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In order to interface a cloud of ultracold rubidium atoms with a nanomechanical device, the cloud
needs to be transported a macroscopic distance of approximately 30cm. To do this, we make use
of focus-tunable lenses from Optotune to electronically control the focus of an infrared laser with
wavelenth of 1064nm. The focus of the laser creates a red-detuned dipole trap for the atoms. The
heating of the transport is modelled in the non-adiabatic regime to ensure that the cold gas cloud
does not escape from the trap during transport. The current system’s trap depth is on the shallow
side, consequence of a waist that is slight too large. Replacing lens 1 with a smaller focal length
lens should fix the problem.

I. INTRODUCTION

In the last two decades, laser cooling and trapping of
neutral and charged atoms has opened up a new and ex-
citing region of physics that was previously inaccessible.
Recent years have seen increasing use of optical trap-
ping and cooling methods to create and control ultracold
quantum gases, with trap depths in the microkelvin re-
gion. As experimental setups continue to advance, it is
obvious that the ability to efficiently transport a cloud of
cold atoms over macroscopic distances becomes crucial.

This particular experiment aims to interface ultracold
atoms with nanomechanical devices - a hybridization that
takes advantage of the cold atoms’ ability to store quan-
tum information, and the nanomechanical resonator’s
ability to communicate said information. The aim is
accomplished by magnetically coupling the spin of the
ultracold atoms with a time-dependent magnetic field -
generated through a permanent magnetic film - on the
nanomechanical resonator (See Figure 1). Given that the
atoms are close enough to the resonator, and the energy
difference between spin states matches that of the oscil-
lating magnetic field, the motion of the oscillator is then
coupled to the spin states of the ultracold atoms. This

FIG. 1: Schematic of the atom-chip design for hybridiz-
ing a cloud of ultracold atoms with a nanomechanical res-
onator.(Credit: E. Saglamyurek, L. Leblanc.)
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FIG. 2: Hybrid quantum system apparatus. 87Rb atoms are
cooled to microKelvin temperatures with a 3D MOT in the
3D MOT chamber. Atoms are then transferred using the
optical transport system to the Science chamber where they
are hybridized with nanodevices. The load lock and mag-
netic transfer arm are used to exchange nanodevices rapidly.
(Credit: E. Saglamyurek, L. Leblanc.)

allows for transfer of information between the resonator
and the atoms.[2],[3]

Transport is a necessity for a few reasons, the simplest
of which is spatial considerations: the hybridization site
needs to interface with external systems, and the infras-
tructure required for cooling atoms are quite sizeable,
which results in a conflict of space. Secondly, the state
of the ultra high vacuum between the 3D MOT chamber
and the Science chamber needs to be different (see Figure
2). Magneto-optical trapping works collects 87Rb atoms
as they wander into the trapping region, which neces-
sarily includes an ambient background of freely moving
atoms. This background cannot be present in the Sci-
ence chamber, as it would interfere with the interaction
between the nanomechanical device and the gas cloud.
We remove this background by connecting the two cham-
bers with a thin, long tube. Using optical transport, the
atomic gas cloud can be directed to the science chamber.
However, ambient rubidium atoms with a randomized
velocity vectors are less likely to be able to make the
journey.

Transport can be done in a variety of different ways,
each with their advantages and drawbacks. Magnetic
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FIG. 3: Diagram of Optotune electrical lens EL-10-
30. The lens shaper ring pushes down on the mem-
brane, increasing pressure with current. This pumps liq-
uid into the center of the lens and focuses the light.
(www.optotune.com/technology/focus-tunable-lenses)

