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Transition paths are of great interest because they encapsulate information about the mechanisms
of barrier-crossing reactions. Analysis of experiments measuring biomolecular folding reactions has
relied on expressions for properties of transition paths such as transition-path times and velocities that
hold in the limit of large harmonic barriers, but real molecules often have relatively small barriers.
Recent theoretical work presented more general expressions for transition-path properties. Here we
extend this work, deriving expressions from the general case that can be applied to small harmonic
barriers. We first compared the performance of small-barrier, large-barrier, and general solutions when
applied to simulated transitions, focusing on improvements in estimates of the diffusion coefficient
determined from transition times and velocities. We then applied these expressions to experimental
data from force spectroscopy measurements of DNA hairpins. We found that the low-barrier approxi-
mation and exact solution reduced or resolved the small but systematic inconsistencies that had arisen
from assuming large harmonic barriers, demonstrating the practical utility of the new equations for
analyzing experimental data. Published by AIP Publishing. https://doi.org/10.1063/1.5046692

I. INTRODUCTION

Transition paths are those parts of a reaction during
which the barrier region separating initial and final states is
crossed without returning (Fig. 1). The properties of transi-
tion paths reflect crucial information about reaction mecha-
nisms, motivating recent work focusing on transition paths
in biomolecular folding owing to the new insight they can
provide into the microscopic mechanisms of a very complex
process.1 In particular, measurements of transition paths in
folding reactions have provided information about fundamen-
tal parameters describing the folding dynamics including the
properties of the free-energy landscape underlying the dynam-
ics,2,3 the diffusion coefficient governing the time scale for
motions over the landscape,3–5 internal friction within the
molecule,6,7 and the reaction coordinate used to describe the
folding.8,9

Although transition paths contain a wealth of information,
they are extremely difficult to observe experimentally owing
to their brief durations, and it is only in the last few years that
it has been possible to study them directly. Experimental stud-
ies of transition paths have made use of a few central results
from theoretical work on transition paths obtained under the
assumption of a large, harmonic barrier. Initial work10,11 mea-
suring the average transition-path time, τTP, for example, made
use of an expression for τTP valid for harmonic barriers in the
large-barrier limit,12,13

τTP ≈
ln

(
2eγ β∆G�

)
βDκb

, (1)

where γ is the Euler-Mascheroni constant, β = 1/kBT is the
reciprocal of the thermal energy, ∆G‡ is the barrier height,
D is the diffusion coefficient, and κb is the curvature of the

barrier. An expression for the distribution of transition times,
PTP(t), was also derived in the same limit12,14 and used to fit the
distribution of times observed experimentally for individual
transition paths in proteins and nucleic acids,3,4

PTP(t) ≈
ωK

√
β∆G�

1 − erf
√
β∆G�

exp
[
−β∆G� coth(ωKt/2)

]

sinh(ωKt/2)
√

2π sinh(ωKt)
, (2)

where ωK = βDκb is the inverse of the relaxation time. More
recently, theoretical investigations into the shape of transition
paths15–17 led to an expression for the average velocity along
a transition path in the limit of a large harmonic barrier,15

〈vTP(x)〉 ≈
〈
v(x‡)

〉
[1 + (xωK/〈v(x�)〉)2]

1/2

with
〈v(x�)〉 = 2(e−γDωK)−1/2, (3)

where x‡ is the location of the top of the barrier. Equation (3)
was used to analyze recent measurements of the average
velocity on transition paths in DNA hairpins.5

These theoretical descriptions of transition-path proper-
ties in the limit of large harmonic barriers have generally
described the experimental data quite well. Using them to
deduce the value of D for various molecules, for example,
returned results that were broadly self-consistent and simi-
lar to the values obtained from analysis of kinetic rates using
Kramers’ theory,2–5,11 which also assumes a harmonic bar-
rier.18 However, high-resolution measurements of the shape of
the energy barrier4,19,20 reveal that although approximating the
barriers as harmonic is reasonable, anharmonicity is usually
present to some degree. Indeed, small but systematic differ-
ences between the estimate of D obtained from Eqs. (1)–(3)
were attributed in part to barrier anharmonicity.4,5 Further-
more, many molecules have barriers that are small or even
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FIG. 1. Transition paths: Transition paths are the productive part (red) of
the trajectories in a reaction from A to B or vice versa—in contrast to the non-
productive fluctuations (grey)—that traverse the energy barrier separating A
from B defined by the boundaries xA and xB.

non-existent,21 for which Eqs. (1)–(3) would not be applica-
ble. These considerations motivated work to find expressions
for the transition-path times and velocities that are both simple
enough to use for analyzing experimental data and valid under
more general barrier conditions.

