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Predictive variables for peripheral neuropathy in
treated HIV type 1 infection revealed by

machine learning

Wei Tua,f,g, Erika Johnsonb, Esther Fujiwarad, M. John Gillc,e,

Linglong Konga and Christopher Powerb,d,e

Objective: Peripheral neuropathies (PNPs) in HIV-infected patients are highly
debilitating because of neuropathic pain and physical disabilities. We defined
prevalence and associated predictive variables for PNP subtypes in a cohort of
persons living with HIV.

Design: Adult persons living with HIV in clinical care were recruited to a longitudinal
study examining neurological complications.

Methods: Each patient was assessed for symptoms and signs of PNP with demo-
graphic, laboratory, and clinical variables. Univariate, multiple logistic regression
and machine learning analyses were performed by comparing patients with and
without PNP.

Results: Three patient groups were identified: PNP (n¼111) that included HIV-
associated distal sensory polyneuropathy (n¼90) or mononeuropathy (n¼21), and
non-neuropathy (n¼408). Univariate analyses showed multiple variables differed
significantly between the non-neuropathy and PNP groups including age, estimated
HIV type 1 (HIV-1) duration, education, employment, neuropathic pain, peak viral
load, polypharmacy, diabetes, cardiovascular disorders, AIDS, and prior neurotoxic
nucleoside antiretroviral drug exposure. Classification algorithms distinguished
those with PNP, all with area under the receiver operating characteristic curve
values of more than 0.80. Random forest models showed greater accuracy and area
under the receiver operating characteristic curve values compared with the multiple
logistic regression analysis. Relative importance plots showed that the foremost
predictive variables of PNP were HIV-1 duration, peak plasma viral load, age, and
low CD4þ T-cell levels.

Conclusion: PNP in HIV-1 infection remains common affecting 21.4% of patients in
care. Machine-learning models uncovered variables related to PNP that were unde-
tected by conventional analyses, emphasizing the importance of statistical algorithmic
approaches to understanding complex neurological syndromes.
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Introduction

Peripheral nerve disorders have long been recognized as
a feature of HIV type 1 (HIV-1) infection and are most
apparent following progression to AIDS [1]. Indeed,
the spectrum of peripheral neuropathies (PNPs) that
occur during HIV/AIDS is broad, ranging from acute
inflammatory demyelinating polyneuropathy (Guil-
lain–Barre syndrome), distal sensory (axonal) poly-
neuropathy (DSP) to mononeuropathies (MNPs) [2].
These disorders are often associated with neuropathic
pain and physical disabilities including sensory loss,
paresthesia, weakness, ataxia, and gait dysfunction as
well as concurrent co-morbidities including diabetes,
syphilis, and depression. Several of the early antiretro-
viral therapies (ARTs), including the so-call d-drugs,
such as didanosine (ddI), zalcitabine (ddC), and
stavudine (d4T) have been associated with a sensory
axonal polyneuropathy, sometimes accompanied by
neuropathic pain [3]. While these neurotoxic medica-
tions are no longer components of contemporary
treatment, past exposure remains important. The
underlying pathogenesis of PNPs associated with
HIV/AIDS remains obscure although both clinical
and experimental studies point to roles for mitochon-
drial injury [4], neurotrophin depletion [5] as well as
direct cytopathic effects of viral proteins [6]. Nonethe-
less, both polyneuropathies and MNPs are common to
other (animal) lentivirus infections [7,8], highlighting
the importance of viral infection and the associated
pathogenic effects in the occurrence of PNPs.

Modern ART has dramatically improved both the
mortality and the morbidity from HIV-1 infection
leading to a close to normal life expectancy for most
persons living with HIV (PWH) [9]. Routine care for
PWH today often involves management of co-
morbidities such as cardiovascular disease, cancer, bone
disease, and/or neurological disease. Advancing age and
frailty underpins the emergence of many of these
disorders [10]. Moreover, pain and different physical
disabilities frequently also complicate these disorders.
PNP is more common in all older persons and can be
associated with neuropathic pain [11]. We hypothesized
that given the complexity of factors contributing to
PNPs, implementing diverse statistical approaches to a
well defined dataset would yield new insights into the
contributing variables. To gain a deeper understanding
of the relative importance of clinical and demographic
variables involved in PNP occurrence and its subtypes,
we compared univariate, multiple logistic regression
with machine learning analyses of this cohort. The
prevalence and associated variables were assessed among
adult PWHs with diverse ethnic backgrounds with
controlled HIV-1 infection with or without PNP in a
contemporary clinical setting in which patients
received long-term clinical follow-up under universal
healthcare.

