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An evaporative cooling system is employed via microwave radiation, incident on 87Rb contained in a

magnetic quadrupole trap, to drive transitions in the atomic vapor between trapped and untrapped states.

In addition, the degree of sample losses due to these transitions is studied with consideration given to

the amplitude and frequency of incident electromagnetic fields. To understand the underlying physics of

evaporative cooling, a brief introduction to modern cooling techniques and theory is given.

I. INTRODUCTION

Ultracold atoms posess a plethora of interesting char-

acteristics, warranting the torrent of recent investigation

into the subject. For example: superfluids exhibit zero

viscosity, while superconducters have no electrical resis-

tance and expel magnetic field lines. Another instance

of this is Bose-Einstein condensation (BEC), existing at

low enough temperatures such that every particle within

a boson gas ‘condenses’ into the quantum ground state.

Such an exotic state of matter is characterized by a

minimal deviation of the sample’s velocity distribution,

so that the Heisenberg Uncertainty Principle necessitates

a large spread in the wave-function of every boson. This

constitutes an intrinsically quantum mechanical state,

that is, a gas of entangled bosons describable only by

a single multi-particle wave-function.

The challanges inherent in reaching the low-

temperature limit of quantum degeneracy, wherein

a sample’s DeBroglie wavelength is on the order of the

inter-particle spacing, is illustrated in the gap between

the discovery of superconductivity in 1911 at 4 Kelvin

[1] and the first Bose-Einstein condensate observed in a

dilute gas of 87Rb at 170nK, eighty-four years later [2].

Doppler cooling proved an effective method for bringing

the temperature of atomic vapors down to microkelvin

temperatures, but further cooling was impossible without

another method.

Thusly, we design and implement an apparatus for

the purpose of cooling a gas of 87Rb from this limit

down to the nanokelvin range. One of the most popular

methods of doing so, and the one utilized here, is that of

evaporative cooling using microwave radiation. Just as

blowing on a cup of coffee tends to cool it by allowing the

hottest water molecules to evaporate, this method hinges

on providing a sort of ‘exit route’ for the hottest atoms

in a trap, while holding on to the colder atoms.

II. THEORY & METHODOLOGY

A. Doppler Cooling

Consider monochromatic laser light of frequency ω,

incident on an effectively non-interacting atomic gas,

carrying momentum h̄~k. If one of these atoms has velocity

~v, then in said particle’s rest frame, the light is Doppler-

shifted to frequency ωD = −~k·~v. Due to the discretization

of electronic energy levels, a photon may transfer its

momentum to the atom only if its energy Eph = h̄ω so

that its frequency is in resonance with one such level.

The Doppler shifting described above, however, makes

this resonance dependent on the atomic velocity.

It is thus clear how lasers may be applied to reduce gas

temperature. If a laser is tuned to just below a transition

energy, it will only transfer its momentum to atoms

travelling in the opposite direction of light propagation.

Multiple pairs of opposing lasers directed radially inward

toward a sample could then be made to reduce the average

kinetic energy of a sample [3, p. 73-122].

Unfortunately, Doppler cooling has a limit. The ef-

fect of spontaneous emission of photons is on average

isotropic, so that no net momentum is imparted to the gas

through this process. On the other hand, it increases the

mean square velocity of constituents, and thus imparts

heat to the sample. At the Doppler temperature TD,

given by [3, p. 57]:

TD =
h̄γ

2kB
(1)

the cooling effect is overwhelmed by spontaneous emis-

sion1. Here γ is the natural linewidth of the excited

1Some more complicated laser cooling methods such as Sisyphus

cooling [4] use an optical polarization gradient to cool below this

limit, but they still have limits above the temperature range

for quantum degeneracy around the recoil temperature: Tr =

(h̄k)2/(2kBM).
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state, i.e. the reciprocal of the excited state’s typical

lifetime. Generally, this limit is on the order of 100µK;

this is several orders of magnitude above the temperature

required for BEC. Hence, we are motivated to study

a complementary method of cooling utilizing microwave

radiation.