Berezhkovskii and Makarov22 recently derived expres-
sions for the average time and velocity as a function of position
along the transition path without assuming large harmonic bar-
riers. Here we extend this previous work, obtaining expressions
that can be used in the limit of small harmonic barriers. We
compare the effectiveness of the approximations (high- and
low-barrier limits) and exact theory when applied to simulated
folding trajectories over harmonic and anharmonic barriers
with a range of heights, finding that the crossover to the low-
barrier regime occurs at barrier heights of ∼4 kBT. Finally,
we apply the theory to experimental data that was previously
analyzed with Eqs. (1) and (3), re-evaluating the diffusion
coefficient extracted from the data to quantify the error in the
estimate of D introduced by approximating the barriers as large
and harmonic.

II. METHODS

Simulations were performed as described previously.5,23

Briefly, trajectories of transition paths were found by the
numerical solution of the Itô stochastic differential equation
using the Milstein scheme.24 The time step in the simula-
tions was set to ∆t ≈ τTP/1500. The simulations were done
for different barrier shapes as described in the main text,
using a constant diffusion coefficient of D = 500 nm2/s (a
value chosen for convenience) and a thermal energy of kBT
= 4.1 × 10−21 J. At least 5000 simulated transitions were
generated for each barrier shape. The simulations were ana-
lyzed to determine τTP and 〈vTP(x)〉, following the methods
described previously for analyzing experimental transition
paths.3,5

III. RESULTS

We first re-derive the general expressions for 〈vTP(x)〉 and
〈tTP(x)〉 presented in Ref. 22 in terms of the committor func-
tion, using a slightly different approach that starts by assuming

that folding is described by a 1D Smoluchowski equation,

∂

∂t
ρ(x, t) =

∂

∂x
D(x)e−βG(x) ∂

∂x
eβG(x)ρ(x, t). (4)

Here x(t) is the trajectory of the reaction coordinate, ρ(x,t)
is the probability density function, and G(x) is the free-
energy landscape governing the folding. An advantage of this
approach is that it describes the time evolution of the probabil-
ity density, which is in principle an experimental observable.
We re-express the reaction dynamics in terms of the committor
function (also known as the splitting probability), φB(x), the
probability that the molecule will reach state B as a function
of the reaction coordinate, which is given by25

φB(x) =
∫

x
xA

D(x′)−1eβG(x′)dx′

∫
xB

xA
D(x′)−1eβG(x′)dx′

, x ∈ (xA, xB). (5)

Here xA and xB define the boundaries between the bar-
rier region and, respectively, the folded and unfolded states
(Fig. 1). Following previous work,23 the Smoluchowski equa-
tion conditioned for a transition event expressed in terms of
φB becomes

∂

∂t
ρTP(x, t) =

∂

∂x
D(x)φB

2(x)e−βG(x) ∂

∂x
eβG(x)

φB
2(x)

ρTP(x, t), (6)

where ρTP(x,t) ≡ ρ(x,t|xA→ xB), with an absorbing boundary
at x = xB and subject to the initial condition ρ(x, t0 |xA → xB)
= lim

ε→0+
δ(x − xA − ε). Equation (6) yields the time evolution

of the probability density of the transition paths, which can be
readily solved numerically.26

The average velocity as a function of position along the
transition path, 〈vTP(x)〉, is then given by

〈vTP(x)〉 =
∫
∞

t0 J(x, t)dt

∫
∞

t0 ρTP(x, t)dt
, (7)

where J(x,t) ≡ J(x, t|xA→ xB) is the probability current. Since
the probability distribution for transition paths is given by27

∞∫
t0

ρTP(x, t)dt =
φB(x)(1 − φB(x))e−βG(x)

∫
xB

xA
φB(x)(1 − φB(x))e−βG(x)dx

, (8)

we can combine Eqs. (6) and (8) with the continuity equation
for particle conservation to solve explicitly for the time integral
of J, which is just the reciprocal of τTP,

