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The realization of spin-orbit coupled systems by way of laser-induced Raman transitions in ul-
tracold atoms gives an invaluable approach to simulate quantum many body physics. In order to
realize such phenomena in the lab, these systems must be coherent. We create a negative feedback
phase stabilization interferometer in order to achieve coherence between two beams for use in spin-
orbit coupling experiments. We utilize a 790nm Ti:Sapphire laser, acousto-optic modulators, and
a Newport LB1005 proportional-integral servo controller. We test the stabilization under various
conditions.

I. INTRODUCTION

Environments of ultracold atoms experiments are
precisely engineered and parameters of the systems
are known exactly. The unique nature of these types
of experiments enable physics impossible in any other
setting. A popular technique in ultracold atoms ex-
periments involves using two or more laser beams to
manipulate the potential energy landscape encoun-
tered by atoms via Raman transitions that change
the atoms’ internal atomic ‘spin’ [1]. Focused on the
atoms, the two counter-propagating laser beams of
slightly different energy allow us to establish these
two-photon transitions between Zeeman energy levels.
This leads to a phenomenon called spin-orbit coupling [2].

To obtain interesting potentials arising from spin-orbit
coupling, the energy difference between the two beams
must correspond to the energy difference between the
states of interest, and in order to retain coherence in the
quantum system the phase between the two beams must
be well stabilized [1, 2]. In this paper we discuss a neg-
ative feedback phase stabilization interferometer system
created in order to meet the latter demand and test the
limits of the stability thereafter.

II. BACKGROUND

Some background is unavoidable in order to under-
stand how our system will be utilized in future cold atoms
experiments. In conventional systems, spin-orbit cou-
pling is a relativistic effect in which an electrons’ intrinsic
angular momentum L due to its orbit around the nucleus
is linked with its spin angular momentum S about its own
axis. As an electron is a charged particle, these values
are associated with magnetic moments µS = −µBgsS/~
and µL = −µBglL/~, respectively, where µB is the Bohr
magneton and gs and gl are called g-factors [4]. The ef-
fect is most easily understood in terms of the interaction
between an electron’s spin magnetic moment µS and the
external magnetic field created by the orbiting nucleus
(in the electrons frame of reference). Electrodynamics
tells us a rotating, electrically charged body creates a
magnetic dipole, meaning the electron acts like a tiny

bar magnet with associated magnetic moment µS about
its own axis. If we consider a frame in which the electron
is stationary, the electron will see the nucleus of the atom
orbiting about it. The orbiting nucleus creates an exter-
nal magnetic field which exerts a torque on µS , acting to
align it with the field. The Hamiltonian for this interac-
tion is H = −µS ·B, with B being the magnetic field of
the nucleus. It is easy to show that this magnetic field is
proportional to L as B ∼ −v × E ∼ r× v ∼ r× p ∼ L.
The interaction energy, then, depends on the relative ori-
entation of µS and µL with respect to one another. Ac-
counting for the electron’s stationary frame being non-
inertial, we arrive at the total spin-orbit interaction [4]:
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where Z is the total charge in the nucleus. Because of the
momentum dependent interaction energy, the alignment
of µS depends on the electron’s velocity as p = mev.
This is a symmetry-breaker; in the presence of spin-orbit
coupling, the Hamiltonian no longer commutes with L
or S. This in turn creates a splitting of the energy levels
of the atom — along with a relativistic correction this
amounts to what is called fine structure splitting.

  

FIG. 1: Two-photon Raman process between Zeeman states
labeled “spin-up” |↑〉 and “spin-down” |↓〉. The figure depicts the

process corresponding to absorption of ω1 from the right, first,
but also happens in reverse order from the left. The two green
arrows represent momentum kicks from processes 1O and 2O of

magnitude ~ω1/c and ~ω2/c, respectively.

