
Angling may be said to be so like the mathematics,
that it can never be fully learnt.

— IZAAK WALTON

So is UNIX.

— K. Nandakumar

Appendix C

Some basic unix commands

C.1 Introduction to the shell and the desktop

In a command line oriented, interactive environment, a command shell
(which is a program or a process) accepts a command from the keyboard,
passes it to the operating system for execution, prints out any error or in-
formational messages generated by the command and displays a prompt
string indicating the readiness to accept another command. There are
several shells available under AIX. The Kron shell or ksh is one of the
most powerful shells and is the default shell on the AIX machines main-
tained by the department of chemical engineering.

In the GUI oriented environment, the equivalent of a command shell
is the desktop which organizes various tools and application programs
such as file manager, program manager, printer manager, etc. as objects
accessible via icons. The interaction takes place through dialogue boxes
and forms that must be completed. Program execution begins simply by
double clicking on the appropriate icons.

If you have a good reason to change your default shell to something
other that ksh, you can do so with the chsh command,

user@machine:dir> chsh

This command will display your current shell, and prompt you for the

C.1



C.1. INTRODUCTION TO THE SHELL AND THE DESKTOP C.2

name of the new shell. The change takes effect when you login the next
time. At any time you can invoke a new shell, different from the login
shell, e.g.,

user@machine:dir> csh

invokes a C-shell.
You can invoke a desktop at any time on AIX machines by entering

user@machine:dir> xdt3

Since the use of desktop is supposed to be rather intuitive, you are en-
couraged to explore its features on your own!

C.1.1 The ".profile" file

The ".profile" file is used to customize the shell environment for ksh.
The following is a typical example of a ".profile" file.

PATH=$PATH:$HOME/bin:$KHOROS_HOME/bin
HOSTNAME=‘hostname‘
PS1=’ $LOGNAME@$HOSTNAME:$PWD>’
EDITOR=emacs

#defines alias for commonly used commands
alias ls=’ls -al’
alias rm=’rm -i’

#export environment variables to other processes ...
export PATH HOSTNAME PS1 EDITOR TERM

Here, several environment variables such as PATH, HOSTNAME, PS1 etc.
have been defined. The concept of the environment is like a bulletin
board. You can post definitions of any number of variables there. Ap-
plication programs that expect specific variables can look for them and
use their values, if they are defined. Note that when you set the value of
a variable ( i.e., left hand side of an equal sign), the name is used without
any prefix. When you want to retrieve the value the $ prefix is used. For
example try,

user@machine:dir> echo $PATH

to look at the value of the current path.



C.1. INTRODUCTION TO THE SHELL AND THE DESKTOP C.3

In the first line of the example above, a system wide environment
variable $PATH, which is already defined, is redefined to add additional
paths, such as $HOME/bin separated by colon. Observe the ’$’ prefix to
the name of the environment variable. $HOME itself is an environment
variable, containing the value of the home directory. In the 2nd line the
variable HOSTNAME is defined to contain the name of the workstation.
This name is actually retrieved by the program ‘hostname‘. The 3rd line
redefines the prompt string PS1 using other variables such as LOGNAME,
HOSTNAME and PWD. These variables contain, respectively, the values of
the userid, machine name and present working directory. If the variable
EDITOR is set to emacs, then command line editing features using emacs
keys are enabled.

You can also define aliases for certain commands. In the example
above, the "ls" string is defined to be ’ls -al’ - so when you enter "ls" at
the prompt, the command ’ls -al’ is executed. To examine all the cur-
rently defined aliases, enter,

user@machine:dir> alias

By default, the "rm" command removes files without prompting you for
confirmation which could result in accidental deletion of files. The alias
defined above, assigns ’rm -i’ to "rm". The keyword "-i" stands for inter-
active mode and hence you will always be prompted before removing a
file.

The variables defined in a shell environment are available only to that
shell environment and not to other shells that you may start from the
current one. The export command is used to export the variables to all
subsequent shells. The last line in the above example exports several
environment variables.

To look at all of the environment variables defined in the current ksh
shell, enter,

user@machine:dir> set

To examine the value of an environment variable, enter,

user@machine:dir> echo $PS1

To set a new environment variable, use

user@machine:dir> DUMMY=junk



C.2. MANAGING FILES C.4

In addition to assigning values to environment variables, the shell
allows programming flow control features. Thus one can write quite
powerful scripts to execute a complex sequence of commands. A script
is nothing but a set of AIX instructions placed in a file. By enabling the
execute permission for this file, and entering its name from the command
line you can cause the instructions in that file to be executed.

