
Nonsmooth Low-Rank Matrix Recovery:
Methodology, Theory and Algorithm

Wei Tu1, Peng Liu2, Yi Liu3, Guodong Li4, Bei Jiang3, Linglong Kong3(B),
Hengshuai Yao5, and Shangling Jui6

1 Department of Public Health Sciences and Canadian Cancer Trials Group,
Queen’s University, Kingston, Canada

2 School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, UK
3 Department of Mathematical and Statistical Sciences,

University of Alberta, Edmonton, Canada
lkong@ualberta.ca

4 Department of Statistics and Actuarial Science, University of Hong Kong,
Pok Fu Lam, Hong Kong

5 Huawei Hisilicon, Edmonton, Canada
6 Huawei Hisilicon, Shanghai, China

Abstract. Many interesting problems in statistics and machine learning can be
written as minx F (x) = f(x) + g(x), where x is the model parameter, f is the
loss and g is the regularizer. Examples include regularized regression in high-
dimensional feature selection and low-rank matrix/tensor factorization. Some-
times the loss function and/or the regularizer is nonsmooth due to the nature of
the problem, for example, f(x) could be quantile loss to induce some robustness
or to put more focus on different parts of the distribution other than the mean.
In this paper we propose a general framework to deal with situations when you
have nonsmooth loss or regularizer. Specifically we use low-rank matrix recovery
as an example to demonstrate the main idea. The framework involves two main
steps: the optimal smoothing of the loss function or regularizer and then a gradi-
ent based algorithm to solve the smoothed loss. The proposed smoothing pipeline
is highly flexible, computationally efficient, easy to implement and well suited for
problems with high-dimensional data. Strong theoretical convergence guarantee
has also been established. In the numerical studies, we used L1 loss as an exam-
ple to illustrate the practicability of the proposed pipeline. Various state-of-the-art
algorithms such as Adam, NAG and YellowFin all show promising results for the
smoothed loss.

Keywords: Matrix factorization · Nonsmooth · Low-rank matrix · Nesterov’s
smoothing · Optimization

1 Introduction

Many problem in statistics and machine learning can be formulated as the following
form:

min
x

F (x) = f(x) + g(x),
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Arai (Ed.): FTC 2021, LNNS 358, pp. 848–862, 2022.
https://doi.org/10.1007/978-3-030-89906-6_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89906-6_54&domain=pdf
https://doi.org/10.1007/978-3-030-89906-6_54


Nonsmooth Low-Rank Matrix Recovery: Methodology, Theory and Algorithm 849

where x is the parameter, f is the loss and g is the regularizer. Examples
includes penalized regression in high-dimensional feature selection [30] and low-rank
matrix/tensor recovery. Typically both f(x) and g(x) are proper convex functions such
as using L2 loss for f(x). However, in some problems, due to the need of sparsity,
robustness or other structural requirement of the parameter space, a nonsmooth or even
nonconvex loss function or regularizer is often needed. In this paper we propose a gen-
eral framework to deal with situations when you have nonsmooth loss or regularizer.
Specifically we use low-rank matrix recovery as an example to illustrate the main idea.

In practice, many high dimensional matrices essentially have low-rank structure;
see, for example, recommender systems [27], stochastic system realization [25] in sys-
tems and control, computer algebra [4], psychometrics [19] and even quantum state
tomography [13] in physics. Meanwhile, these matrices usually are partially observed,
and a lot of entries are left unobserved due to many different reasons. For example,
we can only observe a few ratings from any particular recommender systems; or the
quantum states have an exponentially large size so that it’s not possible to obtain same
scale observations. For these partially observed matrices with a high missing rate, it is
of interest to ask “How to estimate the matrix with low-rank structure?” or “How to
recover the low-rank matrix effectively?”. This leads to an important problem of low-
rank matrix recovery.

Since the Netflix prize competition in 2009, matrix factorization has been shown
to outperform traditional nearest-neighbor based techniques in the sense that it allows
the incorporation of additional information such as temporal effects, confidence levels
and so on [18]. The basic idea of matrix factorization is to decompose the target matrix
M∗ ∈ R

m×n into a bilinear form:

M∗ = U�V

where U ∈ R
r×m, V ∈ R

r×n, and the rank of M∗ is no more than r with r ≤
min(m,n).