In order to achieve this phenomenon in the laboratory
we utilize Raman transitions between states using two
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counter-propagating laser beams whose frequencies, ω1

and ω2, are set to resonate with the transition from one
energy level to the other. We’re able to create these en-
ergy levels by applying an external magnetic field to the
atoms. Applying this magnetic field to the atoms adds
another term to the Hamiltonian, HZ = −µ · B, where
µ = µS + µL and B is the external magnetic field [3].
This splitting of hyperfine energy states is called the Zee-
man effect, named after the Dutch physicist Pieter Zee-
man. The energy difference between two Zeeman states
with an applied magnetic field is given by

∆E = gFmFµBB,

where gF is called the Landé g-factor1 and mF is a quan-
tum number describing the total angular momentum [4].
We’re able to set ∆E by choosing an appropriate mag-
netic field; we want to make ∆E large enough that we
can distinguish between the two states, but small enough
that the corresponding magnetic field can be easily cre-
ated in the lab. For example, using gF = 1/2 for the
87Rb atoms commonly used in the lab, mF = 1, and a
5 G ∼ 0.0005 T magnetic field, the energy between Zee-
man states is ∆E ' 2.3× 10−27 J. This implies the fre-
quency separation of our beams for this scenario should
be δω/2π = (ω1 − ω2)/2π = ∆E/~ ' 3.5 MHz. Once we
match the beams to this energy difference specified by a
reasonably attainable magnetic field we get resonant Ra-
man transitions. The resonance involves the atom con-
tinuously absorbing photons from one beam and emitting
them into the other. If we follow the process portrayed in
fig. 1, the atom first absorbs a photon from ω1 with just
the right frequency and is therefore excited. Because the
energy of the absorbed photon corresponds to the transi-
tion from the “|↑〉” state, this state receives a momentum
kick to the left. The beam propagating from the left, ω2,
de-excites the atom to the other Zeeman level emitting
two identical photons of the same frequency to the right
by way of stimulated emission. The |↑〉 state receives an-
other momentum kick to the left. The same process hap-
pens in reverse to the |↓〉 state: absorption from ω2 and
stimulated emission into ω1 result in momentum kicks
to the right. The Raman transitions couple spin states
of the atoms but as they are moving the Doppler effect
works to detune the beams away from resonance, creating
velocity dependence in the coupling mechanism. In other
words these transitions provide the velocity-dependent
link we need in order to couple the spin and momentum
of the atom.

III. METHODOLOGY

What we’ve learned so far: to achieve spin-orbit
coupling in the lab we need two phase-stabilized beams

1 The Landé g-factor incorporates gl, gs, and gI which character-
izes the magnetic moment of the nucleus

of slightly different frequency. When we talk about
electromagnetic radiation we think of a signal of the
form A sin(ωt + φ) where A is the amplitude, ω is the
frequency, and φ is the phase. The phase, or phase
shift, measures an angular displacement relative to
another signal (say A sin(ωt)). Since the phase is defined
relatively we cannot necessarily measure the phase of
each beam directly. To measure the phase shift between
our beams we created an interferometer detailed in fig. 2.
We can extract information about the phase difference
between two beams by superimposing them — beams
that arrive in phase will constructively interfere and
beams arriving out of phase will interfere destructively.
Using this principle we can track changes in the phase
difference.

Once we were able to track how the phase difference δφ
changes over time we want to stabilize it, or, set δφ = 0.
To do this we created a negative feedback routine that
works to automatically suppress deviations in δφ from
zero.

A. Interferometer

Starting with a single emission from a tuneable 2W
Ti:Sapphire laser set to emit at 790nm2, the light first
travels through a 1/2 waveplate. Throughout the system
the 1/2 waveplates are used for polarization control. A
linearly polarized beam travelling through the waveplate
will rotate the polarization vector through 2θ, where θ
is defined as the angle between the polarization vector
and the fast axis of the waveplate. They essentially
mirror the light’s polarization in the fast axis. The
beam then travels through a polarizing beam splitter
(PBS) used as a power control; only half of the beams
original power is transmitted and the other half is
reflected away and dumped. The beam is then split
once again using a PBS cube into the two beams we need.