Methods and materials

Patient cohort
All HIV-1 seropositive adult patients at the Southern
Alberta (HIV) Clinic (SAC) in Calgary, Alberta from
2013 to 2019 were invited to enroll in a study assessing
neurologic complications of HIV/AIDS during routine
clinical care provided by a SAC physician, which included
a general inquiry and physical examination. Exclusion
criteria included non-fluency in English, less than 18
years of age, less than a grade 9 education, the presence of
severe psychiatric (e.g. schizophrenia) or neurological
disorders (e.g. brain tumors, strokes, epilepsy), history of
brain damage/traumatic brain injury with loss of
consciousness (>5 min), and uncorrected vision or
hearing impairments [12–15]. At the time of recruitment
and ongoing, all patients were routinely asked about
symptoms of pain, sensory abnormalities or weakness,
which if reported, prompted an examination by a
neurologist to verify sensory or motor deficits. Patients
were determined to have PNP (DSP or MNP) if two or
more of the following criteria were present: first, diffuse
or focal sensory symptoms including numbness, pares-
thesia, or neuropathic pain (e.g. continuous or intermit-
tent, evoked or spontaneous dysesthesia, hyperalgesia,
allodynia) with associated descriptors (‘burning’, ‘stab-
bing’); second, abnormal sensory signs on physical exam
such as bilateral reduced vibratory perception, glove-
stocking sensory loss or focal sensory deficits; third, focal
weakness; and/or fourth, decreased or absent ankle
reflexes. The diagnosis and type of PNP was determined
based on review of the reported symptoms, laboratory
results, and physical examination [16–18]. The presence
of neuropathic pain was predicated on subjects’ reports of
the above symptoms (e.g. dysesthesia, hyperalgesia,
allodynia) together confirmation of frequency, duration
and severity together with a plausible anatomic distribu-
tion [19,20]. MNPs were diagnosed in patients with a
discernible anatomic localization and pattern (e.g. carpal
tunnel, facial neuropathy, trigeminal neuropathy, or focal
radiculopathy) [21]. Electromyography and nerve con-
duction studies were performed in select patients to verify
MNPs and to exclude other neuromuscular disorders.
Multiple variables were assessed including health-related
quality of life (HQoL), number of hours of sleep per
night, presence and severity of depressive symptoms
(Patient Health Questionnaire assay, PHQ-9) and
neurocognitive symptoms. The University of Calgary
Ethics Committee (REB #-130615) approved the study
and written consent was obtained from all patients.

Study setting and design
The SAC serves all PWH (currently �1800 persons) in
HIV care in Southern Alberta (estimated 2020 total
population, �2.4 million) and is a multi-disciplinary
clinic which opened in 1989. SAC offers regular clinical
follow-up visits, laboratory investigations, and ART all at
no cost to the patient. SAC has a multi-disciplinary team
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including physicians, nurses, social workers, dieticians and
pharmacists. The SAC also maintains an in-house
computerized database of all HIV-infected patients,
established in 1989, containing relevant all patient’s
demographic, clinical, and treatment data [18,22–24].
This study used a longitudinal cross-sectional design.

Patient clinical and demographic variables
Multiple variables were extracted from the SAC database
(Table 1) that included: sex, age, continent of birth, years
of education, current employment status, sexual orienta-
tion, estimated duration of HIV-1 infection (derived from

date of first HIV-1 seropositive test), presence or absence
of AIDS, current and nadir CD4þ T-cell counts, current/
peak plasma viral load, current, and past ART (including
ddI, ddC, and d4T exposure), polypharmacy (�5 non-
antiretroviral drugs) neurocognitive performance as
assessed by neuropsychological testing including the
presence or absence of HIV-associated neurocognitive
disorders (HAND); co-morbidities (e.g. cardiovascular
disease, hepatitis C virus seropositivity); past and present
substance use (e.g. alcohol, marijuana, cocaine, heroin,
methamphetamine, and other illicit substances); medical
conditions: diabetes (types 1 and 2), cardiovascular disease

Neuropathy in HIV/AIDS Tu et al. 1787

Table 1. Clinical, laboratory, and sociodemographic variables for the non-neuropathy, distal sensory polyneuropathy, mononeuropathy, and all
peripheral neuropathies groups.

