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Abstract: Expectile regression is a useful alternative to conditional mean and quantile regression for
characterizing a conditional response distribution, especially when the distribution is asymmetric or when
its tails are of interest. In this article, we propose a class of scalar-on-function linear expectile regression
models where the functional slope parameter is assumed to reside in a reproducing kernel Hilbert space
(RKHS). Our approach addresses numerous drawbacks to existing estimators based on functional principal
components analysis (FPCA), which make implicit assumptions about RKHS eigenstructure. We show that
our proposed estimator can achieve an optimal rate of convergence by establishing asymptotic minimax
lower and upper bounds on the prediction error. Under this framework, we propose a flexible implementation
based on the alternating direction method of multipliers algorithm. Simulation studies and an analysis of
real-world neuroimaging data validate our methodology and theoretical findings and, furthermore, suggest
its superiority over FPCA-based approaches in numerous settings. The Canadian Journal of Statistics 50:
241–266; 2022 © 2021 Statistical Society of Canada
Résumé: La régression expectile constitue une alternative à la régression quantile ou moyenne conditionnelle
fort utile pour caractériser la distribution conditionnelle d’une variable réponse et plus particulièrement
lorsque celle-ci est asymétrique ou ses queues sont d’intérêt particulier. Les auteurs de cet article proposent
une classe de modèles de régression linéaire scalaire sur fonction où le paramètre de pente fonctionnelle
est supposé appartenir à un espace de Hilbert à noyau auto-reproduisant (RKHS). L’approche proposée
remédie aux nombreux inconvénients des estimateurs usuels basés sur l’analyse en composantes principales
fonctionnelles (FPCA) et qui font des hypothèses implicites sur la structure de valeurs propres de l’espace
RKHS. Ce travail montre que l’estimateur proposé peut atteindre un taux de convergence optimal en
établissant des limites inférieures et supérieures asymptotiques minimax sur l’erreur de prédiction. Une
implémentation flexible basée sur l’algorithme des directions alternées est également proposée. Enfin, les
auteurs présentent les résultats d’études de simulation et une analyse de données en neuroimagerie, ce qui
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permet de valider leur méthodologie et résultats théoriques et qui fait ressortir la supériorité de l’approche
proposée comparativement aux approches basées sur la FPCA et ce dans de nombreux contextes. La revue
canadienne de statistique 50: 241–266; 2022 © 2021 Société statistique du Canada

1. INTRODUCTION

Functional data have grown ubiquitous in medical data analysis, biology, and image and signal
processing (Ramsay & Silverman, 2006; Li, Huang & Shen, 2018; Wang et al., 2019; Yu et al.,
2019). While intrinsically functional, this type of data is almost always observed discretely over a
grid, where the number of grid points is often larger than the number of observations. Because of
the spatial or temporal nature of this grid, observations at nearby grid points are often highly cor-
related. Specialized techniques are consequently crucial in the proper analysis of functional data.

Traditional analytic approaches typically assume that errors are independent and identically
distributed (i.i.d.) with a symmetric and homoscedastic density (Gu & Hui, 2016). These
assumptions cannot be guaranteed in practice, particularly in high-dimensional settings (Li & Yao,
2019). As typical examples, consider modelling meteorological outcomes (e.g., from the Canadian
weather dataset, as in Ramsay & Silverman, 2006 or Cai & Yuan, 2012) or clinical outcomes (e.g.,
Mini Mental State Examination [MMSE] scores, a clinical survey-based measure used to quantify
Alzheimer’s disease severity, as in Jack et al., 2008). In these and many other settings, there is
no guarantee that the conditional response distribution will be symmetric, much less Gaussian.
It is more often the case that stochastic error terms are heteroscedastic and that the conditional
response distribution is highly skewed or heavy-tailed. As noted in Newey & Powell (1987),
heteroscedastic errors lead to inefficient or inconsistent parameter and covariance estimation.

From a practical standpoint, in regression settings where errors are heteroscedastic or
asymmetric, several estimators may be required for a satisfactory picture of the relationship
between the response variable and model predictors. Each of these estimators may speak to a
different aspect of the conditional response distribution, such as its different quantile levels.
Neuroimaging data analysis is one such setting where responses at multiple extreme levels,
representing outlying or abnormal cases, are of more practical interest than, say, a single
conditional mean. Pietrosanu et al. (2021) further emphasizes the particular need for functional
tools not focused solely on conditional mean estimation in neuroimaging data analysis as well as
more general fields of application.

Motivated by the dependence of traditional coefficient estimators on error homoscedasticity
and symmetry assumptions, Newey & Powell (1987) first introduced expectile regression, also
called asymmetric least-squares regression (Waltrup et al., 2015; Gu & Hui, 2016). Expectiles,
analogous to quantiles, can similarly be computed for a random variable Y at any level 𝜏 ∈ (0, 1),
but are determined by the tail expectations rather than the tail probabilities of a distribution.
While quantile regression has a strong intuitive appeal, well-studied robustness properties, and
broad applications in a variety of research fields (Koenker, 2017), Newey & Powell (1987)
motivate the use of expectiles by pointing out three major drawbacks to quantile estimators:
their nondifferentiability, their relative inefficiency for near-Gaussian error distributions, and the
difficulty inherent in computing their covariance.

It is then a natural development to consider expectile regression with functional predictors
(i.e., in a “scalar-on-function” framework). In this article, we are concerned with the model

Y = ∫ X(t)𝛽0(t) dt + 𝜀, (1)

where Y is a scalar response, X ∶  → ℝ is a square-integrable stochastic process, and 𝛽0 ∶  →
ℝ is the slope function. We assume that the domain  is a compact subset of a Euclidean space.
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Most recent approaches to functional linear regression are based on functional principal
components analysis (FPCA) (Hall & Horowitz, 2007). FPCA ultimately relies on an efficient
representation of 𝛽0 in terms of the leading functional principal components of X (Cai & Yuan,
2012). However, these functional principal components might not form an appropriate basis to
express 𝛽0 or might have little predictive power. Consequently, FPCA-based methods might not
perform well. In practice, this phenomenon has been observed for functional data in the Canadian
weather dataset (Ramsay & Silverman, 2006; Cai & Yuan, 2012), in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) data analyzed in this article, and more generally in principal
components regression and singular value decomposition methods for linear inverse problems
(Donoho & Johnstone, 1995). Numerous other works have considered the model in Equation (1)
using FPCA-based approaches (Cai & Hall, 2006; Hall & Horowitz, 2007; Crambes, Kneip &
Sarda, 2009; James, Wang & Zhu, 2009; Schnabel & Eilers, 2009; Guo et al., 2015; Liao, Park
& Choi, 2019).

In this article, we study, instead, the functional linear expectile regression model from the
perspective of a reproducing kernel Hilbert space (RKHS): we assume that the slope function 𝛽0
resides in an RKHS (K). In this more general framework, the functional covariance operator C
and the reproducing kernel K of the RKHS are not required to be related. This assumption differs
from the implicit requirements in FPCA-based frameworks that the ordered eigenfunctions of
K and C perfectly coincide. FPCA-based approaches further assume that the slope function 𝛽0
can be efficiently represented in terms of the leading functional principal components (Yuan &
Cai, 2010; Cai & Yuan, 2012). RKHS-based estimators, such as those proposed in this article,
circumvent this restriction.

As illustrated in Yuan & Cai (2010), the eigenstructure of the RKHS plays an important
role in estimation and prediction, making RKHS-based methods more difficult to implement. To
our knowledge, the literature on RKHS-based approaches to functional data analysis is limited.
Cheng & Shang (2015) considered a joint asymptotic framework for studying semi-nonparametric
regression models where (finite-dimensional) Euclidean parameters and (infinite-dimensional)
functional parameters are both of interest; the authors derived convergence rates for estimators
of both. Qu, Wang & Wang (2016) studied functional Cox models with right-censored data
in the presence of both functional and scalar covariates in an RKHS framework. Notably,
the authors proved that their functional coefficient estimator achieves the minimax optimal
rate of convergence in penalized log-partial likelihood settings. Li, Liu & Zhu (2007) derived
various asymptotic results regarding kernel quantile regression (KQR) and proposed an efficient
algorithm to compute entire KQR solution paths.

In this article, we propose a regularized estimator for the functional linear expectile regression
model in an RKHS framework. Specifically, unlike existing FPCA-based approaches to expectile
regression, we use the reproducing kernel to approximate functional effects and capture local
features. Theoretically (when the eigenfunctions of K and C agree) and empirically (regardless
of whether these eigenfunctions agree or not) we find that our estimators exhibit stronger
convergence rates relative to FPCA-based estimators. We further incorporate shrinkage penalties
as a means to improve estimate interpretability and generalizability for prediction. We derive
upper and lower bounds for minimax convergence in prediction error and establish minimax
convergence rate optimality for our proposed estimator. We demonstrate that RKHS-based
methods simplify functional coefficient estimate regularization (e.g., via smoothness, sparsity,
or Tikhonov penalties) and allow model estimation to be formulated as a convex optimization
problem. Our RKHS-based estimator can thus be efficiently computed: the alternating direction
method of multipliers (ADMM) algorithm we apply makes our procedure simple to implement
and allows us to incorporate existing computational techniques for smoothing splines.

