Multivariate Fundamentals: Distance

Multiple Response Permutation Procedures
Objective: Calculate if there is a significant difference between groups in a multivariate space

Useful for multivariate data that does not meet the assumptions of MANOVA (e.g. Normality and Equal Variances for each variable)

MRPP make **NO Assumptions** therefore any numeric data can be used

However the assumptions of independence (spatial & temporal) and design considerations (randomization, sufficient replicates, no pseudoreplication) should still be upheld – *good statistical practice*!

MRPP work with absolute differences (we call them distances) where smaller values indicate similarity

Makes the calculations equivalent to sum-of-squares (used in ANOVA)
Consider Univariate ANOVA

Used when you have 3 or more samples

\[H_0: \mu_A = \mu_B = \mu_C \quad \text{and} \quad \mu_A \neq \mu_B \neq \mu_C \]

The alternative could be true because all the means are different or just one of them is different than the others.

If we reject the null hypothesis we need to perform some further analysis to draw conclusions about which population means differ from the others and by how much.
Consider Univariate ANOVA

Used when you have 3 or more samples

\[F = \frac{\text{signal}}{\text{noise}} \]

\[F = \frac{\text{variance between}}{\text{variance within}} \]

\[\text{variance between} = \frac{\sum_i^n (\bar{x}_i - \bar{x}_{\text{ALL}})^2}{n - 1} \times r \]

\[\text{variance within} = \frac{\sum_i^n \text{variance}_i}{n} \]

A large F-value indicates a significant difference
Consider Univariate ANOVA

Used when you have 3 or more samples

\[F = \frac{\text{variance between}}{\text{variance within}} = \frac{62463.25}{672.1943} = 92.92439 \]

One-way ANOVA in R:
\[\text{anova(lm(YIELD~VARIETY))} \]
F-Distribution (family of distributions- shape is dependent on degrees of freedom)

\[F = \frac{\text{signal}}{\text{noise}} \quad F = \frac{\text{variance between}}{\text{variance within}} \]

\[\text{variance between} = \frac{\sum_i^n (\bar{x}_i - \bar{x}_{ALL})^2}{n - 1} \times \text{nobpt} \]

\[\text{variance within} = \frac{\sum_i^n \text{variance}_i}{n} \]

The larger the F-value the further into the tail – AND the smaller the probability that the calculated F-value was found by chance, MEANING there is a high probability that something is causing a significant difference between the groups.
The math behind MRPP

MRPP calculates distances between all observations within each group and generates a weighted average of distances (weighted by the number of observations within each group).

MRPP generates noise by randomly shuffling the class variables within the dataset. After shuffling, the weighted average of distances within the random groups are recalculated.

This is equivalent to “noise”

Reshuffling (permutation procedure) is repeated until you get a distribution of average distances.

Math:

\[
D = \frac{\text{signal}}{\text{noise}} \quad D = \frac{\text{distance between groups}}{\text{distance within groups}}
\]

Think of each block representing a observed difference.
The math behind MRPP

Since we are using permutations (iteratively reshuffling data) to generate the distribution of D from our raw data, the shape of the D distribution is dependent on your data.

Now the probability of randomly getting a smaller distance than the average distances for the true groups can be calculated.

This is the p-value.

For permutation tests we can compare D to an expected distribution of D the same way we do when we calculate an F-value.

\[
D = \frac{\text{signal}}{\text{noise}} \quad D = \frac{\text{distance between groups}}{\text{distance within groups}}
\]

Ex: If we consider 5000 iterations:
- 4921 D calculations < 10 from permutations
- 79 D calculations ≥ 10 from permutations

P-value:
- $79/5000 = 0.0158$
permMANOVA in R

MRPP can be calculated for individual factors in R (we do this in Lab 6.1)

BUT, we can run one or multiple factors (and multiple response variables) at once using Permutational Multivariate Analysis of Variance

PermMANOVA in R:

```r
adonis(ResponseMatrix, EquationOfPredictors, distance=method) (vegan package)
```

Matrix of response variables
These MUST be numeric

Equation of Predictors (like ANOVA):

- `Variable1` include single predictor
- `Variable1+Variable2` include multiple predictors without interaction
- `Variable1*Variable2` include multiple predictors with interaction

Distance Method to use for calculations:

- "euclidian" "manhattan" "bray" the ones we all ready know (Lab 5)
- "gower" "altGower" "canberra" "kulczynski" alternative options – look at `help(adonis)` for more details
- "morisita" "horn" "binomial" "cao"
permMANOVA interactions

The more predictor variables you include in your analysis the more complicated the results.

If you include more than one predictor variable (treatment) – you should investigate if there is a significant interaction between your treatments.

All this means is we want to know if the responses behave differently depending on which combination of the predictors we are considering.

E.g. Fertilizer A causes a large effect when it is applied to Soil1, but a small or no effect when applied to Soil2.
permMANOVA in R

permMANOVA outputs represent a **HIGH LEVEL** summary

Multiple treatments which include at least 2 factors each
Multiple response variables (think of analyzing the response of multiple species – trying to find a common pattern)

We therefore have to carefully pull apart the analysis results to make interpretations

Simplest case – All p-values are found to be NOT Significant
Moderate case – Main effect(s) are found to be significant
No significant interaction
Complex case – Everything is significant

Pack up & Go Home
You’re done!

Further analysis needed

Complexity of analysis is maximized
permMANOVA in R

We can read MANOVA outputs like an ANOVA table

Moderate Example:
MANOVA with one predictor variable

OR
If only main predictor variable(s) are found to be significant

No significant interaction

A significant p-value tells us there is a significant difference among groups somewhere

It does **NOT** identify if the trend is true for all response variables OR if a single (or a couple) of response variables are driving the finding of a significant difference

If we find a significant difference in a MAIN effect (single treatment) we can build an NMDS to visualize the differences among species
NMDS to interpret permMANOVA output

We can look at the direction of the species arrows to make inferences as to how which ones are associated with the treatment factors (soil OR fertilizer).

If you want more information on differences for the species with the biggest trends (longest arrows) you can run Permutational ANOVA (univariate) on individual species – Lab 6
We can read MANOVA outputs like an ANOVA table

Complex Example:
MANOVA with more than one predictor variable
Significant interaction

Let’s pretend this p-value is less than 0.05

A significant interaction p-value tells us the responses behave differently depending on which combination of the predictors we are considering.

It does **not** identify if the trend is true for all response variables OR if a single (or a couple) of response variables are driving the finding of a significant difference.

If we find a significant difference in an INTERACTION effect a simple NMDS visualization will not be enough.

We need to consider the species individually because they are not acting the same.

We can do this with Permutational ANOVAs and pairwise comparisons (univariate) – in Lab 6.
Permutational ANOVA in R

Permutational ANOVA is simply analyzed in R using the lmPerm package.

However, Package lmPerm was built under R version 2.15.1 and has never been updated with R.

This causes problems when we want to install the package.

The latest version of the package 1.2.1 has been uploaded to the class website for you to download (Windows version .zip file and Mac version .tar.gz file). Save this file to a file path on your C: drive.

You need to install it using the “Install package(s) from local zip file(s)...” option in the Packages tab on the R GUI.

If you are using R Studio – install packages from Package Achieve File dropdown.