traps have been shown to be successful. However, their
implementation involves moving coils or installing a chain
of coils,[4] which are spatially exhaustive and cumbersome
in our set up. Optical lattices can be slightly detuned
in order form a propagating standing wave.[6] However,
this technique is limited in its range due to its weak ra-
dial confinement, and is therefore incompatible with our
experimental apparatus . Optical tweezers is a technique
that gives a very tight trap, and the transport is achieved
by mounting the focusing lens on a horizontal translation
stage.[5] However, it has the weakness of transferring me-
chanical vibrations from the movement of the stage to
the atomic gas cloud. In order to eliminate this problem,
we instead move the focus of the laser thorough the use
of focus-tunable lenses. These lenses from the company
Optotune feature optical fluids sealed inside a polymer
membrane. A circular ring that pushes onto the cen-
ter of the membrane is able to change the shape of the
lens, and by extension, its focal length. The degree to
which the focal length is changed is related to the cur-
rent applied. Using these lenses eliminates the need for
a translation stage, and the possibility of disrupting the
quantum gas cloud with vibrations.[1]

We outline three major pieces of theory required to
achieve optical transport:

1. Creating an two dimensional optical trap using a
red-detuned dipole trap.

2. Understanding the movement of the trap through
gaussian beam propagation theory.

3. Optimizing non-adiabatic transport in order to
minimize heating the atomic system and loss of
atoms.

In step with understanding theory, we will also need to
develop the physical system. The experimental aspects
requried are:

1. Building the optical set up for optical transport.

2. Developing LabView code to control focus tunable
lenses from Optotune.

3. Measure actual rates of heating inside the trap.

To accomplish this, we make use of an 11W infrared laser
with 1064nm wavelength. This is the laser that will be
used to create the optical dipole trap for the cloud. To
create the trap, the laser is sent through a series of three
lenses. Two of these lenses are from the company Opto-
tune, and their focal length can be tuned through the ap-
plication of a current. Manipulating these focal lengths
will be the basis of optical transport. Lastly, we make
use of kinetic theory to model heating within the trap.
The system will be controlled through a LabView pro-
gram that we develop. Unfortunately, we do not cur-
rently have any rubidium atoms to trap, so we cannot
make real measurements of heating.

II. TRAPPING

Red-detuned optical dipole trapping can be under-
stood from the perspective of both classical and quantum
mechanics. In classical mechanics, electrons on the atom
can be modelled as a negative charge of mass me on the
end of the spring. The laser light is an oscillating elec-

tric field ~E of frequency ω, and so the system is merely
a driven-damped-harmonic oscillator. The potential en-
ergy in this case is given by

Udip(~r) = −1

2
〈~p · ~E〉 = − 1

2εoc
Re(α)I(~r) (1)

where~p is the dipole moment, I(~r) is the intensity profile,
and α is the atomic polarizability. The speed of light is
c, and εo is the permittivity of free space as usual. We
can find α by solving the following.

−e~x = ~p = α~E (2)

where ~x is given by the equation of motion. The damping
constant

Γω = e2ω2/(6πεomec
3) (3)

is given by Larmor’s formula for the radiative energy loss
of an accelerated charge, ωo is the natural resonance of

the system, and ~E(t) denotes the time dependent driving
electric field. From Newton’s second law, we find

~̈x+ Γω~̇x+ ω2
o~x =

−e ~E(t)

me
(4)

Solving this gives α as a function of Γω. If we define the
damping constant on resonance as Γ = (ωo/ω)2Γω, the
the atomic polarizability is

α = 6πεoc
3 Γ/ω2

o

ω2
o − ω2 − i(ω3/ω2

o)Γ

Re(α) = 6πεoc
3 Γ(1− (ω/ωo)

2)

(ω2
o − ω2)2 + (ω3Γ/ωo)2

(5)

For red detuned traps, ωo > ω, and Re(α) > 0, so then
Udip < 0, and we have a trap. Physically, this means
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FIG. 4: Two-level atom model of optical dipole trapping.
Left: Red detuned like shifts ground state energy down and
excited state energy up, allowing a trap to be formed for
atoms in the ground state. Right: Trap depth varies with
light intensity. Trap produced from a laser beam with a gaus-
sian intensity profile at the focus. (Figure from R.Grimm.

