
L2NAS: Learning to Optimize Neural Architectures via
Continuous-Action Reinforcement Learning

Keith G. Mills1†, Fred X. Han2, Mohammad Salameh2, Seyed Saeed Changiz Rezaei2
Linglong Kong1, Wei Lu2, Shuo Lian3, Shangling Jui3, Di Niu1

1University of Alberta, Edmonton, AB, Canada
2Huawei Technologies, Edmonton, AB, Canada

3Huawei Kirin Solution, Shanghai, China

ABSTRACT
Neural architecture search (NAS) has achieved remarkable results
in deep neural network design. Differentiable architecture search
converts the search over discrete architectures into a hyperparame-
ter optimization problem which can be solved by gradient descent.
However, questions have been raised regarding the effectiveness
and generalizability of gradient methods for solving non-convex
architecture hyperparameter optimization problems. In this paper,
we propose L2NAS, which learns to intelligently optimize and up-
date architecture hyperparameters via an actor neural network
based on the distribution of high-performing architectures in the
search history. We introduce a quantile-driven training procedure
which efficiently trains L2NAS in an actor-critic framework via
continuous-action reinforcement learning. Experiments show that
L2NAS achieves state-of-the-art results on NAS-Bench-201 bench-
mark as well as DARTS search space and Once-for-All MobileNetV3
search space.We also show that search policies generated by L2NAS
are generalizable and transferable across different training datasets
with minimal fine-tuning.

CCS CONCEPTS
• Computing methodologies → Neural networks; Reinforce-
ment learning; Supervised learning by classification; • Theory of
computation → Continuous optimization.

KEYWORDS
Neural Architecture Search; Deep Deterministic Policy Gradient
ACM Reference Format:
Keith G. Mills1†, Fred X. Han2, Mohammad Salameh2, Seyed Saeed Changiz
Rezaei2 and Linglong Kong1, Wei Lu2, Shuo Lian3, Shangling Jui3, Di Niu1.
2021. L2NAS: Learning to Optimize Neural Architectures via Continuous-
Action Reinforcement Learning. In Proceedings of the 30th ACM International
Conference on Information and KnowledgeManagement (CIKM ’21), November
1–5, 2021, Virtual Event, QLD, Australia. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3459637.3482360

†Work done during an internship at Huawei Technologies Canada.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482360

1 INTRODUCTION
Neural architecture search (NAS) automates neural network design
and has achieved state-of-the-art performance in computer vision
tasks [22], [30], [2], [19]. A NAS scheme usually consists of a search
strategy and a performance estimation strategy for candidate ar-
chitectures. Typical search strategies include random search [20],
Bayesian optimization [16], and reinforcement learning [26, 46].

Differentiable architecture search (DARTS) [22] and the variants
based on optimization, e.g., [2, 4, 5, 19, 35, 38] have dramatically
reduced the search cost in NAS by converting search in an exponen-
tially large space into optimization performed on a weight-sharing
supernet, where all candidate architectures are mixed through the
architecture hyperparameters 𝛼 . The architecture hyperparameters
𝛼 can then be optimized with gradient descent to minimize the
meta loss of the supernet on a validation set.

However, differentiable architecture search has brought about
a few issues. First, during search DARTS aims to minimize the
validation loss of the mixed supernet, whereas the final evalua-
tion is performed on a discrete architecture extracted from the
supernet based on the largest architecture hyperparameters. Such a
discrepancy leads to the optimization gap known as the discretiza-
tion error [36, 41] in NAS literature. Second, although stochastic
gradient descent (SGD) has been remarkably effective for train-
ing neural network weights [34], it is unclear whether gradient
descent extends to the bi-level optimization of both architecture
hyperparameters and model weights, where the former can lie in
non-Euclidean domains [19]. Recent work shows that DARTS is
unstable and unable to generalize to different search spaces, some
of which contain dummy operators that DARTS fails to rule out
during the search [42].

Another common problem facing differentiable NAS approaches
is a lack of exploration mechanisms. By design, gradient-based
methods seek the nearest local loss minima as quickly as possible.
Consequently, gradient-based NAS approaches are reported to be
driven toward regions of the search space where the supernet can
train rapidly. This results in wide and shallow architectures being
selected over deeper and narrower networks [28]. The above issues
have given motivation to developing more advanced schemes than
gradient descent for differentiable neural architecture search.

In this paper, we propose L2NAS which given a search space
of candidate architectures, learns how to optimize the architec-
ture hyperparameters 𝛼 in differentiable NAS, in order to achieve
generalizable hyperparameter optimization policies in NAS that
are transferable across training datasets. Rather than always de-
scending in the direction of gradients, L2NAS updates 𝛼 through

https://doi.org/10.1145/3459637.3482360
https://doi.org/10.1145/3459637.3482360

a trainable actor neural network taking as input the statistical in-
formation learned from the search history. In other words, L2NAS
learns to learn (optimize) a search policy for 𝛼 . In particular, we
make the following contributions:

First, L2NAS learns to generate architecture hyperparameters
𝛼 in a continuous domain via an actor network based on MLP.
The hyperparameters 𝛼 then undergo a many-to-one deterministic
mapping into a discrete architecture, based on which the reward of
𝛼 can be obtained from either a weight-sharing supernet or from
other performance estimation mechanisms such as querying true
performance, if available. We design a novel state representation of
the optimization landscape by performing average pooling of top
𝐾 architectures found in the search history, which will be fed into
the actor to determine 𝛼 in the next step. Thus, L2NAS can also be
understood as replacing the gradient descent update rule with a
meta-learned architecture hyperparameter optimizer represented
by the actor.

Second, we propose an effective and efficient procedure to train
L2NAS through a quantile-driven loss. Leveraging the Actor-Critic
framework, we introduce a critic network to predict the reward
given 𝛼 . Due to the stochastic nature of the reward model, the
critic is specifically trained by the check loss in quantile regres-
sion [18] to predict the 90th or greater percentile of performance
instead of expected mean performance under each 𝛼 to track high
potential regions in the search domain. The actor network is then
updated through an efficient gradient ascent algorithm based on the
critic output, following a similar framework in continuous-action
reinforcement learning [21, 24].

Third, we incorporate several exploration strategies into L2NAS,
including a noise-based exploration mechanism and the 𝜖-greedy
strategy, to ensure that the search space be adequately explored to
avoid premature convergence.

Through extensive experiments, we show that L2NAS achieves
state-of-the-art performance on the public benchmark set NAS-
Bench-201 [12] in terms of accuracy constrained by the number of
architecture evaluations incurred, which converts to search cost in
reality. In DARTS [22] and Once-for-All (OFA) [2] search spaces, we
show that L2NAS can find models that achieve competitive accura-
cies on CIFAR-10 and ImageNet, as compared to existing methods
operating in the same search spaces. Furthermore, we show that the
architecture optimization policy pre-trained on a simpler dataset,
e.g., CIFAR-10, can be transferred to search for competitive archi-
tectures that perform well on more complex or higher-resolution
datasets, e.g., CIFAR-100 and ImageNet, after a small amount of
fine-tuning, further reducing the cost of customizing architecture
searches per dataset.

2 PROPOSED METHOD
Neural architecture search can be formulated as a black-box opti-
mization problem [6, 7]. Suppose that 𝑥 is a neural architecture. Let
𝑆 (𝑥) be a real-valued function representing its performance after
fully training the network on a given dataset, i.e., the accuracy of
𝑥 . In NAS, the goal is to maximize 𝑆 (𝑥) subject to 𝑥 ∈ X, where
X denotes a predefined search space of neural architectures. The
black-box function 𝑆 is not available in a closed form, but can be

evaluated at any query point 𝑥 ∈ X. In other words, 𝑆 can only be
observed through point-wise observations.

Since the size of X grows exponentially in terms of the num-
ber of operators considered, differentiable architecture search [22]
relaxes X into a continuous space of architecture representations,
𝛼 , a.k.a. architecture hyperparameters, converting the search in X
into an optimization problem over 𝛼 in a continuous domain. That
is, one can define a deterministic mapping function Discretize
such that 𝑥 = Discretize(𝛼), and maximizing 𝑆 (𝑥) is converted
to maximizing 𝑆 (𝛼).