We know from section II the beam’s must have a
frequency difference that corresponds to the energy
difference ∆E between the two Zeeman states. We
accomplish this by using acousto-optic modulators
(AOMs). AOMs take advantage of the acousto-optic
effect to diffract the laser beam using sound waves. The
effect involves a change in the index of refraction due to a
mechanical strain. The acoustic waves inside the AOM’s
interior crystal created by some radio frequency (RF)
source are pressure waves, whose crests and troughs
consist of compressions and expansions that periodically
modulate the index of refraction of the crystal. In simple
terms the sound waves create a diffraction grating in

2 790nm corresponds to a transition between hyperfine states in
87Rb atoms
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FIG. 2: Schematic diagram of the interferometer. The symbol � represents a beam dump. The colored lines represent the beams at
different frequencies – the red beam (ω0/2π) corresponds to 790nm or 380THz, the blue beam (ω0/2π + 83 MHz) to

380 THz + 83 MHz, and the green beam (ω0/2π + 80 MHz) to 380 THz + 80 MHz.

the crystal. The AOMs shift the frequency of the light
according to ω′/2π → ω/2π + mF , where ω is the
frequency of the original beam, m is the order of the
diffracted beam, and F is the frequency of the sound
wave. Both beams are shifted separately using two
different RF sources and two separate AOMs. It is at
this point that we are introducing a relative frequency
shift between beams.

We use two RF sources: an 83 MHz function gener-
ator supplies one of the AOMs and a signal generator
set at 80 MHz supplies the other. The first order
(m = 1) diffracted beam is allowed to continue while
the zeroth order beam with the same original frequency
ω0 is dumped. The two beams now have frequencies
ω1/2π = ω0/2π + 83 MHz ∼ 380 THz + 83 MHz and
ω2/2π = ω0/2π + 80 MHz ∼ 380 THz + 80 MHz,
meaning the difference in frequencies δω/2π = 3 MHz.
This value should correspond to the energy difference
between the Zeeman states created by an appropriate
external magnetic field. Both beams are then coupled
into a polarization-maintaining fiber that couples both
beams into a single mode output. Our coupling strength
for each beam-to-fibre transition was just under 60%.
As discussed later in section VII A this setup granted us
a higher quality signal at the photodiode compared with
earlier iterations. The fiber works to align the two beams
precisely onto the photodiode, in turn converting light

FIG. 3: Logarithmic signal intensity versus frequency — a) signal
measured at the photodiode, b) signal created by the 3 MHz

function generator.

into current. The beat note reaching the photodiode in
this configuration is shown in fig. 3 a3.

An inquisitive reader will ask why we use one AOM
on each beam and not a single AOM on only one of the
beams: we want ω1 and ω2 to be close in value and we
require the ability to change the frequency of one with
respect to the other via modulation of the RF input. This
is discussed in the next subsection.

3 see section VII B for information about how we obtained these
plots
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B. Phase Stabilization

We can follow the beam as it enters the photo-
diode. Each separate signal can be represented by
A1 sin(ω1t + φ1) and A2 sin(ω2t + φ2), but once over-
lapped in the optical fiber, the signals are multiplied,

V1 = A1A2 sin(ω1t+ φ1) sin(ω2t+ φ2)

=
1

2
A1A2[cos(δωt+ δφ)− cos((ω1 + ω2)t+ (φ1 + φ2))],

where we have defined the phase difference δφ = φ1−φ2,
and δω = ω1 − ω2.

At multiple stages we filter out the higher frequency
components in order to isolate δφ. Connected to the pho-
todiode output, the first low-pass filter (LPF) at 48MHz
filters out the huge ω1 + ω2 signal:

V2 =
1

2
A1A2 cos(δωt+ δφ).

By inspection – and by recalling trigonometry rules –
we can see that in order to isolate δφ further, we could
multiply this signal by another signal of the same fre-
quency. This would get rid of the frequency dependence
in one term. A function generator supplies a reference
signal cos(δωt+ φREF ) with the same 3 MHz frequency
as shown in 3 b. Now that we have introduced our three
signal generators, it is important to make a note about
the phase between all of these devices. In order to assure
coherency of the system, the devices should be synchro-
nized. If there is some random phase slips between them
that make these devices incoherent, the frequency they
each provide to the system would have a random phase
and the final signal I’m about to describe wouldn’t
necessarily be resolved. To combat this, we incorporate
a linkage between the generators by way of a 10 MHz
timebase. A 10 MHz signal from the function generator
set at 3 MHz connects to the 83 MHz function generator
through a BNC input explicitly called “Timebase IN”.
On the same device we connect the “Timebase OUT” to
the 80 MHz signal generator. This works to keep these
three devices harmonized and is absolutely imperative.
Once the timebase connection is implemented we use
a mixer to multiply the filtered photodiode signal (V2)
with the cos(δωt+ φREF ) reference signal:

V3 =
1

2
A1A2 cos(δωt+ δφ) cos(δωt+ φREF )

=
1

4
A1A2[cos(δφ− φREF ) + cos(2δωt+ (δφ+ φREF ))].

This mixed signal should have distinct peaks at 2δω =
6 MHz. Our mixer output signal is shown in fig 4.
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FIG. 4: Logarithmic signal intensity versus frequency of the
mixed signal.