2000[7])

that the atom is being driven in phase with the electric
field, resulting in a lower energy configuration. Should
the trap be blue detuned, then the electrons would be
out of phase with the electric field, resulting in a higher
energy configuration.

In semi-classical quantum mechanics, we assume a two
level model and apply perturbation theory, as seen in
Figure 4. Detuning is given by the difference between
the driving frequency of the laser and the resonance fre-
quency of the atom δ = ω−ωo. The resonance is defined
for the ground to excited state transition, wo = we−wg.
Since the laser wavelength is so far detuned from atomic
resonance, we can rightly ignore saturation effects. (That
is, the excited level remains mostly empty, and most
atoms remain in their ground state.) In doing so we
can produce the same atomic polarizability, but Γ, rather
than being the damping constant, is the spontaneous
emission rate, and can be observed through the line width
of the transition. For the ground state transition of 87Rb,
this value is given by the matrix element |〈φe|~r|φg〉|,
which is a measure of the wavefunction overlap of ground
and excited states.

Γ =
ω3
o

3πεoh̄c3
|〈φe|~r|φg〉|2

= 2π(6.065MHz)

(6)

Using this definition, the strength of the trap is then
(with spatially depending intensity),

∆E(~r) = U(~r) =
3πc2Γ

2ω3
oδ

I(~r) (7)

Before we move on, we must consider a competing mech-
anism, that is the scattering rate Γρ. Although the light
contributes no net momentum over time, it does still heat
the system and has the potential to knock atoms out of
a shallow trap. The scattering rate is given by

Γρ =
3πc2

2h̄ω3
o

Γ2

δ2
I(~r) (8)

FIG. 5: Intensity profile of a laser going through a focus.
The waist of the laser W is defined at the point where the
intensity is I(W ) = Io/e. The Rayleigh length is defined as
the distance between the two points where the W =

√
2Wo,

where Wo is the waist of the laser at the focus.

From Eq. 7 and Eq. 8, we see that for large detuning δ,
the scattering rate decreases faster than the trap becomes
shallow, so the trapping mechanism “wins out” over the
heating, and in the steady state solution we have a cloud
of trapped atoms.

From Eq. 7, we also see that the trap would be deepest
at the point with the highest intensity: this is at the focus
of the laser. In reality, laser beams do not focus to an
infinitesimal point, instead the spot size of a laser at the
focus is determined by a quantity called the waist. A
picture definition of the waist and the Rayleigh range is
shown in Figure 5. The waist in general can be related
to the waist and the focus through the Rayleigh range,
zR = πW 2

o /λ.

W (z) = Wo

√
1 +

z2

z2R
(9)

Using these definitions, the shape of the trap is given by

U(~r, z) =
3πc2Γ

2ω3
oδ

2P

πW (z)2
e
−2r2

W (z)2

= Uoe
−2r2

W (z)2

(10)

The model of this trap is shown in Figure 6 (left). It
is important to note that the trapping in the radial di-
rection is much tighter than trapping in the propagation
direction z, and so the trap is in the shape of an oblong
cigar. For small oscillations at low energies, the trap can
be approximated as an anisotropic two dimensional har-
monic oscillator (Figure 6 (right)).

U(~r, z) = Uo −
1

2
mω2

rr
2 − 1

2
mω2

zz
2 (11)

where ωr =
√

4Uo/mW 2
o , and ωz =

√
2Uo/mz2R. The

trapping model for a 10W laser at a wavelength of
1064nm. From literature, we expect a waist of Wo =
50µm at the focus. [1]. These parameters give ωr =
(2π)(1.13 × 103Hz) and ωz = (2π)(5.40Hz). The depth
of the trap for the same parameters is Uo/kB = 328µK.
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FIG. 6: Left: Optical trap for 87Rb, with a resonant wave-
length of 780.24nm. This model is based on specs of a 10W
laser with wavelength 1064nm. Right: Harmonic oscillator
approximation for the optical trap.