2.1 Continuous Relaxation of Discrete
Architectures

We now describe how the continuous relaxation of a neural ar-
chitecture can be achieved using DARTS [22] as an example. A
neural network can be represented by a directed acyclic graph
(DAG) 𝐺 = (𝑁, 𝐸) with |𝑁 | numbered nodes 1, 2, . . . , |𝑁 | and a set
of directed edges 𝐸 connecting them. The nodes are latent data
representations in a neural network. Let 𝑥𝑖 denote the latent repre-
sentation on node 𝑖 . Let O denote the predefined set of candidate
operations.

In a discrete architecture in DARTS, each edge represents one
operation inO. But in its continuous relaxation𝐺 , a.k.a. the supernet,
each edge (𝑖, 𝑗) performs a weighted sum of all candidate operations
applied onto 𝑥𝑖 . Specifically, let 𝛼 (𝑖, 𝑗),𝑜 ∈ R be the raw weight value
of operation 𝑜 on edge (𝑖, 𝑗), the computation performed on the
edge (𝑖, 𝑗) from node 𝑖 to node 𝑗 (𝑖 < 𝑗) is defined as:

𝑓𝑖, 𝑗 (𝑥𝑖) =
∑
𝑜∈O

exp(𝛼 (𝑖, 𝑗),𝑜)∑
𝑜′∈O exp(𝛼 (𝑖, 𝑗),𝑜′)

· 𝑜 (𝑥𝑖).

The result of edge (𝑖, 𝑗) will be aggregated with other incoming
edges at node 𝑗 , if any, to yield

𝑥 𝑗 =
∑

𝑖:(𝑖, 𝑗) ∈𝐸
𝑓𝑖, 𝑗 (𝑥𝑖) .

We could then define 𝛼 = {𝛼 (𝑖, 𝑗),𝑜 } ∈ R|𝐸 |× |O | as the hyperpa-
rameters matrix, which is a relaxed representation of all possible
networks in the search space. By optimizing 𝛼 and supernet weights
𝑤 to increase 𝑆 (𝛼), i.e., validation accuracy of the supernet under
𝛼 , 𝛼 would eventually converge to the region of better perform-
ing architectures. DARTS achieves this by updating 𝛼 and𝑤 using
gradient descent in a bi-level optimization setup:

min
𝛼

𝑆 (𝛼) = Lval (𝑤∗ (𝛼), 𝛼) (1)

s.t. 𝑤∗ (𝛼) = argmin
𝑤

Ltrain (𝑤, 𝛼), (2)

where all supernet weights 𝑤 are fit to the training set given 𝛼 ,
while 𝛼 is found by minimizing the validation loss (of the entire
supernet) on a separate validation set.

Unlike DARTS, we set 𝑆 (𝛼) = 𝑆 (Discretize(𝛼)) in L2NAS to
evaluate 𝛼 directly by the performance of the individual architec-
ture derived from 𝛼 via discretization. Similarly, we train supernet
weights𝑤 in L2NAS by randomly sampling 𝛼 for every input batch
of data and discretizing it into an architecture, and only updating
the corresponding supernet weights used in the sampled architec-
ture. By doing so, L2NAS avoids the generalization gap of DARTS

Action
Actor

Network
Query

Supernet
Discretize

Channel-Wise
Average Pooling

Top K History

Architecture

Replay Buffer

Figure 1: A High-Level Illustration of L2NAS.

caused by evaluating supernet performance during the search while
evaluating individual architectures in the test.

As will be demonstrated in experiments, L2NAS can operate
on many search spaces other than DARTS that allow continuous
relaxation. Furthermore, L2NAS can work regardless of how the
performance 𝑆 (𝛼) is queried, whether from a predictor or a weight-
sharing supernet.

2.2 Learning to Optimize Architecture
Hyperparameters

We now present the operating mechanisms of the proposed algo-
rithm, L2NAS. Traditionally, in differentiable architecture search,
the architecture hyperparameters 𝛼 are updated via gradient de-
scent with a first-order or second-order approximation of the deriv-
ative of validation loss over 𝛼 . The goal of L2NAS, however, is to
learn an update rule ` through performing the following iterations:

𝛼𝑡 = ` (𝑠𝑡),
𝑟𝑡 ∼ 𝑝 (𝑟 |Discretize(𝛼𝑡)),

𝑠𝑡+1 = 𝜙 (𝛼𝑡 , 𝑟𝑡 , 𝑠𝑡),

where 𝑠𝑡 can be seen as a state recording important statistics in the
optimization process up to time step 𝑡 . At time step 𝑡 , an action 𝛼𝑡
is generated given the state 𝑠𝑡 . We then discretize 𝛼𝑡 into a neural
architecture to query its performance 𝑟𝑡 . Finally, the state 𝑠𝑡+1 is
updated with the newly queried 𝛼𝑡 and 𝑟𝑡 . A high-level overview
of our scheme is illustrated in Figure 1.

Specifically, at step 𝑡 , L2NAS produces an action that serves
as continuous architecture hyperparameters, i.e., 𝛼𝑡 ∈ R|𝐸 |× |O | ,
through a neural network `, which is a multi-layer perceptron
(MLP). Each continuous action 𝛼𝑡 is deterministically mapped into
a discrete 𝛼𝑑𝑡 . We further elaborate on this Discretize process in
Section 3, as it is search space dependent. Each 𝛼𝑑 corresponds to
an individual architecture in the search space. The reward of taking
the query 𝛼𝑡 is defined as

𝑟𝑡 = 100𝐴𝑐𝑐 (𝛼
𝑑
𝑡) , (3)

where Acc is the measured accuracy of the architecture 𝛼𝑑𝑡 =

Discretize(𝛼𝑡).
Throughout the optimization process, L2NAS keeps track of the

top-𝐾 architectures in terms of the accuracy seen so far. That is,
we store a history tensor, ℎ𝑡 ∈ {0, 1}𝐾×|𝐸 |× |O | of top-𝐾 𝛼𝑑𝑡 seen
so far and define the state, 𝑠𝑡 ∈ R|𝐸 |× |O | , as the averaging of ℎ𝑡
over the first dimension. The state 𝑠𝑡 is meant to provide statistical
information regarding the search space.

Given the above definition, each entry of the state matrix 𝑠𝑡
represents the sample probability that a specific operation is present
on an edge in the top-𝐾 architectures seen so far. A higher value
on an entry indicates that the corresponding operation-edge pair is
favoured by top performing architectures.

2.3 Policy Training Procedure
L2NAS adopts an Actor-Critic framework in reinforcement learning
to train the update policy `. L2NAS produces continuous actions,
which makes its training procedure similar to the Deep Determin-
istic Policy Gradient (DDPG) [21] framework. In continuous-action
RL, the agent interacts with an environment over an infinite num-
ber of steps, 𝑡 = 0, 1, ...,, by performing an action 𝑎𝑡 at each step,
receiving a reward 𝑟𝑡 in return, followed by transitioning to a state
𝑠𝑡+1. Nevertheless, to solve our black-box optimization problem,
specifically neural architecture search, there are several key dif-
ferences in the policy training of L2NAS from DDPG, including a
redefined critic network, a quantile-driven loss in critic training,
and the use of epsilon-greedy strategy to reduce the number of
queries (architecture evaluations).

In particular, we maintain two neural networks in L2NAS: The
actor, ` (𝑠𝑡), which generates an action 𝛼𝑡 given 𝑠𝑡 ; and the critic,
𝑄 (𝛼𝑡), which predicts the action value. Note that as opposed to
DDPG, we remove the dependency of the critic on 𝑠𝑡 . We also
maintain a replay buffer, 𝑅, which stores triplets in the form of
(𝑠𝑡 , 𝛼𝑡 , 𝑟𝑡).

The actor network is given by,

𝛼𝑡 = ` (𝑠𝑡) + 𝑧𝑡 , (4)

where 𝑧𝑡 = Uniform(−b, b) is a small noise following a uniform
distribution added to the actor output to encourage exploration.
Furthermore, we introduce additional exploration strategies in the
form of taking random actions drawn from a uniform distribution,
Uniform(0, 1)|E |× |O | , instead of being determined by the actor net-
work in Equation 4. We apply two different exploration strategies
depending on the search space:

• 𝜖-greedy: At every step, the actor will take a random action
with probability 𝜖 . We initialize 𝜖 to a high value and anneal
it to a minimum value over time.