The remainder of the article is organized as follows. In Section 2, we discuss expectile
regression and RKHSs and establish the minimax optimality of our proposed estimator. In
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Section 3, we reformulate model estimation as a convex optimization problem and derive an
ADMM iterative update scheme using a finite-dimensional representation of the slope function
obtained via the representer theorem. Section 4 investigates finite-sample performance through
simulation studies and a real-world data analysis, the latter using data from the ADNI (Jack et al.,
2008). A subsequent appendix contains technical proofs of this article’s main results.

Throughout this article, let ‖⋅‖2 denote the Euclidean L2 norm. For two positive real sequences
(ak)k∈ℕ and (bk)k∈ℕ, we write ak ≍ bk to indicate that the sequence of ratios (ak∕bk)k∈ℕ is bounded
away from both zero and infinity.

2. THEORETICAL PROPERTIES

We first introduce functional linear expectile regression, our proposed estimator, and the setting
where 𝛽0 ∈ (K). Following this, we derive upper and lower bounds for the minimax rate of
convergence in prediction error and establish the minimax optimality of our proposed estimator.

2.1. Expectiles and Functional Linear Expectile Regression
Let Y be a random variable with a distribution function F and a finite mean. The 𝜏th expectile
𝜇𝜏 = 𝜇𝜏 (F) of Y , as defined by Newey & Powell (1987), is

𝜇𝜏 (F) = arg min
𝜂∈ℝ

EY r𝜏 (y − 𝜂)

for 𝜏 ∈ (0, 1), where r𝜏(y − 𝜂) = |𝜏 − 𝟙(y < 𝜂)|(y − 𝜂)2.
Expectiles share many desirable characteristics of quantiles and various additional com-

putational advantages (Newey & Powell, 1987). Jones (1994) showed that the expectiles of a
distribution F are the quantiles of a distribution G defined explicitly as

G(y) =
P(y) − yF(y)

2(P(y) − yF(y)) + (y − 𝜇)
,

where P(y) = ∫ y
−∞ x dF(x) and 𝜇 = ∫∞−∞ x dF(x).

As a generalization of ordinary mean regression, expectile regression is known to be
statistically more efficient than quantile regression when standard assumptions such as error
homoscedasticity are not severely violated (Liao, Park & Choi, 2019). Unlike quantile regres-
sion, expectile regression uses a smooth loss function which, in terms of general computation,
is considerably easier to optimize (Gu & Hui, 2016). Holzmann & Klar (2016) and Krätschmer
& Zähle (2017) explored the asymptotic properties of sample expectiles and established their
uniform consistency under the assumption of a finite mean. Unlike quantiles, expectiles are also
guaranteed to be unique under this assumption. The asymptotic normality of the sample expectile
estimator follows directly from the additional assumption of a finite second moment.

Figure 1 illustrates the expectile loss function at 𝜏 = 0.1, 0.5, and 0.9. When 𝜏 < 0.5, the cost
of a positive error is lower than that of a negative one, encouraging a smaller expectile 𝜇𝜏 . Larger
expectiles are correspondingly encouraged when 𝜏 > 0.5. At 𝜏 = 0.5, the loss r0.5 is equivalent
to the least squares, thus the model finds the mean of conditional distribution. In settings where
the distribution of Y is highly skewed rather than symmetric, 𝜏 can be chosen to obtain a more
desirable location estimate. This is illustrated in Figure 1 using MMSE data from the ADNI.

In this article, we are primarily interested in establishing the convergence properties of our
proposed regularized sample estimator for 𝛽0 in the functional linear expectile regression model
of Equation (1):

𝛽n = arg min
𝛽

1
n

n∑
i=1

r𝜏

(
yi − ∫ xi(t)𝛽(t) dt

)
+ 𝜆J(𝛽), (2)
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FIGURE 1: (Left) The expectile loss function for 𝜏 = 0.1, 0.5, and 0.9 in red, blue, and black,
respectively. (Right) Kernel-smoothed estimate of the MMSE score density function (dotted
blue) from the ADNI dataset. The corresponding expectiles at 𝜏 = 0.1, 0.5, and 0.9 are indicated

in solid red, blue, and black, respectively.

where {(xi, yi) ∶ i = 1,… , n} is a set of observed training data, J is a penalty function assessing
the “plausibility” of a candidate 𝛽, and 𝜆 ≥ 0 is a tuning parameter controlling the strength of
the penalty J. For convenience, we suppress notation indicating implicit dependence on 𝜏.

2.2. Reproducing Kernel Hilbert Space
We assume that the slope function 𝛽0 resides in an RKHS  = (K), a subspace of
square-integrable functions with the domain  , equipped with a reproducing kernel K. The
canonical example of (K) is a Sobolev space. Assuming, without loss of generality, that
 = [0, 1], the Sobolev space of order r (Golub, Heath & Wahba, 1979) can be defined as

 r
2 =  r

2

(
[0, 1]

)
=
{
𝛽 ∶ [0, 1] → ℝ ∶ 𝛽, 𝛽(1),… , 𝛽(r−1)

are absolutely continuous and 𝛽(r) ∈ 2
}
.

One squared norm that will make  r
2 an RKHS (Brézis, 2011) is

∑r−1
𝑗=0

{ ∫ 𝛽(𝑗)(t) dt
}2 +

∫ {𝛽(r)(t)}2 dt. The penalty functional J on the slope function 𝛽 can be conveniently defined
as the squared norm or semi-norm associated with  (Cai & Yuan, 2011): one possible choice
is J(𝛽) = ∫ 1

0

[
𝛽(r)(t)

]2 dt. The null space of J, defined as 0 = {𝛽 ∈  ∶ J(𝛽) = 0}, forms a
finite-dimensional linear subspace of  with some orthonormal basis (𝜉1, 𝜉2,… , 𝜉M), where
M = dim(0). The orthogonal complement 1 of the null space 0 is such that = 0 ⊕1. It
can be shown that 1 also forms an RKHS with the same inner product as , but restricted to 1.
More generally, for any 𝛽 ∈ , there exists 𝛽1 ∈ 0 and 𝛽2 ∈ 1 such that the decomposition
𝛽 = 𝛽1 + 𝛽2 is unique (Nosedal-Sanchez et al., 2012; Gu, 2013). Let K be the reproducing kernel
of 1 such that J(𝛽2) = ‖𝛽2‖2 = ‖𝛽‖2

K , defined as the RKHS norm of 𝛽. Consequently, we can
find a finite-dimensional representation for the functional slope coefficient 𝛽0.

We next consider the two kernels crucial to the estimation process. First, recalling that  ⊂ ℝ
is a compact set, a reproducing kernel K ∶  ×  → ℝ is a real, symmetric, square-integrable,
and nonnegative-definite function. There is a one-to-one correspondence between a reproducing
kernel K and an RKHS(K). Mercer’s theorem implies that K admits the spectral decomposition
K(s, t) =

∑∞
k=1 𝜚k𝜑k(s)𝜑k(t), where the eigenvalues (𝜚k)k∈ℕ are in nonincreasing order and

(𝜑k)k∈ℕ are the corresponding eigenfunctions.
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For any real, square-integrable, semidefinite function R, define LR ∶ 2 → 2 as the linear
integral operator LR(𝑓 )(⋅) = ⟨R(s, t), 𝑓⟩2( ) = ∫ R(s, ⋅)𝑓 (s) ds. By the spectral theorem, there
exists a sequence of orthonormal eigenfunctions (𝜓R

k )k∈ℕ and a corresponding sequence of
nonincreasing eigenvalues

(
𝜃R

k

)
k∈ℕ such that R(s, t) =

∑
k∈ℕ 𝜃

R
k 𝜓

R
k (s)𝜓

R
k (t) for all s, t ∈  , and

LR(𝜓R
k ) = 𝜃R

k 𝜓
R
k for k ∈ ℕ. Additionally, for all s, t ∈  , R1∕2(s, t) =

∑
k∈ℕ

√
𝜃R

k 𝜓
R
k (s)𝜓

R
k (t).

We say that two linear operators are aligned if they share the same ordered sequence of
eigenfunctions, that is, with corresponding eigenvalues in nonincreasing order.

Let LR1∕2 be the linear operator defined by LR1∕2 (𝜓R
k ) =

√
𝜃R

k 𝜓
R
k . It is clear that LR1∕2 =

(LR)1∕2. Further defining (R1R2)(s, t) = ∫ R1(s, u)R2(u, t) du, it follows that LR1R2
= LR1

∘LR2
=

LR2
∘LR1

.

