more
accurate and stable support estimation when using the proposed
SGL method. Figure 3 supports these conclusions and illustrates
how the SGL estimator more clearly and accurately identifies the
joint support: in contrast, IS and JS estimates suggest higher false-
positive voxel selection rates. These points are visually evident

FIGURE 3 | Estimated supports for one simulation in the HC setting. Purple

represents the joint support, while red and cyan are support regions unique to

exactly one imaging mode. In each sub-panel, the bottom, left, right, and top

block corresponds to a true effect size of 0.1, 0.2, 0.3, and 0.4, respectively.

(Top-left) Independent sparse (IS) model estimates. (Top-right) Joint sparse

(JS) model estimates. (Bottom-left) Proposed sparse group lasso (SGL)

model estimates. (Bottom-right) True support, also indicated in other

sub-panels in gray, for reference.

though the differences in the size of the joint region (shown in
purple) detected by the SGL and the IS/JS estimates, the noise
present in the IS (and JS, to a lesser extent) estimate unique
to one imaging modality (indicated in red and cyan), and the
notable deterioration of IS/JS estimate quality when the true effect
size is small. While not the primary goal, the proposed SGL
model retains excellent association with the response, shown in
testing set MAE and R2: as hypothesized, this suggests that the
proposed SGL model generalizes better to new data and that the
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FIGURE 4 | Estimated supports for different simulations with the same ground truth, shown in the middle panel of Figure 1. Purple represents the estimated joint

support, while red and cyan are estimated support regions unique to exactly one imaging mode. The true support is indicated in gray, for reference. In each sub-panel,

the bottom, left, right, and top block corresponds to a true effect size of 0.1, 0.2, 0.3, and 0.4, respectively. Estimates in the same column were obtained using the

same dataset. (Top) Independent sparse (IS) model estimates. (Middle) Joint sparse (JS) model estimates. (Bottom) Proposed sparse group lasso (SGL)

model estimates.

TABLE 2 | Performance results for simulation study #2.

Method Setting MAE Test R2 Dice (truth) Dice (pairwise)

Train Test Full Joint Full Joint

IS LC 0.207 (0.129) 25.940 (6.789) 0.811 (0.056) 0.641 (0.069) 0.659 (0.097) 0.579 (0.072) 0.688 (0.080)

HC 0.207 (0.129) 25.940 (6.789) 0.811 (0.056) 0.641 (0.069) 0.659 (0.097) 0.579 (0.072) 0.688 (.080)

JS LC 0.112 (0.026) 26.426 (6.902) 0.791 (0.067) 0.609 (0.110) 0.568 (0.190) 0.556 (0.076) 0.541 (0.153)

HC 0.112 (0.026) 26.426 (6.902) 0.791 (0.067) 0.609 (0.110) 0.568 (0.190) 0.556 (0.076) 0.541 (0.153)

SGL LC 0.144 (0.040) 2.234 (0.402) 0.999 (0.001) 0.832 (0.012) 0.700 (0.024) 0.835 (0.007) 0.760 (0.011)

HC 0.141 (0.042) 2.241 (0.404) 0.999 (0.001) 0.831 (0.011) 0.700 (0.021) 0.835 (0.006) 0.760 (0.009)

“LC” and “HC” denote the low correlation (ρ = 0.5, η = 0.5) and high correlation (ρ = 0.8, η = 0.5) settings, respectively. “IS,” “JS,” and “SGL” refer to the independent sparse, joint

sparse, and proposed sparse group lasso models, respectively. All results are presented in the form “mean (SD).” Entries with the best mean results for the LC and HC settings in each

column are in bold.

estimated relationship (in β̂ββ) between voxel-wise measures and
the response is less-affected by over-fitting to the training dataset,
relative to the IS and JS models.

Results for simulation study #2 are provided in Table 2.
Figure 4 gives example visualizations of the estimated supports

(obtained from different training datasets) and the true support
for one simulation. These results agree with the conclusions of
simulation study #1: the proposed SGL method more accurately
and stably selects the true support (either full or joint) while
retaining high association with the response. Despite a more
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FIGURE 5 | Estimates obtained from one training fold in the neuroimaging

data analysis. Purple represents the estimated joint support, while red and

cyan are estimated support regions unique to exactly one imaging modality.