• Random warm-up: The agent takes random actions in the
first𝑊 steps. Actions taken during all remaining steps 𝑡 >𝑊
are determined by Equation 4.

The original DDPG critic 𝑄 (𝑠𝑡 , 𝑎𝑡) calculates a discounted esti-
mate of future rewards [21] based on state transitions. In contrast,
L2NAS uses a critic 𝑄 (𝛼𝑡) to directly approximate the reward 𝑟𝑡 .
It differs from DDPG in that the critic network does not take the
state 𝑠𝑡 as an input. The critic network of L2NAS is also an MLP
with 3 hidden layers.

Furthermore, considering the stochastic nature of 𝑟𝑡 , if the critic
were trained by an 𝐿2 loss as in DDPG, it would predict the condi-
tional mean reward,

𝑟𝑡 = E[𝑟 |𝛼𝑡] .
In contrast, we use a check loss to train the critic in L2NAS. In
quantile regression [18], the 𝜏-th quantile of a random variable
𝑍 , denoted by 𝑄𝜏 (𝑍), is defined as the value such that 𝑍 is no
more than 𝑄𝜏 (𝑍) with probability 𝜏 and no less than 𝑄𝜏 (𝑍) with

probability 1 − 𝜏 . When 𝜏 = 0.5, 𝑄0.5 (𝑍) is the median of 𝑍 . It is
shown [18] that

𝑄𝜏 (𝑍) = argmin
𝑐
E𝑍 [𝜌𝜏 (𝑍 − 𝑐)],

where 𝜌𝜏 is the check loss function defined as
𝜌𝜏 (𝑥) = 𝑥 (𝜏 − 1(𝑥 ≤ 0)),

where 1(𝑥 ≤ 0) is one if 𝑥 ≤ 0 and zero otherwise, and 𝜏 ∈ [0, 1]
corresponds to the desired quantile level.

L2NAS is trained off-policy, which means that the experience
(𝑠𝑡 , 𝛼𝑡 , 𝑟𝑡) of a step 𝑡 is not immediately used to update the critic
and actor networks. Instead, all experiences are stored in a replay
buffer 𝑅 and randomly sampled in batches with replacement to
train the actor and critic. At every time step 𝑡 , we randomly sample
a batch 𝐵𝑅 from the experience replay buffer and use it to update
the critic network using the check loss:

LCritic =
1

|𝐵𝑅 |
∑
𝑖∈𝐵𝑅

𝜌𝜏 (𝑟𝑖 −𝑄 (𝛼𝑖)) (5)

The actor network is then updated directly based on critic outputs
with the following loss:

LActor =
1

|𝐵𝑅 |
∑
𝑖∈𝐵𝑅

𝑄 (` (𝑠𝑖)). (6)

A critic trained by the check loss as in Equation 5 learns to
predict the 𝜏th conditional quantile of the reward

𝑟𝑡 = 𝑄𝜏 (𝑟 |𝛼𝑡) = argmin
𝑐
E𝑟 [𝜌𝜏 (𝑟 − 𝑐) |𝛼𝑡] .

The key advantage is that the proposed critic is capable of picking
up and dealing with the best architectures while the traditional 𝐿2
loss is only able to handle average architectures. Put succinctly, the
check loss function ensures that the critic predicts the tail of the
reward, which corresponds to the accuracy of the best architectures
selected. This knowledge is then used in actor update in Equation 6.

Finally, we can accelerate policy training by updating the actor
and critic networks with 𝐶 batches of samples pulled from the
replay buffer per step, instead of one batch per step as in DDPG.
This is useful in situations where the number of steps allowed is
tightly budgeted. We determine the number of batches 𝐶 used per
step by 𝐶 = min(

⌊
|𝑅 |
|𝐵𝑅 |

⌋
,𝐶max), where |𝑅 | is the total number of

samples in the replay buffer and 𝐶max is an upperbound on 𝐶 . The
actor and critic networks start training once the experience replay
buffer has accumulated |𝐵𝑅 | samples.

2.4 Transferability
It is possible to train an agent on one dataset, e.g. CIFAR-10, and
then transfer the pretrained agent to another dataset, e.g., CIFAR-
100 or ImageNet, where both the critic and actor networks can be
fine-tuned with a low number of steps in order to search for high-
performance architectures based on the new dataset. Transferability
of search policy can be achieved when the action space is held
constant.

For this purpose, we introduce another reward function such
that the agent can generalize across different datasets and accuracy
ranges. For example, the highest validation accuracies achieved
by NAS-Bench-201 [12] on CIFAR-10 and CIFAR-100 are 94.37%
and 73.51%, respectively, which fall in different ranges. If a search

Algorithm 1 Discretize() in NAS-Bench-201/OFA

1: Input: 𝛼 ∈ R|𝐸 |×|O |

2: Output: 𝛼𝑑 ∈ {0, 1}|𝐸 |×|O |

3: 𝛼𝑑 = 0|𝐸 |×|O |

4: for 𝑘 = 0, 1, ..,|𝐸 | − 1 do
5: 𝐴 = 𝛼 [𝑘, :]
6: 𝑖𝑘 = argmax𝑖 𝐴𝑖
7: 𝛼𝑑 [𝑘, 𝑖𝑘] = 1
8: end for
9: Return 𝛼𝑑

algorithm is trained on CIFAR-10 and then transferred to CIFAR-
100, it will need to be rescaled such that it learns a dataset-agnostic
understanding onwhat constitutes a high-performance architecture.
In L2NAS, we accomplish this by rescaling the reward function to

𝑟𝑡 =
100𝐴𝑐𝑐 (𝛼𝑑𝑡)/𝐴𝑐𝑐 (𝐸𝑛𝑣)

100 − 1, (7)

where 𝐴𝑐𝑐 (𝐸𝑛𝑣) is an environment-dependent accuracy measure
used to scale the accuracy of architectures generated by the agent
to fit to the target dataset.

3 EXPERIMENTAL SETUP
In this section we enumerate our three candidate search spaces,
NAS-Bench-201, DARTS and Once-for-All in detail. Specifically, we
describe the internal layout, explain how discretization is performed
and elaborate on our training details.

3.1 NAS-Bench-201
The NAS-Bench-201 (NB) search space is based on NASNet [46].
Many cells are stacked repeatedly to form a neural network. There
are two types of cells: normal cells, which do not modify the dimen-
sions of input tensors and reduction cells, which are responsible
for halving the height and width of input tensors while doubling
the number of channels. The internal structure of reduction cells is
fixed, and there are two in total, residing 1/3 and 2/3 through the
network, respectively. All other cells are normal and the structure
of normal cells is variable, facilitating architecture search.

The internal structure of the normal cells is represented by aDAG
with an input node, an output node and |𝑁 |NB = 3 intermediate
nodes. The input node of cell 𝑘 receives data from the output node
of cell 𝑘−1. Each intermediate node is connected to the output node
by an edge. Additionally, |𝐸 |NB = 6 edges connect the input and
intermediate nodes. These edges are responsible for performing
operations within the cell. The pre-defined operator set, |O|NB = 5,
consists of the following: None (Zero), Skip Connection, Average
Pooling 3×3, Nor_Conv1 1×1 and Nor_Conv 3×3.

This layout gives rise to 𝛼NB ∈ R6×5 for a total of 15,625 ar-
chitectures. Algorithm 1 describes the discretization process for
NAS-Bench-201. Essentially, the process consists of an argmax op-
eration performed on each row of 𝛼NB to select the operators.

We do not need to train networks from scratch to evaluate L2NAS
on NAS-Bench-201 as the accuracy of each architecture is provided
in the form of an API and lookup table.
1Nor_Conv refers to a sequence consisting of ReLU-Conv-BN (batch normalization) [12].