With the previous results in mind, consider the covariance kernel C ∶  ×  → ℝ for X,
defined as C(s, t) = E ([X(s) − EX(s)] [X(t) − EX(t)]). Of course, we require that the covariance
kernel C be continuous and square-integrable over  ×  . Similar to K, C produces the
spectral decomposition C(s, t) =

∑∞
k=1 𝜇k𝜙k(s)𝜙k(t). The two eigenfunction sequences (𝜑k)k∈ℕ

and (𝜙k)k∈ℕ are different in general. However, under certain conditions, K and C can be
simultaneously diagonalized (Conrad, 2014).

Using the eigenstructures of the reproducing and covariance kernels K and C, we can define
the linear operator LK1∕2CK1∕2 in a compositional fashion as LK1∕2CK1∕2 = LK1∕2∘LC∘LK1∕2 . By the
spectral theorem, K1∕2CK1∕2 has the spectral decomposition K1∕2CK1∕2(s, t) =

∑∞
k=1 𝜈k𝜁k(s)𝜁k(t),

where the sequence of eigenvalues (𝜈k)k∈ℕ is arranged in nonincreasing order, and (𝜁k)k∈ℕ is
the corresponding sequence of orthonormal eigenfunctions. Obviously, the eigenvalues (𝜈k)k∈ℕ
are determined by the eigenvalues of both K and C and the alignment of their respective
eigenfunctions. We will eventually show that the convergence rate of our proposed estimator is
related to the decay rate of the eigenvalues of K1∕2CK1∕2.

Before discussing estimation of the functional coefficient 𝛽0 over (K), we impose two
basic assumptions on the reproducing and covariance kernels, whose eigenstructures determine
the optimal convergence rate.

(A1) The eigenvalues of K1∕2CK1∕2 satisfy 𝜈k ≍ k−2r for some r > 0.
(A2) For any square-integrable function 𝑓 ,

E
[
∫ [X(t) − EX(t)] 𝑓 (t) dt

]4

≤ c

(
E
[
∫ [X(t) − EX(t)]𝑓 (t) dt

]2
)2

for some constant c > 0.

Assumption A1 pertains to the decay rate of 𝜈k. As already discussed, this rate is determined
by the eigenstructures of the kernels K and C, specifically, their individual eigenvalue decay
rates and the alignment between their eigenfunctions. The eigenvalues of the covariance kernel
C obey 𝜇k ≍ k−2rC

if the Sacks–Ylvisaker condition of order rC − 1 is satisfied for some integer
rC ≥ 1 (Ritter, Wasilkowski & Wozniakowski, 1995; Yuan & Cai, 2010). As an example,
the Ornstein–Uhlenbeck covariance kernel C(s, t) = exp(−|s − t|) has rC = 1. For Sobolev
spaces, various covariance functions are known to satisfy the Sacks–Ylvisaker condition (Ritter,
Wasilkowski & Wozniakowski, 1995). Concerning the eigenvalue decay rate of the kernel K, if
 is the rK th order Sobolev space  rK

2 , it is known that 𝜚k ≍ k−2rK
(Micchelli & Wahba, 1979).

When K and C are aligned, that is, the eigenfunctions𝜙k = 𝜑k for k ∈ ℕ (Cai & Yuan, 2012), it
follows that r = rC + rK in Assumption A1. However, if K and C are misaligned, the eigenvalues
of the two operators alone cannot determine the order r related to convergence rate. For example,
the eigenvalues for the Sobolev class  r

2 for r > 1∕2 follow a polynomial decay rate.
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Assumption A2 restricts the fourth moment of the linear functional ∫ X(t)𝑓 (t) dt, ensuring
bounded kurtosis. When X is a Gaussian process for example, Assumption A2 is satisfied with
c = 3.

2.3. Minimax Convergence Properties

We take (K) = 2
2 and define the penalty function as J(𝛽) = ∫ [𝛽′′(t)]2 dt = ‖𝛽‖2

K . Conse-
quently, 0 is the linear space spanned by 𝜉1(t) = 1 and 𝜉2(t) = t.

The accuracy of 𝛽n can be measured via the squared RKHS norm associated with the
covariance kernel C (Yuan & Cai, 2010), as‖‖‖𝛽n − 𝛽0

‖‖‖2

C
= EX∗

(
∫ X∗(t)𝛽n(t) dt − ∫ X∗(t)𝛽0(t) dt

)2

,

where X∗ is an independent copy of X, and the expectation on the right-hand side is taken
over X∗. The above quantity measures the mean-squared prediction error for a random future
observation of X.

Theorem 1 (Minimax lower bound). Under Assumption A1

lim
a→0

lim
n→∞

inf
𝛽n

sup
𝛽0∈(K)

ℙ𝛽0

{‖𝛽n − 𝛽0‖C ≥ an−
2r

2r+1

}
= 1, (3)

where the infimum is taken over all possible estimators 𝛽n computed from the training data.

Theorem 2 (Minimax upper bound). Under Assumptions A1 and A2

lim
A→0

lim sup
n→∞

sup
𝛽0∈(K)

ℙ𝛽0

{‖𝛽n − 𝛽0‖C ≥ An−
2r

2r+1

}
= 0, (4)

provided that the tuning parameter satisfies 𝜆 ≍ n−2r∕(2r+1).

By Theorems 2 and 3, the regularized estimator 𝛽n is minimax rate optimal with the rate
of convergence for prediction error n−2r∕(2r+1). As discussed previously, this minimax rate of
convergence depends jointly on the eigenvalue decay rate of the operator LK1∕2CK1∕2 through r
and, more importantly, on the alignment between the eigenfunctions of K and C.

3. COMPUTATION

In this section, we propose an efficient computational approach for model estimation using
the ADMM algorithm. We begin with an application of the representer theorem to establish
that the proposed estimator lies in a finite-dimensional subspace. We subsequently discuss
hyperparameter tuning and propose our estimation algorithm.

3.1. Representer Theorem
Theorem 3 (Representer theorem). Let (𝜉1,… , 𝜉M) be a basis of 0. There exist vectors
e = (e1,… , eM)⊤ and c = (c1,… , cn)⊤ allowing the solution 𝛽n to the problem in Equation (2)
to be expressed as

𝛽n(t) =
M∑

i=1

ei𝜉i(t) +
n∑

k=1

ck ∫ K(s, t)Xk(t) ds. (5)
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Theorem 3 is a generalization of the well-known representer lemma for smoothing
splines (Wahba, 1990). Although the minimization over 𝛽n in Equation (2) is taken over
an infinite-dimensional space (K), the above result implies that the solution lies in a
finite-dimensional subspace. Thus, it suffices to estimate the coefficients e and c in Equation (5).
By Theorem 3, we can conclude that

∫ X(t)𝛽(t)dt =
M∑

i=1

ei ∫ X(t)𝜉i(t) dt +
n∑

k=1

ck ∫ ∫ X(t)K(s, t)Xk(s) ds dt.

Let Y = (Y1,Y2,… ,Yn)⊤, and let T represent the n × M matrix with the (i, 𝑗)th entry
Ti𝑗 = ∫ Xi(t)𝜉𝑗(t) dt for i = 1,… , n and 𝑗 = 1,… ,M. Similarly, let Σ be the n × n matrix with
the (i, 𝑗)th entry Σi𝑗 = ∫ ∫ Xi(t)K(s, t)X𝑗(s) ds dt for i = 1,… , n and 𝑗 = 1,… , n. It follows
from the reproducing property that

J(𝛽) =
n∑

i=1

n∑
𝑗=1

cic𝑗 ∫ ∫ Xi(t)K(s, t)X𝑗(s) ds dt = c⊤Σc.

We make use of this representation in the following subsections for model estimation.

3.2. Hyperparameter Tuning
As with most smoothing methods, the selection of the tuning parameter 𝜆 influences the
performance of the regularized estimator 𝛽n. There are various tools available for this task, such
as K-fold cross-validation (Kohavi, 1995), the Bayesian information criterion (BIC), generalized
maximum likelihood (Wahba, 1990), and generalized cross-validation (GCV) (Golub, Heath &
Wahba, 1979).

In this article, unless otherwise noted, we employ GCV as a practical criterion for choosing
the optimal tuning parameter value. Because the regularized estimator is a linear estimator and
can be written as ŷ = (ŷ1, ŷ2,… , ŷn) = H(𝜆)y = Te + Σc, where H(𝜆) is the “hat matrix” for a
particular value of 𝜆, we may select the value of 𝜆 that minimizes (Wahba, 1990)

GCV(𝜆) = 1
n

∑n
i=1 r𝜏(ŷi − yi)

(1 − Tr(H(𝜆))∕n)2
.