Variablea,b NNP, n¼408 DSP, n¼90 MNP, n¼21 PNP, n¼111 P valuec

Age (years) 46.79 (11.4) 52.73 (9.38) 49.91 (10.76) 52.19 (9.67) ad

Sex (female) 54 (13.24%) 12 (13.33%) 9 (42.86%) 21 (18.92%) b
Birth Continent (North America) 310 (75.98%) 72 (80%) 16 (76.19%) 88 (79.28)
Height (cm) 174.18 (9.02) 174.05 (8.02) 171.19 (9.4) 173.48 (8.34)
BMI 26.59 (4.88) 26.62 (6.69) 27.3 (5.25) 26.76 (6.41)
Education (years) 13.87 (2.65) 13.03 (3.01) 13.76 (2.32) 13.17 (2.9) a
Employed 0.7 (0.56) 0.5 (0.5) 0.62 (0.5) 0.52 (0.5) a
Employment (h/week) 27.25 (22.36) 20.16 (23.13) 22.6 (20.9) 20.62 (22.65) a
Sleep (h/night) 6.81 (1.64) 6.29 (1.83) 6.21 (1.3) 6.28 (1.73) a
Cigarette use 88 (21.57%) 25 (27.78%) 7 (33.33%) 32 (28.83%)
Substance use 315 (77.21%) 63 (70%) 16 (76.19%) 79 (71.17%)
Peak viral load (log10 copies/ml) 4.62 (1.05) 4.96 (1.15) 4.63 (1.22) 4.89 (1.17) a
Current viral load (log10 copies/ml) 1.85 (0.71) 2.09 (1.07) 1.76 (0.58) 2.03 (1.00)
Nadir CD4þ T cells (109/L) 0.22 (0.16) 0.18 (0.16) 0.2 (0.13) 0.18 (0.15) a
Current CD4þ T cells (109/L) 0.56 (0.25) 0.62 (0.29) 0.63 (0.42) 0.62 (0.32)
AIDS-defined 195 (48.87%) 53 (61.63%) 11 (52.38%) 64 (59.81%) a
HIV-1 duration (years) 10.15 (7.79) 17.19 (8.26) 14.22 (6.98) 16.65 (8.09) a
ART use 384 (94.12%) 88 (97.78%) 21 (100%) 109 (98.2%)
HAND 71 (19.03%) 26 (29.89%) 7 (35%) 33 (30.84%) a
Neuropathic pain 102 (25%) 63 (70%) 19 (90.48%) 82 (73.87%) a, b
HQoL 3.63 (1.03) 3.19 (1.03) 3.43 (0.81) 3.23 (0.99) a
NPZ Score –0.39 (0.73) –0.58 (0.8) –0.61 (0.57) –0.58 (0.76) a
PHQ-9 6.76 (6.37) 8.92 (6.43) 8.95 (5.77) 8.93 (6.28) a
Polypharmacy 2.7 (4.32) 6.54 (6.01) 3.9 (4.94) 6.05 (5.9) a
HbA1c (%) 5.57 (1.01) 6.06 (1.24) 5.58 (0.51) 5.96 (1.14) a
Diabetes 23 (5.64%) 26 (28.89%) 3 (14.29%) 29 (26.13%) a
Insulin use (year) 9.08 (117.74) 10.96 (52.65) 0 (0) 8.88 (47.56) a
CVD 96 (23.53%) 38 (42.22%) 8 (38.1%) 46 (41.44%) a
Lipodystrophy 29 (7.11%) 15 (16.67%) 4 (19.05%) 19 (17.12%) a
Dyslipidemia 98 (24.02%) 42 (46.67%) 8 (38.1%) 50 (45.05%) a
Syphilis seropositivity 80 (19.61%) 8 (8.89%) 1 (4.76%) 9 (8.11%) a
Malignancy 26 (6.37%) 9 (10%) 1 (4.76%) 10 (9.01%)
Vitamin B12 410.9 (213.82) 464.31 (293.83) 324.38 (145.99) 435.89 (275.32)
d4T (days) 148.12 (512.65) 493.33 (834.61) 302.33 (606.11) 457.2 (797.51) a
ddC (days) 18.24 (111.19) 49.47 (154.84) 79.48 (311.69) 55.14 (192.88) a
ddI (days) 74.98 (381.9) 390.41 (938) 49.62 (221.05) 325.94 (859.5) a
d4T/ddC/ddI 64 (15.69%) 42 (46.67%) 7 (33.33%) 49 (44.14%) a
Pregabalin (years) 6.76 (55.15) 18.17 (87.81) 0 (0) 14.73 (79.31) a
Lithium (years) 108.72 (2117.58) 12.68 (75.39) 0 (0) 10.28 (68) a