Due to the rapid improvement of computation power, matrix factorization has
received more and more attention in various fields; see [6,16,26,37] and among others.
Most currently used methods are based on theL2 loss, which is the optimal choice when
the noise is Gaussian distributed. However, it is sensitive to outliers, and one possible
solution is to consider a loss function other than the L2 loss; see [5,16,24].

Meanwhile, as shown in [9], the nonsmooth optimization problem plays an impor-
tant role in many areas such as image restoration, signal reconstruction, optimal control,
and so on. In statistics, the least absolute deviation is well known to be robust to highly
skewed and/or heavy-tailed data. The Manhattan distance in machine learning is actu-
ally based on L1 loss. Quantile regression, which corresponds to the quantile loss, is
another important estimating method in statistics, and is also commonly used to han-
dle the highly skewed data. It is noteworthy to point out that both L1 and quantile loss
functions are nonsmooth. Other useful nonsmooth functions in statistics and machine
learning include indicator function, step function, max function and so on [7,33,34].



850 W. Tu et al.

Thus it is of importance to consider matrix factorization with nonsmooth loss func-
tion for the matrix recovery. Various algorithms, including the simplex, subgradient and
quasi-monotone methods, have been proposed to tackle with the nonsmooth optimiza-
tion, while few of them are efficient for recovering low-rank matrices with high dimen-
sions. Smooth approximation recently has been studied for nonsmooth optimization
in many areas, such as complementarity problems, optimal control, eigenvalue opti-
mization, etc., and it has been shown to be efficient even for the case with nonsmooth
constraints; see, for example, [2,8] and [10].

This paper considers the problem of low-rank matrix recovery from linear measure-
ments. A general nonsmooth loss function is considered here, and Nesterov’s smooth-
ing method [22] is then applied to obtain an optimal smooth approximation. In practice,
according to the specific nature of the problem and data, one can choose a suitable non-
smooth loss function, satisfying Nesterov’s assumptions in [22], such that an efficient
algorithm can be obtained. Due to the bilinear structure of matrix factorization, the alter-
nating minimization method is thus employed to search for the solutions and, at each
step, we compare the performance of various algorithms, which are based on gradient
descent and momentum. Compared with previous work, this paper is more general in
the following ways: 1) the transformation matrices we considered are more general; 2)
a strong convergence guarantee is established for the proposed algorithm; 3) different
state-of-the-art gradient based algorithms are used and compared. For example, vanilla
gradient descent, Nesterov’s momentum method [22], Adam [17] as well as YellowFin
[36] algorithm. All the algorithms substantially improve the performance of original
nonsmooth problem.

Here are the structure of the paper. Section 2 introduces the mathematical settings of
the problem, while the proposed algorithms are presented in details in Sect. 3, and the
theoretical convergence analysis results can be found in Sect. 4. In Sect. 5, we illustrate
the effectiveness of the proposed framework using the popularly used L1 loss as a spe-
cial example. Different gradient and momentum based algorithms are used to compare
their performances.

2 Methodology Framework

This paper considers the model,

bi = 〈Ai,M
∗〉 + εi, i = 1, . . . , p, (1)

where M∗ is the true value, we can observe {Ai, bi}, i = 1, · · · , p, and εi is the
error term. Here Ai ∈ R

m×n with 1 ≤ i ≤ p are given transformation matrices. The
low-rank matrix M∗ has rank r with r smaller than min(m,n, p), which allows us
to decompose M∗ into two matrices. Specifically, we can write M∗ = U∗�V ∗, with
U∗ ∈ R

r×m and V ∗ ∈ R
r×n. The following optimization can be used to recover M∗:

min
U,V

1
p

p∑

i=1

f(bi − 〈Ai, U
�V 〉), (2)

where f(·) is a nonsmooth objective function. Let A : R
m×n → R

p be an
affine transformation with the ith entry of A(M∗) being 〈Ai,M

∗〉, and f(x) =



Nonsmooth Low-Rank Matrix Recovery: Methodology, Theory and Algorithm 851

p−1
∑p

i=1 f(xi) for a vector x = (x1, ..., xp)�. Equation (2) can be rewritten as fol-
lows:

min
U,V

f(b − A(U�V )). (3)