∞∫
t0

J(x, t)dt =



xB∫
xA

φB(x)(1 − φB(x))e−βG(x)dx

×

xB∫
xA

D(x)−1eβG(x)dx



−1

= τTP
−1, (9)

as found previously.22 From here, we recapitulate the results
from Ref. 22. In terms of the committor function, the velocity
is given by

〈vTP(x)〉 = D(x)
d
dx φB(x)

φB(x)(1 − φB(x))
, (10)
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which for constant diffusivity yields D in terms of the velocity
at the barrier top,

D =
1
4

〈
v
(
x�

)〉
eβG(x�)

∫ xB

xA

eβG(x)dx. (11)

Last, as shown previously,22 by integrating the reciprocal
of the transition velocity, the average time to reach the position
x along the transition path can be expressed as

〈tTP(x |xA → xB)〉 =
∫ x

xA

φB(x′)
(
1 − φB(x′)

)
e−βG(x′)dx′

×

∫ xB

xA

D(x)−1eβG(x)dx. (12)

In the case of constant D, the diffusion coefficient and the mean
transit time are related by27

D =

xB∫
xA

e−βG(x)*..
,

x∫
xA

eβG(x′)dx′
+//
-

*.
,

xB∫
x

eβG(x′)dx′+/
-
dx

×


〈τTP〉

xB∫
xA

eβG(x′)dx′


−1

. (13)

Given that 〈v(x‡)〉 and τTP are experimental observables
in transition-path measurements3,5 and the energy-barrier
profile can sometimes be measured directly, as with the
single-molecule force spectroscopy methods,28 Eqs. (11)
and (13) provide a more precise way to determine D, the
fundamental parameter that connects the thermodynamics of
the energy landscape to the dynamics of the folding.

Because energy barriers in folding reactions are often
approximated as harmonic and D is typically assumed to be
constant, it is useful to re-express the equations above for this
special case. For a parabolic potential G(x) = −½κx2, where κ
is the curvature of the barrier and the transition region spans
the range x = −L to L, the transition-path velocity for constant
D is22

〈vTP(x | − L → L)〉 =
4Dαerf(αL)e−α

2x2

√
π
(
erf2(αL) − erf2(αx)

) , (14)

where erf(x) = 1√
π

x

∫
−x

e−x′2 dx′ is the error function and

α =

√
βκ
2 [hence (αL)2 is the barrier height]. D is then given

by

D =

√
π

4α
erf(αL)

〈
v
(
x�

)〉
. (15)

These results are valid for harmonic barriers regardless of
the barrier height. Approximations have already been com-
puted in the high-barrier limit,12,15–17 but not yet in the low-
barrier limit. For small barriers, we use the approximation
erf2(x) ≈ 1 – exp(−π2x2/8) for small x, leading to

〈vTP(x | − L → L)〉

=
2
√

2Dα
√
π

√
sinh

(
π2

16 α
2L2

)
e

π2
32 α

2L2

sinh
(
π2

16 α
2 (L2 − x2))e

(
1− π2

16

)
α2x2

(16)

and

〈tTP(x | − L → L)〉 =
π
[
λ
(
erf2(αL) − 1

)
(erfi(αx) + erfi(αL)) + erf(λαx) + erf(λαL)

]

8Dλα2erf(αL)
, (17)

where erfi(x) = 1√
π

x

∫
−x

ex′2 dx′ and λ =

√
π2

8 − 1. Finally, by

evaluating Eq. (17) at x = L, the average transition-path time
can be found,

τTP =
π
[
λ
(
erf2(αL) − 1

)
erfi(αL) + erf(λαL)

]

4Dλα2erf(αL)
. (18)

We note that these results are still valid as the barrier
height goes to zero. Taking the limit κ → 0, Eq. (16) for the
average transition-path velocity simplifies to 〈vTP(x)〉 ≈ 2DL/
(L2 – x2), consistent with the exact solution; similarly,
Eq. (18) for the average transition-path time simplifies to
τTP ≈ 2L2/3D, consistent with the expression found previously
by Kim and Netz.16

A. Application to Brownian dynamics simulations

To test these equations and discern the practical effects
of using them to analyze data from molecules with different
barriers, we first applied them to analyze transition paths in