Algorithm 2 Discretize() in DARTS/PC-DARTS

Input: 𝛼 ∈ R|𝐸 |×|O |

Output: 𝛼𝑑 ∈ {0, 1}|𝐸 |×|O |

Start = 0, 𝑛 = 1
𝛼𝑑 = 0
for 𝑘 = 0, 1, ..,|𝑁 | − 1 do
End = Start + 𝑛
𝐴 = 𝛼 [Start : End, :]
(𝑖1, 𝑗1) = argmax(𝑖, 𝑗) 𝐴𝑖 𝑗
(𝑖2, 𝑗2) = argmax(𝑖, 𝑗) :𝑖≠𝑖1 𝐴𝑖 𝑗
𝛼𝑑 [Start + 𝑖1, 𝑗1] = 1
𝛼𝑑 [Start + 𝑖2, 𝑗2] = 1
Start = End + 1
𝑛 = 𝑛 + 1

end for
Return 𝛼𝑑

3.2 DARTS
The DARTS (DA) topology is also based on NASNet [46], but more
complex than NAS-Bench-201 and contains approximately 1018 [29]
architectures. Rather than simply receiving input from the previous
cell, each cell 𝑘 receives input from the previous two cells, 𝑘 −1 and
𝑘 − 2, respectively. There are |𝑁 |DA = 4 intermediate nodes form-
ing |𝐸 |DA = 14 edges as each intermediate node can receive data
from all previous intermediate nodes and both input nodes. There
are |O|DA = 7 operations consisting of the following: Maximum
Pooling 3×3, Average Pooling 3×3, Skip Connection, Separable Con-
volution 3×3, Separable Convolution 5×5, Dilation Convolution
3×3 and Dilation Convolution 5×5. Note that compared to the origi-
nal DARTS, we omit the ‘None’ operation. Although DARTS allows
it during search, unlike NAS-Bench-201, it cannot be selected to
form a discrete architecture once search is complete.

Unlike NAS-Bench-201, the reduction cell structure is not fixed
and is searchable independently of the normal cell architecture.
These properties give rise to architectures represented by two ma-
trices, 𝛼NDA ∈ R |𝐸 |× |O | = R14×7 and 𝛼RDA ∈ R |𝐸 |× |O | = R14×7,
corresponding to the normal and reduction cells, respectively.

Discretization for DARTS is more complex than it is for NAS-
Bench-201. Similar to [24], each intermediate node in 𝑁 will receive
input from only 2 of the directed edges that feed into it. Each of
these selected edges shall perform a single operation. The choice
of which edges are chosen, and which operators will occupy these
edges are determined using the magnitude of their architecture
distribution parameters, where higher is better. This means that
while the cell may contain up to |𝐸 | = ∑|𝑁 |

𝑖=1 (𝑖 + 1) edges during
search, only 2|𝑁 | edges are allowed after discretization. Algorithm 2
describes the process of discretizing either 𝛼DA matrix.

We train a weight-sharing supernet using the PC-DARTS frame-
work, which uses the same topology and operation set as DARTS,
but incorporates several memory-saving features [38]. We refer
the reader to PC-DARTS for more details, but note that our use of
Algorithm 2 allows us to omit the use of ‘𝛽’.

Our supernet training strategy is inspired by random search [20]
and the single-path uniform sampling scheme used by [13]. DARTS
supernets are only used for search; evaluation is performed by

training found architectures from scratch. Moreover, this sampling
method saves GPU memory cost [3, 11].

For each batch of training data, we first sample a random matrix
𝛼 ∈ R|𝐸 |× |O | , which is then discretized. The corresponding weights
of the discrete architecture are then updated with the batch of
data. This process is equivalent to selecting random individual
architectures from the supernet to update per each batch of data.

We train a supernet for CIFAR-10. CIFAR-10 consists of 50k
training samples and 10k test samples split across 10 classes. We
split the original training set in half into equally sized training
and validation partitions. The new training set is used to train the
supernet. The validation set is used to query the supernet during
model search. The supernet consists of 8 cells (6 normal, 2 reduction)
with an initial channel multiplier of 16. The initial learning rate is set
to 0.025 and is annealed down to 1𝑒−3 by cosine schedule. Stochastic
gradient descent with a momentum factor of 0.9 optimizes the
weights. We use Cutout [10] using the recommended length for
CIFAR-10 and train for 10k epochs with a batch size of 250. On a
single RTX 2080 Ti, supernet training takes around 3 GPU days.

At the end of each epoch, we gauge the validation set accuracy of
the supernet. We record the highest validation accuracy observed
during supernet training. This allows the supernet to be used in
conjunction with Equation 7.

To facilitate transferability, we train additional supernets on
CIFAR-100 and ImageNet-32-1202 [8] as it has been shown that
ImageNet subsets can be used as efficient proxies [35]. CIFAR-100
has the same number of training and test samples as CIFAR-10, only
split across 100 classes instead of 10. Likewise, the supernet training
scheme for CIFAR-100 follows that of CIFAR-10. ImageNet-32-120
consists of 155k training and 6k test samples split across 120 classes,
respectively. We further split the training set into separate training
and validation sets like the CIFAR datasets. The supernet trains
for 5k steps using a batch size of 750 with the same optimizer and
learning rate scheduler as the CIFAR datasets.

After any search on DARTS is complete, we select the best archi-
tecture according to validation accuracy, and evaluate it by training
it from scratch and obtaining its accuracy on the test set. For CIFAR
datasets, DARTS evaluation is performed using models with 20
cells, 18 of which are normal while the remaining 2 are reduction.
We set the initial channel size to 36. We utilize Cutout [10] with
the recommended lengths and an auxiliary head with a weight of
0.4. The initial learning rate is 0.025, which is annealed down to 0
following a cosine schedule [23] over 1,000 epochs. Batch size is 96
and drop path probability is 0.2.

ImageNet evaluation on DARTS is performed using the same
hyperparameters as PC-DARTS [38]. The network consists of 14
cells (12 normal, 2 reduction) and is trained for 250 epochs. An
initial learning rate of 0.5 is used and is annealed down to zero after
an initial 5 epochs of warmup.

3.3 Once-for-All
OFA, as originally proposed, uses MobileNetV3 (MBv3) [15] as a
backbone structure and provides pre-trained supernets with elastic
depth and width, allowing architectures to be searched for in the
MBv3 design space and evaluated on ImageNet [9].

2First 120 classes of ImageNet downsampled to 32x32 images.

Table 1: Accuracies obtained on NAS-Bench-201 datasets compared to other methods. The horizontal line demarcates weight-
sharing algorithms from those that directly query oracle information. We run L2NAS for 500 and 1,000 steps per experiment
across 10 different random seeds, and report the mean and standard deviation.

CIFAR-10 CIFAR-100 ImageNet-16-120

Method Valid [%] Test [%] Valid [%] Test [%] Valid [%] Test [%]

DARTS [22] 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00
ENAS [26] 37.51 ± 3.19 53.89 ± 0.58 13.37 ± 2.35 13.96 ± 2.33 15.06 ± 1.95 14.84 ± 2.10
GDAS [11] 89.89 ± 0.08 93.61 ± 0.09 71.34 ± 0.04 70.70 ± 0.30 41.59 ± 1.33 41.71 ± 0.98
GAEA [19] – 94.10 ± 0.29 – 73.43 ± 0.13 – 46.36 ± 0.00
RS [12] 90.93 ± 0.36 93.70 ± 0.36 70.93 ± 1.09 71.04 ± 1.07 44.45 ± 1.10 44.57 ± 1.25
REA [12] 91.19 ± 0.31 93.92 ± 0.30 71.81 ± 1.12 71.84 ± 0.99 45.15 ± 0.89 45.54 ± 1.03
REINFORCE [12] 91.09 ± 0.37 93.85 ± 0.37 71.61 ± 1.12 71.71 ± 1.09 45.05 ± 1.02 45.24 ± 1.18
BOHB [12] 90.82 ± 0.53 93.61 ± 0.52 70.74 ± 1.29 70.85 ± 1.28 44.26 ± 1.36 44.42 ± 1.49
arch2vec-RL [39] 91.32 ± 0.42 94.12 ± 0.42 73.12 ± 0.72 73.15 ± 0.78 46.22 ± 0.30 46.16 ± 0.38
arch2vec-BO 91.41 ± 0.22 94.18 ± 0.24 73.35 ± 0.32 73.37 ± 0.30 46.34 ± 0.18 46.27 ± 0.37
L2NAS-500 91.36 ± 0.19 94.11 ± 0.16 72.47 ± 0.74 72.69 ± 0.58 46.23 ± 0.28 46.74 ± 0.39
L2NAS-1k 91.47 ± 0.15 94.28 ± 0.08 73.02 ± 0.52 73.09 ± 0.35 46.58 ± 0.08 47.03 ± 0.27