B. Magnetic Trapping of Neutral Atoms

As a result of the Zeeman effect, a magnetic field ~B

introduces a term Ĥm = −µ̂ · ~B (µ̂ being the magnetic

dipole operator) to the single-atom Hamiltonian, result-

ing in a splitting of hyperfine energy levels. For alkali

atoms which have a single valence electron in an s-orbital,

hydrogenic quantum states are effective in describing

their properties, since they may be approximated as

a heavy nucleus of +e charge surrounded by a single

electron. In a state with zero orbital electron momentum

these splittings ∆EF may be calculated from the Breit-

Rabi formula, as derived in Appendix A:

∆E|F=I±1/2,mF 〉 = − ∆Ehf
4(I + 1/2)

+ µBgImFB

± ∆Ehf
2

√
1 +

2mFx

I + 1/2
+ x2 (2)

In which x ≡ gJµBB
∆Ehf

, ∆Ehf denotes the hyperfine energy

gaps in the absence of an external magnetic field, gI , gJ ,

and gF are Landé g-factors2, and mF ∈ {−F,−F +

1, ..., F − 1, F} is the magnetic quantum number. En-

ergy splittings calculated for 87Rb from this formula are

plotted in Figure 1.

The most important consequence of eq. (2) is that

certain states have a lower energy in higher magnetic

fields, whereas other |F,mF 〉 states seek lower magnetic

field strength to minimize their energy or are unaffected

by this added potential. Thusly, a magnetic field with a

region of minimum strength may trap ‘high-field seeking’

states, while allowing others to escape (see Figure 1).

This is more readily apparent in the weak-field limit of

Zeeman splittings, where the static field may be treated

as a small perturbation of the fine structure Hamiltonian

for which |F,mF 〉 are the eigenstates. The first order

energy correction is then:

2These are constants for a given isotope corresponding to nuclear

spin I, total electron angular momentum J = L+ S (where L and

S are orbital and spin angular momentum for the valence electron),

and total atomic angular momentum F = I + J .

FIG. 1. Ground-state energy splitting of hyperfine levels in
87Rb in the presence of a uniform magnetic field, calculated

from the Breit-Rabi formula.

∆E|F,mF 〉 = 〈F,mF | µ̂ · ~B |F,mF 〉

= 〈F,mF |
(gFµB

h̄

)
F̂ · ~B |F,mF 〉

=
gFµBB

h̄
〈F,mF | F̂z |F,mF 〉

= gFµBmFB (3)

noting that gF = −1/2,
1/2 for F = 1, 2 respectively, and

that ẑ is the axis of quantization i.e. the direction of ~B.

This is an application of the theorem which states that if

degenerate eigenfunctions of an unperturbed Hamiltonian

Ĥ0 are also eigenfunctions with distinct eigenvalues of a

Hermitian operator Â which commutes with both Ĥ0 and

the perturbation Ĥ ′, then the first order energy correction

is the same as that from non-degenerate perturbation

theory. In this case, Â = F̂z, which commutes with the

fine structure Hamiltonian and (on time average) with

Ĥm [5, p. 277].

To achieve the sort of trapping field described previ-

ously, a magnetic quadrupole trap is used. By assembling

three Helmholtz pairs along perpendicular axes, a mag-

netic field is established with a region in the center of the

form3:

3The factor of 2 in the z-component is necessitated by Maxwell’s

equation: ~∇ · ~B = 0. We use this to our advantage, pointing the

ẑ-axis vertically to reduce any gravitational effects on our sample.
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FIG. 2. Hyperfine energy levels in a linear magnetic field:
~B = (0.5Tm-1)(xx̂+ yŷ − 2zẑ) at constant x = 5cm.

~B = B0(xx̂+ yŷ − 2zẑ) (4)

Substituting this field into eq. (2), we find that ~r = 0

is either a minimum or maximum in potential energy

depending on the magnetic quantum number (see fig. 2).

This sort of magnetic trapping scheme has a significant

downside, however. At the point where magnetic field

strength vanishes, the Zeeman energies beome degener-

ate, making the spin (i.e. mF value) ambiguous. Once

the atom reemerges into a region of non-zero magnetic

field, its spin may have flipped in what is called a ‘Ma-

jorana transition’ [6]. These transitions occur frequently

enough that resulting particle losses inhibit trap lifetime

to a detrimental degree. In addition, the experiments

possible in a magnetic trap are limited outside of Bose-

Einstein Condensation, since whether an atom is held

in the trap or not is fundamentally dependent on the

internal (hyperfine) atomic state.

For these reasons, magnetic quadrupole traps are gen-

erally supplemented with a perturbative light source to

create a bias in the magnetic field zero. A common

example of this is a time-oscillating magnetic field de-

signed to translate the zero-point around in a circle.

For frequencies greater than the atomic orbital frequency

around the field zero, low-field seeking atoms ‘follow’ the

zero-point without reaching it, effectively eliminating the

possibility of spin-flip transitions [7].