Brownian dynamics simulations of motion with constant dif-
fusion over parabolic barriers of varying barrier heights. We
started by examining the average velocity profile, 〈vTP(x)〉,
for two barrier heights: 15 kBT (high-barrier limit) and 3 kBT
(low-barrier limit). We found that the average velocity calcu-
lated directly from the simulated trajectories (Fig. 2, black)
matched the analytical predictions from Eq. (14) (Fig. 2, red)
very well for both barriers. By contrast, although the high-
barrier approximation, Eq. (3), matched the empirical result
for the high-barrier case [Fig. 2(a), cyan], as expected, it
systematically underestimated the velocity in the low-barrier
case [Fig. 2(b), cyan]. Likewise, the low-barrier approxi-
mation, Eq. (16), matched the empirical result well for the
low-barrier case [Fig. 2(b), blue], but systematically over-
estimated the velocity in the high-barrier case [Fig. 2(a),
blue].

We next considered the average transition-path time,
τTP. Transitions were simulated over harmonic barriers with
heights ranging from 1 to 6 kBT. The values for τTP obtained
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FIG. 2. Average transition-path velocity from simulated transitions over
harmonic barriers: (a) The average transition-path velocity 〈vTP(x)〉 found
directly from simulations of transitions over a large, 15-kBT harmonic barrier
(black) matches very well with the result predicted by the exact solution in
Eq. (14) (red) and the high-barrier approximation in Eq. (3) (cyan) but is
poorly described by the low-barrier approximation in Eq. (16) (blue). (b) The
average velocity found directly from simulations of transitions over a small, 3-
kBT harmonic barrier (black) agrees well with the predictions of both the exact
result (red) and the low-barrier approximation (blue) but is poorly described
by the high-barrier approximation (cyan).

empirically for each barrier height from the simulated transi-
tions (Fig. 3, black) were compared to the values predicted by
Eq. (1) in the high-barrier limit (Fig. 3, cyan), to the values pre-
dicted by Eq. (18) in the low-barrier limit (Fig. 3, blue), and to
the values predicted by the exact solution, Eq. (12) (Fig. 3, red).
Whereas the exact solution matched the empirical results very
well over the whole range of barrier heights, the high-barrier
approximation overestimated τTP for barriers lower than ∼4
kBT, and the low-barrier approximation underestimated τTP

for barriers higher than ∼4 kBT. The crossover between high-
barrier and low-barrier approximations was thus around 4 kBT.
The under- and over-estimations resulting, respectively, from
the low- and high-barrier approximations were not very large
in the range of barrier heights studied, however, being less than
10%–15%.

Many of the experimental studies of transition paths to
date have used the properties of transition paths to investigate

FIG. 3. Average transition-path time from simulated transitions over
harmonic barriers: The average transition-path time determined directly
from simulations over a harmonic barrier with height ranging from 1 to 6
kBT (black) agrees well with the exact solution from Eq. (13) (red) over the
whole range of barrier heights. The high-barrier approximation from Eq. (1)
(cyan) agrees well at barrier heights of ∼5 kBT and higher, whereas the low-
barrier approximation from Eq. (18) (blue) agrees well at barrier heights of
∼4 kBT and lower.

the diffusion coefficient D3–7 because transition-path proper-
ties are far less sensitive to the height of the energy barrier
(which is difficult to measure precisely) than are other kinetic
properties like rates.1,6,29 We therefore examined the reliabil-
ity of the various estimates of D that can be obtained from
transition paths using the formulae above, in the different lim-
its. Looking first at the value of D obtained from 〈v(x‡)〉, we
used simulations over harmonic barriers with heights varying
from 1 to 6 kBT to compare the actual value of D imposed
in the simulations [Fig. 4(a), black] to the value calculated
from the exact solution via Eq. (15) [Fig. 4(a), red]. We found
that Eq. (15) returned the expected value of D over the whole
range of barrier heights. Repeating the analysis using the low-
barrier approximation [Eq. (16)] yielded very similar results
[Fig. 4(a), blue], indicating that this approximation is reason-
able for barrier heights up to at least 6 kBT. However, the
large-barrier approximation [Eq. (3)] tended to overestimate
D [Fig. 4(a), cyan], with the estimate worsening noticeably
(albeit not dramatically) for barrier heights below ∼3 kBT.
We note that a ∼6% overestimate of D from the high-barrier
approximation persists even in the high-barrier limit. Applying
the same kind of analysis to τTP, we found that the values of D
returned by the exact solution, Eq. (13) [Fig. 4(b), red], again
agreed very well with the value imposed in the simulations over
the range of barrier heights used [Fig. 4(b), black], whereas the
high-barrier approximation [Eq. (1)] tended to overestimate D,
with the overestimation increasing noticeably but not dramat-
ically for barrier heights ∼4 kBT and below [Fig. 4(b), blue].
By contrast, the low-barrier approximation [Eq. (18)] tended
to underestimate D somewhat for barrier heights ∼5 kBT and
above [Fig. 4(b), blue].