C.2 Managing files

In managing your files and directories, you need to be able to list the
contents of a directory or file, copy and move files, compress and uncom-
press files, create and delete files and directories, control the ownership
and access to files etc. Commands to carryout these tasks are illustrated
below with specific examples. Try them out at a terminal. To get a com-
plete description of each command use the man pages i.e.,

user@machine:dir> man command

C.2.1 Making sense of the directory listing - the "ls" command

The ls command produces a listing of all the files in the current direc-
tory. In its most useful form, you will use the “-al” keywords, i.e.,

user@machine:dir> ls -al dir

Typically, files that begin with the “.” ( e.g., .profile) are treated as hidden
files. They keyword “-a” however lists all of the files including the hid-
den ones. The keyword “-l” produces the long listing, a sample of which
is shown in figure C.1. This listing provides information on file access
control, ownership, size, time stamp etc. Each line contains information
for a file or directory. The first character identifies whether it is a file (-),
a directory (d) or a symbolic link (l). A symbolic link is a pointer to some
other file (think of it as an alias). The next set of nine characters iden-
tify the file access control, in groups of three. Since AIX is a multiuser
environment, users can control ownership and access of their files to
others. The possible access modes are: read (r), write (w) execute (x) or
none(-). These modes apply to (user, group, others). The groups are es-
tablished by the system administrator. The owner and group names are
listed next, followed by file size in bytes, the time stamp for last change
and the file name.



C.2. MANAGING FILES C.5

drwxr-sr-x  27 kumar    sys         1536 May 24 23:14 .
drwxr-sr-x  59 sys      sys         1536 May 13 08:52 ..
-rw-r--r--   1 kumar    others      1937 Jan 07 11:47 .Xdefaults
drwx------   2 kumar    others       512 Jul 21 1992  .elm
-rw-r--r--   1 kumar    sys         2504 May 19 12:08 .mwmrc
-rwxr-xr-x   1 kumar    sys          610 May 04 12:36 .profile
-rw-------   1 kumar    sys          348 May 14 12:22 .rhosts
drwxr-xr-x   3 kumar    others       512 Jul 21 1992  .tin
-rw-r--r--   1 kumar    sys          136 May 11 14:11 .xdt3
-rw-r-----   1 kumar    others      1222 Jan 19 1992  Ass1.m
drwxr-xr-x   2 kumar    others       512 May 19 13:12 CHEM2
drwx------   2 kumar    others       512 May 27 1992  Mail

{
time stamp

{
File name{ Owner { Group {File size{permission

control

d indicates a directory
l indicates a symbolic link

r  read permission
w  write permission
x  execute permission
-  no permission

Other related Unix commands
ls -al    - detailed listing of directory such as the above
chmod     - change permission on files and directories
chown     - change ownership of files and directories
rm        - remove or delete a file
rmdir     - remove or delete a directory
mkdir     - create a new directory

{
1st set applies to owner
2nd set applies to group
3rd set applies to all

Examples: 
The file .profile has  (read,write,execute) permission for  owner (kumar in this case) and 
(read,execute) permission for both the group (sys in this case) and everyone.

The directory Mail has (read,write,execute) permission for  owner only

The command
    chmod g+r file
will give read access to group for file, while
    chmod o-w file
takes away write access to all for file

Figure C.1: Output of the "ls" command



C.2. MANAGING FILES C.6

C.2.2 Changing permission on files - the "chmod" command

The chmod command allows you to modify the access control of files and
directories.

Examples

• To give read permission to group for file use,

user@machine:dir> chmod g+r file

• To give write permission to everyone for all the files in a directory
use,

user@machine:dir> chmod -R a+w dir

Note the the "-R" flag stands for recursive use of the command for
all files in all subdirectories.

• Note that, in order to give read permission to a directory, the exe-
cute permission at the directory level must be set.

user@machine:dir> chmod a+x dir

C.2.3 Moving files

The mv (move) command moves files and directories from one directory
to another, or renames a file or directory. You cannot move a file onto
itself.
Warning: The mv command can overwrite many existing files unless you
specify the -i flag. The -i flag prompts you to confirm before it overwrites
a file.

Examples

• To rename a file, enter:

user@machine:dir> mv oldname newname

This renames file oldname to newname. If a file named newname
already exists, its contents are replaced with those of oldname.



C.2. MANAGING FILES C.7

• To move a directory, enter:

user@machine:dir> mv olddir newdir

This moves all files and directories under olddir to the directory
named newdir, if newdir exists. Otherwise, the directory olddir is
renamed to newdir.

• To move several files into another directory, enter:

user@machine:dir> mv file1 dir1/file2 newdir

This moves file1 to newdir and dir1/file2 to newdir/file2.