ART, antiretroviral therapy; CNS, central nervous system; d4T, stavudine; ddC, zalcitabine; ddI, didanosine; DSP, distal sensory polyneuropathy;
HbA1c, hemoglobin A1c; HIV-1, HIV type 1; MNP, mononeuropathy; NNP, non-neuropathy; PNP, peripheral neuropathy; TSH, thyroid-
stimulating hormone.
aData in parentheses indicate mean and SD (continuous variables) or occurrence and percentages (categorical variables).
bBMI; CPE, CNS penetration effectiveness; CVD, cardiovascular disease; HAND, HIV-associated neurocognitive disorders; HQoL, health quality of
life assessment; NPZ, neuropsychological z-score; PHQ-9, patient health questionnaire.
cNS, non-significant. Other statistically non-significant variables included sexual orientation (heterosexual versus bi-/homosexual), CPE ranking, toxoplas-
mosis seropositivity, documented seroconversion illness, TSH and folate levels, as well as medications’ durations (capsaicin, nitroglycerin, isosorbide,
ritonavir, darunavir, atazanavir, Kaletra, metronidazole, vincristine, vinblastine); none displayed significant differences between groups at P<0.05.
dUnivariate tests were conducted using Mann–Whitney U test for continuous data and Fisher’s exact test for categorical data. a and b refer to the
significant variables (P<0.05) when comparing NNP versus PNP groups, and DSP versus MNP groups, respectively.
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(hypertension, heart failure, myocardial infarction),
hypothyroidism, dyslipidemia, lipodystrophy, malig-
nancy, syphilis, and toxoplasma serology. Data on all
prescription and over-the-counter medications in addi-
tion to ART (but excluding nutritional supplements)
were collected. Location of birth was classified
by continent.

Statistical analyses
Demographic and clinical comparisons between groups
were performed using univariate and multivariate
methods, as well as a principal component analysis
(PCA). Univariate tests were conducted using Mann–
Whitney U test for continuous data and Fisher’s exact test
for categorical data. For multivariate methods, a logistic
regression model was first applied using all demographic
and clinical variables to predict neuropathy status of
patients. We applied the synthetic minority oversampling
technique (SMOTE) [25] to ensure balanced datasets.
The SMOTE algorithm was applied only to the training
set, and the turning parameters in each classifier were
selected using five-folded cross validation. To assess the
limited predictive performance of logistic regression, an
exploratory PCA was implemented to assess the
possibility of linear separation of non-neuropathy
(NNP) and PNP groups, leading to the construction
of a classifier to differentiate NNP and PNP groups.
Thus, we sought a more informative statistical approach
by applying various machine learning classification
algorithms. Multiple classifiers were implemented using
the package ‘mlr’ [21] in the R project for statistical
computing (version 3.6.3) (www.r-project.org) including
for univariate analysis and multiple linear regression. A
random forest model was adopted because of its balance
between robust prediction performance and straightfor-
ward interpretability. Mean decreases in accuracy (MDA)
were computed to measure the importance level of each
variable in the random forest model between the PNP
versus NNP groups. Partial dependence plots were
computed to visualize the marginal effect of each variable
on PNP.