Finally, we looked at the effects of relaxing the assump-
tion that the barrier is harmonic by simulating transitions
over two types of anharmonic barriers: one with a bar-
rier that is sharper than in the harmonic case, described by
G(x) = −∆G‡[tanh(x/2)/tanh(L/2)]2 [Fig. 5(a), inset], where
∆G‡ is the barrier height; and the other with a barrier that
is broader than in the harmonic case, described by G(x)
= −∆G‡[sinh(x/2)/sinh(L/2)]2 [Fig. 5(c), inset]. In each case,

FIG. 4. Estimates of the diffusion coefficient for simulations over har-
monic barriers: (a) The estimate for D from the exact solution for 〈v(x‡)〉 via
Eq. (15) (red) agrees with the value imposed in the simulation (black) across
the whole range of barrier heights, whereas the high-barrier solution (cyan)
systematically overestimates D, especially for barriers below ∼4 kBT. (b) The
estimate for D from the exact solution for τTP (red), determined from the
simulation results by solving Eq. (13) for D, agrees with the value imposed in
the simulation (black) across the whole range of barrier heights, whereas the
high-barrier solution (cyan) overestimates D for barriers below ∼5 kBT and
the low-barrier solution (blue) underestimates D for barriers above ∼4 kBT.
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FIG. 5. Estimates of the diffusion coefficient for anharmonic barriers: (a) The estimate for D from the exact solution for 〈v(x‡)〉 via Eq. (11) (red) agrees
with the value imposed (black) in simulations of transitions over a barrier with higher curvature at the top than a harmonic barrier of the same width and height
(inset) across the whole range of barrier heights, whereas the high-barrier (cyan) and low-barrier (blue) harmonic approximations both underestimate D for
barriers below ∼5–6 kBT. (b) The estimate for D from the exact solution for τTP via Eq. (13) (red) agrees with the value imposed in the simulations (black)
across the whole range of barrier heights, whereas the high-barrier (cyan) and low-barrier (blue) harmonic approximations both significantly underestimate D
for all barrier heights. (c) For simulations over a barrier with lower curvature at the top than harmonic (inset), estimates of D from the exact solution for 〈v(x‡)〉
(red) agree with the imposed value (black), whereas the high-barrier (cyan) and low-barrier (blue) harmonic approximations both overestimate D; the low-barrier
approximation performs markedly better, especially for small barriers. (d) The estimate for D from the exact solution for τTP (red) agrees with the value imposed
in the simulations (black) for all barrier heights, whereas the high-barrier (cyan) and low-barrier (blue) harmonic approximations overestimate D. At the smallest
barriers, the high-barrier approximation yields unphysical negative values.

∆G‡ was varied from 1 to 6 kBT, as for the harmonic barriers
above. Considering first the sharper barrier, we found excel-
lent agreement between the D values predicted from 〈v(x‡)〉
by Eq. (11) [Fig. 5(a), red] and the imposed value [Fig. 5(a),
black]. However, approximating the barrier as harmonic and
using Eq. (3) for the high-barrier limit yielded values that were
systematically too low [Fig. 5(a), cyan], diverging from the
imposed value for barrier heights lower than∼5 kBT. The same
held true when using Eq. (16) for the low-barrier limit—it was
no better even at low barrier heights. The value of D recovered
from τTP from the exact solution, Eq. (13) [Fig. 5(b), red],
agreed well with the imposed value [Fig. 5(b), black], but the
harmonic approximations in the high-barrier [Fig. 5(b), cyan]
and low-barrier [Fig. 5(b), blue] limits both yielded values that
were several-fold lower for all barrier heights examined. Turn-
ing next to the barrier that was broader than harmonic, the value
of D recovered from 〈v(x‡)〉 by Eq. (11) [Fig. 5(c), red] agreed
well with the imposed value, as above, but now the approxima-
tion as a large harmonic barrier overestimated D by 2–3-fold
[Fig. 5(c), cyan], whereas the small harmonic barrier approx-
imation overestimated D by only 10%–40% [Fig. 5(c), blue].
Looking instead at D from τTP, the exact solution [Fig. 5(d),
red] recovered the imposed value [Fig. 5(d), black], and the
two harmonic barrier approximations again tended to overes-
timate D, except in the case of the large-barrier approximation
at the smallest barrier heights, where the solution yielded an
unphysical negative value [Fig. 5(d), cyan].