True Optimal 91.61 94.37 73.49 73.51 46.77 47.31

i->
n1

i->
n2

n1
->

n2
i->

n3
n1

->
n3

n2
->

n3

X

X X X X X

L2NAS

i->
n1

i->
n2

n1
->

n2
i->

n3
n1

->
n3

n2
->

n3

none

skip_connect

avg_pool_3x3

nor_conv_1x1

nor_conv_3x3

X

X X X X X

Ground Truth Best

Figure 2: Comparison of the final state representation at
the end of an L2NAS search on NAS-Bench-201 CIFAR-100
test accuracy (left) with the average of 𝛼𝑑 of the true top-
𝐾 architectures (right). 𝐾 = 64. Rows indicate operations,
columns indicate edges. ‘i’ means input, ‘n’ denotes an inter-
mediate node. Darker color indicates higher values. Vertical
bars demarcate destination nodes. ‘X’ marks the operation-
edge pairs corresponding to the best architecture.

The search space contains approximately 1019 architectures. The
supernet contains 10–20 layers, divided into 5 units, each of which
contains 2–4 layers to give |𝐸 |OFA = 20. Each layer contains a block
operation. The operation space consists of MBConv [15] blocks of
the form MBConv-e-kwhere ‘e’ refers to a channel expansion factor
in {3, 4, 6}, and ‘k’ refers to a square kernel size in {3, 5, 7}, giving
rise to |O|OFA = 9 different blocks.

Therefore, for OFA, 𝛼OFA consists of two matrices: 𝛼OFA,O ∈
R20×9, which controls the operations selected for each layer and
𝛼OFA,𝐷 ∈ R5×3, which controls the depth of the network. Discretiza-
tion is performed using Algorithm 1 separately on each matrix.

The publicly available OFA code repository3 provides pre-trained
supernets and an API for evaluating individual architectures on
the ImageNet validation set, which contains 50k 224×224 color
images spread across 1000 classes. We make use of these resources.
3https://github.com/mit-han-lab/once-for-all

In particular, we use both versions of the MBv3 supernets, which
we denote as OFA4 and OFA𝐿𝑎𝑟𝑔𝑒 5.

The only difference between these two supernets is the base
channel width multiplier, which is not searchable. By using both
of these supernets we are able to test and compare L2NAS across
more than 1 version of the search space.

3.4 DDPG Agent
Our DDPG agent consists of 2 neural networks: an actor and a critic.
Both are multi-layer perceptrons with 3 hidden layers. The actor
produces vectorized actions 𝑎𝑡 which are then split if 𝛼 consists of
more than one matrix (e.g., DARTS and OFA) and then re-shaped
into matrices. The number of neurons in each hidden layer is 128
for NAS-Bench-201 and 256 for DARTS and OFA as their respective
𝛼 matrices are larger. ReLU [25] serves as the activation function
in the hidden layers while the final layer of the actor network
features a sigmoid activation. The critic uses an identity function as
it produces a scalar. Both networks are optimized using Adam [17]
with ®𝛽 = (0.9, 0.99). Learning rates for the actor and critic networks
are 1𝑒−8 and 1𝑒−4, respectively.

4 RESULTS
In this section, we first evaluate L2NAS on NAS-Bench-201 [12]. We
then perform search experiments with L2NAS in the DARTS search
space based on CIFAR-10 and compare against other state-of-the-art
methods that also operate in the same search space. We also present
search results in the OFA search space evaluated on ImageNet.
Finally, we show the feasibility of transferring a search policy found
by L2NAS on a smaller CIFAR-10 dataset to architecture searches
performed on CIFAR-100 and ImageNet with superior efficiency.

4ofa_mbv3_d234_e346_k357_w1.0
5ofa_mbv3_d234_e346_k357_w1.2

4.1 NAS Benchmark Performance
NAS-Bench-201 architectures are evaluated on three datasets: CIFAR-
10, CIFAR-100 and ImageNet-16-1206 [8]. Therefore, in this context,
our goal is to use the accuracy information provided by NAS-Bench-
201 to find the best performing architecture within a small number
of queries (steps) to the benchmark, since each query for accuracy
converts into an architecture evaluation in reality.

We set 𝐾 = 64, 𝜏 = 0.9, |𝐵𝑅 | = 8, b = 1𝑒−4 and 𝐶𝑚𝑎𝑥 = 10. On
NAS-Bench-201, L2NAS performs exploration using 𝜖-greedy. The
initial value of 𝜖 is 1.0 and it is annealed via a cosine schedule to a
minimum of 0.05 by step 𝑡 = 175. We use Equation 3 to calculate
NAS-Bench-201 rewards. 1000 steps of L2NAS on NAS-Bench-201
executes in less than 4 minutes when only using a CPU.

Table 1 shows the results in comparison with a range of popular
search methods with NAS-Bench-201 results reported. The methods
in the first category, i.e., DARTS, ENAS, GDAS, GAEA, are gradient-
based and must operate on a weight-sharing supernet, while the
other methods like L2NAS can simply perform search by querying
the ground-truth oracle performance. We observe that with only
500 steps (queries), L2NAS achieves high performance and with
1000 steps, achieves state-of-the-art performance on CIFAR-10 and
ImageNet-16-120. Indeed, it is worth noting that both L2NAS-1k
and L2NAS-500 clearly outperform all other methods in the search
on test set of ImageNet-16-120. The ability of L2NAS to find top
architectures within a small number of queries stems from the
effective strategy to balance exploration and exploitation.

Note that arch2vec, achieving better results on CIFAR-100 vali-
dation set, pre-trains architecture embeddings using unsupervised
learning before the search. Therefore, in fact, L2NAS can be comple-
mented by the architecture representation learning in arch2vec to
further enhance search efficiency. GAEA results are from searches
performed on a weight-sharing supernet and is thus not comparable
to results in the second category.

Figure 2 shows the final state representation 𝑠𝑡=500 of a 500-step
L2NAS experiment as compared to the ground-truth best architec-
tures in NAS-Bench-201. We observe that the average 𝛼𝑑 of the
top-𝐾 (𝐾 = 64) architectures found by L2NAS after querying only a
fraction of NAS-Bench-201 is very close to that of the true top-𝐾 ar-
chitectures. This implies that L2NAS can effectively and efficiently
charter a search space.

4.2 CIFAR-10 Performance on DARTS
Next, we evaluate the performance of L2NAS searching in the
DARTS search space based on CIFAR-10 using weight-sharing and
compare with other state-of-the-art results. Given that DARTS
dwarfs NAS-Bench-201 by many magnitudes [29] and the ground
truth accuracy of every architecture is not known, we do not fo-
cus on finding the best architecture in the least number of queries.
Instead, we adjust our search to perform additional emphasis on
exploration so a more thorough sweep of the search space is per-
formed while the critic focuses on learning a narrower accuracy
quantile.

We set 𝐾 = 500, 𝜏 = 0.95, |𝐵𝑅 | = 64, b = 5𝑒−5 and 𝐶𝑚𝑎𝑥 = 1. We
run the agent for 20k steps and limit the replay buffer to contain
only the last 5k experiences. Exploration is achieved using random
6First 120 classes of ImageNet downsampled to 16×16 images.

Table 2: CIFAR-10 Results. Methods in the second and third
categories search on P-DARTS and DARTS search spaces, re-
spectively.