C.2.4 Copying files

The cp command creates a copy of the contents of the file or directory
from a source to a target. If the file specified as the target exists, the
copy writes over the original contents of the file. If you are coping more
than one source file, the target must be a directory.

Examples

• To make a copy of a file in the current directory, enter:

user@machine:dir> cp file.old file.new

If file.new does not already exist, then the cp command creates it.
If it does exist, then the cp command replaces it with a copy of the
file.old file.

• To copy a file in your current directory into another directory, enter:

user@machine:dir> cp file.old dir/sub.dir/

This copies file.old to dir/sub.dir/file.old.

• To copy all the files in a directory to a new directory, enter:

user@machine:dir> cp /home/user/dir1/* /home/user/dir2

This copies all the files in the directory /home/user/dir1/ to the
directory /home/user/dir2/. As a variant, explore the "-R" flag to
copy not only all of the files, but also all of the subdirectories.



C.2. MANAGING FILES C.8

C.2.5 Changing ownership of files - the "chown" command

The chown command changes the owner of the file specified by the File
parameter to the user specified by the Owner parameter. The Owner
parameter can be specified either as a user ID or as a lo- gin name found
in the /etc/passwd file. Optionally, a group can also be specified. The
group can be specified either as a group ID or as a group name found in
the /etc/group file. The syntax is,

user@machine:dir> chown -R owner:group file

Only the root user can change the owner of a file.

C.2.6 Compressing files - the "compress" command

The compress command reduces the size of files using adaptive Lempel-
Zev coding. Each original file specified by the file parameter is replaced
by a compressed file with a ".Z" appended to its name. The compressed
file retains the same ownership, modes, and access and modification
times of the original file. If compression does not reduce the size of a
file, a message is written to standard error and the original file is not
replaced. The syntax is,

user@machine:dir> compress file

To restore the file to its original state use the command,

user@machine:dir> uncompress file

Also try the GNU version of compress utility called gzip and gunzip -
they are more efficient in both speed and size.

C.2.7 Removing files - the "rm" command

The rm command removes the entries for the specified file or files from a
directory. If an entry is the last link to a file, the file is then deleted. You
do not need read or write permission for the file you want to remove.
However, you must have write permission for the directory containing
that file.

Examples

• To delete a file, enter:



C.3. MANAGING PROCESSES C.9

user@machine:dir> rm myfile

If there is another link to this file, then the file remains under that
name, but the name myfile is removed. If myfile is the only link,
the file itself is deleted. Caution: You are not asked for confir-
mation before deleting the file. It is useful to set an alias in your
".profile" file to redefine "rm" as

alias rm=’rm -i’

After each file name is displayed, enter "y" to delete the file, or
press the Enter key to keep it.

C.3 Managing processes

Since AIX is a multi-tasking operating system, several tasks (or processes)
can be running at the same time. So we need a set of tools to monitor the
currently running processes and the resources they consume, suspend
or terminate specific processes, set priority for certain tasks or schedule
some tasks for execution at specified times. Commands to accomplish
these tasks are illustrated next.

C.3.1 Examining jobs or processes - the "ps" command

The ps command displays a set of currently running tasks. In its sim-
plest and most useful form, the command is,

user@machine:dir> ps -ael

This provides a long listing of all the currently running processes in-
cluding all of the daemons started by the root at the time of booting the
computer. A typical sample output might look like,

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
200001 R 21 15101 17095 13 66 20 196d 116 pts/0 0:00 ps
240801 S 21 17095 16070 3 61 20 1dce 108 pts/0 0:00 ksh
260801 S 0 3637 3112 0 60 20 b25 260 - 0:00 sendmail
260801 S 0 12169 1 0 60 20 8a5 152 hft/0 0:00 lmgrd
222801 S 0 12938 12169 0 60 20 16aa 352 hft/0 0:05 CFDSd
40801 S 0 10342 8542 0 60 20 357a 196 - 0:11 nfsd

The process name (or the command name) is shown in the last col-
umn. Other useful parameters are the process identification number
(PID), the nice value (NI) which determines the priority of the process,



C.3. MANAGING PROCESSES C.10

and the cpu time (TIME) used up by the task. In the above example
listing, sendmail is the mail program, lmgrd is the license manager dae-
mon, CFDSd is the license server for FLOW3D program, nfsd is the NFS
daemon; all of these tasks are run by root with a user identification num-
ber (UID) of 0. Note that the ps command itself is a task.