B. Application to experimental data

The results from analysis of the simulated transitions
show the kinds of errors that can arise from approximating
the barrier shape. Indeed, it was previously noted that apply-
ing Eqs. (1)–(3), which assume large harmonic barriers, to
transition paths measured for DNA hairpins using optical
tweezers4,5 led to small but systematic differences between
the values of D recovered from different physical quantities
(average transition-path times, decay of the transition-time
distributions, and barrier-top velocities). A breakdown in the

assumptions underlying Eqs. (1)–(3) was proposed to explain
the discrepancies in the results. We therefore applied the for-
mulae above to test the extent to which the assumption of a
large harmonic barrier distorted the results of the analysis.

We used the constant-D expressions for 〈v(x‡)〉 and τtp

in Eqs. (11), (13), (15), and (18) to re-evaluate the value of
D implied by the measurements of two hairpins, based on
the shape of the energy barrier that had previously been mea-
sured for each hairpin.4,19 For hairpin 20R25/T4, which has
a barrier that is close to harmonic but relatively small (height
measured with respect to the boundaries of the barrier region of
2.3 kBT ),4 we found that applying Eq. (15) to estimate D from
τTP yielded a new value of D = 1.9 ± 0.5 × 105 nm2/s, down
from the previous estimate4 using Eq. (1) of D = 2.6 ± 0.3
× 105 nm2/s. Applying instead Eq. (18) to estimate D from
〈v(x‡)〉 yielded a new value of D = 2.1 ± 0.3 × 105 nm2/s,
again reduced from the previous estimate5 using Eq. (3) of
D = 2.6 ± 0.5 × 105 nm2/s. These new estimates were both
closer to the value obtained from Eq. (2) (D = 1.3 ± 0.2
× 105 nm2/s) than the previous estimates, reducing the vari-
ance between the three estimates over 3-fold compared to
the previous work.5 Note that these values on the order of
104–106 nm2/s are consistent with previous measurements and
modeling of nucleic acid folding.11,30,31

We repeated this analysis for hairpin 30R50/T4, which has
a barrier that is roughly twice as large as the barrier for hairpin
20R25/T4 but more anharmonic. Applying Eq. (13) to estimate
D from τTP led to a new value of D = 2.4 ± 0.3 × 105 nm2/s,
instead of 3.5± 0.3× 105 nm2/s using Eq. (1),4 whereas apply-
ing Eq. (11) led to a new estimate from 〈v(x‡)〉 of D = 2.0± 0.4
× 105 nm2/s, instead of 2.5 ± 0.4 × 105 nm2/s using Eq. (3).5

Again, both of these new estimates are more consistent with
the value found from Eq. (2), D = 1.8 ± 0.2 × 105 nm2/s,
in this case reducing the variance between the different esti-
mates roughly 8-fold compared to what was found previously.4

For both hairpins, then, going beyond the large harmonic bar-
rier approximation helped deliver improved, more consistent
estimates of D.
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IV. DISCUSSION

The harmonic approximation for energy barriers is almost
always used to interpret folding data, not only in the context
of transition paths as discussed here but also in terms of rates,
such as in the celebrated expression of Kramers for diffusive
barrier crossing.18 The large harmonic barrier approximation
has worked reasonably well in initial studies of transition
paths in proteins and nucleic acids, for example, yielding
values of D that are consistent within factors of order unity
with values obtained via other means like Kramers’ theory.2,3

However, as future experiments aim to increase the precision
with which fundamental quantities like D are determined from
transition-path measurements, expressions for key observables
like 〈vTP(x)〉 and τTP that enable analysis to go beyond the
limit of large harmonic barriers and incorporate the effects of
small barrier heights or anharmonicity must be applied. Our
work shows that the general expressions for 〈vTP(x)〉 and τTP

derived in Ref. 22 and the low-barrier limits derived herein can
indeed help improve the precision of the data analysis.