Another such preventative technique – the one used

by this group – is an optical dipole trap directed about

the magnetic trap minimum. These traps have been

well established and described (for example, see: [3, 8]),

and operate by using lasers to simultaneously induce an

oscillating electric dipole moment in atoms, whilst using

the resulting dipole force to pull the atoms to the region

where laser light is most focused (this is called the beam

waist). This force results from a gradiant in the Stark

shift4 due to spatial variation in the intensity of focused

light. As a result, atoms are trapped in the vicinity

of the beam waist, where the electric field gradient is

strongest. In conjunction with a magnetic quadrupole

trap, optical dipole traps can produce shallow minima in

potential energy surrounding the point of zero magnetic

field, encouraging trapped atoms to avoid the point of

vanishing field strength.

C. Rabi Flopping

Evaporative cooling relies on electromagnetic radiation

to instigate transitions between magnetic sublevels in

atoms, so it is worth discussing the manner in which

a monochromatic light source accomplishes such a task.

In general, Rabi Flopping describes a system’s evolution

between two otherwise stationary states as a result of a

perturbative time-oscillating potential5. In our case, we

approximate the unperturbed system as being a rubidium

atom confined to an approximately uniform region of the

magnetic trapping field, driven to oscillate between F = 1

and F = 2 states by a linearly polarized magnetic wave
~Bmw of microwave frequency near the ω0 ≡ 6.834GHz

transition [11]. The trapping field defines a quantization

axis (say, along the ẑ axis) and thus creates a magnetic

dipole moment µ̂ = µ̂I+µ̂S+µ̂L, so that the perturbative

potential is:

V̂ = ~µ · ~Bmw = (µ̂I + µ̂S) · ~Bmw (5)

in the ground state of rubidium (L = 0). Before con-

tinuing, it is worth noting that since the trapping field’s

directionality varies with position, microwave radiation

will have a distinctly varying effect at certain regions in

the trap. In particular, when ẑ happens to be exactly

parallel or perpendicular to ~Bmw. This implies that

4The energy shifting effect of electrons being pulled in the opposite

direction as the positive nuclei in an electric field.
5Most graduate quantum physics texts cover this topic; see for

example: [3, 9, 10].
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any usage of microwaves to manipulate energy states of

trapped atoms requires a consideration of the system’s

geometry. Since evaporative cooling relies on transitions

from trapped to untrapped states, only the |2, 2〉 ↔
|1, 1〉 and |2, 1〉 ↔ |1, 1〉 transitions are relevant to our

discussion6. Thusly, we suppose ~Bmw = Bmw cos (ωt)x̂ is

perpendicular to the trapping field in some region, so:

V̂ =
µBB

mw

h̄
(gI Îx + gSŜx) cosωt (6)

Obviously, this is not a two-state system in the |F,mF 〉
basis, but considering the case of a |2, 2〉 → |1, 1〉
transition, where the microwaves are turned on at t = 0

and remain on, we may say that the general quantum

state for t < 0 is |ψ〉 = c1 |1, 1〉+ c2e
iω0t |2, 2〉 since both

states are eigenstates of the unperturbed Hamiltonian.

Here we have shifted our zero energy such that E1 = 0

and E2 = h̄ω0. After V̂ is introduced at t = 0, we assume

that our state is invariant except for a time dependence

granted to the previously constant coefficients c1 and c2.

The Schrödinger equation then yields:

(
c′1(t)

c′2(t)eiω0t

)
=
eiωt + e−iωt

2i

(
0 Ω

Ω 0

)(
c1(t)

c2(t)eiω0t

)
(7)

where Ω ≡ 〈2, 2| V̂ |1, 1〉 /(h̄ cos (ωt)) is a constant

called the Rabi Frequency. Note that one of the time

derivative terms cancels the unperturbed Hamiltonian

terms, and that the diagonal potential terms are 0 [12].

Clearly, for near-resonance ω ≈ ω0, some terms oscillate

at almost twice ω0, while others oscillate very slowly

(frequency ω0 − ω). We thus make the rotating wave

approximation: That these rapidly oscillating terms are

neligible [13]. Then:

ih̄

(
c′1(t)

c′2(t)

)
=

(
0 1

2Ω
1
2Ω 0

)(
c1(t)

c2(t)

)
(8)

Solving for one coefficient in either equation, differen-

tiating the other and substituting in the result, we have:

c′′1(t)− i(ω0 − ω)c′1(t) +
1

4
Ω2c1(t) = 0 (9a)

6Transitions between mF levels at constant F can also untrap

atoms, but the corresponding transition frequencies are far below

the microwave range. Radio-frequency evaporative cooling, for

example, uses such transitions.