III. GAUSSIAN BEAM PROPAGATION

The intensity profile of the laser beam is not uniform
across its intersection; the intensity is modulated and de-
creases steadily form the center to the edges. This is due
to the diffraction of light as it propagates through free
space. Most lasers adopt the gaussian intensity profile,
which is its fundamental mode (TEM00). This mode is
particularly important as it gives tightest focus when the
beam is passed through a lens.

The setup aims to move the trap at a constant waist,
and this has been done before.[1] Following the general
schematic of the set up from Leonard et al. (Figure 7),
we double check the calculations with ABCD beam prop-
agation matrices.

We begin with a collimated beam, defined by the com-
plex beam parameter qi as determined by the input waist

FIG. 7: Set up of optical transport using 2 tunable focus
lenses. Top: Transport and constant waist using one focus
tunable lens. Bottom: Transport with independent control
over the waist and position using two focus tunable lenses.
Figure from Leonard et al.,2014.

and the frequency (in the Rayleigh range), as well as the
radius of curvature of the beam wavefronts R:

1

qi
=

1

Ri
− i

zRi
(12)

Since the input beam is collimated, R =∞, so the com-
plex beam parameter is purely imaginary. Our ABCD
matrix, [Msys] is computed from multiplying lens matri-
ces and free space propagation matrices, according to the
order in which our beam encounters them.

Thin lens matrix: = [M`,i] =

(
1 0
− 1
fi

1

)
Free space: = [Mp,i] =

(
1 di
0 1

)
System matrix: = [Msys] =

(
A B
C D

) (13)

In our system,

[Msys] = [Mp,3][M`,3][Mp,2][M`,2][Mp,1][M`,1] (14)

FIG. 8: Top: Initial trap position, with the focus-tunable lens
(middle lens) set at a focal length of 100mm. Bottom: Final
trap position, with the focus-tunable lens set at a focal length
of 250mm. The other two lenses are fixed, with focal lengths
of 180mm (left) and 300mm (right). Note that the waist is
constant.
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The outgoing beam is then defined by

1

qf
=
C +D/qi
A+B/qi

=
1

Rf
− i

zRf
(15)

Where we can extract the beam waist from the
Rayleigh range in the imaginary component. By vary-
ing the distance propagated, we can trace out the waist
at each step. One possible arrangement is shown in Fig-
ure 8, using numbers that come from characterization of
the laser beam and the Optotune lenses. The size of the
waist at the focus is linearly related to the input waist
size by,

Wo =
fλ

πWin
(16)

We can use this property to characterize the transport of
the system. In addition, the waist at the focus is inversely
proportional to the input waist – which makes sense, the
more spatial frequencies input into the system, the bet-
ter the position of the focus will be defined. Therefore,
having a large input beam size will give a tighter trap.

In the model given by Figure 8, we used input param-
eters measured from the laser and specifications of the
Optotune lenses. The input waist size is W = 1748µm,
lens 1 was held at I = 290mA, which corresponds to a
focal length of f1 = 180mm. Lens 2 was tuned with fo-
cal lengths 120mm − 250mm, and lens 3 is fixed, with
a focal length of 300mm. Output parameters shows a
total transport of 39cm at a waist of 171.06µm. 39cm
is more transport distance than we need, which is great,
but the waist size is larger than we’d like, which would
compromise the trap depth we had originally envisioned.
The waist size is not close to the aperture of the lenses
at any point, so we do not expect any clipping.