Another LPF at 1.6 MHz is used to filter out the larger
signal, arriving at Vfinal ∼ cos(δφ − φREF ). We con-
nected an oscilloscope to the output of the mixer so we
could measure the response of varying φREF . Fig 5 shows
five sample signals attained during a 1000 Hz ramp varia-
tion of φREF from −180◦ to 180◦. The plot shows varia-
tions on the order of 0.2V which is more than enough
to be able to track changes in δφ. If we stick with
φREF = π/2, Vfinal ∼ cos(δφ − π/2) ∝ sin(δφ) and we
can measure the phase difference directly.
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FIG. 5: Sample signals measured as a response to varying the
reference phase φref of the 3 MHz function generator. We varied
φref using a 1000 Hz ramp signal, allowing φref to vary from
−180◦ to 180◦ in 0.001 s. The samples appear so different becaue

the initial phase is random due to phase variations in the
unstabilized system.

In order to control the phase difference we make
use of a Newport LB1005 proportional-integral (PI)
servo controller. Generally, a PI controller continually
calculates an error value equal to the difference between
a measured “process” variable (δφ) and its desired
reference point (δφ = 0). The filtered signal from the
mixer with φREF = π/2 is fed into the controller as
the process signal, and a 50Ω resistor is placed on the
reference input. The controller subtracts the voltage
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FIG. 6: The stabilization loop.

from these two inputs to generate an error signal. An
error output on the front of the controller allows us
to monitor this voltage using an oscilloscope. The
control output supplies the regulator signal from the PI
filter. This output is connected as an external frequency
modulation to the 83 MHz function generator that in
turn controls an AOM. This effectively completes the
stabilization loop as summarized in fig 6. When the
function generator detects this modulation, it will change
its frequency F accordingly. Recall from section III A
that the beam gets diffracted at the AOM according to
ω′/2π = ω0/2π + mF so changing F in turn changes
the beams’ frequency. This process happens until the
perturbation in the error signal is quenched and δφ = 0.

As named, the PI controller has two types of feedback
mechanisms. The proportional control produces an
output that is proportional to the error, while the
integral control produces output proportional to the
magnitude and duration of the error. The controller
allows you to pick the “amount” of each mechanism used
to minimize the error. For our purposes we found that
using strictly the proportional setting was enough to
incite a quick (almost instant) correction. Subsequently,
the low-frequency gain limit that controls the amount of
integral correction (LF Gain Limit) was set to “Prop”
deeming the “PI Corner” setting, which chooses at what
frequency the controller switches between the two mech-
anisms, redundant. This is further discussed in section V.

It might now be valuable to concretely establish why
changing the frequency of one of the beams effects the
phase. Say we have two signals that are initially syn-
chronized in phase but have a different frequency: S1 =

A1 sin(ω1t) and S2 = A2 sin(ω2t). After a time ∆t
the signals will develop a differential total phase shift
∆φ = ∆ω × ∆t. We can think of the phase shift be-
ing built up over time by the frequency difference. We
can also think about the units of measurement: [(∆ω)
(t)]=[(cycles s−1)(s)]= number of cycles. So, for example,
two signals differing in frequency by 100 Hz get progres-
sively out of phase with each other by 100 cycles every
second. This justifies the use of frequency modulation to
change the phase.

IV. RESULTS

We’re able to measure the amount by which the error
in δφ is reduced when the loop is completed. Looking
at fig 7 we immediately see the reduction in error. We
quantify this by a reduction factor, σ. Described by the
following formula, it is simply the peak-to-peak width of
the unstabilized signal divided by the same value of the
stabilized one:

σ =
height while not stabilized

height while stabilized
,

=
0.078 mV− (−0.08 mV)

|−0.076 mV| − |−0.074 mV|
,

=
0.158

0.002
= 79± 1.