3.3. ADMM Algorithm
We next apply the ADMM algorithm to estimate the functional linear expectile model. Pseu-
docode for the proposed estimation procedure is provided in Algorithm 1.

Developed in the 1970s and further summarized in Boyd (2010), the ADMM algorithm is a
simple and efficient approach for solving convex optimization problems. It has found renewed
popularity in large-scale computing through its ability to decentralize large, global problems into
small, local ones. The ADMM algorithm has been employed in quantile regression (Gu et al.,
2018), two-way functional hazard models (Li, Huang & Shen, 2018), Gaussian graphical models
(Ma, Lu & Liu, 2020), and other applications.

Using the results and notation of Section 3.1, the optimization problem in Equation (1)
can be reformulated as a convex optimization problem with respect to e, c, and the auxiliary
variable u, as

minimize 1
n

∑n
i=1 r𝜏 (yi − ui) + 𝜆c⊤Σc

subject to ui = Tie + Σic, i = 1,… , n,
(6)
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where Ti and Σi denote the ith rows of T and Σ, respectively. The scaled ADMM algorithm
(Boyd, 2010) uses an objective function defined by the augmented Lagrangian form of the above
problem:

L𝜎(u, e, c, h) =
1
n

n∑
i=1

r𝜏 (Yi − ui) + 𝜆c⊤Σc

+ 𝜎

2

n∑
i=1

(
ui − Tie − Σic + hi

)2 − 𝜎

2

n∑
i=1

h2
i ,

which we aim to minimize over u = (u1,… , un)⊤, e, c, and h = (h1,… , hn)⊤ without restriction.
The scaled ADMM update scheme for the (k + 1)th iteration is straightforward to derive:

uk+1
i = arg min

ui

{
1
n

n∑
i=1

r𝜏 (Yi − ui) +
𝜎

2
(
ui − Tie

k − Σic
k + hk

i

)2

}

=
⎧⎪⎨⎪⎩
𝜎(Tie

k + Σic
k − hk

i ) + 2𝜏yi

𝜎 + 2𝜏
, yi ≥ ui

𝜎(Tie
k + Σic

k − hk
i ) + 2(1 − 𝜏)yi

𝜎 + 2(1 − 𝜏)
, yi < ui

(ek+1, ck+1) = arg min
ei,ci

{
𝜆c⊤Σc + 𝜎

2
(
uk+1

i − Tie − Σic + hk
i

)2
}

hk+1
i = hk

i + uk+1
i − Tie

k+1 − Σic
k+1.

The update step for (e, c) above can be explicitly solved using the subiterations

ek+1 = (T⊤T)−1

[
n∑

i=1

T⊤i
(
uk+1

i − Σic
k + hk

i

)]
,

ck+1 = (2𝜆Σ∕𝜎 + Σ⊤Σ)−1

[
n∑

i=1

Σ⊤i
(
uk+1

i − Tie
k+1 + hk

i

)]
.

Stopping conditions for the proposed scheme can be defined in terms of the size of the prob-
lem’s primal and dual residuals: we terminate the algorithm when rk = ‖u − Te − Σc‖ ≤ 𝜖dual and
sk = 𝜎

(
T(ek+1 − ek) + Σ(ck+1 − ck)

) ≤ 𝜖pri. Here, 𝜖pri =
√

n𝜖abs + 𝜖rel max(‖u‖2, ‖Te + Σc‖2) >
0 and 𝜖dual =

√
n𝜖abs + 𝜖rel‖h‖2 > 0 are feasibility tolerances for the primal and dual feasibility

conditions, where 𝜖abs > 0 and 𝜖rel > 0 are absolute and relative tolerances, respectively. In all
of the numerical studies presented in this article, we follow the suggestions in Boyd (2010) by
fixing 𝜖rel = 10−4, 𝜖abs = 10−2, and 𝜎 = 2.

3.4. Convergence of the ADMM Algorithm
We next apply a general result of Boyd (2010) to verify the convergence of our proposed
ADMM-based approach for estimating the functional linear expectile regression model. For
convenience, we return to a more common formulation of the ADMM algorithm:

minimize F(x, z) = 𝑓 (x) + g(z)
subject to G(x, z) = Ax + Bz − c = 0, (7)
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Algorithm 1 ADMM algorithm for functional linear expectile regression.

Input: u0, e0, c0, h0 (initial estimates); 𝜎 (step size parameter); 𝜆 (tuning parameter)
1: repeat
2: for i = 1,… , n do
3: if uk

i ≤ yk
i then

4: uk+1
i ←

𝜎(Tie
k + Σic

k − hk
i ) + 2𝜏yi

𝜎 + 2𝜏
5: else

6: uk+1
i ←

𝜎(Tie
k + Σic

k − hk
i ) + 2(1 − 𝜏)yi

𝜎 + 2(1 − 𝜏)
7: end if
8: end for
9: ek+1 ← (T⊤T)−1

[∑n
i=1 T⊤i (u

k+1
i − Σic

k + hk
i )
]

10: ck+1 ← (2𝜆Σ∕𝜎 + Σ⊤Σ)−1
[∑n

i=1 Σ
⊤
i (u

k+1
i − Tie

k+1 + hk
i )
]

11: hk+1
i ← hk

i + uk+1
i − Tie

k+1 − Σic
k+1

12: until stopping criteria are met
13: compute estimated slope function 𝛽 from the optimal e, c
Output: L𝜎(u, e, c, h), 𝛽

with x ∈ ℝn and z ∈ ℝm, where A ∈ ℝp×n, B ∈ ℝp×m, and c ∈ ℝp (Boyd, 2010). For our setting,
x and z correspond to u and (e⊤, c⊤)⊤; 𝑓 and g to the empirical expectile loss 1

n

∑n
i=1 r𝜏 (Yi − ui)

and 𝜆c⊤Σc; and A, B, and c to the identity matrix I, [Ti,Σi], and 0, respectively. To guarantee
convergence, we verify two additional conditions, referring to Assumptions 1 and 2 of Boyd
(2010).

First, we require that 𝑓 ∶ ℝn → ℝ ∪ {+∞} and g ∶ ℝm → ℝ ∪ {+∞} are closed, proper,
and convex. This requirement is naturally satisfied for our formulation in (6).

Second, we require that the nonaugmented Lagrangian L0(x, z, y) = 𝑓 (x) + g(z) + y⊤(Ax +
Bz − c) has a saddle point, that is, there exists a (not necessarily unique) (x⋆, z⋆, y⋆) satisfying
L0(x⋆, z⋆, y) ≤ L0(x⋆, z⋆, y⋆) ≤ L0(x, z, y⋆) for all (x, z, y). The existence of a saddle point follows
immediately from the saddle point theorem (Mohri, Rostamizadeh & Talwalkar, 2018, Theorem
B.29) and the fact that we are optimizing over a real space (specifically, with a nonempty
interior), that G(x, z) is affine, and that G(0, 0) = 0 (since c = 0).

Consequently, we can guarantee that the estimate and objective function iterates in our
ADMM-based implementation will converge to the solution and optimal value, respectively, of
the original problem. The particular benefit of an ADMM-based approach is that each update
has a closed form, which speeds up numerical computation relative to traditional interior point
methods as well as other generic algorithms. Indeed, empirical results in existing literature have
illustrated the clear superiority that ADMM-based algorithms have in a variety of settings (Chen
& Wei, 2005; Pietrosanu et al., 2020).

4. NUMERICAL EXPERIMENTS

We now investigate the finite-sample performance of our proposed estimators. We are specifically
interested in comparisons between our proposed estimator and one using an FPCA-based
approach that uses the first four leading eigenfunctions (Ramsay & Silverman, 2006; Yuan
& Cai, 2010; Kato, 2012). Three sets of simulations in Section 4.1 examine the effects of
eigenvalue decay, kernel alignment, and various error distributions on the convergence of both
estimators.
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4.1. Simulation Studies
In the following sets of simulation studies, we consider  = [0, 1] and let  = (K) be the
set of functions in the linear span of the cosine basis (Cai & Yuan, 2012), (K) = {g(t) =√

2
∑

k∈ℕ gk cos(k𝜋t) ∶ gk ∈ ℝ, k ∈ ℕ} ⊂2
2 . When endowed with the squared norm

‖𝑓‖2(K) = ∫
(
𝑓 ′′)2 = ∫

1

0

(√
2
∑
k∈ℕ

(k𝜋)2gk cos k𝜋t

)2

=
∑
k∈ℕ

(k𝜋)4g2
k ,

 is an RKHS with the reproducing kernel

K(s, t) =
∑
k∈ℕ

2(k𝜋)−4 cos (k𝜋s) cos (k𝜋t)

= −1
3
(
B4 (|s − t|∕2) + B4 ((s + t)∕2)

)
,

where Bk is the kth Bernoulli polynomial

B2m(x) = (−1)m−12(2m)!
∑
k∈ℕ

cos (2𝜋kx)
(2𝜋k)2m

,

for x ∈ [0, 1]. Additionally, we choose (𝜉1(t) = 1, 𝜉2(t) = t) as the basis for the null space 0.
To quantify the behaviour of varying coefficient estimates, we calculate the prediction error

(PE) on a test dataset {(x∗i , y
∗
i ) ∶ i = 1,… , n∗}, given by

PE𝜏 =

(
1
n∗

n∗∑
𝑗=1

‖‖‖‖∫ x∗
𝑗
(t)𝛽n(t) dt − ∫ x∗

𝑗
(t)𝛽0(t) dt

‖‖‖‖2

2

)1∕2

.