IV. NON-ADIABATIC TRANSPORT

In order to transport the atoms without “spilling”
them from the trap, we study the heating of atoms in-
duced by movement of the trap. In order to move the
atoms adiabatically, we need to transport them over a
time duration that is much larger than their natural os-
cillation period. Since transport is done along the z axis,
we will focus the harmonic trap in the z dimension. Pre-
viously, we modelled the natural oscillation frequency of
the trap along z to be ωz = 33.9 rads . This gives an
oscillation period of T = 2π/ωz = 0.185s. To ensure
the adiabatic regime, we need a duration approximately
a thousand times that of the natural oscillation period,
which gives 185s, just a little more than 3 minutes. Mea-
surements of quantum gas clouds in cold atom experi-
ments are done using destructive absorption or fluores-
cence imaging, so the sample needs to be prepared many
times for a single data set. Three minutes is longer than
we would like to wait in the experiment for the trans-
portation of atoms, given the necessary high repetition

FIG. 9: Normalized distribution of thermalized distinguish-
able particles in an harmonic trap.

rate, so we do not have the luxury of using the adiabatic
regime.

More importantly, the population of atoms inside the
trap are given by

N = Noe
−t/τ (17)

The atoms in the trap are continually being lost to the
surroundings due to background collisions, and possess
an average life time of τ ' 60s before being kicked out of
the trap. Therefore, in order to maintain a large popula-
tion of atoms with which to experiment, transport time
must be shortened.

We begin with a simple model by assuming the par-
ticles in the trap are distinguishable thermal particles
governed by the Boltzmann distribution. In this regime,
the number of particles is given by

N =
1

h3

∫
d3~pd3~re−

~H(~r,~p)/kBT (18)

For our system, the Hamiltonian is a harmonic oscillator
with m = mRb,

~H =
p2

2m
+

1

2
mω2

zz
2 +

1

2
mω2

r(x2 + y2) (19)

which gives a total number of particles given by

N =

(
kBT

h̄

)3
1

ωzω2
r

(20)

Then the density of particles in position space is simply
the integral over momentum. For a harmonic oscillator
potential, this distribution has the shape of a gaussian,
as seen in Figure 9 and Equation 21.

n(~r) =

(
mkBT

2πh̄2

) 3
2

e
−m(ω2

zz2+ω2
r(x2+y2))

2kBT (21)

The average value of position 〈r〉 is zero in a symmetric
potential like this, so we relate thermodynamic quantities
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to 〈r2〉. We add the normalization factor N to get

〈r2〉 =
1

N

∫ ∞
−∞

(x2 + y2 + z2)e
−m(ω2

zz2+ω2
r(x2+y2))

2kBT dxdydz

=
kBT

m

(
1

ω2
z

+
2

ω2
r

)
(22)

The value 〈r2〉 is measured from the oscillation ampli-
tude of the distribution in the trap after transport. Since
we are only transporting in one dimension, and the in-
ternal collisions of the particles do not change the overall
energy of the system. Therefore, we can just measure the
oscillation amplitude of the center of mass. Furthermore,
if we are only looking for the change in temperature, we
only need to look at ∆〈z2〉.

〈∆z2〉 =
kB∆T

mω2
z

∆T =
mω2

z〈z2〉
kB

(23)

To do this, we need to study the force exerted on the
atoms from the movement of the trap, and solve the sub-
sequent equation of motion for ~z(t).The movement of the
trap can be viewed as a fictitious force applied on the
atoms in the non-inertial reference frame that moves with
the center of the trap. Then by Newton’s second law, the
equation of motion is

mz̈(t) = mz̈c(t)−mω2
zz(t)

z̈(t) + ω2
zz(t) = z̈c(t)

(24)

where z̈c(t) is the acceleration profile of the trap, and z(t)
is the motion of particles within the trap in the frame
moving with the centre of trapping potential. This is
an inhomogeneous 2nd order differential equation with
homogeneous solutions

z(t) = A cos(ωzt) +B sin(ωz(t)) (25)

Using the boundary conditions x(0) = 0, we stick with
the solution involving sines and write it in terms of ex-
ponentials, which gives

z(t) =
B

2i
(eiwt − e−iωzt) (26)