c′′2(t) + i(ω0 − ω)c′2(t) +
1

4
Ω2c2(t) = 0 (9b)

with γ ≡ ω0 − ω being the frequency detuning. This

differential equation can be solved analytically, simply by

choosing integration factors such that c1(t) = b1(t)e
1
2 iγt

and c2 = b2(t)e−
1
2 iγt for some functions b1(t), b2(t). Our

differential equations then become:

b′′1(t)− 1

2
iγb′1(t) +

1

4
(γ2 + Ω2)b1(t) = 0 (10a)

b′′2(t) +
1

2
iγb′2(t) +

1

4
(γ2 + Ω2)b2(t) = 0 (10b)

These equations are merely those for simple har-

monic oscillators, and have general solutions of the form

A sin Ω′t+B cos Ω′t, where one coefficient is constrained

by the first derivative term and Ω′ ≡ 1
2

√
Ω2 + γ2. Sup-

posing our system is initially prepared in the |2, 2〉 state

such that c1(0) = 0 and c2(0) = 1, these constraints in

addition to the total probability condition |c1|2+|c2|2 = 1

provide the final solution:

c1(t) = −i Ω

Ω′
sin (Ω′t)e−

1
2 iγt (11a)

c2(t) =

[
cos (Ω′t)− i Ω

Ω′
sin (Ω′t)

]
e

1
2 iγt (11b)

Qualitatively, the most important consequences of this

result are that detuned light may still initiate transitions

between levels (albeit with lower probability), and the

probability of finding a particle in |2, 2〉 or |1, 1〉 oscillates

with frequency Ω′. The value of Ω has been calculated

in [12]7 and in Appendix B, so that the frequency of

oscillation between states is:

Ω′ =
1

2

√
(5.81945 · 1021Hz2/T2)Bmw2 + γ2 (12)

D. Evaporative Cooling

Finally, we are prepared to discuss evaporative cooling.

Supposing all or most of the atoms in a Rubidium-87

7This calculation involves expanding |F,mF 〉 states in terms of

|mI ,mJ 〉 states and calculating the expectation value using

Clebsch-Gordan coefficients. µ̂I is neglected in [12], but this is

reasonable since gI ≈ −0.001 is several orders of magnitude smaller

than gS ≈ 2 [11].
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sample have been prepared and magnetically trapped

in the |F,mF 〉 = |2, 2〉 state, (say, via optical pumping

[14]) and that a microwave source of tunable frequency

near the 6.834GHz transition from F = 2 → F = 1 is

incident upon the magnetically trapped atoms. Only

the |2, 2〉 → |1, 1〉 transition can untrap these atoms

whilst also lying in the microwave range of transition

frequencies. In fact, this is the only possible transition

from |2, 2〉 that could be driven by microwave frequencies,

since transitions involving ∆mF > 1 are impossible

regardless of the directionality relation between ~Bmw and

the static field on account of quantum selection rules (see

[3, p. 49]).

With knowledge of the theory considered in sec-

tions II B and II C, the principles behind evaporative

cooling are in fact quite simple. In general, atoms trapped

in the |2, 2〉 state near the center of a magnetic quadrupole

trap have increasing energy with distance from the mag-

netic field’s minimum strength region. Microwaves de-

tuned a small frequency γ above the zero-field 6.834GHz

transition will interact only with atom’s whose Zeeman

splittings are large enough to reach the transition energy

corresponding to this raised frequency. This creates an

effective ‘edge’ to the trap, since atoms distanced farther

from the trap center are in higher magnetic fields, and

given enough kinetic energy may continue travelling until

their Zeeman splittings are resonant with h̄γ transitioning

them to an untrapped state. This is key: only the atoms

with enough kinetic energy, i.e. the hottest atoms, are

able to move into high enough fields to be freed from

the trap. It is easy to see, then, where this cooling

technique’s name comes from; perspiration, for example,

involves especially the hottest sweat evaporating into air,

carrying excess heat away and cooling the skin.

Keeping this in mind, the general procedure for evap-

orative cooling is as follows: Microwaves propagating

through the quadrupole trap are tuned to high enough

frequencies so as to only remove the highest temperature

trapped atoms. After rethermalizing, the remaining

sample’s temperature has been lowered. Repeating this

procedure at progressively lower frequencies can, in the-

ory, lower the temperature indefinitely [15].