Data availability
All data presented within the present article are available
with accompanying accession numbers upon request to
qualified investigators for secondary analyses.

Results

Study groups
Of the 519 study patients, 21.4% were diagnosed with
PNP (Table 1). This group includes both those with
predominantly DSP (n¼ 90) and those with MNP
(n¼ 21). The remaining 408 patients had neither signs
nor symptoms of a PNP. Clinical, laboratory and
demographic variables were compared for the MNP

and DSP groups. Significant differences in sex and
neuropathic pain frequency were detected with more
females and reduced neuropathic pain reported in the
MNP group (Table 1). To increase sample sizes for higher
statistical power, the MNP and DSP groups were grouped
together and the PNP versus NNP groups were
compared (Table 1). The univariate comparisons among
NNP and PNP groups revealed that 28 of all examined
variables (n¼ 70) differed significantly including age,
HIV-1 duration, d4T/ddC/ddI exposure, diabetes,
substance use, dyslipidemia, quality of life, etc. (Table
1). Thus, the NNP and PNP groups were highly
differentiated phenotypically when compared using
univariate analyses. To explore further the different
patterns of PNP among patients with shorter (�15 years)
and longer (>15 years) estimated HIV-1 duration because
of ageing effects as well as practice changes in ART drug
use, we conducted univariate analyses on these two
groups separately. Scatterplots comparing age and HIV-1
duration by neuropathy status (NNP, DSP, or MNP) or
d4T/ddC/ddI exposure revealed trends of increased
frequencies in DSP with duration and age (Fig. 1a) and a
greater exposure to neurotoxic ARTs with age and
duration (Fig. 1b). Indeed, while neuropathic pain,
polypharmacy, and duration of pregabalin exposure were
shared variables for both epochs, multiple other variables
differed for PNP among patients with short versus long
estimated HIV-1 duration (Table 2). These latter analyses
highlighted the impact of both age and duration HIV-1
seropositivity on the development of neuropathy in this
intensively treated cohort.

Principal component analysis
In view of the complexity of multiple variables and to
compare the clinical groups, we used a multi-dimensional
scaling technique based on PCA to explore and visualize
the pattern of association and the potential for building a
multivariate predictive model for PNP. To ensure the
PCA was straightforward and exploratory, we focused on
continuous variables revealing the first two components
accounted for 23.45% of the variance (Fig. 2). The PNP
group had higher scores on component one, characteriz-
ing patients who were older with a longer durations since
diagnosis of HIV-1 infection, had higher peak viral loads
and a lower nadir CD4þ T-cell levels, worked less,
reduced sleep time, lower HQoL scores and greater past
exposure to neurotoxic ART (d4T, ddC, or ddI). A
loading plot was constructed that displayed the direction
vectors in the PCA (Supplementary Fig. 1, http://
links.lww.com/QAD/C153). Thus, patterns in the PCA
plot showed the potential for building a classifier for PNP
using multiple clinical and demographic variables.

Multivariate analyses
Due to the imbalance of subjects within the present
dataset, NNP (n¼ 4); PNP (n¼ 1), we applied the
SMOTE to balance the dataset. We compared a broad
range of classifiers, which yielded differential
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performances for several classifiers that were suitable for
our dataset. Four evaluation metrics [accuracy, area under
the receiver operating characteristics curve (AUROC)],
true positive (TPR), and true negative (TNR) rates were
derived and were computed on the testing set (25% of the
original data) (Table 3). The AUROC (Fig. 3a) was more
informative than the accuracy measures because of the
imbalance in the dataset; the TPR and TNR measured
the relative classification accuracy for patients in the PNP
and NNP groups, respectively.

Of importance, all classifiers reached an accuracy of
greater than 70% and an AUROC of greater than 77%;
the performance of classifiers generally improved with an
increase in the complexity. The linear classifier (logistic
regression) was outperformed by the advanced and
informative ensemble-based classifiers (random forest,
adaptive boost); the TPR was lower than TNR for all
classifiers, implying that it was more difficult to classify

PNP patients. Random forest, logit boost, and adaptive
boost all displayed efficient performances (with TPR and
TNR values >70%, and AUROC >80%). In addition to
classification performances, the interpretability of a
classifier was of equal importance. We focused specifically
on two areas: the contribution of each variable to the
classification process and the complexity of the classifier.
Based on these two criteria, two classifiers were selected
for further discussion including logistic regression and
random forest (Table 3). Although logit boost and
adaptive boost had better numerical performances on this
test set, the random forest analyses were presented herein
because of the intuitive and interpretable tree-based
structure (Supplementary Fig. 2, http://links.lww.com/
QAD/C154).