We then solve the inhomogeneous equation by using the
method of variation of parameters. Hypothesizing the
particular solution

zp(t) =
B

2i
(u1(t)eiωzt − u2(t)e−iωzt) (27)

Plugging this solution back into Eq. 24 gives

u1(t) =
1

Bωz

∫ t

0

z̈c(t)e
−iωzt

′
dt′ + c1

u2(t) =
1

Bωz

∫ t

0

z̈c(t)e
iωzt

′
dt′ + c2

(28)

The particular solution is then (absorbing B into the def-
inition of u1 and u2),

zp(t) =
1

ωz

∫ t

0

z̈c(t
′) sin(ωz(t− t′))dt′ (29)

Up until this time we have assumed that the accelera-
tion profile is defined for some duration 0 ≤ t ≤ tf , and
zero otherwise. In order to proceed, we must make some
further assumptions.

1. The acceleration profile is antisymmetric, or odd.

(a) Taking advantage of this, we perform a time

domain shift from 0 ≤ t ≤ tf → − tf2 ≤ t ≤
tf
2 .

2. The initial and final velocities of the trap are zero.
(żc(

−tf
2 ) = żc(

tf
2 ) = 0)

Under these assumptions, the particular solution can be
written as

zp(t) =
1

ωz

∫ tf
2

−
tf
2

z̈c(t
′) sin(ωz(t− t′))dt′

=

∫ tf
2

−
tf
2

żc(t
′) cos(ωz(t− t′))dt′

(30)

Where we use integration by parts and boundary condi-
tions to set the boundary term to zero. Next we expand
cosine and factor out the t dependence in the exponen-
tials, which gives

zp(t) =
1

2

(
eiωzt

∫ tf
2

−
tf
2

żc(t
′)e−iωzt

′
dt′

+ e−iωzt

∫ tf
2

−
tf
2

żc(t
′)eiωzt

′
dt′
) (31)

Since z̈p(t) is antisymmetric, żp(t) is symmetric, so the
two integrals are actually identical and can be factored
out. Which gives the particular solution

zp(t) =
1

2

(
eiωzt + e−iωzt

) ∫ tf
2

−
tf
2

żc(t
′)e−iωzt

′
dt′

= cos(ωzt)F[żc(t)]

(32)

The oscillatory part of the motion is given by cos(ωzt),
and the amplitude is given by the integral, which we rec-
ognize as the Fourier transform of the velocity profile at
ωz. To model the temperature of atoms inside the trap
then, we need to specify a trap profile that satisfies our
assumptions. Following previous work by Couvert et al.,
we decide to model the position profile of the trap using
an error function, see Figure 10. The position, velocity,
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FIG. 10: Transportation profile of the trap. Left: Position
profile defined by the error function. Middle: Velocity profile
in the shape of a gaussian. Right: Antisymmetric acceleration
profile.

and acceleration profiles of the trap are as follows:

zc(t) =
|Ff − Fi|

2

[
erf

(
6t

tf

)
+ 1

]
+ Fi

żc(t) =
6√
π

|Ff − Fi|
tf

e
−9( 2t

tf
)2

z̈c(t) =
6√
π

|Ff − Fi|
tf

e
−9( 2t

tf
)2
(
−72t

t2f

) (33)

where Fi and Ff are the initial and final positions of the
trap. The Fourier transform of this velocity profile is
given by

A = |Ff − Fi|e−
(ωztf )2

12 (34)

The temperature change of the system is then

∆T =
mω2

zA
2

2kB
(35)

As a function of tf , both the temperature and oscilla-
tion amplitude is a gaussian, as shown in Figure 11. As
we can see for short wait times of tf ≤ 0.6s, the atoms
will easily be spilt from the trap. However, the tempera-
ture increase decreases dramatically as a function of wait
time thanks to the suppression of the exponential term.
Zooming in on the area of interest, we see that for dura-
tions longer than 0.6s, we are well below the approximate
trap depth.