In reality, this procedure is limited by multiple fac-

tors. Firstly, the collision rate between particles is

approximately nσvT where n is number density, σ is the

collision cross section, and vT =
√

8kBT/(πM) is the

mean particle speed according to a Maxwell-Boltzmann

distribution. As this rate decreases proportionally to

T
1/2 , the rethermalization rate becomes slower and slower

as the sample is cooled. This, combined with the limited

lifetime of a trapped sample, is a hindrance to reaching

quantum degeneracy temperatures. As a magnetic field of

the form in eq. (4) restricts colder atoms to move within

a smaller region of space near its minimum, it has the

counteracting effect of increasing density with decreasing

temperature. In a well designed cooling apparatus, the

latter effect may exceed the former such that rethermal-

ization rate increases with decreasing temperature, but

another effect sets a lower limit to evaporative cooling:

inelastic collisions. Internal energy may be transferred

between atoms in an inelastic collision, which in turn

can cause transitions from trapped to untrapped states

or simply an increase in an increase in one atom’s speed.

Overall, this gives evaporative cooling a lower bound on

the order of 1nK [15].

III. EXPERIMENTAL SETUP & PROCEDURE

Initially, a vapor of 87Rubidium atoms is doppler-

cooled by a 2-dimensional Magneto-Optical Trap (MOT)

produced by four lasers directed inward along two perpen-

dicular axes, in conjunction with four coils used as a 2D

magnetic quadrupole trap. As described in Section II A,

any transfer of momentum from the laser beams to the

vapor serves to cool the atoms. Another benefit of the

magnetic field gradient is therefore that, in addition to

trapping atoms, it serves to increase the likelihood of

momentum transfer from the laser beams. This is because

atoms moving outwards from the trap center may reach

the resonant Doppler shift for transitions more quickly as

a result of Zeeman splitting. As the trap potential and

laser beams are directed only along two dimensions, the

atoms retain their speed along the other perpendicular

axis and are therefore focused into a beam directed

towards the next stage of cooling.

A second MOT, established by three Helmholtz pairs

and lasers directed along all three perpendicular axes,

collects and confines the atoms in three dimensions.

This is where the majority of Doppler cooling occurs.

Afterwards, the magnetic trap is turned off, and optical

molasses cooling8 is performed for 18ms, then atoms are

optically pumped into the |2, 2〉 state over the course of

8This method uses detuned lasers and the Doppler effect to create

a frictional force approximately proportional to atomic velocity.

Though it does not provide an equilibrium restoring force, and

hence does not trap atoms, their ‘molasses’ like movement under

this friction force allows them to be held for the duration of this

process [? ].
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FIG. 3. Evaporative cooling apparatus. The stub tuner allows for impedance matching, optimizing power transfer to waveguide.

Also, the circulator-isolator functions by permitting power transmission along one direction only, preventing interference of

reflected waves with other instruments.

1.2ms. The magnetic field is turned back on, and strength

is then ramped up for 1s, since the resulting higher

density increases rethermalization rates in preparation for

evaporative cooling.

Two primary experiments were attempted with our

microwave cooling apparatus, as illustrated in Figure 3.

In the former, the microwave generator was left on for

the entire course of the cooling cycle. The end of the

waveguide was positioned approximately 10cm from 87Rb

in the 3D quadrupole trap. Though it was also directed

towards the 2D MOT chamber, the microwaves would

have negligible interference with that stage as a result of

the rapid spatial decay of electromagnetic radiation. The

SG384 microwave generator was set to oscillate linearly

0.5MHz about a central frequency (at a rate of 5Hz) while

the Rubidium cloud is held in the trap for 5s, then the

trap was suddenly released, allowing the Rubidium cloud

to expand for 3ms before capturing an image. The entire

cycle was repeated 5 times for each central frequency,

after which the frequency was stepped down by 1MHz

and the procedure began again.

This allowed for observation of spin-flip transitions by

comparing the number of atoms in the cloud after 5

seconds with no microwaves, with that after 5 seconds

accompanied by a strong microwave signal. A high power

signal, however, incites more complete Rabi oscillations

over a wider range of frequencies (as shown in eq. (12)),

and therefore is expected to destroy the trapped vapor at

considerably higher frequencies than those for a low power

signal. To test this, a second round of data was collected

with a DC power source mixed into the microwave signal,

set to low enough power to attenuate the original signal

to about half its original amplitude.