Logistic regression
The multiple logistic regression exhibited a classification
accuracy of 73.5% while the TPR was 63.6%. Several

Neuropathy in HIV/AIDS Tu et al. 1789

Fig. 1. Scatterplot of age and HIV-1 duration of infection by neuropathy status (non-neuropathy, distal sensory polyneuropathy,
and mononeuropathy) (a) or didanosine/zalcitabine/stavudine exposure. (b) Each point represents a single patient with different
shapes (non-neuropathy, *; distal sensory polyneuropathy, *; mononeuropathy, ~; didanosine/zalcitabine/stavudine expo-
sure, ; didanosine/zalcitabine/stavudine non-exposure, . The shadowed areas represent patients with HIV-1 infection duration
greater than 15 years.

http://links.lww.com/QAD/C154
http://links.lww.com/QAD/C154
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variables differed significantly between groups in this
analysis, and the PNP group was associated with
neuropathic pain, higher viral load, higher peak viral
load, higher nadir CD4þ, diabetes, and syphilis, past

d4T/ddC/ddI exposure, longer ddI duration, longer
HIV-1 d uration, and dyslipidemia.

Random forest
The random forest (RF) is an ensemble-based classifier
that operates by constructing a multitude of decision trees
and outputting the result based on the majority votes of all
the decision trees. A decision tree is a graphic
representation of all possible outcomes to a decision
based on given conditions although in the present
analyses, it does not represent a diagnostic algorithm. A
random forest classifier was composed of multiple
randomly generated similar trees. To explore which
variables were more important in the RF models, the
MDA values was computed for each variable. The MDA
reflected the relative loss of accuracy by the random
permutation of one variable. The absolute values of MDA
were non-quantitative, but the rankings of the MDA
values assign the variables based on relative importance in
differentiating the PNP versus NNP groups. Duration
since HIV-1 diagnosis, viral load, age, current CD4þ T-
cell count, peak viral load, BMI, neuropsychological z-
score (NPZ) score, sleep, and the presence of neuropathic
pain were among the top variables identified in the
relative importance plot (Fig. 3b). Thus, the MDA
comparisons yielded a different profile of predictive
variables from the logistic regression analyses offering a
distinct perspective on the variables contributing to the
development of PNP. Partial dependence plots were also
presented (Supplementary Fig. 3A–D, ordered by MDA
value, http://links.lww.com/QAD/C155) to illustrate
the effect of each variable on predicting neuropathy in the
random forest analysis.

1790 AIDS 2021, Vol 35 No 11

Fig. 2. Principal component analyses: non-neuropathy
patients (non-neuropathy, n U 408) and peripheral neuropa-
thy (n U 111) groups. The plots show the first two principal
components, which accounted for about 20% of variation
within all patients. Each point represents a single patient with
a specific circle size, shape, and filling that indicate neuropathy
status (non-neuropathy, *) and (peripheral neuropathy, *).

Table 2. Clinical and demographic variables showing significance
for developing peripheral neuropathy based on HIV type 1 duration
(< or >15 years) (P < 0.05)M.

HIV-1 duration (�15 years) HIV-1 duration (>15 years)

Neuropathic pain (4.36,
35.63)

Diabetes (2.06, 11.86)

Quality of life (–0.97, –0.33) Neuropathic pain (1.56, 7.75)
Polypharmacy (1.26, 5.19) Polypharmacy (0.42, 3.86)
PHQ-9 (–10, –6.74) Viral load (–3.772, 4.38)
AIDS (1.44, 7.64) Pregabalin duration (–6.66, 41.22)
Pregabalin duration (–11.30,

10.31)
Syphilis seropositivity (1.02, 10.77)