V. SET UP CHARACTERIZATION

The following section goes through some basic charac-
terization of the setup, beginning with the spot size. As
mentioned earlier, a larger incoming beam (larger waist)
will result in a tighter trap. The spot size of the laser is
shown in Figure 12. It can be seen that the spot is slightly
elliptical in shape, with slight amounts of clipping in the
x-axis. This will likely be remedied with more careful
alignment. Nevertheless, we calculate the average waist
to be

Wave =
1

2
(Wx +Wy) = 1748µm (36)

FIG. 11: Temperature of atoms in the trap, with δt set close
to the natural resonance of the trap. Inset: Temperature and
amplitude profile at 0.6 ≤ tf ≤ 1. The green line is the
approximate trap depth.

Which gives a waist-at-focus of

Wo = 171µm (37)

This is close to the 50µm that we assumed for our
models, and exceeds our expectations, which would make
our model even better.

The transport system is composed of two focus tunable
lenses from Optotune and one fixed focus lens. Of the
tunable focus lenses, TF1 has a long focal range and will
be used to adjust waist. In the tightest configuration, we
keep TF1 at a focal length of approximately 18.2cm, at a
current of 290mA. The characterization of TF1 is shown
in Figure 13. This function is best fitted by a quadratic

FIG. 12: Spot characterization of the 1064nm laser. Here the
laser power is held at 0.1W . Inset: Picture of the spot as
taken by the Thorlabs beam profiler.
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function, which is given by

F = 0.0016
cm

mA2 I
2 − 0.9115

cm

mA
I + 152.65cm (38)

The waist as a function of the focus can be fitted with
Equation 16, which gives an input waist of 1350±40µm.
Similarly, the current-to-focus relationship for TF2 is
shown in Figure 14. Its relationship is fitted by a
quadratic equation. (Although the Optotune manual
shows a linear relationship between current and focus,
we found a quadratic to give a better fit.)

F = 0.0002
cm

mA2 I
2 − 0.109

cm

mA
I + 24.6cm (39)

Again the input waist is fitted to be 1610 ± 50µm. Av-
eraging the two fitted waists and comparing them to the
measured waist, we find a percent difference of

%Difference =
|Expected−Measured|

Expected
× 100

=
|1748µm− 1540µm|

1748µm
× 100 = 11.9%

(40)

We attribute this difference of waists to the slight di-
vergence of the laser beam, which would result in a differ-
ent spot size and waist measurement between the point
where the spot profile was taken, and the point where it
passes through the lens.

Having characterized each of the lenses, we construct
the system and look at the combined change in trap po-
sition as a function of current applied to TF2. Here we

FIG. 13: Focus as a function of current applied for the first
tunable focus lens, TF1. The waist at the focus is calculated
and fitted to check the input waist.

FIG. 14: Focus as a function of current applied for the second
tunable focus lens, TF2. The waist at the focus is calculated
and fitted to check the input waist.

FIG. 15: Focus as a function of current applied to the second
tunable focus lens, for the transport system of three lenses.
TF1 is held at a current of 290mA. The current for TF2 is
manipulated to change the position of the waist. The size of
the waist is predicted to be constant.

keep TF1 at 290mA, which corresponds approximately
to a focal length of (18.2± 0.5)cm. Lens 3 is fixed with a
focal length of 30cm. Surprisingly, unlike the characteri-
zation of single lenses, the focus of the transport system
corresponds linearly to current, as can be seen in the top
graph of Figure 15. The equation describing this is given
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by

Fsys = −0.23
cm

mA
I + 92.95cm (41)

The waist of the system is predicted to be constant, and
we can see in the bottom graph of Figure 15 that this is
true within error. The waist is measured to be

Wo = (135± 5)µm (42)

As the focal lengths are long in these measurements, the
accompanying error is large. However, our system op-
erates within parameters necessary for the transporta-
tion of atoms, and is actually better than the modelled
171µm. Nevertheless, a waist of 135µm gives a trap
depth of 30µK (laser power dependent), and we would
ideally like a trap depth of at least 50µK. Our compu-
tational model shows that using a shortening the focal
length of lens 1 from 18cm to 10cm will accomplish give
a waist of 115µm, which gives a trap depth of 62µK.