C.3.2 Suspending jobs or processes

If you started a process like "emacs" or "matlab" and you want to sus-
pend that task and return to the shell you can do so with the key se-
quence

user@machine:dir> ctrl-z

The PID number is displayed at that time. Even if you did not note it
down, you can find a list of all suspended jobs with the command

user@machine:dir> jobs

To resume the job, enter

user@machine:dir> fg %n

where n is the job number produced by the jobs command (and not the
PID number!). The "fg" command brings a job to the foreground.

C.3.3 Terminating jobs or processes - the "kill" command

If you started a process in error and want to terminate it, you can use the
"kill" command. You need to find out the PID number of the process
using "ps command.

user@machine:dir> kill -9 PID

Except for the super user (or root), one can terminate only those pro-
cesses that belong to (or initiated by) individual users.

C.3.4 Initiating background jobs - the "nohup" command

The nohup command runs a command or a script ignoring all hangups
and QUIT signals. Use this command to run programs in the background
after logging off. To run a nohup command in the background, add an
& (ampersand) to the end of the command. Its syntax is:



C.3. MANAGING PROCESSES C.11

user@machine:dir> nohup command or script &

When used in its simplest form as above, any output that would normally
appear on the screen will be saved in a file named nohup.out in the
current directory. Wait before logging off because the nohup command
takes a moment to start the command or script you specified. If you
log off too quickly, your command or script may not run at all. Once
your command or script starts, logging off does not affect it. Note that
in order to run a script, the script file must have execute permission.

C.3.5 Script files & scheduling jobs - the "at" command

If you wish to schedule a job to begin at a specified time (typically late
night), use the at command. The job should be constructed in the form
of a script file. For example a file named test.bat contains the following
lines and has execute permission enabled with the chmod command.

matlab >out « ’eof’
secant(’ass3a’,[0,1],eps,1)
fzero(’ass3a’,0.5,eps,1)
quit
eof

In the above script we start MATLAB in the first line and redirect any
output generated by MATLAB for the standard output ( i.e., screen during
an interactive session) to a file named out. During an interactive session,
MATLAB expects commands from the standard input ( i.e., the keyboard).
Such inputs are now taken from the script file itself as seen in the next
few lines where we execute some MATLAB functions and finally quit
MATLAB.

The contents of such a script file can be executed interactively while
logged in to a machine by simply entering the file name as

user@machine:dir> test.bat

The above example illustrates script programming in its simplest form.
It is possible to write very sophisticated scripts in the Kron shell or any
other shell. When you invoke MATLAB, for example, with the command
matlab, you are actually executing a powerful script. Browse through
the matlab script file using

user@machine:dir> pg /usr/local/matlab/bin/matlab



C.4. LIST OF OTHER USEFUL AIX COMMAND C.12

to appreciate the power of script programming.
Once a script file has been constructed, you can schedule it to be ex-

ecuted at a specified time using the at command as follows

user@machine:dir> at 21:00 scrit file

which will begin executing the script file at 21:00 hours. To examine a
listing of all the jobs scheduled use,

user@machine:dir> at -l

To remove a job that you have accidentally submitted, you can use,

user@machine:dir> at -r job number

C.4 List of other useful AIX command

A list of less frequently used AIX commands is given in Table C.1. You
can use either the man page feature with

user@machine:dir> man command

or the

user@machine:dir> info

command which starts the InfoExplorer to find out about the syntax and
usage of these and other commands. The directory /usr/bin contains
all of the Unix commands.



C.4. LIST OF OTHER USEFUL AIX COMMAND C.13

command Function
at to schedule a task to start at a given time
cat to list a file
cd to change directory
diff compare two files
dosformat formats a floppy diskette using MS-DOS standards
dosread copies a DOS file from a floppy
doswrite copies a unix file to a DOS formatted floppy
find find a file
info InfoExplorer - online documentation
ksh start a Kron Shell
make a powerful UNIX make facility
mail read mail
mkdir create a directory
man display online manual pages
logout logout of current AIX session
lpq list the queue of print jobs
lpr send a print job to a network printer
lprm remove a print job from a queue
nice control job priority
nohup Don’t kill a process upon logout
pg display a file, one page at a time
ping to check if another machine is alive
pwd display present working directory
rlogin remote login to another machine
rcp remote copy files from one host to other

need to have ".rhosts" file setup
rm remove (delete) files
rmdir remove directories
rsh execute a command on a remote machine

need to have ".rhosts" file setup
rusers list remote users in the local area network
script logs a terminal session to a file
talk talk to another user currently signed on
tar archive files
telnet connect to remote hosts
whoami find out the current user
xinit start X-server
xlc c-compiler
xlC c++ compiler
xlf Fortran compiler

Table C.1: List of other useful AIX command