Assume that f(·) is differentiable almost everywhere, and has the following struc-
ture:

f(b − A(U�V )) = f̂(b − A(U�V )) + max
u

{
〈B(b − A(U�V ), u)2 − φ̂(u)〉

}
,(4)

where f̂ is a continuous and convex function; see [22]. We then can obtain the
following optimal smooth approximation:

fμ(b − A(U�V )) = f̂(b − A(U�V ))+

max
u

{
〈B(b − (U�V )), u〉2 − φ̂(u) − μd2(u)

}
,

(5)

and μ is positive and used for smoothness.
The above smooth approximation is made to function f(·) for vector b−A(U�V ),

rather than the unknown matrix parameters U and V , since it can be handled more
conveniently. Moreover, under the restricted isometry property assumption on A, the
smooth approximation does not change the convergence rate.

In meanwhile, due to the scale problem, the direct solutions to (5) may not have
a proper structure, and one commonly used correction is to introduce a penalty of
λ(‖U‖2F + ‖V ‖2F ); see, for example, [28,38] and among others. However, such penal-
ization can not preserve the intrinsic structure for U and V . This paper use the Pro-
crustes flow penalty [20,31] instead, and our optimization problem becomes

min
U,V

fμ(b − A(U�V )) + λ‖UU� − V V �‖2F , (6)

where the ad hoc choice of λ is 1/16, the objective function is smooth with respect
to U and V , and can be denoted by fλ

μ (U, V ). The original nonsmooth optimization
problem corresponds to

min
U,V

f(b − A(U�V )) + λ‖UU� − V V �‖2F , (7)

which can be represented by fλ(U, V ).
Due to the bilinear structure of fλ

μ (U, V ) regarding to U and V at (6), we adopt
the alternating minimization method to search for the solutions. During each iteration,
one of the target matrices U and V will be fixed, and the algorithm will update on
another one until the objective function stabilizes. The algorithm keeps updating until
the objective function converges. In the literature of matrix factorization, [16] showed
its convergence for L2 loss function, and this paper will further establish the conver-
gence for a general nonsmooth loss function.



852 W. Tu et al.

Algorithm 1: Initialization by SVP algorithm

Input: A, b, tolerance ε, step size ξt for t = 0, 1, · · · , M0 = 0m×n

Output: M t+1

1 Repeat
2 Y t+1 ← M t − ξt∇Mfμ(b − A(M t))
3 Compute top r singular vectors of Y t+1:Ur, Σr, Vr

4 M t+1 ← UrΣrVr

5 t ← t + 1
6 Until ‖M t+1 − M t‖F ≤ ε

3 Algorithm

There are three steps in our algorithm, and the first one is the initialization; see Algo-
rithm 1. The initialization step is crucial since it can affects how quickly the gradient
updating approaches the optimal values. If the initial values for U and V are close to
orthogonal to the true values, the gradient updating might be very slow or even impossi-
ble to reach the optimal. The singular value projection (SVP) is used to compute starting
values, which was proposed by [15] and later used by [1,12,31] and so on.

Algorithm 1 can be written into

M t+1 ← Pr

(
M t − ξt∇Mfμ(b − A(M t))

)
,

where Pr denotes a projection onto the space of rank-r matrices. Algorithm 1 itself
can be used to target matrix X∗ [15] for small to moderate problems. When the dimen-
sionality of X∗ is large, the SVP algorithm can be slow, but a small number of iterations
provide a sufficient start for further steps.

The second step is the alternating minimization; see Algorithm 2. During each iter-
ation, one of the target matrices U and V will be fixed, and the algorithm will update on
another one until the objective function stabilizes. The algorithm keeps updating until
the objective function converges. Û and V̂ are used to denote the final outputs for U
and V .