As a more direct comparison between the RKHS- and FPCA-based estimators, we also report
relative PE, defined by PEFPCA

𝜏
∕PERKHS

𝜏
, where PEFPCA

𝜏
and PERKHS

𝜏
represent the PEs for the

two methods. In all simulation studies, results are averaged over 100 simulated training and test
datasets.

In the first simulation study, we focus primarily on the effect of the eigenvalue decay rate.
We define the covariance operator as

C(s, t) =
50∑

k=1

2k−2r2 cos(k𝜋s) cos(k𝜋t),

where r2 = 1, 2, 3 imposes different decay rates on the eigenvalues of C: a larger value of r2
yields stronger eigenvalue decay. In this setting, the two kernels, K and C, share the same ordered
set of eigenfunctions.

We follow the data generation procedure in Hall & Horowitz (2007) and Cai & Yuan
(2012). The response is generated as Y = ∫ 1

0 X(t)𝛽0(t) dt + 𝜀, with 𝛽0(t) =
∑50

k=1 𝛽k𝜙k(t); 𝛽k =
4(−1)k+1k−2 and𝜙k(t) =

√
2 cos(k𝜋t) for k = 1,… , 50; and 𝜀 ∼ N(0, 0.5). The functional covari-

ate is generated as X(t) =
∑50

k=1 𝛾kUk𝜙k(t), where 𝛾k = (−1)k+1k−r2 and Uk
i.i.d.∼ U[−

√
3,
√

3].
Here, each Uk has a mean of zero and unit variance, and each X is observed at 101 equally spaced
grid points on [0, 1]. We emphasize that the data generation process is ultimately driven by the
choice of the covariance operator.
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FIGURE 2: Effect of covariance kernel eigenvalue decay rate on the RKHS- and FPCA-based
estimators at 𝜏 = 0.2, 0.5, and 0.8 in the first simulation study. From left to right, the three
columns show PE for the RKHS- and FPCA-based estimators and relative PE between both (with
values above 1 favouring the proposed estimator). Error bars correspond to average PE± SE,
evaluated over 100 replications. In each subplot, the horizontal axis represents the size n of the

training dataset, considered at n = 20, 50, 100, and 200.

Results for the first simulation are presented in Figure 2. First, the generally positive
performance of the FPCA-based estimator is not surprising, as 𝛽0 is a linear combination of the
leading eigenfunctions of the functional covariate X. Nonetheless, our RKHS-based estimator
demonstrates higher relative predictive performance except in certain settings with r2 = 1, where
the eigenvalue decay rate is small. In these settings, the standard errors of the PE and relative PE
measures across simulations are typically small. Together, these results suggest a systematically
lower PE for the proposed method. The PE of both estimators generally decreases as r2 increases,
as expected. Both methods appear to converge at similar rates as the sample size increases,
although the RKHS-based estimator again outperforms the FPCA-based one.

In the second simulation study, we are primarily interested in how misalignment between the
reproducing kernel K and the covariance kernel C influences the performance of the RKHS- and
FPCA-based estimators. We define the covariance kernel in this setting as

C(s, t) =
50∑

k=1

2
(|k − k0| + 1

)−2 cos(k𝜋s) cos(k𝜋t).
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FIGURE 3: Effect of reproducing and covariance kernel alignment on the RKHS- and FPCA-based
estimators at 𝜏 = 0.2, 0.5, and 0.8 in the second simulation study. From left to right, the three
columns show PE for the RKHS- and FPCA-based estimators and relative PE between both
(with values above 1 favouring the proposed estimator). Error bars correspond to average PE ±
SE, evaluated over 100 replications. In each subplot, the horizontal axis represents the size n of

the training dataset, considered at n = 20, 50, 100, and 200.

To control the extent of alignment between K and C, the leading eigenfunctions of C are located
around the k0th eigenfunction of the reproducing kernel K: we consider k0 = 5, 10, and 20, with
larger values of k0 corresponding to worse alignment (Cai & Yuan, 2012). In all other aspects,
the data generation process matches that of the first simulation study.

Figure 3 presents results for the second simulation study. As expected, the FPCA-based
estimator generally shows worse PE relative to the RKHS-based estimator. We observe that
relative PE increases with worsened alignment, most notably when k0 = 20. Furthermore, with
increasing k0, poor alignment between K and C seems to have a significant impact on the
FPCA-based estimator but little effect on the proposed RKHS-based one. The standard error for
relative PE is large in some settings, but still leads us to conclude that the proposed method gives
systematically better PE. These empirical results are consistent with our theoretical expectations
and illustrate the merit of our RKHS-based perspective.

In the third simulation study, we investigate the ability of our proposed approach to cope
with different types of error distributions. Specifically, we consider distributions that are either
heteroscedastic or asymmetric.
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FIGURE 4: Effect of abnormal errors on the RKHS- and FPCA-based estimators at 𝜏 = 0.2, 0.5,
and 0.8 in the third simulation study. From left to right, the three columns show PE for
the RKHS- and FPCA-based estimators and relative PE between both (with values above 1
favouring the proposed estimator). Error bars correspond to average PE ± SE, evaluated over
100 replications. In each subplot, the horizontal axis represents the size n of the training dataset,
considered at n = 20, 50, 100, and 200. RSE, LSE, and HE indicate left-skewed, right-skewed,

and heteroscedastic error distributions, respectively.

We use the same setup as the first experiment (except for the distribution of 𝜀), with r2 = 2.
For asymmetric error distributions, we take 𝜀 ∼ Gamma(2, 0.2) and 𝜀 ∼ Beta(5, 1) for left- and
right-skewed errors, respectively. Heteroscedastic errors are sampled as a mixture of N(0, 0.25),
N(0, 0.375), and N(0, 0.5) distributions, representing a simple case with three heteroscedastic
groups.

Results are presented in Figure 4 for the third simulation study. As a general trend, our
proposed RKHS-based estimator shows better performance than the FPCA-based estimator, with
relative PE typically falling between 1 and 4. Standard error for relative PE is moderate across
the different settings but is again suggestive of a systematically lower PE for the proposed
RKHS-based estimator. In the setting with right-skewed errors, PE for both estimators is smaller
when 𝜏 = 0.2 than when 𝜏 = 0.8: this result is reversed for left-skewed errors. These results,
for both asymmetric and heteroscedastic error distributions, demonstrate the power of expectile
regression in dealing with various error distributions, relative to methods that focus on conditional
mean estimation. This simulation study highlights the versatility of our expectile model in cases
of model error misspecification.
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FIGURE 5: FA curves evaluated along the corpus callosum skeleton. The solid black line is the
mean FA curve.

4.2. Application to ADNI Data
We next apply the proposed RKHS-based estimator in an analysis of MMSE scores from 199
patients in the ADNI dataset. In the functional linear model, the response Y is the MMSE score,
while the functional predictor X is fractional anisotropy (FA) as a function of distance along
the mid-sagittal corpus callosum skeleton (scaled to  = [0, 1]). The corresponding functional
linear model is

MMSE = ∫
1

0
𝛽0(t)FA(t) dt + 𝜀.

Figure 5 plots the FA values, observed at 83 grid points, for all 199 patients. For tuning and
evaluating both estimators, approximately 80% of the data is used for fourfold cross-validation,
while the remaining 20% is held out as a test set. Context and the visualization of the neuroimaging
data in Figure 5 suggest that the functional predictor X = FA may be periodic on [0, 1].

We let (K) = per
2 be the second-order Sobolev space of periodic functions on [0, 1],

endowed with the norm ‖b‖2 =
[∫ 1

0 b(t)dt
]2

+ ∫ 1
0

[
b′′(t)

]2 dt and the reproducing kernel K(s, t) =

1 − 1
24

B4(|s − t|), where B4 is the fourth Bernoulli polynomial (Wahba, 1990).
Estimates obtained using our proposed method at the expectile levels 𝜏 = 0.1,… , 0.9 are

shown in Figure 6. As expected, for any fixed t, 𝛽𝜏 (t) increases with 𝜏. For the sake of practical
interpretation, it is useful that these functional estimates do not cross each other.