To estimate the number of atoms in the cloud, ab-

sorption imaging is used. A laser tuned to a resonant

transition (780nm in this case [11], from 52S1/2 to 52P3/2)

passes through the trap when there are no atoms, and its

intensity I0 is measured by a camera. Another picture is

then taken after the cloud expansion, and the intensity of

images is compared according to the standard attenuation

formula:

I = I0e
−σ

∫
ndz (13)

where n is number density and σ in this case is the

scattering cross section for resonant light at the 780nm

transition. For distinguishable particles above ‘quantum’

temperatures, density is given by the Boltzmann distri-

bution:

n = n0e
−H/(kBT ) (14)

for some n0. For a rough measure of particle number, we

approximate our Hamiltonian as being that of a simple

harmonic oscillator: H ≈ p2

2m+ 1
2mω

2r2 for some ω. Then

the number of atoms N in the cloud is about:

N =

∫
ndxdydz = n0

(
2πkBT

mω2

)3/2

(15)

Carrying out the integral in eq. (13) and substituting in

the result from eq. (15), we have:

− log

(
I

I0

)
= σN

(
mω2

2πkBT

)
e−(x2+y2)mω2/(2kBT ) (16)

≡ Ae−(x2+y2)/(2σxσy) (17)

Thus, to measure particle number, we numerically fit

the processed camera images to a Gaussian, and calculate

N from the resulting amplitude and standard deviations

according to:

N =
2πσxσyA

σ
(18)

For the optical transition in question, σ = 3λ2/(2π) ≈
2.9× 10−13m−2.

The second experiment was an attempt in evaporative

cooling. After applying various frequency ramps, we

observed the atomic cloud’s size and compared it to

the cloud size with a static trapping field only. This

6
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FIG. 4. Particles observed still inside trap after a time-of-

flight period of 3ms, as a function of trap edge (microwave

frequency). The uncertainty is approximately ±1 standard

deviation across values observed at the same frequency. Back-

ground denotes what the average absorption number would be

if eq. (15) was applied to background data (no atoms)

is because according to eq. (16), σx and σy are both

proportional to
√
T , so that a smaller cloud is signature of

lower temperature. Here, the microwave signal is mixed

with a radio-frequency signal triggered precisely after the

compression phase of the cycle, and turns off immediately

before the cloud is allowed to expand for imaging.

IV. RESULTS

Evidenced in Figure 4, the microwave apparatus pos-

sessed more than sufficient power to transition atoms out

of the trap. As expected from our discussion of Zeeman

splitting, this effect increased as the microwave frequency

approached resonance with the magnetically perturbed

hyperfine energy levels from above, and then decreased

just before the 6.834GHz limit was reached. The latter

effect is expected, since the magnetic field is non-zero

(almost) everywhere, so that essentially all atoms would

have energies slightly shifted from the unperturbed hy-

perfine transition. Also, our results were too inaccurate

to determine with certainty if a stronger field produced

a sharper ‘critical’ frequency after which atoms are more

rapidly removed. On the other hand, as the absorption

number for the high power setup remained within error

of 0 for 6.836 − 6.837GHz, the low power setup already

FIG. 5. Efficacy of evaporative cooling for two linear 5s ramps

at various microwave amplitude levels. x̂-axis is simply the

attenuation when compared to the unmodified RF signal.

was too far detuned from resonant energies to remove the

majority of atoms with these frequencies, in agreement

with the amplitude dependence of transition probabilities

(i.e. the squared coefficients from eqs. (11a) and (11b)).

Before applying our apparatus to evaporative cooling,

a suitable frequency ramp should be determined with

consideration of the microwaves’ intensity, range, and

the duration of the ramp. As such, linear ramps at-

tenuated by controlling the amplitude of the mixed RF

signal to various strengths were tried, and plotted in

Figure 5. Because an evaporative cooler seeks to lower

the temperature of a sample rather than eliminate its

presence completely, it is inferred from the data that

average powers greater than -10dBm would leave no

sample behind after cooling. Next, ramp duration was

varied for a single frequency range and power, with the

results displayed in Figure 6. Clearly, only ramps lasting

between 2 and 6 seconds were long enough to remove any

atoms, while short enough to be well within the trap’s

lifetime. It is worth noting that, with all experiments

7



Christian Prosko (1353554) PHYS 499 - Final Report

FIG. 6. Efficacy of evaporative cooling for a single linear ramp,

spread over different ramp durations.

FIG. 7. The microwave frequency is lowered from frequencies

far detuned from 6.834GHz, displaying no loss of atoms.

Ramp Abs. Number N σxσy (m2)

None, 3.5s (6.9 ± 1.5) · 106 (3.5 ± 0.4) · 10−7

Linear,
(3.6 ± 1.6) · 106 (5.9 ± 2.2) · 10−7

6.857-6.837GHz

Exponential,
(6.1 ± 2.2) · 106 (3.8 ± 1.1) · 10−7

6.885-6.835GHz

TABLE I. Efficiency of cooling for linear ramps, and a ramp

with exponential decrease in frequency with respect to time.