Within each update of U and V (step 1.1 and 1.2) in Sect. 2, we use Nesterov’s
accelerate gradient (NAG) method. Various other methods have been proposed in the
literature for this use. [16] and [31] used the vanilla gradient descent method, while it
may be slow in our nonsmooth matrix factorization settings. Algorithm 3 introduces
Nesterov’s momentum method to update the value of U , while that of V is fixed. Simi-
larly we can gives the algorithm to update the value of V . In Algorithm 3, νt

(i) represents
the momentum term, γ represents the momentum parameter, η represents the learning
rate. A typical choice of γ is 0.9 [29,36]. To explore how some other state-of-the-art
gradient methods perform in the proposed setting, we consider two other momentum-
based algorithms: Adam in [17] and Yellowfin in [36]. These methods have shown
superior performances in other large-scale applications such as deep learning and deep
reinforcement learning.



Nonsmooth Low-Rank Matrix Recovery: Methodology, Theory and Algorithm 853

Algorithm 2: Alternating Minimization

Input: U0, V 0

Output: Unmax , V nmax

1 Repeat
2 1.1.Update U t with U t+1 = NAG(U t, V t)
3 1.2.Update V t with V t+1 = NAG(U t+1, V t)
4 Until convergence

Algorithm 3: Nesterov’s Accelerate Gradient (NAG) Method for U t+1

Input: U t, V t

Output: U t+1

1 Repeat
2 νt

(i) = γνt
(i−1) + η∇Ufλ

μ (U t
(i−1) − γνt

(i−1), V
t)

3 U t
(i) = U t

(i−1) + νt
(i)

4 Until convergence

4 Convergence Analysis

Denote {Ûπ, V̂ π} = minU,V fλ
μ (U, V ) and {Û , V̂ } = minU,V fλ(U, V ). The theoret-

ical properties of the used algorithms in this paper is similar to the ones in [32], namely,
the convergence of the smoothed objective function. Here we list the main algorithms
and the details of the proof can be found in Appendix of [32].

Theorem 1. (Convergence of optimal solution of smoothed objective function) As π →
0+, we have Ûπ�V̂ π → Û�V̂ .

Many existing literatures on smoothing technique usually only focus on analyzing
the theoretical properties while ignore the relationship between smooth objective func-
tion and original nonsmooth objective function, for example, [3]. However, Theorem 1
shows that if we only focus on optimizing smooth objective function, we can still obtain
the optimal solution for nonsmooth objective function, the benefit is that we can thus
have lots of choices with respect to the algorithms based on smooth objective function,
then we can simple choose a fast one to obtain the solution.

The following matrices distance measure is used:

dist(U,U†) = min
R∈Rr×r:R�R=Ir

‖U − RU†‖F ,

where U,U† ∈ R
r×m with m ≥ r; see [31].

Theorem 2. Let M ∈ R
m×n be a rank r matrix, with singular values σ1(M) ≥

σ2(M) ≥ · · · ≥ σr(M) > 0 and condition number κ = σ1(M)/σr(M), let
M = A�ΣB be the SVD decomposition. Define U = A�Σ1/2 ∈ R

m×r, V =
B�Σ1/2 ∈ R

n×r. Assume A satisfies a rank-6r RIP condition with RIP constant



854 W. Tu et al.

σ6r < 1
25 , ξt = 1

p . Then use T0 ≥ 3 log(
√

rκ) + 5 iterations in SVP initialization
yields a solution U0, V0 obeying

dist

([
U0

V0

]
,

[
U
V

])
≤ 1

4
σr(U). (8)

Furthermore, starting from any initial solution obeying (8), the t-th iterate of Algo-
rithm 2 satisfies

dist

([
Ut

Vt

]
,

[
U
V

])
≤ 1

4
(1 − τ̃1)t μ̃

ξ̃

1 + δr

1 − δr
σr(U) (9)

under Nesterov’s momentum method.

We make several contributions in Theorem 2, the first one is that we extend [15]’s
SVP algorithm from least square matrix factorization to nonsmooth matrix factoriza-
tion, in addition, we provide theoretical convergence guarantees for alternating mini-
mization with Nesterov’s momentum method for general objective function, this gen-
eralize [31]’s linear convergence guarantees for alternating minimization with gradient
descent for least square objective function. We also would like to mention that though
[35] also provide a smoothing approximation using Nesterov’s smoothing technique,
however, they are dealing with nonnegative matrix factorization case, which is much
simpler than ours and they also did not provide rigorous theoretical analysis.