We also considered FPCA-based estimates obtained using 4, 6, 8, and 10 functional principal
components. These estimates, illustrated in Figure 7, are clearly not ideal for at least a couple
reasons. First, the FPCA-based estimates cross each other, unlike the RKHS-based estimates in
Figure 6. This “crossing problem” is further discussed in He (1997) in the context of quantile
regression. Second, the FPCA-based estimates are sensitive to the user-specified number of
principal components. The discrete nature of this hyperparameter makes it difficult to tune
finely, unlike the continuous hyperparameter 𝜆 in our RKHS-based approach.

Table 1 moreover shows that, at each expectile level considered, the proposed RKHS-based
estimator outperforms the FPCA-based one in predicting MMSE. These results emphasize the
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FIGURE 6: RKHS-based estimates 𝛽𝜏 at 𝜏 = 0.1,… , 0.9 in the ADNI data analysis, describing
the functional effect of FA on MMSE score.
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FIGURE 7: FPCA-based estimates 𝛽𝜏 at 𝜏 = 0.2, 0.5, 0.8 in the ADNI data analysis, describing
the functional effect of FA on MMSE score. The number of functional principal components
(PCs) used is indicated in each subplot: 4, 6, 8, and 10 PCs explain 79.9%, 86.0%, 89.3%, and

91.5%, respectively, of the observed variance in functional FA.
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|
TABLE 1: Test-set prediction error in the ADNI analysis for the RKHS- and FPCA-based predictors at

𝜏 = 0.1,… , 0.9.

Expectile

level 𝜏 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

RKHS
PE (SE)

0.9954
(0.0153)

0.9936
(0.0152)

0.9922
(0.0151)

0.9913
(0.015)

0.9907
(0.0150)

0.9905
(0.0149)

0.9907
(0.0149)

0.9911
(0.0148)

0.9918
(0.0148)

FPCA
PE (SE)

1.0164
(0.0174)

1.0161
(0.0174)

1.0058
(0.0163)

1.0006
(0.0164)

0.9999
(0.0161)

0.9982
(0.016)

1.0000
(0.0160)

1.0004
(0.0161)

1.0008
(0.0157)

practical importance and advantages of our RKHS-based approach in functional linear expectile
regression.

As an informal aside (due to the computation time involved), we also compared the
computational efficiency of different implementations of our proposed RKHS-based estimator.
Our first implementation is as presented in Section 3.3 using the ADMM algorithm, while the
second uses an interior point (IP) algorithm (Mehrotra, 1992). The latter is frequently applied
to constrained optimization problems. We found our ADMM implementation to be far superior
to the IP implementation: the latter typically requires at least 100 times more computation time
than the former to achieve the same level of convergence. Computational results are available
on request.

5. DISCUSSION

In this article, we proposed a regularized estimator for the functional linear expectile regression
model under an RKHS framework. We derived upper and lower bounds for the minimax rate of
convergence of prediction error and established the minimax optimality of our proposed estimator.
While most existing approaches to functional linear expectile regression rely on FPCA, we argue
that these approaches are too restrictive in their assumption regarding eigenvalue spacing.
Additionally, FPCA-based methods rely on the assumption that leading principal components
(which are determined by only the functional predictor X and not the response Y) are predictive
of the response: in practice, this assumption is typically not valid.

We demonstrated the general superiority of our proposed RKHS-based approach in three
sets of simulation studies and an application to an ADNI neuroimaging dataset. In particular, we
illustrated the degradation of FPCA-based estimators when their implicit assumptions regarding
the eigenstructures of the reproducing and covariance kernels are violated. Our results showed
that both eigenfunction alignment and eigenvalue decay rates between the reproducing and
covariance kernels have an important impact on estimator performance.

For the sake of illustration, we focused on a univariate functional predictor X with a domain
 = [0, 1], which is a compact subset of ℝ. We also employed the corresponding canonical
Sobolev space as a working example. Our theoretical results apply nonetheless to more general
RKHSs, provided that  remains a compact subset of an arbitrary Euclidean space. For example,
the derived optimal convergence rate still holds for Sobolev spaces on  = [0, 1]2, e.g., for
imaging data, with the decay rate r determined by the corresponding reproducing and covariance
kernels. The developments in this article thus have wide applications in spatial statistics, 2D and
3D image analysis, and longitudinal data analysis.

Settings where the reproducing and covariance kernels are not well aligned are topics
for future work. As suggested by our ADNI analysis, another natural generalization of our
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approach is the inclusion of scalar predictors, such as, age, gender, and diagnosis status, for a
partial functional expectile regression model. While it is straightforward to accommodate scalar
covariate effect estimation from an algorithmic perspective, the optimality of the corresponding
estimators requires more work to establish. Informally (and with results available on request),
PE for the RKHS- and FPCA-based estimators are comparable when scalar age, gender, and
diagnosis status effects are included in the model. We suspect that this decrease in relative PE
can be attributed to the relative complexity of the two models and possibly the overwhelmingly
broad usefulness of these scalar covariates as predictors. We feel that the full impact of scalar
predictors on empirical performance, such as in high-dimensional settings, should be investigated
in future work.
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APPENDIX

Proof of Theorem 1. Recall the functional model Y = ∫ X(t)𝛽0(t) dt + 𝜀 specified in the main
text. Fix an expectile level 𝜏 ∈ (0, 1) and assume that 𝜀 follows an asymmetric normal distribution
with the density function

𝑓 (𝜀) =
2
√
𝜏(1 − 𝜏)√

𝜏 +
√

1 − 𝜏
1√
𝜋𝜎2

exp
{
−r𝜏 (𝜀∕𝜎)

}
, (A1)

where r𝜏 (u) = |𝜏 − I(u < 0)|u2. Further assume that 𝛽0 belongs to an RKHS (K).
Consider the functional space

∗ =

{
𝛽 =

2M∑
k=M+1

bkM−1∕2LK1∕2𝜁k ∶ (bM+1,… , b2M) ∈ {0, 1}M

}
,

where (𝜁k)k∈ℕ is a sequence of orthonormal eigenfunctions of K1∕2CK1∕2. The function ‖⋅‖K is
a semi-norm on (K) and M is some large number to be determined later. For any 𝛽 ∈ ∗,
observe that

J(𝛽) = ‖𝛽‖2
K =

‖‖‖‖‖‖
2M∑

k=M+1

bkM−1∕2LK1∕2𝜁k

‖‖‖‖‖‖
2

K

=
2M∑

k=M+1

b2
kM−1 ‖‖LK1∕2𝜁k

‖‖2
K

≤
2M∑

k=M+1

M−1 ‖‖LK1∕2𝜁k
‖‖2

K

= 1,

which follows from the fact that
⟨

LK1∕2𝜁k,LK1∕2𝜁l
⟩

K = ⟨LK𝜁k, 𝜁l⟩K = ⟨𝜁k, 𝜁l⟩2
= 𝛿kl. Therefore,

∗ ⊂ (K) =
{
𝛽 ∶ ‖𝛽‖K < ∞

}
.

The Gilbert–Varshamov bound (Tsybakov, 2008, Lemma 2.9) establishes that, for any
M ≥ 8, there exists a set {b(0), b(1),… , b(N)} ⊂ {0, 1}M such that

(i) b(0) = (0,… , 0)⊤;
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(ii) H(b(i), b(𝑗)) ≥ M∕8 for any distinct b(i), b(𝑗) ∈ , where H(·, ·) denotes the Hamming
distance; and

(iii) N ≥ 2M∕8.

We define the subset

 =

{
𝛽(0),… , 𝛽(N) ∶ 𝛽(i) =

2M∑
k=M+1

b(i)k−MM−1∕2LK1∕2𝜁k, i = 1,… ,N

}
⊂ ∗,

and let M be the smallest integer greater than c0n1∕(2r+1) for some constant c0 > 0. Then for i and
𝑗 satisfying 0 ≤ i ≤ 𝑗 ≤ N

‖‖𝛽(i) − 𝛽(𝑗)‖‖2
C =

‖‖‖‖‖‖LC1∕2

2M∑
k=M+1

(
b(i)k−M − b(𝑗)k−M

)
M−1∕2LK1∕2𝜁k

‖‖‖‖‖‖
2

2

=
2M∑

k=M+1

(
b(i)k−M − b(𝑗)k−M

)2
M−1 ‖‖LC1∕2 LK1∕2𝜁k

‖‖2
2

=
2M∑

k=M+1

(
b(i)k−M − b(𝑗)k−M

)2
M−1𝜈k

≥ 𝜈2MM−1
M∑

k=1

(
b(i)k − b(𝑗)k

)2

= 4𝜈2MM−1H
(
b(i), b(𝑗)