Architecture Test Acc. [%] Params [M]

ENAS [26] 97.11 4.6
GDAS [11] 97.18 2.5
AlphaX [32] 97.46 ± 0.06 2.8
P-DARTS [5] 97.50 3.4
P-SDARTS [4] 97.52 ± 0.02 3.4
DARTS 1st [22] 97.00 ± 0.14 3.3
DARTS 2nd 97.24 ± 0.09 3.3
SNAS [37] 97.15 ± 0.02 2.8
EcoNAS [44] 97.38 ± 0.02 2.9
ISTA-NAS 2S [40] 97.46 ± 0.05 3.3
arch2vec-RL [39] 97.35 ± 0.05 3.3
arch2vec-BO 97.44 ± 0.05 3.6
MdeNAS [43] 97.45 3.6
MiLeNAS [14] 97.49 ± 0.04 3.9
PC-DARTS [38] 97.43 ± 0.07 3.6
PC-SDARTS 97.51 ± 0.04 3.5
PC-GAEA [19] 97.50 ± 0.06 3.7
L2NAS 97.51 ± 0.12 3.8

warm-up with𝑊 = 3000. Like NAS-Bench-201, we use Equation 3
to calculate the reward. Architecture search takes roughly 1 GPU
day on a single RTX 2080 Ti.

Table 2 lists the results as compared to a wide range of other
algorithms. For fair comparisons, we specifically compare to NAS
methods that also reported performance exactly on the DARTS
search space, as shown in the third category of Table 2, while the
first category illustrates cell search methods using other search
spaces. We measure test accuracies over 5 evaluation runs for the
best architecture found by L2NAS. Other results are the top results
taken from their respective publications.

DARTS achieved 97.24%, while PC-DARTS increased the accu-
racy to 97.43% before GAEA (PC-GAEA) further increased it to
97.50% on average with a maximum accuracy of 97.61% among
independent runs. The architecture found by L2NAS attained an
average accuracy of 97.51%, with a maximum of 97.64%, which
exceeds the performance of other state-of-the-art results achieved
by GAEA and S-DARTS. At 3.8M parameters, our architecture is
also more efficient than other larger ones like MiLeNAS.

It is worth noting that schemes based on Progressive DARTS
(P-DARTS) [5] are listed separately from other methods that exactly
operate on DARTS search space. P-DARTS uses multiple supernets
and gradually prune the number of operations are while the net-
work depth is increased during search. Additionally, restrictions are
placed on the number of times specific operations can be selected.
Since we do not employ these features, they are not a fair compari-
son. Furthermore, it is also worth noting that the ‘One-stage’ (1S)
variant of ISTA-NAS achieved an even higher average accuracy.
However, it employs unique and novel modifications to the original
operation set of DARTS which boosts the performance. Thus, it
is not listed for fair comparison. In contrast, the ‘Two-stage’ (2S)
version of ISTA-NAS operates in the same DARTS search space
and is thus listed here. Finally, PC-DARTS enables partial channel

M
BC

on
v-
e1
-k
3

C
on
v3
x3

M
BC

on
v-
e6
-k
5

M
BC

on
v-
e4
-k
7

M
BC

on
v-
e3
-k
7

M
BC

on
v-
e3
-k
7

M
BC

on
v-
e4
-k
7

O
ut
pu
t

M
BC

on
v-
e6
-k
5

M
BC

on
v-
e4
-k
5

M
BC

on
v-
e6
-k
7

M
BC

on
v-
e6
-k
5

M
BC

on
v-
e6
-k
7

M
BC

on
v-
e6
-k
5

M
BC

on
v-
e6
-k
7

M
BC

on
v-
e6
-k
5

M
BC

on
v-
e6
-k
7

M
BC

on
v-
e6
-k
7

M
BC

on
v-
e6
-k
7

M
BC

on
v-
e6
-k
5

M
BC

on
v-
e6
-k
5

M
BC

on
v-
e6
-k
5

M
BC

on
v-
e6
-k
3

(a) L2NAS OFA Architecture

M
BC

on
v-
e1
-k
3

C
on
v3
x3

M
BC

on
v-
e3
-k
5

M
BC

on
v-
e6
-k
3

M
BC

on
v-
e3
-k
7

M
BC

on
v-
e6
-k
5

M
BC

on
v-
e6
-k
7

O
ut
pu
t

M
BC

on
v-
e4
-k
7

M
BC

on
v-
e6
-k
3

M
BC

on
v-
e6
-k
7

M
BC

on
v-
e4
-k
7

M
BC

on
v-
e6
-k
7

M
BC

on
v-
e4
-k
7

M
BC

on
v-
e3
-k
5

M
BC

on
v-
e6
-k
5

M
BC

on
v-
e6
-k
5

M
BC

on
v-
e6
-k
3

M
BC

on
v-
e6
-k
7

M
BC

on
v-
e6
-k
5

M
BC

on
v-
e6
-k
5

M
BC

on
v-
e6
-k
3

M
BC

on
v-
e3
-k
3

(b) L2NAS OFA𝐿𝑎𝑟𝑔𝑒 Architecture

Figure 3: Architectures found on the OFA (top) and OFA𝐿𝑎𝑟𝑔𝑒 (bottom) supernets; initial MBConv-e1-k3 block is not searchable.

connections to enhance the memory efficiency of DARTS during
search. It still uses the DARTS supernet without altering operations,
and therefore is a fair comparison.

4.3 ImageNet Performance
We evaluate the ImageNet performance of L2NAS by applying it to
the search space of Once-for-All (OFA) [2] on MobileNetV3.

We use the same values for 𝐾 , 𝜏 , |𝐵𝑅 |, 𝐶𝑚𝑎𝑥 and𝑊 as DARTS.
However, since ImageNet inference is costlier than CIFAR, we only
train the agent for 10k stepswith b = 1𝑒−4 for additional exploration.
We use the rescaled reward Equation 7 with 𝐴𝑐𝑐 (𝐸𝑛𝑣) set to 76%
for OFA and 79% for OFA𝐿𝑎𝑟𝑔𝑒 . We use L2NAS to search for the
architecture with the best accuracy on OFA supernet and report
test accuracy by directly using model weights inherited from the
supernet without further fine-tuning the weights. Search takes
about 150 GPU hours or under 1 week on a single RTX 2080 Ti.

Table 3: Comparison of L2NASwith other state-of-the-art ar-
chitectures on ImageNet.

Architecture Top-1 Acc. [%] Top-5 Acc. [%] MACs [M]

PC-SDARTS 75.7 92.6 –
P-SDARTS 75.8 92.8 –
PC-GAEA 76.0 92.7 –
MBv2 74.7 – 585
ProxylessNAS 75.1 92.5 320
MBv3-L 0.75 73.3 – 155
MBv3-L 1.0 75.2 – 219
EfficientNet-B0 77.1 93.9 390
EfficientNet-B1 79.1 94.4 700
EfficientNet-B2 80.1 94.9 1000
Cream-S 77.6 93.3 287
Cream-M 79.2 94.2 481
Cream-L 80.0 94.7 604
OFA 76.0 – 230
OFA𝐿𝑎𝑟𝑔𝑒 79.0 94.5 595
L2NAS 77.4 93.4 467
L2NAS𝐿𝑎𝑟𝑔𝑒 79.3 94.6 618

Figure 3 illustrates the OFA architectures found. Like NAS-Bench-
201, L2NAS learns to select large architectures in order to achieve
high accuracy on OFA. Specifically, L2NAS focuses on selecting the
largest expansion ratio (6) in the latter half of the network.

ImageNet results are provided in Table 3, in which the last cat-
egory lists methods that also search in OFA, while the other 4
categories list results of other methods obtained in other related
search spaces involving different backbone setups and operation
sets. These other related search spaces include the predecessor to
MBv3, MobileNetV2 (MBv2) [27], which ProxylessNAS [3] is based
on, using different set of operations. Variants of MBv3 include Effi-
cientNet [30], which focuses on striking a balance between network
depth and resolution. Cream of the Crop also uses MBv3 as the
backbone structure, yet with a modified set of searchable operations
introduced to boost performance.