5 Numerical Studies

Several different commonly used unsmooth loss function can be used. Here we choose
the mostly common seenL1 loss during the simulation to illustrate the practical applica-
bility of our theoretical results and provide insights about the choice of the algorithms.
The corresponding smoothed approximation of L1 loss is the popular Huber loss func-
tion (Huber 1981) in robust statistics. The Huber loss function is defined as

Lμ(a) =
{ 1

2μ |a|2 for |a| ≤ μ

|a| − μ
2 otherwise

, (10)

where μ is the predetermined parameter controlling the tradeoff between smooth-
ness and precision. When μ → 0+, the Huber function converge to absolute loss uni-
formly. When μ → +∞, the Huber function resembles the L2 loss. Figure 1 further
illustrates the differences of these loss functions.

5.1 Synthetic Data

The dataset is generated in the following manner: all entries in U ∈ R
r×m, V ∈ R

r×n

and Ai ∈ R
m×n are independently sampled from Gaussian distribution N(0, 1). The

ground truth M∗ to recover is then calculated as M∗ = U�V , and the rank of M∗



Nonsmooth Low-Rank Matrix Recovery: Methodology, Theory and Algorithm 855

Fig. 1. The comparison of different loss functions. Here huber 1.35 in the legend denotes huber
loss with μ = 1.35.

is r. The observations bi are generated following the assumed data generating process
indicated in (1).

The following two metrics are used to measure the performances of different
algorithms: 1) the value of the loss function; 2) relative recovery error: ‖Û�V̂ −
M‖F /‖M‖F , where Û and V̂ are the estimated U and V using the proposed smoothing
method. For both metrics, a smaller value is desired.

Smooth Parameter μ : The smoothing parameter μ in (10) controls the tradeoff
between the smoothness and precision. In this simulation we aim to investigate the
relationship between the choice of μ and the relative recovery error. Without loss of
generality, m = n = 32, p = 512 and r = 10 is used here. To enhance the difference
between L1 loss and L2 loss, all oberservations bi have been contaminated by a Cauchy
noise ei, and Nesterov’s momentum method is used for this simulation (Fig. 2).

Figure 3 shows the trend between the smoothing parameter and the relative recovery
error, and the x axis is the natural algorithm transformed μ. We observe three interesting
patterns from this plot: 1) the performance of the algorithm is not sensitive to the choice
of μ as we can see a reasonable small choice of μ will result in a small recovery error; 2)
as μ approaches 0, the huber loss becomes very close to the L1 loss, and recovery error
increases slightly. This might due to the non-smoothness of L1 loss; 3) as μ approaches
+∞, the huber loss becomes very close to the L2 loss, and L2 loss does not work well
here due to the Cauchy noise added to the data. The empirical results here also further
verifies our theoretical result in Theorem 1: as the smoothing parameter approaches to
0, the optimal solution of the smoothed objective function approaches to that of the
nonsmooth one (L1 loss here).

Algorithm Comparisons: The third step of the algorithm of updating U or V can be
solved by many different algorithms. Four methods are implemented here: the vanilla
gradient descent method (GD), the Nesterov’s momentum method (NAG) [21], the



856 W. Tu et al.

Fig. 2. Relative recovery error under different choices of smooth parameter μ. The horizontal axis
is the μ in algorithm scale, and the vertical axis is the relative recovery error.

Adam [17] method and the YellowFin [36] algorithm that features step size auto-tuning
capacity.

For each algorithm, we start with an unreasonably high step size, η = 1. Under
such a high step size, most algorithms are expected to diverge or suffer from numerical
instability. Then, we repetitively decrease the step size via multiplying η by 1√

10
for

each iteration until the algorithm starts to converge properly.
To limit our simulation in reasonable amount of time, m, n, r and p are chosen as

64, 64, 8 and 2048. Here we choose μ = 1.35 as suggested by [14], and later on used
by [23] and [11], among others. For each algorithm, the experiments are repeated 100
times. In each experiment, the step size tuning procedure yield incidental result for GD,
NAG and ADAM. Step size are all decided as 10−2.5. The exception is the YellowFin
algorithm, even extreme choices like 10 or 10−9 won’t significantly alter the outcome
of the optimization because of the fact that unlike other algorithms, the internal auto
tuning process of YellowFin will override the preassigned step size before the end of
first iteration.