NPZ score (–0.65, –0.12) d4T duration (–62.99, 484.95)
Nadir CD4þ T cell (–0.02,

–0.13)
Cardiovascular disease (1.05, 3.62)

Nitroglycerin duration
(–4.78, 14.13)

Vincristine duration (–2.71,
8.01)

Peak viral load (log10 copies/
ml) (–5.03, 5.99)

Cigarette use (1.19, 5.51)
Sleep (h/night) (–1.15, –0.08)
Education (year) (–2.14,

–0.07)

d4T, stavudine; HIV-1, HIV type 1; NPZ score, neuropsychological z-
score; PHQ-9, patient health questionnaire.
MThe number in the brackets is the confidence interval for the mean
(for continuous variables, based on the Student t test) or the odds ratio
(for binary variables). The variables that are significant for both
columns are in bold.

Table 3. Comparison of performances for different classifiers.

Classifiera
Accuracy

(%)b
AUROC

(%)c
True positive

rate (%)d
True negative

rate (%)e

Logistic regression 73.5 77.1 63.6 76.2
kNNf 78.7 78.9 57.6 84.4
Naive Bayes 80.6 82.1 42.4 91.0
Bayes net 78.7 84.0 57.6 84.4
Random forest 78.71 83.2 70.3 81.1
Logit boost 82.58 86.6 81.8 82.8
Adaptive boost 81.29 87.4 66.7 85.2

aAll evaluation metrics were computed on the testing set (25% of the
original data). The SMOTE algorithm was applied only to the training
set, and the turning parameters in each classifier were selected using
five-folded cross validation. The highest number in each column were
boldfaced.
bAccuracy: the percentage of correct assessments.
cAUROC: the area under the receiver operating characteristics curve
measures the probability that a classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative one.
dTrue positive rate: the percentage of correct assessments for patients
with neuropathy.
eTrue negative rate: the percentage of correct assessments for patients
without neuropathy.
fkNN, K-nearest neighbor.

http://links.lww.com/QAD/C155
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Discussion

We undertook the first in depth analysis of PNP in terms
of type and predictive variables among patients with HIV-
1 infection receiving ART using contemporary machine
learning tools that were compared to conventional
statistical approaches. The application of machine
learning tools not only resulted in better classification
performances (Table 3) but also led to the discovery of
both known and new variables as principal variables for
developing PNP including duration of HIV-1 infection,
viral load and CD4þ T-cell levels at the time of
assessment, age as well as duration of past d4T exposure.
Indeed, the prevalence of PNP in this cohort was low at
21.4% and was mainly evident as DSP (18%). The
importance of estimated HIV-1 duration in the random
forest analysis (Fig. 3b) led us to undercover differences in
predictive variables for patients with HIV-1 infection for
more or less than 15 years reflecting the evolution in ART
use together with an ageing population.

The current study builds on to several recent studies of
PNP among PWHs in different settings within the USA
[26], India [27], West Africa [28], and an international
multi-site study [29]. Remarkably, the prevalence rates of
PNP were similar across the different studies regardless of
the study location and the use of ART despite a wide
range of clinical tools to diagnosing PNP [30]. Predictive
variables for these studies, which largely focused on DSP
were similar to earlier studies and included age, CD4þ T-

cell nadir and duration of infection. These studies also
emphasized the substantial adverse impact of PNP on
both employment and quality of life [31], findings that we
also documented. However, the effects of prior exposure
to neurotoxic nucleoside ART medications was not
apparent in some of these studies despite a clear effect in
our study. This difference might be due to limited
availability of detailed historical information on all past
ART regimens or less likely due to different clinical
management patterns. Regardless of the explanation, our
findings highlight a legacy effect of previous ART
exposure and the presence of PNP.