From a comparison against themodels OFA and OFA𝐿𝑎𝑟𝑔𝑒 , which
are obtained through an evolutionary algorithm applied on the
supernet, we observe that L2NAS outperforms both of these in
terms of both top-1 accuracy, while both are directly using weights
inherited from the OFA supernet for evaluation. Note that we do not
compare to the result of OFA𝐿𝑎𝑟𝑔𝑒 after fine-tuning it, which is also
reported in [2]. These findings further demonstrate the effectiveness
of L2NAS as a search method, excluding the factors of search space
and evaluation methodology.

In addition, we are able to achieve a much higher top-1 and top-5
accuracy than any state-of-the-art DARTS architecture. Addition-
ally, we outperform EfficientNet-B0 and B1, while EfficientNet-B2
is a large architecture with more than 1 billion MACs. Cream of
the Crop, although a state-of-the-art method in the mobile regime,
is not directly comparable to our result, due to the different search
space and evaluation method used. It searches in a variant space
of MBv3 with different operations than OFA, and trains its super-
net for 120 epochs and then retrains specific architectures for 500
epochs.

4.4 Transferability of Search Policies
Finally, we perform transferability tests by training a policy on a
simpler dataset like CIFAR-10, and then perform policy fine-tuning
onmore complex datasets, including CIFAR-100 and ImageNet. This
is in contrast to previous NAS methods like DARTS that search for

Table 4: Highest validation accuracies measured during PC-
DARTS supernet training. These values become𝐴𝑐𝑐 (𝐸𝑛𝑣) for
Equation 7 for transferability experiments.

Dataset Max Accuracy [%] GPU Days

CIFAR-10 82.316 3
CIFAR-100 56.380 3
ImageNet-32-12 48.765 3.5

an architecture on CIFAR-10, then directly transfer the architecture
to ImageNet for evaluation. Other methods like PC-DARTS and
GAEA perform direct searches on ImageNet, i.e., a separate search
for each individual dataset must be done.

We use the rescaled reward in Equation 7 with 𝜏 = 0.95 to
pre-train a transferable policy on CIFAR-10. 𝐴𝑐𝑐 (𝐸𝑛𝑣) is set to the
maximum accuracy observed during supernet training. Table 4 lists
the highest accuracy for each supernet. We train the agent for 10k
steps. The first𝑊 = 3000 steps are used for exploration and we set
b = 1𝑒−4 to further increase exploration. The pretrained actor and
critic networks are then fine-tuned on CIFAR-100 and ImageNet-
32-120 supernets trained according to the procedure in Section 3.2.
We set 𝐾 = 100 and fine-tune for a total of 1k steps, using the first
𝑊 = 500 steps for exploration. Initial policy pretraining takes 12
GPU hours. We perform the fine-tuning task 5 times with different
random seeds. Each run of fine-tuning takes about 1.5 and 2 GPU
hours for CIFAR-100 and ImageNet, respectively.

Table 5 provides evaluation results. For comparison, we also
evaluate the original architectures published by DARTS on CIFAR-
100. For both CIFAR-100 and ImageNet, transferred policies can find
architectures that actually outperform the ones found via direct
search, as the search policies instead of architectures are migrated
from CIFAR-10 to operate with more complex datasets. Moreover,
the cost of search on CIFAR-100 and ImageNet is significantly
reduced from a few GPU days to a few GPU hours of fine-tuning if
a search policy is pretrained on CIFAR-10.

As the core motivation of NAS is automating the search, we offer
a search procedure that can better generalize and transfer across
different datasets instead of manually tuning the customized hy-
perparameters and optimizers to search on each individual dataset.

5 RELATEDWORK
DARTS [22] proposes differentiable architecture search and has
given rise to many follow-up works including P-DARTS [5] which
breaks the search procedure into different stages and [42] which
propose early stopping. PC-DARTS [38] uses partial channel con-
nections to decrease the memory cost in backpropagation and re-
duce bias toward parameterless operations.

However, recent works suggest that gradient-based NAS meth-
ods suffer from weaknesses such as the discretization error [36, 41],
low reproducibility [41] and bias towards shallow architectures [28].
As a result, many attempts have focused on correcting these flaws.
[4] reduces the discretization error by forcing the supernet weights
to generalize to a broader range of architecture parameters. [11] and
[37] help bridge the optimization gap by using Gumbel-Softmax to
sample a single operation per edge. ISTA-NAS [40] recast NAS as a
sparse coding problem in order to perform search and evaluation

Table 5: Transferability results for L2NAS forCIFAR-100 and
ImageNet. ‘Direct’ means directly searching on CIFAR-100
and ImageNet using the procedure in Section 4.2.

CIFAR-100 Test Acc. [%] Params [M] GPU days

DARTS 1st 82.37 3.3 1.5
DARTS 2nd 82.65 3.3 4.0
L2NAS-Direct 82.24 ± 0.19 3.5 1.0
L2NAS-Transfer 82.97 ± 0.29 4.0 0.1
ImageNet Top-1/Top-5 [%] Params [M] Search Cost

DARTS 2nd 73.1/91.3 4.7 4.0
L2NAS-Direct 74.8/92.2 4.9 1.0
L2NAS-Transfer 75.4/92.5 5.4 0.1

in the same setting. To improve generalizability, [14] reformulate
DARTS as a mixed-level optimization problem. GAEA [19] uses a
simplex projection to ensure better convergence.

In comparison, we learn an agent in an actor-critic framework,
which can be generalized and transferred across different datasets
as a search policy. The RL-based training setup also allows for
improved reproducibility and a natural incorporation of various
exploration strategies. Our supernet training uses random sampling
inspired by [20] to reduce the discretization error and bias on ar-
chitecture depth. Our experiments on transferability are partially
inspired by [31], who use an RL agent to search for scalable analog
circuit designs.

Finally, a number of RL-based NAS methods have been proposed.
[45] use a controller trained by REINFORCE [33] to select architec-
ture hyperparameters. ENAS [26] is the first reinforcement learning
scheme in weight-sharing NAS. [1] show that guided policies ex-
ceed the performance of random search on vast search spaces. [32]
uses Monte Carlo Tree Search to balance exploration with exploita-
tion. These methods operate in a discrete space where the RL state
keeps track of the partial architecture that is built over many steps.
By contrast, L2NAS selects an entire architecture per step and uses
the RL state to keep track of the distribution of top performing
architectures.

6 CONCLUSION
In this paper, we propose L2NAS to learn an optimizer for architec-
ture hyperparameters in neural architecture search. Through an
actor network taking feedback from the search history, L2NAS pro-
duces continuous architecture hyperparameters 𝛼 , that are mapped
into discrete architectures to obtain rewards. We propose a learning
procedure for L2NAS based on the continuous RL framework and a
quantile-driven loss. L2NAS learns to explore a large search space
efficiently and achieves fast convergence to high-performing archi-
tectures. Experiments show that L2NAS achieves state-of-the-art
results on NAS-Bench-201 after querying only 1000 architectures.
When working in the DARTS or OFA search space, L2NAS pro-
duces architectures that achieve state-of-the-art test accuracies on
CIFAR-10 and ImageNet compared to a wide range of algorithms
that exactly operate on the same search spaces. With transferability
tests, we also demonstrate that an L2NAS search policy pre-trained
on CIFAR-10, can be used for effective search on CIFAR-100 and
ImageNet with a low fine-tuning cost.

REFERENCES
[1] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang Cheng, Pieter-Jan

Kindermans, and Quoc V Le. 2020. Can Weight Sharing Outperform Random Ar-
chitecture Search? An Investigation With TuNAS. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 14323–14332.

[2] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2020. Once
for All: Train One Network and Specialize it for Efficient Deployment. In Inter-
national Conference on Learning Representations. https://openreview.net/forum?
id=HylxE1HKwS

[3] Han Cai, Ligeng Zhu, and Song Han. 2019. ProxylessNAS: Direct Neural Ar-
chitecture Search on Target Task and Hardware. In International Conference on
Learning Representations. https://arxiv.org/pdf/1812.00332.pdf

[4] Xiangning Chen and Cho-Jui Hsieh. 2020. Stabilizing Differentiable Architecture
Search via Perturbation-based Regularization. arXiv preprint arXiv:2002.05283
(2020).