One of the motivation to use nonsmooth objective function such as L1 loss is the
good robust performance of it. We have experimented different choices of error dis-
tributions for observations bi. Due to the limited space here, we select two different
scenarios have to present the findings: no contamination and adding a chi squared noise
to the observations bi. The findings of each scenario has been summarized below:
No Contamination: Figure 4 and Fig. 5 show the behaviors of the loss and relative
recovery error of four different algorithms when the observed bi contains no error. We
observe 4 interesting findings: 1) all algorithms converge eventually and the final rela-
tive recovery errors are all very close to 0; 2) as expected, the vanilla gradient descent
converges the slowest in terms of both loss and relative recovery error; 3) Adam and



Nonsmooth Low-Rank Matrix Recovery: Methodology, Theory and Algorithm 857

Table 1. Number of iterations needed to reach a relative recovery error smaller than 20%, 10%,
5%, 1% for each algorithm under no contamination setting

20% 10% 5% 1%

Adam 775 962 1105 1251

GD 3799 4788 >5000 >5000

NAG 709 881 1103 1148

YellowFin 1341 1509 1668 1764

Nestrov’s momentum method have very similar behaviors, and Adam slightly outper-
forms Nestrov’s momentum method at the later stage of optimization. Both of them are
considerably more desirable than the vanilla gradient descent method and do not differ
significantly in practical use. 4) The YellowFin algorithm have different behavior. It
takes extra iterations for the algorithm to figure out optimal learning rate before the loss
function starts to monotonously decrease.

Table 1 presents the number of iterations needed to reach a relative recovery error
smaller than a certain threshold for each algorithms. We can see that all algorithms
expect than gradient descent reaches 20% error in a relatively fast speed. Towards the
end, from 5% to 1%, NAG has only needs less than 50 steps, while Adam takes about
150 steps.

Table 2. Number of iterations needed to reach a relative recovery error smaller than 50%, 30%,
25%, 20% for each algorithm under chi-squared noise setting, and here NaN means the algorithm
can not reach an error smaller than this value

50% 30% 25% 20%

Adam 351 813 1108 NaN

GD 1289 4464 >5000 NaN

NAG 257 852 1229 NaN

YellowFin 444 1334 1606 NaN

Chi Squared Noise: Figure 6 and Fig. 7 show the behaviors of the loss and relative
recovery error of four different algorithms when each of the observed bi is contaminated
by a chi squared noise. Specifically, each bi is replaced by bi +10∗ei, where ei follows
a chi squared distribution with 3 degree of freedom. Compare to the no contamination
setting, we have noticed that even though all algorithms converge eventually, the final
loss and relative recovery error are not as close as to 0 as before. This is expected as
the Cauchy error brought unnegligible noise to the observations. For the comparisons
between different algorithms, the patterns are similar as the no contamination setting.



858 W. Tu et al.

Fig. 3. Loss function curves under no contamination setting. The horizontal axis is training steps,
and the vertical axis is the value of loss function. Each curve represents median over 100 runs,
and the area between 0.25 and 0.75 quantile are plotted as Shadow.

Fig. 4. Relative matrix recovery error curves under no contamination setting. The horizontal axis
is training steps, and the vertical axis is the recovery error. Each Curve represents median over
100 runs, and the area between 0.25 and 0.75 quantile are plotted as shadow.

Table 2 presents the number of iterations needed to reach a relative recovery error
smaller than a certain threshold for each algorithms. We can see that no algorithm can
reach an error smaller than 20%, which shows that contaminated observations can bring
serious trouble in the recovery of the original matrix. Adam and NAG have similar
performances here, while Adam needs slightly smaller iterations to reach 25% error.

5.2 Real World Data Experiment

In this section, we demonstrate the efficiency of our method via a real world example.
Not all data are normally distributed as is in our synthesized data set, furthermore, noise
is ubiquitously unavoidable in real world practices.



Nonsmooth Low-Rank Matrix Recovery: Methodology, Theory and Algorithm 859

Fig. 5. Loss function curves under cauchy noise setting. The horizontal axis is training steps, and
the vertical axis is the value of loss function. Each curve represents median over 100 runs, and
the area between 0.25 and 0.75 quantile are plotted as shadow.