There is yet another complication. Despite our efforts,
the transport will never be infinitely smooth. Time steps
and current settings are discrete, so the velocity profile
is not a perfect gaussian. The limit of the step sizes
are limited by the communication time between the lens
controller and the lens, our rudimentary Labview code
sets this at 100ms currently, but obviously the shorter
we make this, the smoother transport will be.

In order to account for the finite step size, we make
use of Matlab’s numerical FFT function to compute the
Fourier transform of a non-smooth function. The results
are shown in Figure 16. For time step dt = 80ms, the
velocity profile is quite jagged, and gets smoother as the
total duration increases. We can see that the tempera-
ture profile of the jagged velocity profile is indeed higher
than the infinitely smooth analytical solution; however,
we are still able to keep well within the limits of the trap,
so there is no significant cause for concern.

FIG. 16: Numerical FFT amplitude versus the infinitely
smooth analytical solution. The two are similar enough to
not be cause for significant concern. Inset: Velocity profile
used in the numerical FFT.

VI. FUTURE WORK

This project has been a small but instrumental piece
of the larger hybridization project. As of now there are
still a few pieces remaining before transport is possible.

LabView code has been developed to control the lenses
TF1 and TF2 separately. In order to facilitate timing
of the current change, it would be best if both lenses
were controlled from the same LabView VI. In addition,
the current LabView code has a communication time cap
of approximately 500ms, which is a little too long of a
time step. (Model computed using 80ms time steps in
Figure 16). Ideally this would be as short as possible for
smooth transport. Heating of the system also needs to
be characterized, once the atoms come in.

VII. CONCLUSION

For this 499 project, I undertook the task to transfer
ultracold atoms a distance of approximately 30cm from
the 3D MOT chamber to the hybridization science cham-
ber. This transport is to be a part of the experiment
that couples ultracold atomic clouds to nanomechanical
devices in order to study quantum information storage
and communication.

To do this, an optical dipole red-detuned trap was cre-
ated using a 10W infrared laser with 1064nm. This type
of trap is well known and can be understood using both
classical mechanics of a damped driven oscillator as well
as the semi-classical model of a two-level atom.

Translation of the trap, which is located at the focus
of the laser, is done using focus tunable lenses from Op-
totune. This idea is based on a paper by Leonard et al.,
and has advantages of spatial efficiency and vibration iso-
lation over some other techniques that exist. We success-
fully modeled the movement of the trap using gaussian
beam propagation matrices and created the setup using a
cage system from Thorlabs. Preliminary LabView code
was developed for controlling the lenses, but could be
improved upon.

We used kinetic theory to determine the change tem-
perature of atoms as the trap propagates. We found
that in order to minimize heating, the amplitude of resid-
ual oscillations (oscillations of the cloud after transport)
must be small. This amplitude is the Fourier transform
of the velocity profile. For a gaussian velocity profile (po-
sition modeled by an error function), heating inside the
trap could be reduced to a manageable level.

Lastly, we designed the set up and characterized the
system. This includes current to focus relationships for
TF1 and TF2, as well as spot size measurements and
waist-at-focus measurements. A summary of results is
shown below.

Spot size:

Win = (1540± 50)µm (43)
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TF1 Current-to-focus equation:

F = 0.0016
cm

mA2 I
2 − 0.9115

cm

mA
I + 152.65cm (44)

TF2 Current-to-focus equation:

F = 0.0002
cm

mA2 I
2 − 0.109

cm

mA
I + 24.6cm (45)

System Current-to-focus equation:

Fsys = −0.23
cm

mA
I + 92.95cm (46)

Waist at focus:

Wo = (135± 5)µm (47)
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