[5] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. 2019. Progressive Differentiable
Architecture Search: Bridging the Depth Gap between Search and Evaluation.
arXiv:1904.12760 [cs.CV]

[6] Yutian Chen, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha Denil,
Timothy P Lillicrap, Matt Botvinick, and Nando Freitas. 2017. Learning to learn
without gradient descent by gradient descent. In International Conference on
Machine Learning. PMLR, 748–756.

[7] Yutian Chen, Matthew W Hoffman, Sergio Gomez Colmenarejo, Misha Denil,
Timothy P Lillicrap, and Nando de Freitas. 2016. Learning to learn for global
optimization of black box functions. arXiv preprint arXiv:1611.03824 (2016).

[8] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. 2017. A downsampled
variant of imagenet as an alternative to the cifar datasets. arXiv preprint
arXiv:1707.08819 (2017).

[9] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[10] Terrance DeVries and Graham W Taylor. 2017. Improved Regularization of
Convolutional Neural Networks with Cutout. arXiv preprint arXiv:1708.04552
(2017).

[11] Xuanyi Dong and Yi Yang. 2019. Searching for a Robust Neural Architecture
in Four GPU Hours. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[12] Xuanyi Dong and Yi Yang. 2020. Nas-bench-201: Extending the scope of re-
producible neural architecture search. In International Conference on Learning
Representations.

[13] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen
Wei, and Jian Sun. 2019. Single Path One-Shot Neural Architecture Search with
Uniform Sampling. CoRR abs/1904.00420 (2019). http://arxiv.org/abs/1904.00420

[14] Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. 2020. Milenas: Efficient
neural architecture search via mixed-level reformulation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11993–12002.

[15] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019.
Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 1314–1324.

[16] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos,
and Eric P Xing. 2018. Neural architecture search with bayesian optimisation
and optimal transport. In Advances in neural information processing systems.
2016–2025.

[17] Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimiza-
tion. International Conference on Learning Representations (12 2014).

[18] Roger Koenker. 2005. Quantile Regression. Number no. 38 in Econometric Society
Monographs. Cambridge University Press.

[19] Liam Li, Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. 2020.
Geometry-Aware Gradient Algorithms for Neural Architecture Search. arXiv
preprint arXiv:2004.07802 (2020).

[20] Liam Li and Ameet Talwalkar. 2019. Random Search and Reproducibility for
Neural Architecture Search. CoRR abs/1902.07638 (2019). http://arxiv.org/abs/
1902.07638

[21] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control
with deep reinforcement learning. http://arxiv.org/abs/1509.02971

[22] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. DARTS: Differentiable
Architecture Search. http://arxiv.org/abs/1806.09055

[23] Ilya Loshchilov and Frank Hutter. 2017. SGDR: Stochastic Gradient Descent with
Warm Restarts. In ICLR.

[24] Keith G. Mills, Mohammad Salameh, Di Niu, Fred X. Han, Seyed Saeed Changiz
Rezaei, Hengshuai Yao, Wei Lu, Shuo Lian, and Shangling Jui. 2021. Exploring

Neural Architecture Search Space via Deep Deterministic Sampling. IEEE Access
9 (2021), 110962–110974. https://doi.org/10.1109/ACCESS.2021.3101975

[25] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Re-
stricted Boltzmann Machines. In Proceedings of the 27th International Conference
on International Conference on Machine Learning (Haifa, Israel) (ICML’10). Omni-
press, Madison, WI, USA, 807–814.

[26] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. 2018.
Efficient Neural Architecture Search via Parameter Sharing. CoRR abs/1802.03268
(2018). http://arxiv.org/abs/1802.03268

[27] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[28] Yao Shu, Wei Wang, and Shaofeng Cai. 2019. Understanding Architectures Learnt
by Cell-based Neural Architecture Search. arXiv preprint arXiv:1909.09569 (2019).

[29] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and
Frank Hutter. 2020. NAS-Bench-301 and the Case for Surrogate Benchmarks for
Neural Architecture Search. arXiv preprint arXiv:2008.09777 (2020).

[30] Mingxing Tan and Quoc V Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019).

[31] Hanrui Wang, Kuan Wang, Jiacheng Yang, Linxiao Shen, Nan Sun, Hae-Seung
Lee, and Song Han. 2020. GCN-RL circuit designer: Transferable transistor sizing
with graph neural networks and reinforcement learning. In 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 1–6.

[32] Linnan Wang, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, and Rodrigo Fonseca.
2018. Neural Architecture Search using Deep Neural Networks and Monte Carlo
Tree Search. arXiv preprint arXiv:1805.07440 (2018).

[33] R. J. Williams. 1992. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning 8 (1992), 229–256.

[34] Ashia CWilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht.
2017. The marginal value of adaptive gradient methods in machine learning. In
Advances in neural information processing systems. 4148–4158.

[35] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming
Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. 2019. Fbnet:
Hardware-aware efficient convnet design via differentiable neural architecture
search. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 10734–10742.

[36] Lingxi Xie, Xin Chen, Kaifeng Bi, Longhui Wei, Yuhui Xu, Zhengsu Chen, Lanfei
Wang, An Xiao, Jianlong Chang, Xiaopeng Zhang, et al. 2020. Weight-Sharing
Neural Architecture Search: A Battle to Shrink the Optimization Gap. arXiv
preprint arXiv:2008.01475 (2020).

[37] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. 2018. SNAS: Stochastic
Neural Architecture Search. CoRR abs/1812.09926 (2018). http://arxiv.org/abs/
1812.09926

[38] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and
Hongkai Xiong. 2020. PC-DARTS: Partial Channel Connections for Memory-
Efficient Architecture Search. In International Conference on Learning Representa-
tions. https://openreview.net/forum?id=BJlS634tPr

[39] Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi Zhang. 2020. Does unsupervised
architecture representation learning help neural architecture search? Advances
in Neural Information Processing Systems 33 (2020).

[40] Yibo Yang, Hongyang Li, Shan You, Fei Wang, Chen Qian, and Zhouchen Lin.
2020. Ista-nas: Efficient and consistent neural architecture search by sparse
coding. Advances in Neural Information Processing Systems 33 (2020).

[41] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Mathieu Salz-
mann. 2019. Evaluating the Search Phase of Neural Architecture Search. arXiv
preprint arXiv:1902.08142 (2019).

[42] Arber Zela, Thomas Elsken, Tonmoy Saikia, YassineMarrakchi, Thomas Brox, and
Frank Hutter. 2019. Understanding and robustifying differentiable architecture
search. arXiv preprint arXiv:1909.09656 (2019).

[43] Xiawu Zheng, Rongrong Ji, Lang Tang, Baochang Zhang, Jianzhuang Liu, and Qi
Tian. 2019. Multinomial distribution learning for effective neural architecture
search. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 1304–1313.

[44] Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi,
Xuesen Zhang, and Wanli Ouyang. 2020. Econas: Finding proxies for economical
neural architecture search. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 11396–11404.

[45] Barret Zoph andQuoc V. Le. 2017. Neural Architecture Searchwith Reinforcement
Learning. https://arxiv.org/abs/1611.01578

[46] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 8697–8710.

https://openreview.net/forum?id=HylxE1HKwS
https://openreview.net/forum?id=HylxE1HKwS
https://arxiv.org/pdf/1812.00332.pdf
https://arxiv.org/abs/1904.12760
http://arxiv.org/abs/1904.00420
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1806.09055
https://doi.org/10.1109/ACCESS.2021.3101975
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1812.09926
http://arxiv.org/abs/1812.09926
https://openreview.net/forum?id=BJlS634tPr
https://arxiv.org/abs/1611.01578

	Abstract
	1 Introduction
	2 Proposed Method
	2.1 Continuous Relaxation of Discrete Architectures
	2.2 Learning to Optimize Architecture Hyperparameters
	2.3 Policy Training Procedure
	2.4 Transferability

	3 Experimental Setup
	3.1 NAS-Bench-201
	3.2 DARTS
	3.3 Once-for-All
	3.4 DDPG Agent

	4 Results
	4.1 NAS Benchmark Performance
	4.2 CIFAR-10 Performance on DARTS
	4.3 ImageNet Performance
	4.4 Transferability of Search Policies

	5 Related Work
	6 Conclusion
	References