(Top-left) IS model estimates. (Top-right) JS model estimates. (Bottom-left)

SGL model estimates. (Bottom-right) DGM mask, also included in other

sub-panels for reference.

complex true support, Figure 4 demonstrates the stability of SGL
estimates across independent training sets. This contrasts with
IS and JS estimates, which again show higher false-positive voxel
selection rates (visually, with red, cyan, or purple outside of the
gray true support) and struggle to identify the joint support
(visually, with estimates in purple), particularly when the true
signal is weak.

3.2. Neuroimaging Data Analysis
Results for the neuroimaging analysis are given in Table 3.
Examples of the estimated supports are provided for one training
fold in Figure 5 and for multiple folds in Figure 6. While no
ground truth is available, these results support the simulation
studies’ conclusions. Figure 5 illustrates the expected behavior of
typical sparse methods in real-world settings: both the IS and JS
estimates show many small, non-contiguous regions of selected
voxels (although the JS estimates are somewhat smoother).
More importantly, the IS and JS estimates suggest little to no
joint support (in purple), which is clearly not consistent with
findings from previous neuroimaging studies. In contrast, the
SGL estimates show a substantial joint support attributable to
the proposed sparse group penalty. Furthermore, this region
is reasonably smooth, amenable to clinical interpretation, and
stable across the (nearly identical) training folds (shown in
Figure 6), unlike the IS and JS estimates. This conclusion
regarding the stability of SGL estimates is supported in Table 3

by the higher Dice scores (both full and joint) between estimates
obtained from different training folds. Numerically, all estimated

models retain a comparable and moderate association between
predicted and true age (shown by validation set MAE and R2 in
Table 3).

4. DISCUSSION

4.1. Summary and Key Findings
Our simulation studies and analysis of a real-world neuroimaging
dataset consistently supported our proposed SGL approach over
both IS and JS models. In the simulation studies, SGL estimates
of the full support gave notably higher (estimate-truth) Dice
scores with lower variation across simulations. This result was
strengthened when considering joint support detection and
can be attributed to our inclusion of a sparse group lasso
penalty. Figures 3, 4 illustrate the high false-positive rate and
instability of IS and JS estimates and the difficulty they have in
obtaining the joint support, especially for weaker signals. SGL
estimates do not suffer in these ways and still recover the joint
support even if the signal is weaker. A second set of simulation
studies over independent datasets with the same ground truth
similarly confirmed that our proposed method provides more
stable estimates.

The neuroimaging analysis highlighted a major disadvantage
of typical sparse methods (e.g., IS and JS), namely, their tendency
to select a small number of voxels in non-contiguous regions,
shown clearly in Figure 5. Furthermore, neither IS nor JS
estimates suggested the presence of a joint support region,
inconsistent with previous neuroimaging studies (Peters, 2002;
Langkammer et al., 2012). These estimates again showed high
instability, even with minimal variation in the training dataset
during 23-fold cross validation (with total sample size n =

113). In contrast, our SGL method estimates a substantial joint
support that was reasonably smooth, compact, and stable across
training folds.

In both the simulation and neuroimaging analyses, all
methods demonstrate a difference between the training and
testing (or validation) set MAE, as expected. We attribute
variation in this difference between the IS/JS and SGL models to
the effect of overfitting when using the former methods, which is
emphasized in the simulation studies (with about 82–90% of truly
non-predictive voxels, much greater than the 32–50% estimated
by the SGL model in the neuroimaging analysis). We suspect
this variation is lessened in the neuroimaging analysis due to
the naturally more complex data for which our simulation is a
simple imitation.

4.2. Related Work and Impact
Existing approaches to multimodal neuroimaging data analysis
commonly use techniques requiring a large sample size (Fan
et al., 2007), analyze modes separately (Cherubini et al., 2009),
aggregate voxel-wise measures to the structural level (Betts
et al., 2016), or combine modalities in only an initial feature
selection stage (Elkady et al., 2017). These approaches are either
impractical or come at the cost of statistical power.