The results from analyzing the simulations indicate some
of the trends that can be expected from using specific approx-
imations when analyzing experimental data. For harmonic
barriers, the large-barrier assumption generated only modest
errors, even down to barriers as small as 1 kBT, where the actual
D, for example, was ∼20%–25% smaller than estimated. Nev-
ertheless, the small-barrier approximation provided distinct
improvements at the lowest barrier heights. The presence of
anharmonicity, on the other hand, led to much larger errors
when applying the large and small harmonic barrier approx-
imations. For barriers that have higher curvature at the top
than harmonic barriers of the same height and width would
have, the estimates of D are systematically lower than they
should be because the high curvature of the harmonic approx-
imation implies a much higher barrier than is actually the
case with the anharmonic barrier, and hence a faster velocity
and shorter transit time than actually occurs. This explana-
tion also accounts for the poor performance of the low-barrier
approximation: even for nominally small barriers, the implied
harmonic barrier height is still large. For barriers that are flat-
ter than harmonic, on the other hand, D is overestimated by
applying the harmonic approximation because the actual bar-
rier is higher than implied by the harmonic approximation and
hence the velocity and transit time are faster than would be
expected in the approximation. Again, this explanation also
accounts for the improved performance of estimates using
the small-barrier approximation. Taken together, these results
imply that estimates of D using the harmonic approximation
are considerably more sensitive to the presence of anharmonic-
ity than they are to the height of the barrier. Note that the
fact that barrier anharmonicity has a greater effect on D than
barrier height could be expected based on Eq. (1), where the
transition path time has a linear dependence on the barrier’s
curvature but a much weaker, logarithmic dependence on its
height.

From the simulation results, we can also determine the
crossover point at which the high-barrier approximations start
to generate noticeable errors. In almost every case, the high-
barrier approximations began to diverge from the low-barrier

or exact results at a barrier height of 3–5 kBT, allowing the
high-barrier limit to be defined fairly confidently as any-
thing above this level. Previous measurements of transition
paths have examined molecules with barrier heights close to
but sometimes slightly below this boundary, explaining why
the high-barrier approximation worked reasonably well but
generated minor discrepancies between estimates of quan-
tities like the diffusion coefficient that were obtained from
different methods. As seen above, applying more appropri-
ate approximations or exact formulas helped to resolve these
discrepancies.

The main challenge with applying the equations for τTP

and 〈vTP(x)〉 is that they require detailed knowledge of the
shape of the energy barrier. Energy-barrier shapes can in some
cases be measured directly, as with the single-molecule force
spectroscopy methods used here,28 or else they may be esti-
mated from simulations and/or modeling.32–35 Ideally, the
position-dependence of the diffusion coefficient should also
be known since the common approximation that D is constant
is not generally correct.36,37 This position dependence can in
some cases be deduced by combining experiments and mod-
eling,38 but reliable methods for direct measurement remain
to be established;39 hence, the constant-D approximation may
often be unavoidable in practical applications.

Although we have used nucleic acid folding to demon-
strate the application of Eqs. (10)–(18), these results are,
of course, equally applicable to protein folding. Theoretical
considerations and experimental measurements34,40–44 both
suggest that energy barriers for protein folding are gener-
ally small compared to the total free-energy change. In many
cases, they may be close to the 3–5 kBT limit for assum-
ing a large barrier, making the results presented here useful
for obtaining better estimates of the transition-path properties.
The small-barrier limit will be particularly relevant for stud-
ies of molecules with very small or even non-existent barriers,
such as fast-folding or downhill-folding proteins, which con-
tinue to be the target of considerable interest because their
small barriers allow transition states to be populated more
easily.45

V. CONCLUSIONS

We showed that expressions for important transition-path
properties like the average time for transitions and the aver-
age velocity along the transition path that are valid outside
the limit of the large-harmonic-barrier approximation led to
improved accuracy for deducing properties of the folding from
simulations when applied to small and/or anharmonic energy
barriers, and that they resolved discrepancies observed in the
analysis of experimental transition-path data. These expres-
sions should prove useful to obtain more precise evaluations
of the microscopic properties of folding reactions as transition-
path measurements continue to expand to a widening range of
molecules.
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