In the current era of increased volume and complexity of
data available in medicine, machine learning tools have
attracted more attention due to their capacity to delineate
non-intuitive patterns in large datasets and apply these
findings to tasks such as diagnosis and clinical manage-
ment [32]. When using machine learning tools, besides
achieving superior numerical performances, it is equally
(or sometimes more) important to discover useful and
interpretable patterns in datasets that strengthen the
understanding of a disorder and facilitate clinical
decision-making. In this study, we analyzed data using
both conventional methods (univariate tests, logistic
regression) and machine learning tools. While the
univariate analysis identified variables associated with
PNP (Table 1), the machine learning tools offered not
only classification algorithms for PNP with AUROC
values as high as 87.4% (Table 3) but also more insights on
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Fig. 3. Area under receiver operating characteristic curve and relative variable importance plot. (a) non-neuropathy versus
peripheral neuropathy receiver operating characteristics curve showed an area under the receiver operating characteristic curve
value¼0.832. (b) The relative variable importance plots for non-neuropathy versus peripheral neuropathy groups depicts the
mean deceases in accuracy values for both continuous and categorical variables that contributed to the differences between the
non-neuropathy versus peripheral neuropathy groups.
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the determinants of PNP among PWH. The random
forest classifier operates by constructing a multitude of
decision trees. To visualize what one of the trees might
look like, a tree was built using 4 selected variables
(estimated HIV-1 duration, diabetes, neuropathic pain
and peak viral load) (Supplementary Fig. 2, http://
links.lww.com/QAD/C154). The percentages (in the
box) show the classification accuracy, which ranges from
54.16 to 89.6%. It is warrants mentioning that the tree is
not intended to be an algorithm for diagnostic decision-
making and does not have immediate clinical application.
However, from this simple decision tree, it is apparent that
PNP was related to longer HIV-1 duration, higher peak
viral loads and diabetes. Notably, the prevalence of PNP
was 40% among PWH with HIV-1 duration longer or
equal to 15 years and only 11% for patients when HIV-1
duration was less than 15 years (Fig. 2a). Furthermore, a
longer duration of HIV-1 infection was associated with
more frequent d4T/ddC/ddI exposure (Fig. 2b). Differ-
ent predictive variable profiles for PNP were evident
among patients with shorter (�15 years) versus longer
(>15 years) documented durations of HIV-1 infected.
Indeed, the predictive variables differed for neuropathy
for patients with short versus long HIV-1 duration (Table
2). The shared variables included neuropathic pain,
polypharmacy (�5 non-ART medications, Supplemen-
tary Fig. 4, http://links.lww.com/QAD/C156) and
pregabalin duration. For the cohort with shorter
documented duration of HIV-1 infection, there were
more variables related to mental health measurements
such as HQoL, PHQ-9, and NPZ score, as well as
variables including cigarette use, sleep and education. For
the cohort with longer HIV-1 duration, most variables
were linked directly to comorbidities such as diabetes,
syphilis and cardiovascular disease. The differing patterns
distinguishing these two groups highlighted the potential
of machine learning tools in extending the knowledge of
neurological disorders and enabling informed clinical
decision-making.

The current study faced several limitations. While
assessing prevalence of PNP in a general population of
HIV-1 infected patients in active care, the actual number
of patients with PNP was low and complicated by
concurrent co-morbidities with overlapping effects such
as diabetes. By pooling patients with DSP and MNP as
PNP, distinguishing predictive variables might have been
overlooked. Furthermore, the imbalance in group sizes,
NNP (n¼ 408) versus PNP (n¼ 111), required statistical
manipulations (e.g. SMOTE) to permit comparisons of
variables using the machine learning tools herein, which
could be misleading. The current study did not use a
formal neuropathic pain scale and relied on clinically
relevant signs and symptoms, which precluded compari-
son with prior studies of neuropathic pain. Finally, while
longitudinal data were available for this study, it was not
truly prospective, given that serial examinations were not
performed, which raises the possibility of overlooking

converging factors that influence the development
of PNP.

As PNP remains a major comorbidity among people with
HIV/AIDS in high-income, middle-income, and low-
income countries, it is imperative to understand both its
determinants and outcomes, especially the impact of
neuropathic pain. The current global opiate use crisis
amplifies this priority [33] because opiate use can
complicate the already complex care of people with
PNP and neuropathic pain. Indeed, a deeper under-
standing of both pathogenesis and clinical factors defining
PNP is required for addressing this issue. Future studies
involving prospective and rigorous clinical assessments of
PNP coupled with molecular analyses would enable a
deeper appreciation of the predictive variables and
potential diagnostic and/or therapeutic approaches.
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