In this article, we proposed a unified, multimodal framework
for joint region detection associated with a numerical variable
of interest. Our work addresses the above limitations in existing
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TABLE 3 | Performance results for the neuroimaging data analysis for 23-fold cross-validation.

Method MAE Validation R2 Dice (pairwise)

Train Validation Full Joint

IS 0.193 (0.051) 4.548 (1.563) 0.845 (0.171) 0.529 (0.062) 0.395 (0.114)

JS 0.607 (0.188) 5.515 (1.640) 0.784 (0.183) 0.519 (0.070) 0.308 (0.131)

SGL 0.648 (0.117) 5.059 (1.967) 0.824 (0.150) 0.678 (0.050) 0.666 (0.049)

“IS,” “JS,” and “SGL” refer to the independent sparse, joint sparse, and proposed sparse group lasso models, respectively. All results are presented in the form “mean (SD)”. Entries

with the best mean results in each column are in bold.

FIGURE 6 | Estimated supports for different training datasets in the neuroimaging data analysis. Purple represents the estimated joint support, while red and cyan are

estimated support regions unique to exactly one imaging modality. The DGM mask is shown in gray in all sub-figures, for reference. Estimates in the same column

were obtained using the same dataset. (Top) Independent sparse (IS) model estimates. (Middle) Joint sparse (JS) model estimates. (Bottom) Proposed sparse

group lasso (SGL) model estimates.

neuroimaging analytic approaches as well as disadvantages of
methods that employ sparse regularization. We are primarily
interested in settings where overlap in the effect supports
between modes is encouraged (rather than enforced) due to prior
knowledge or a need for estimate interpretability. Our proposed
method combines lasso, TV, and sparse group lasso penalties to
this end.

Our primary motivating example concerns the association
of R2* and QS MRI maps with age: in particular, previous

works have shown that both modalities need to be considered
simultaneously to delineate the complex association between iron
and myelin levels (Hametner et al., 2018). An understanding of
iron accumulation in healthy aging can give insights into the
association between brain iron levels and neurological disease
such as multiple sclerosis (Elkady et al., 2019). In this article, we
considered the problem of identifying deep gray matter regions
where variation in R2* and QSmeasures is jointly associated with
aging in healthy controls. Although the main focus of this study
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was the detection of specific iron changes in deep gray matter,
our work may be extended to delineate iron and myelin changes
in myelin-rich white matter tissue.

The neuroimaging literature demonstrates a need for methods
that can simultaneously accommodate multiple modalities and
yield interpretable results in joint region detection problems,
such as in our central R2*-QS-age example. Methods employing
sparse regularization suffer due to spatial correlation in imaging
data and tend to select a non-compact set of disjoint voxels.
Image-based (e.g., TV) penalties help address this, but do not
consider relationships between modalities. In practice, this may
be problematic when it is expected that relevant brain regions are
similar across modalities.

Our introduction of a sparse group lasso penalty is novel in
this neuroimaging context and addresses the above gap in the
current literature. We have shown that our SGL model is capable
of obtaining estimates that are compact, interpretable, and stable,
both within and between imaging modalities. Our work here
is a first step in more general approaches to the multimodal
analysis of age- or disease-related alterations in brain structure
and function.

4.3. Limitations and Future Developments
In this article, we only considered a continuous response due to
its wide applicability and our primary motivation to study age-
related variation in DGM iron levels. However, our approach is
readily applied to other tasks by modification of the objective
function in (3). For example, Zhang et al. (2018) considers
a discriminative anatomy detection problem based on logistic
regression using a single MRI modality. This could be developed
to include multiple modalities and a sparse group penalty
for joint discriminative anatomy detection. To focus on our
approach to multiple imaging modalities in this work, we also did
not consider subject-level scalar predictors zzzi (e.g., demographic
or clinical variables). By changing the yyy − X1βββ1 − X2βββ2 portion
of the objective function in (3) to yyy− Zγγγ − X1βββ1 − X2βββ2, where
Z has row vectors zzz⊤i , scalar covariates can be included with
only straightforward changes to the ADMM algorithm. In both
cases, our work here is a general framework that supports other
standard tools employed in regression analysis.
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