Fig. 6. Relative matrix recovery error curves under cauchy noise setting. The horizontal axis is
training steps, and the vertical axis is the recovery error. Each curve represents median over 100
runs, and the area between 0.25 and 0.75 quantile are plotted as shadow.

The real world data we use in this experiment is an old-school gray-scale saving
icon with dimension of m = n = 128 and the rank of this picture is r = 6. 8000
normal distributedAi are generated in the setting of matrix sensing and bi are calculated
accordingly. To show the robustness trait of L1 loss is well preserved by our smoothing
method, a noise with independent Cauchy distribution is additionally applied to all bi.

The results are shown in Fig. 7. L2 loss can not recover the image and it turns out
totally blurred. Both L1 and Huber case can recover recognizable picture benefit from
our loss. However, L1 optimization based on nonsmooth subgradient method takes over
20x more time to reach converge than the Huber design and the ratio will increase even
more as the scale of the problem exaggerates.



860 W. Tu et al.

Fig. 7. Final recovery result for different loss function

6 Conclusion

This paper considers the matrix factorization for low-rank matrix recovery, and a gen-
eral nonsmooth loss function is assumed. It includes the commonly used L1 and quan-
tile loss functions as special cases, and this gives us much flexibility by choosing a
suitable form according to our knowledge and observations.

In the proposed algorithm, we first suggest an optimal smooth approximation of
the nonsmooth objective function [22], then a lot of algorithms based on gradient can
be applied to the problem, we use the vanilla gradient descent, Nesterov’s momentum
algorithm, adam as well as YellowFin as examples and compare their performance.
Though smoothing changed the problem’s structure; however, the benefit is that it brings
us much more flexibility to choose different algorithms.

References

1. Achlioptas, D., McSherry, F.: Fast computation of low-rank matrix approximations. J. ACM
(JACM) 54(2), 9 (2007)

2. Alefeld, G., Chen, X.: A regularized projection method for complementarity problems with
non-lipschitzian functions. Math. Comput. 77(261), 379–395 (2008)

3. Aravkin, A.Y., Kambadur, A., Lozano, A.C., Luss, R.: Sparse quantile huber regression for
efficient and robust estimation. arXiv preprint arXiv:1402.4624, 2014

4. Barnett, S.: Greatest common divisor of two polynomials. Linear Algebra Appl. 3(1), 7–9
(1970)

http://arxiv.org/abs/1402.4624


Nonsmooth Low-Rank Matrix Recovery: Methodology, Theory and Algorithm 861

5. Bhojanapalli, S., Kyrillidis, A., Sanghavi, S.: Dropping convexity for faster semi-definite
optimization. In: Conference on Learning Theory, pp. 530–582 (2016)

6. Bokde, D., Girase, S., Mukhopadhyay, D.: Matrix factorization model in collaborative filter-
ing algorithms: a survey. Procedia Comput. Sci. 49, 136–146 (2015)

7. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings of
COMPSTAT 2010, pp. 177–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-7908-2604-3 16

8. Chen, X.: First order conditions for nonsmooth discretized constrained optimal control prob-
lems. SIAM J. Control Optim. 42(6), 2004–2015 (2004)

9. Chen, X.: Smoothing methods for nonsmooth, nonconvex minimization. Math. Program.
134(1), 71–99 (2012)

10. Chen, X., Womersley, R.S., Ye, J.J.: Minimizing the condition number of a gram matrix.
SIAM J. Optim. 21(1), 127–148 (2011)

11. Fan, J.: Local Polynomial Modelling and its Applications: Monographs on Statistics and
Applied Probability, vol. 66. Routledge (2018)

12. Garg, R., Khandekar, R.: Gradient descent with sparsification: an iterative algorithm for
sparse recovery with restricted isometry property. In: Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, pp. 337–344. ACM (2009)

13. Gross, D., Liu, Y.-K., Flammia, S.T., Becker, S., Eisert, J.: Quantum state tomography via
compressed sensing. Phys. Rev. Lett. 105(15), 150401 (2010)

14. Huber, P.J.: Robust Statistics. John Wiley and Sons (1981)
15. Jain, P., Meka, R., Dhillon, I.S.: Guaranteed rank minimization via singular value projection.