)
≥ 𝜈2M∕2

≥ c12−(2r+1)M−2r

≥ 2c𝛼2r∕(2r+1)n−2r∕(2r+1),

where c > 0 is some constant.
We apply the results of Tsybakov (2008) to establish a lower bound based on multiple

hypothesis testing. Under the assumption that the slope function 𝛽0 belongs to the subset ,
we construct a subset {𝛽(0),… , 𝛽(N)} ⊂ ∗ with N increasing in n such that for some positive
constant c and for i and 𝑗 such that 0 ≤ i ≤ 𝑗 ≤ N

‖‖𝛽(i) − 𝛽(𝑗)‖‖2
C ≥ c𝛼

2r
2r+1 n−

2r
2r+1 (A2)

and
1
N

N∑
𝑗=1

KL
(
P𝛽(i) ∣ P𝛽(𝑗)

) ≤ 𝛼 log N, (A3)

where P𝛽 denotes the joint conditional distribution of Y given X, and KL represents the
Kullback–Leibler divergence. By Theorem 2.5 of Tsybakov (2008), it follows that

inf
𝛽

sup
𝛽∈∗

ℙ
(‖‖𝛽(i) − 𝛽(𝑗)‖‖2

C ≥ c𝛼
2r

2r+1 n−
2r

2r+1

) ≥
√

N√
N + 1

(
1 − 2𝛼 −

√
2𝛼

log N

)
. (A4)
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Note that M,N → ∞ as n → ∞. This implies that the right-hand side of (A4) can be made
arbitrarily close to 1 as n → ∞ and 𝛼 → 0. We conclude that

lim
𝛼→0

lim
n→∞

inf
𝛽

sup
𝛽0∈∗

ℙ
(‖‖𝛽(i) − 𝛽(𝑗)‖‖2

C ≥ an−
2r

2r+1

)
= 1. (A5)

This lower bound for the asymmetric normal distribution yields a lower bound for general
error distributions. Let P𝑗 , for 𝑗 = 1,… ,N, represent the joint distribution of the observed sample
{(xk, yk) ∶ k = 1,… , n} under the assumption that 𝛽0 = 𝛽(𝑗). It follows that

P𝑗 =
n∏

k=1

2
√
𝜏(1 − 𝜏)√

𝜏 +
√

1 − 𝜏
1√
𝜋𝜎2

exp

{
−r𝜏

(
yk − ∫ xk(t)⊤𝛽(𝑗)(t)

𝜎

)}
. (A6)

The Kullback–Leibler divergence between P𝛽(i) and P𝛽(𝑗) is

KL(P𝛽(i) ∣ P𝛽(𝑗) ) = E𝛽(i) log(P𝛽(i)∕P𝛽(𝑗) )

= nE𝛽(i)

[
r𝜏

(
Y − ∫ X(t)𝛽(𝑗)(t) dt

𝜎

)
− r𝜏

(
Y − ∫ X(t)⊤𝛽(i)(t) dt

𝜎

)]

≤ n max (𝜏, 1 − 𝜏)
(
∫ X(t)⊤

(
𝛽(𝑗)(t) − 𝛽(i)(t)

)
dt
)2

.

The inequality above holds because, defining 𝜇i = ∫ X(t)⊤𝛽(i)(t) dt

E𝛽(i)
[

r𝜏

(
Y − 𝜇𝑗

𝜎

)
− r𝜏

(
Y − 𝜇i

𝜎

)]
= ∫

∞

𝜇i
𝜏

[(
y − 𝜇𝑗

𝜎

)2

−
(

y − 𝜇i

𝜎

)2
]
𝑓 (y − 𝜇i) dy

+ ∫
𝜇i

−∞
(1 − 𝜏)

[(
y − 𝜇𝑗

𝜎

)2

−
(

y − 𝜇i

𝜎

)2
]
𝑓 (y − 𝜇i) dy

+ ∫
𝜇i

𝜇𝑗
(2𝜏 − 1)

(
y − 𝜇𝑗

𝜎

)2

𝑓 (y − 𝜇i) dy,

where

∫
𝜇i

𝜇𝑗
(2𝜏 − 1)

(
y − 𝜇𝑗

𝜎

)2

𝑓 (y − 𝜇i) dy ≤ |1 − 2𝜏| (𝜇i − 𝜇𝑗

𝜎

)2

∫
𝜇i

𝜇𝑗
𝑓 (y − 𝜇i) dy.

Thus

KL(P𝛽(i) |P𝛽(𝑗) ) ≤ n max (𝜏, 1 − 𝜏)
(
∫ Xk(t)⊤(𝛽(𝑗)(t) − 𝛽(i)(t)) dt

)2

= n max (𝜏, 1 − 𝜏)‖‖Lc1∕2
(
𝛽(𝑗)(t) − 𝛽(i)(t)

) ‖‖2
2
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= n max (𝜏, 1 − 𝜏)
2M∑

k=M+1

(
b(i)k−M − b(𝑗)k−M

)2
M−1𝜈k

≤ n max (𝜏, 1 − 𝜏)𝜈MM−1
2M∑

k=M+1

(
b(i)k−M − b(𝑗)k−M

)2

= 4n max (𝜏, 1 − 𝜏)𝜈MM−1H
(
b(i), b(𝑗)

)
≤ 4n max (𝜏, 1 − 𝜏)𝜈M

≤ 4c2n max (𝜏, 1 − 𝜏)M−2r.

Consequently, when 0 < 𝛼 < 1∕8

1
N

N∑
𝑗=1

KL(P𝑗 ∣ P0) ≤ 4c2n max (𝜏, 1 − 𝜏)M−2r ≤ 𝛼 log 2M∕8 ≤ 𝛼 log N.

By taking M to be the smallest integer greater than c2𝛼
−1∕(2r+1)n1∕(2r+1) with c2 =

(8c1 log 2)1∕(2r+1), the desired result follows. ◼

Proof of Theorem 2. Recall that LK1∕2
(2

)
= (K). Therefore, there exist 𝑓0, 𝑓 ∈ 2 such

that 𝛽0 = LK1∕2𝑓0 and 𝛽𝜆 = LK1∕2𝑓𝜆. For brevity, we assume that (K) is dense in 2, which
ensures that 𝑓0 and 𝑓𝜆 are uniquely defined. The proof in the general case proceeds in exactly
the same fashion by restricting consideration to 2∕ker

(
LK1∕2

)
.

For brevity, define T = LK1∕2CK1∕2 . Let T𝜈 denote a linear operator from 2 to 2 such that
T𝜈𝜑k = s𝜈k𝜑k. Then the prediction error can be written as

‖‖𝛽 − 𝛽0
‖‖2

C = ‖‖‖T1∕2 (𝑓𝜆 − 𝑓0
)‖‖‖2

2
.

Furthermore

𝑓𝜆 = arg min
𝑓∈2

[
1
n

n∑
i=1

r𝜏
(

yi −
⟨

xi,LK1∕2𝑓
⟩
2

)2
+ 𝜆 ‖𝑓‖22

]
.

Recalling that yi =
⟨

xi,LK1∕2𝑓0
⟩
2

+ 𝜀i,

Cn(s, t) =
1
n

n∑
i=1

eixi(s)xi(t),

where ei = 𝜏 if yi ≥ ⟨
xi,LK1∕2𝑓𝜆

⟩
2

and ei = 1 − 𝜏 otherwise. Define Tn = LK1∕2 LCn
LK1∕2 , where

LCn
is an integral operator such that, for any h ∈ 2,

LCn
h(⋅) = ∫ Cn(s, ⋅)h(s) ds.

Consequently 𝑓𝜆 =
(
Tn + 𝜆1

)−1 (Tn𝑓0 + gn
)
, where 1 is the identity operator, and gn =

1
n

∑n
i=1 ei𝜖iLK1∕2 xi. Next, define 𝑓𝜆 = (T + 𝜆1)−1T𝑓0. By the triangle inequality

‖‖‖T1∕2 (𝑓𝜆 − 𝑓0
)‖‖‖2

= ‖‖T1∕2 (𝑓𝜆 − 𝑓0
)‖‖2

+ ‖‖‖T1∕2 (𝑓𝜆 − 𝑓𝜆)‖‖‖2
. (A7)
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The first term on the right-hand side can be easily bounded. To proceed, we appeal to the
following lemma.

Lemma A1. For 0 < 𝜈 < 1, ‖‖Tv
(
𝑓𝜆 − 𝑓0

)‖‖2
≤ (1 − 𝜈)1−𝜈𝜈𝜈𝜆𝜈 ‖‖𝑓0

‖‖2
.