Both above ramps lasted 3.5s. Data is averaged over 10 trials

for the first and last sweeps, and 5 trials for the second.

performed, uncertainty in the cloud size and absorption

number becomes very large for small values of these

quantities as a result of the breakdown of approximation

that the vapor’s density distribution is Gaussian.

Attempting evaporative cooling with different fre-

quency ranges and shapes of ramps suggested a critical

flaw in our experimental setup: the microwave ramps

consistently increased the cloud size, apparently heating

the atoms rather than cooling them. Some results are

presented in Table I, though many more ramps were

tested. Of course, it would be naive to assume that

the optimum microwave power and frequency change rate

should be the same at different frequencies, which is why

12 different ramps with step-wise exponentially decaying

frequency (at various powers) were tested in addition to

the 25 or so different linear ramps considered. The results

for the linear ramp in table I were typical of all linear

ramps attempted: All were able to effectively remove

atoms while leaving a small sample behind, though the

atomic vapor was heated in the process.

The exponentially decaying ramp is shown because it is

the only tested frequency sweep which at least maintained

a cloud size comparable to that of a pure magnetic trap

in the absence of microwaves, while still removing a

significant number of atoms. To be precise, this ramp

consisted of 500ms going from 6.885-6.855GHz, 500ms

from 6.855-6.845GHz, 500ms from 6.845-6.84GHz, and

finally 2s sweeping from 6.84-6.835GHz. The amplitude

of its RF-signal was set at each step to -10dBm, -15dBm,

-15dBm, and -20dBm, respectively. Its upper frequency

was determined by lowering the frequency from far above

ω0 until the absorption number slightly decreased (see

fig. 7).
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Unfortunately, none of these optimization efforts re-

vealed what was adding thermal energy to the system,

preventing evaporative cooling from being observed. It

is possible, however, that one source of heating is in-

terference of the unmixed microwave signal with the

trapped atoms. The microwave generator was set to

6.825GHz for the ramping experiments, a frequency that

may not have been detuned enough from 6.834GHz to

prevent interactions with the trap. Though the mixer

used weakens the unmixed signal, it still remained at

more than 50% percent of the mixed signal’s amplitude,

as measured by a frequency analyzer tapped into the

circuit through a directional coupler. On the other hand,

absorption numbers observed with the frequency ramp

turned off are in the same range as those with the ramp

turned on, but with a high cutoff frequency. If any atoms

were leaking through this possible ‘hole’ in the trap,

there were unmeasurably few. Nonetheless, colder atoms

are more likely to be located near the trap minimum,

where the 6.825GHz signal is least detuned from Zeeman

split energies. Thus, it is possible that a sort of reverse

evaporative cooling was occurring, with primarily the

coldest atoms escaping the trap through this interaction.

V. CONCLUSION

The intrinsically quantum mechanical effects of os-

cillating magnetic fields on atomic angular momentum

were demonstrated by utilizing microwaves to ‘flip’ 87Rb

atoms from magnetically trapped total angular momen-

tum states to untrapped states. These observations

are explained by weak-coupling perturbation theory of a

magnetic field with magnetic sublevels of the atoms. Un-

fortunately, an unforeseen heating mechanism prevented

the observation of evaporative cooling, although lowering

the frequency of the unmixed microwave signal could

remedy this.

Appendix A: Derivation of the Breit-Rabi Formula

If an alkali atom is in its fine structure ground state

such that L = 0, J = 1/2, and I = 3/2, the most complete

hydrogenic basis states are |mI ,mJ〉. Under these con-

ditions, the unperturbed Hamiltonian is effectively the

hyperfine coupling between electron and nuclear angular

momentum, for which |F,mF 〉 are eigenstates:

Ĥ = AÎ · Ĵ + (µ̂I + µ̂J) · ~B (A1)

where A is an energy constant for a given isotope and L

level. Using the standard ladder operators Q̂± ≡ Q̂x ±
iQ̂y, we may rewrite this as:

Ĥ = A(Îx + Îy + Îz) · (Ĵx + Ĵy + Ĵz) + µBB(gI Îz + gJ Ĵz)

= A

[
ÎzĴz +

(
Î+ + Î−

2

)(
Ĵ+ + Ĵ−

2

)

+
i

2
(Î− − Î+)

i

2
(Ĵ− − Ĵ+)

]
+ µBB(gI Îz + gJ Ĵz)

= A

[
ÎzĴz +

1

2
(Î+Ĵ− + Î−Ĵ+)

]
+ µBB(gI Îz + gJ Ĵz)

(A2)

In this system, mF is conserved such that mF = mI+mJ .