This signifies the ratio by which the error is reduced.
In calculating the uncertainty we assumed the error in
both measurements was the resoloution acheiveable by
the oscilloscope, 0.002 mV, and used the propagation
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FIG. 7: Comparison of controller output and error signals for stabilization on (left) and off (right).

of uncertatainties for quotients

√(
δa
a

)2
+
(
δb
b

)2
. This

gives us a rough estimate. We can consider this system
well stabilized, but there are certain places where we can
further optimize the stabilization routine and increasing
the fiber coupling alignment is a large part of this.
Perfecting the alignment will increase the signal strength
at each step and will improve the error signal at the
final stage.

It would be beneficial to know by which amount the fre-
quency changes when we see large error signals. As a test
we hooked up a constant another signal generator directly
to the controller along with the 50Ω resistor. We varied
the voltage and observed the resulting frequency shifts of
the 83 MHz function generator on the spectrum analyzer.
Using this method, and considering our controller was set
to have a “Modulation Deviation” of 1 MHz, we reasoned
that a 1 V error signal corresponded to a 1 MHz shift in
the frequency. If we consider that the controller has two
different mechanisms that both depend on time in a dif-
ferent way, we can say that the frequency response for
some time t, ∆ω1t goes like ∆(δφ). For example, take
t = 1 and say the error voltage is measured is around
20 mV, then the change ∆ω1 ∼ 1 MHz

1 V 20 mV ∼ 20 kHz.
The system can deliver either a large frequency response
over a short time period or a smaller frequency change
over a longer time period. We will show in the next sec-
tion that for our setup, the former tends to occur.

V. TESTING STABILITY

It was necessary to determine how the system would
react to different mechanical, structural, and other
disturbances. In the following discussion recall that the
error signal from the controller is the difference between
our signal, sin(δφ), and the reference (0V). The con-
troller will output a signal hoping to extinguish the error.
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FIG. 8: The response measured from the system during a hit.
The purple (lower) line represents the error signal measured at
the controller [see fig 6] while the blue (upper) line shows the

controllers output signal.

Fig. 8 shows the system’s response to a hit on the ta-
ble where it lays. We see that the system returns to a
stable point nearing the end of the time scale depicted on
the plot and there is not a large output response needed
to correct the perturbation. Fig. 9 shows the evolution
of the frequency spectrum with time. Focusing on the
spectrum at t = t3 (the time of the hit), we see that
although the peak of the spectrum doesn’t shift from
83 MHz we do notice the appearence of large sidebands.
A small amount of frequency “shift” is needed to correct
the phase.

Fig. 10 shows a reaction as heat is imparted on the sys-
tem. We used a heat gun to carefully create an encom-
passing “heat bath”. Admittedly, this was not the most
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FIG. 9: Evolution of the frequency spectrum of the 83 MHz
function generator from some earlier time t1, to the time of the

hit, t3, followed by some later times.
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FIG. 10: The purple (lower) line represents the error signal
measured at the controller while the blue (upper) line shows the
controllers output signal. Heat added to the system creates rapid

spikes that are immediately quenched.

precise method of testing for heat sensitivity because we
were not able to measure the ambient temperature, and
not all components were the same temperature at the
same time. You can see in the figure the response to heat
but no indication of a cooling period. Instead there are
sporadic jumps where certain parts of the system were
slightly warmer than others. In order to legitimately test
heat sensitivity the interferometer should be placed in a
thermal chamber, heated comprehensively, and then al-
lowed to cool. It is advantageous to verify this sensitivity
as temperature plays an important role in the index of
refraction of the air which could affect the stability of the
system.

Fig. 11 depicts the system’s response during rapid
movement of the coupling fiber. The fiber attached to
the photodiode was shaken. We can see that there is a
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FIG. 11: The response of the system from rapid movement of the
coupling fiber. The purple (lower) line represents the error signal
measured at the controller while the blue (upper) line shows the

controllers’ output signal.
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FIG. 12: Comparing the stabilization precision for long (upper
line) and short (lower line) fibers. In order to show both on the

same plot we have offset the signal corresponding to the long fiber
0.01V. The dashed red line shows the real, measured position.