Taking 𝜈 = 1∕2 in Lemma A1 establishes that ‖‖T1∕2
(
𝑓𝜆 − 𝑓0

)‖‖2
2

≤ 1
4
𝜆 ‖‖𝑓0

‖‖2
2
. We now

turn to the second term on the right-hand side of Equation (A7). Observe that

𝑓𝜆 − 𝑓𝜆 = (T + 𝜆1)−1 (Tn + 𝜆1
) (
𝑓𝜆 − 𝑓𝜆

)
+ (T + 𝜆1)−1 (T − Tn

) (
𝑓𝜆 − 𝑓𝜆

)
and that

(
Tn + 𝜆1

)
𝑓𝜆 = Tn𝑓0 − gn. Therefore

𝑓𝜆 − 𝑓𝜆 = (T + 𝜆1)−1Tn
(
𝑓𝜆 − 𝑓0

)
+ 𝜆(T + 𝜆1)−1𝑓𝜆 + (T + 𝜆1)−1gn

+ (T + 𝜆1)−1 (T − Tn
) (
𝑓𝜆 − 𝑓𝜆

)
= (T + 𝜆1)−1T

(
𝑓𝜆 − 𝑓0

)
+ (T + 𝜆1)−1 (Tn − T

) (
𝑓𝜆 − 𝑓0

)
+ 𝜆(T + 𝜆1)−1𝑓𝜆

+ (T + 𝜆1)−1gn + (T + 𝜆1)−1 (T − Tn
) (
𝑓𝜆 − 𝑓𝜆

)
.

We first consider bounding ‖‖‖T𝜈
(
𝑓𝜆 − 𝑓𝜆

)‖‖‖2
for some 𝜈 ∈ (0, 1∕2 − 1∕(4r)). By the triangle

inequality

‖‖‖T𝜈
(
𝑓𝜆 − 𝑓𝜆

)‖‖‖2
≤ ‖‖T𝜈(T + 𝜆1)−1T

(
𝑓𝜆 − 𝑓0

) ‖‖2

+ ‖‖T𝜈(T + 𝜆1)−1 (Tn − T
) (
𝑓𝜆 − 𝑓0

) ‖‖2

+ 𝜆‖‖T𝜈(T + 𝜆1)−1𝑓𝜆
‖‖2

+ ‖‖T𝜈(T + 𝜆1)−1gn
‖‖2

+ ‖‖‖T𝜈(T + 𝜆1)−1 (T − Tn
) (
𝑓𝜆 − 𝑓𝜆

)‖‖‖2
.

Lemma A2. Assume that there exists a constant c3 > 0 such that, for any 𝑓 ∈ 2, E⟨X, 𝑓⟩42
≤

c3(E⟨X, 𝑓⟩22
)2. Then for any 𝜈 > 0 such that 2r(1 − 2𝜈) > 1,

‖‖T𝜈(T + 𝜆1)−1 (Tn − T
)

T−𝜈‖‖op = Op

((
n𝜆1−2𝜈+1∕(2r))−1∕2

)
,

where ‖⋅‖op denotes the usual operator norm, i.e., ‖U‖op = sup{h∶‖h‖2
=1}‖Uh‖2

for an
operator U ∶ 2 → 2.

By an application of Lemma A2

‖‖T𝜈(T + 𝜆1)−1 (T − Tn
) (
𝑓𝜆 − 𝑓𝜆

) ‖‖2

≤ ‖‖T𝜈(T + 𝜆1)−1 (T − Tn
)

T−𝜈‖‖op‖T𝜈
(
𝑓𝜆 − 𝑓𝜆

)‖2

≤ op(1)
‖‖‖T𝜈

(
𝑓𝜆 − 𝑓𝜆

)‖‖‖2
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whenever 𝜆 ≥ cn−2r∕(2r+1) for some constant c > 0. Similarly

‖‖T𝜈(T + 𝜆1)−1 (Tn − T
) (
𝑓𝜆 − 𝑓0

) ‖‖2

≤ ‖‖‖T𝜈(T + 𝜆1)−1 (Tn − T
)

T−𝜈‖‖‖op
‖‖T𝜈

(
𝑓𝜆 − 𝑓0

) ‖‖2

≤ op(1)‖‖T𝜈
(
𝑓𝜆 − 𝑓0

) ‖‖2
.

Therefore ‖‖‖T𝜈
(
𝑓𝜆 − 𝑓𝜆

)‖‖‖2
= Op

(‖‖‖T𝜈(T + 𝜆1)−1T
(
𝑓𝜆 − 𝑓0

)‖‖‖2

+ 𝜆‖‖‖T𝜈(T + 𝜆1)−1𝑓𝜆
‖‖‖2

+ ‖‖‖T𝜈(T + 𝜆1)−1gn
‖‖‖2

)
.

By Lemma A1

‖‖T𝜈(T + 𝜆1)−1T
(
𝑓𝜆 − 𝑓0

) ‖‖2
≤ ‖‖T𝜈(T + 𝜆1)−1T1−𝜈‖‖op

‖‖T𝜈
(
𝑓𝜆 − 𝑓0

) ‖‖2

≤ ‖‖T𝜈
(
𝑓𝜆 − 𝑓0

) ‖‖2

≤ (1 − 𝜈)1−𝜈𝜈𝜈𝜆𝜈‖‖𝑓0
‖‖2

.

Lemma A3. When 0 ≤ 𝜈 ≤ 1∕2,

‖‖T𝜈(T + 𝜆1)−1gn
‖‖L2

= Op

((
n𝜆1−2𝜈+1∕(2r))−1∕2

)
.

Lemma A3 and the preceding result imply that

‖‖‖T𝜈
(
𝑓𝜆 − 𝑓𝜆

)‖‖‖2
= Op

(
𝜆𝜈 +

(
n𝜆1−2𝜈+1∕(2r))−1∕2

)
= Op (𝜆𝜈) ,

provided that c1n−2r∕(2r+1) ≤ 𝜆 ≤ c2n−2r∕(2r+1) for some constants c1 and c2 satisfying 0 < c1 <

c2 < ∞. Recall that

‖‖T1∕2(𝑓𝜆 − 𝑓𝜆)‖‖2
= ‖‖T1∕2(T + 𝜆1)−1T

(
𝑓𝜆 − 𝑓0

)‖‖2

+ ‖‖T1∕2(T + 𝜆1)−1(Tn − T
)(
𝑓𝜆 − 𝑓0

)‖‖2

+ 𝜆‖‖T1∕2(T + 𝜆1)−1𝑓𝜆
‖‖2

+ ‖‖T1∕2(T + 𝜆1)−1gn
‖‖2

+ ‖‖T1∕2(T + 𝜆1)−1(T − Tn
)(
𝑓𝜆 − 𝑓𝜆

)‖‖2
,

so we can bound ‖‖‖T1∕2
(
𝑓𝜆 − 𝑓𝜆

)‖‖‖ by bounding the five terms on the right-hand side of the
above equation. By Lemma A1

‖‖T1∕2(T + 𝜆1)−1T
(
𝑓𝜆 − 𝑓0

) ‖‖2
≤ ‖‖T1∕2(T + 𝜆1)−1T1∕2‖‖op

‖‖T1∕2 (𝑓𝜆 − 𝑓0
) ‖‖2

≤ 1
2
𝜆1∕2 ‖‖𝑓0

‖‖2
.
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Lemma A4. Under the conditions of Lemma A2,

‖‖T1∕2(T + 𝜆1)−1 (Tn − T
)

T−𝜈‖‖op = Op

((
n𝜆1∕(2r))−1∕2

)
.

By Lemmas A1 and A4

‖‖T1∕2(T + 𝜆1)−1(Tn − T
)(
𝑓𝜆 − 𝑓0

)‖‖2

≤ ‖‖T1∕2(T + 𝜆1)−1(Tn − T
)
T−𝜈‖‖op

‖‖T𝜈
(
𝑓𝜆 − 𝑓0

)‖‖2

≤ Op
((

n𝜆1∕(2r))−1∕2
𝜆𝜈
)

= op
((

n𝜆1∕(2r))−1∕2)
.

Similarly

‖‖T1∕2(T + 𝜆1)−1(Tn − T
)(
𝑓𝜆 − 𝑓𝜆

)‖‖2

≤ ‖‖T1∕2(T + 𝜆1)−1(Tn − T
)
T−𝜈‖‖op

‖‖T𝜈
(
𝑓𝜆 − 𝑓𝜆

)‖‖2

≤ Op
((

n𝜆1∕(2r))−1∕2
𝜆𝜈
)

= op
((

n𝜆1∕(2r))−1∕2)
.

We also have ‖‖T1∕2(T + 𝜆1)−1gn
‖‖2

= Op

((
n𝜆1∕(2r))−1∕2

)
by Lemma A3.

Finally, together with the fact that 𝜆 ‖‖T1∕2(T + 𝜆1)−1𝑓𝜆
‖‖2

= O(𝜆), we conclude that‖T1∕2(𝑓𝜆 − 𝑓𝜆)‖2
= Op(n

− 2r
2r+1 ), as desired. ◼

Received 2 February 2021
Accepted 14 September 2021

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11679