In: Advances in Neural Information Processing Systems, pp. 937–945 (2010)
16. Jain, P., Netrapalli, P., Sanghavi, S.: Low-rank matrix completion using alternating minimiza-

tion. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing,
pp. 665–674. ACM (2013)

17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

18. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems.
Computer 8, 30–37 (2009)

19. Markovsky, I., Usevich, K.: Low Rank Approximation. Springer, London (2012). https://doi.
org/10.1007/978-1-4471-2227-2

20. Mount, J.: Approximation by orthogonal transform (2014). https://www.winvector.gitbuh.io/
xDrift/orthApprox.pdf. Accessed 05 Sept 2018

21. Nesterov, Yu.: A method of solving a convex programming problem with convergence rate
o(1/sqr(k)). Soviet Mathematics Doklady 27, 372–376 (1983)

22. Nesterov, Yu.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–
152 (2005)

23. Owen, A.B.: A robust hybrid of lasso and ridge regression. Contemp. Math. 443(7), 59–72
(2007)

24. Park, D., Kyrillidis, A., Caramanis, C., Sanghavi, S.: Finding low-rank solutions via non-
convex matrix factorization, efficiently and provably. arXiv preprint arXiv:1606.03168
(2016)

25. Picci, G.: Stochastic realization theory. In: Mathematical System Theory, pp. 213–229.
Springer, Heidelberg (1991). https://doi.org/10.1007/978-3-662-08546-2 12

26. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

27. Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58 (1997)
28. Sun, R., Luo, Z.-Q.: Guaranteed matrix completion via non-convex factorization. IEEE

Trans. Inform. Theory 62(11), 6535–6579 (2016)

https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/978-3-7908-2604-3_16
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-1-4471-2227-2
https://doi.org/10.1007/978-1-4471-2227-2
https://www.winvector.gitbuh.io/xDrift/orthApprox.pdf
https://www.winvector.gitbuh.io/xDrift/orthApprox.pdf
http://arxiv.org/abs/1606.03168
https://doi.org/10.1007/978-3-662-08546-2_12


862 W. Tu et al.

29. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and
momentum in deep learning. In: International Conference on Machine Learning, pp. 1139–
1147 (2013)

30. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B
(Methodological) 58(1), 267–288 (1996)

31. Tu, S., Boczar, R., Simchowitz, M., Soltanolkotabi, M., Recht, B.: Low-rank solutions of lin-
ear matrix equations via procrustes flow. In: International Conference on Machine Learning,
pp. 964–973 (2016)

32. Tu, W., et al.: M-estimation in low-rank matrix factorization: a general framework. In: 2019
IEEE International Conference on Data Mining (ICDM), pp. 568–577 (2019)

33. Christopher JCH Watkins and Peter Dayan: Q-learning. Mach. Learn. 8(3–4), 279–292
(1992)

34. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann (2016)

35. Zuyuan Yang, Y., Zhang, W.Y., Xiang, Y., Xie, S.: A fast non-smooth nonnegative matrix
factorization for learning sparse representation. IEEE Access 4, 5161–5168 (2016)

36. Zhang, J., Mitliagkas, I.: Yellowfin and the art of momentum tuning. arXiv preprint
arXiv:1706.03471 (2017)

37. Zhao, T., Wang, Z., Liu, H.: Nonconvex low rank matrix factorization via inexact first order
oracle. In: Advances in Neural Information Processing Systems (2015)

38. Zhu, R., Niu, D., Li, Z.: Robust web service recommendation via quantile matrix factoriza-
tion. In: INFOCOM 2017-IEEE Conference on Computer Communications, IEEE, pp. 1–9.
IEEE (2017)

http://arxiv.org/abs/1706.03471

	Nonsmooth Low-Rank Matrix Recovery: Methodology, Theory and Algorithm
	1 Introduction
	2 Methodology Framework
	3 Algorithm
	4 Convergence Analysis
	5 Numerical Studies
	5.1 Synthetic Data
	5.2 Real World Data Experiment

	6 Conclusion
	References