large response but no lasting effect on the stabilization.
Although the system reacts quickly to these wiggles, it
seems favourable to secure the fibers to the table or some
other surface so they are not in a position to affect the
stabilization negatively. Along the same lines, we saw it
necessary to see if there would be any reduction in sta-
bilization precision if we switched out the short 30cm
fibers for much longer ones. These longer fibers would
be required when integrating the interferometer into a
much larger system in order to perform spin-orbit cou-
pling. Fig. 12 shows the comparison of error signals with
the long and short fibers. The peak-to-peak height of the
error signal is a measurement of the precision we are able
to achieve. Looking at the magnified section we see both
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FIG. 13: Comparison of controller output and error signals for stabilization on (left) and off (right) using long fibers.

lines have a height on the order of a few millivolts; more
precisely, averaging over the magnified window, the long
fibres measure 0.003 mV and the short fibers measure
0.002 mV. Fig. 13 shows the signals when the feedback
loop is turned on and off, respectively. As before we can
measure the peak-to-peak height of the error signal to
determine the proportional reduction in the error:

σ =
height while not stabilized

height while stabilized
,

=
0.081 mV− (−0.08 mV)

|−0.077 mV| − |−0.074 mV|
,

=
0.161

0.003
= 53.6± 0.7,

where we estimated the error in the same way as be-
fore. The stabilization routine minimizes the drift in the
phase shift δφ by a factor of 54. When we performed
this calculation before using our original fibers we cal-
culated the minimization factor to be 79. These factors
are relatively close in magnitude, and σlongfiber = 54 is
still large enough to consider the system well stabilized,
and the long fibers would be adequate to use in further
experiments.

VI. CONCLUSION

We have contructed an interferometer incorporating
a succesful phase stabilization routine for use in future
quantum, ultracold gas experiments. The interferometer
consists of two beams frequency shifted by acousto-optic
modulators with radio frequency (RF) sources resulting
in a frequency spread of 3 MHz. We use a Newport
LB1005 proportional-integral controller connected to
one RF sources to vary the frequency of one beam.
This works to minimize the phase shift between the two
beams continually. We noted that establishing a time-
base between generators supplying signals throughout

the system is imperative.

We tested the stabilization under different conditions
and found the system to be extremely responsive — in
most case the controller was able to extinguish the drift
in the phase rapidly using only proportional control.
The error in the phase between the two beams was
reduced by factors 54 and 79 corresponding respectively
to long fibers and original fibers. Comparing error
reduction ratio for long fibers was necessary to assure
modifications could be made to the current setup for
application in future experiments. In the context of
two-beam Raman transitions, the system can be used
in future spin-orbit coupling experiments to ensure
coherency.

VII. NOTES

A. Interferometer Design Iterations

FIG. 14: Logarithmic signal intensity versus frequency measured
at the photodiode for two different setup configurations — a)

PBS cube overlap, b) coupling fiber.

The original design of the interferometer did not
inclue optical fibers. Instead, another PBS cube was
used to bring the two beams together, overlapping them
onto the photodiode. Although we were able to attain
a decent signal with this method, the current design
discussed in III A was introduced to ensure accurate
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beam overlap. The beat note reaching the photodiode in
the current configuration is shown in fig. 14 b) alongside
the old signal using the PBS cube. The setup containing
the optical fibers shows a significant improvement in
signal strength when we consider the logarithmic scaling
for the signal intensity.

Looking back at fig 2 we see two boxes labeled “Am-
plifiers”. These are actually RF sources and were used as
such in our original design. In our current design we use
a 80 MHz signal generator and a 83 MHz function gen-
erator as RF sources and use these other devices solely
for their amplifiers — the actual RF source in the boxes
were bypassed and the new source was connected straight
to the amplifier. This alteration allowed us the ability to
sync the signals to the same timebase. The importance

of this was discussed in section III B.

B. Spectrum Analyzer Readings

While setting up the interferometer it is valuable to
check that we were receiving the correct signal in the cor-
rect place. We can use a spectrum analyzer to visualize
the signal intensity at all frequencies. The (logarithmic)
signal intensity versus frequency figures that comprise
this paper were attained from a HP 85623 Spectrum An-
alyzer with no digital output. To overcome this, we took
photos of the spectra and used a boundary recognition
code written in MATLAB in order to get a decent rep-
resentation of the signals. This technique introduces a
small amount of error in how the signals are pictured.
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