Any suspicion towards the seemingly classical treatment

of the dipole moment dot product with ~B is well founded,

as Î and Ĵ dipole moments are in general precessing about

the quantization axis in possibly different directions.

This is called ‘Larmor Precession,’ and its behaviour is

accounted for by the g-factors. Thus, we approximate the

perturbed energies by diagonalizing the Hamiltonian’s

matrix form in the |mJ = ±1/2,mI = mF ∓ 1/2〉 ≡ |±〉
basis. Its elements are calculated below for given mF :

〈±|Ĥ |±〉 = A 〈±| ÎzĴz |±〉

+
A

2

[
〈±| Î+Ĵ− |±〉+ 〈±| Î−Ĵ+ |±〉

]
+ µBB

[
gJ 〈±| Ĵz |±〉+ gI 〈±| Îz |±〉

]
= AmJmI +

A

2
[0 + 0] + µBB [gJmJ + gImI ]

= A(±1/2)(mF ∓ 1/2) + µBB

[
±1

2
gJ + (mF ∓

1

2
)gI

]
= −A

4
± AmF

2
+ µBBgImF ±

µBB

2
(gJ − gI) (A3)

We have used the the property that Q̂± |Q,mQ〉 =√
Q(Q+ 1)−mQ(mQ ± 1) |Q,mQ ± 1〉 returns 0 when

|mQ| would exceed Q as a result. No h̄ appears upon

taking inner products simply because it is contained in

the definitions of A and µB . Similarly, for 〈±| Ĥ |∓〉:

〈+| Ĥ |−〉 =
A

2

[
〈+| Î+Ĵ− |−〉+ 〈+| Î−Ĵ+ |−〉

]
=
A

2

[
0 +

√
(I +mF + 1/2)(I −mF + 1− 1/2)

×
√

(1/2 + 1/2)(1/2 − 1/2 + 1)
]

=
A

2

√
(I −mF + 1/2)(I +mF + 1/2)

=
A

2

√
(I + 1/2)2 −m2

F (A4)
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which is also the expression for 〈−| Ĥ |+〉 since Ĥ is

Hermitian. Thus, our Hamiltonian matrix has the form:

H =

(
〈+| Ĥ |+〉 〈+| Ĥ |−〉
〈−| Ĥ |+〉 〈−| Ĥ |−〉

)
=

(
a+ b c

c a− b

)
(A5)

Setting det(H − E) = 0 we find the eigenvalue equation

E2 − 2aE + a2 − b2 − c2 = 0, which may be solved using

the quadratic formula. This yields E = a±
√
b2 + c2 from

which the Breit-Rabi formula follows after some trivial

cancellations.

Appendix B: Rabi Flopping Matrix Elements

In this section, we calculate Ω for the |2, 2〉 → |1, 1〉
transition as an illustration of how similar matrix ele-

ments may be found. We may expand |F,mF 〉 states in

terms of |mI ,mS〉 states in the usual fashion, that is, by

introducing an identity operator
∑
|mI ,mS〉 〈mI ,mS | to

the right hand side:

|2, 2〉F = |3/2,
1/2〉 〈3/2,

1/2|2, 2〉F
= |3/2,

1/2〉 (B1)

|1, 1〉F = |3/2,−1/2〉 〈3/2,−1/2|1, 1〉F
+ |1/2,

1/2〉 〈1/2,
1/2|1, 1〉F

=

√
3

4
|3/2,−1/2〉 −

1

2
|1/2,

1/2〉 (B2)

where an F subscript denotes the |F,mF 〉 basis, and

|mI ,mS〉 is implied otherwise. Inner products in the

above equations are Clebsch-Gordan coefficients [5, p.

188], which are zero when mF 6= mI + mS , hence there

only being one or two terms in each expansion. Next, we

note that to calculate Îx |mI〉 or Ŝx |mS〉, we must use the

property that Q̂x = 1
2 (Q̂+ + Q̂−), recalling the properties

of Q̂± as mentioned in appendix A:

Ω =
µBB

mw

2h̄
〈3/2,

1/2|
[
gI(Î+ + Î−) + gS(Ŝ+ + Ŝ−)

]
×

[√
3

4
|3/2,−1/2〉 −

1

2
|1/2,

1/2〉

]

=
µBB

mw

2h̄

√
3

2
(gS − gI) (B3)

≈ (7.62853 · 1010Hz/T)µBB
mw (B4)

We have used the values gS ≈ 2.00319, gI ≈ −0.000995.

Most of the terms in the above calculation cancel

by the orthonormality relation 〈mI ,mS |m′I ,m′S〉 =

δmI ,m′
I
δmS ,m′

S
.
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