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Abstract

We consider a spatial two-sided matching market with a network friction, where

exchange between any pair of individuals requires that the individuals know each other.

Such relationships are costly and must be formed before individuals learn their avail-

ability for trade. Our theoretical results characterize the basic geometry of small stable

networks. We then use simulation techniques to examine the structure and size of

larger stable networks. We show that regular networks (i.e., networks in which individ-

uals know those within a given distance from themselves) are not necessarily stable. If

they are, these networks grow in size as uncertainty increases and/or network costs de-

crease. Furthermore, an imbalanced market where (on expectation) one side is rationed

by the other tends to decrease network size.
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1 Introduction

In many market environments, individuals who know each other are more likely to trade

than anonymous agents. This can be for several reasons. First, by establishing a social

relationship with other individuals, agents can acquire relevant information about the good

or service to be exchanged (an obvious case in point is marriage). Second, social relation-

ships may reduce transaction costs, for instance by substituting trust for monitoring. Third,

prevailing cultural norms may require that individuals become acquainted with one another

personally before engaging in commercial transactions. These personal relationships consti-

tute a social network, which facilitates exchange in non-anonymous market environments.

The present paper investigates the role of social networks in matching markets. We take

as the underlying economic environment a two-sided matching market with non-transferable

utility and horizontal heterogeneity. Potential buyers and sellers of a differentiated good

are located along a line, with the surplus from a buyer-seller match decreasing in the

distance between the agents. Thus, every agent prefers to be in a close match rather than

a distant match.1 We introduce uncertainty by assuming that, a priori, it is not known

which potential sellers and buyers will be on the market. As an example, consider the

matching of workers (sellers of labor) and firms (buyers of labor): A worker may only know

that (with some probability) he becomes unemployed in the future, in which case he would

enter the supply side of the labor market. Similarly, a firm may only know that (with

some probability) it will have a job vacancy in the future, in which case it would enter the

demand side of the labor market. Before the agents learn whether or not they are on the

market, they engage in a cooperative game of network formation. We assume that links to

other agents are costly, but also necessary for future exchange. Once it is revealed which

agents are on the market, a stable matching of agents on the market is found subject to the

constraint that only agents linked in the social network can be paired. We call this constraint

a network friction.2

The main questions we ask are: What is the value of a network in the matching en-

vironment; who knows whom in equilibrium; and how does the structure and size of the

social network depend on the parameters of the underlying matching market? We demon-

strate how the network payoff function can be derived from the matching market model and

use this payoff to define pairwise stable networks.3 Under certain restrictions, the network

1The study of two-sided matching problems was pioneered by Gale and Shapley (1962), Shapley and

Shubik (1972), and Becker (1973); for a survey of the classic results in two-sided matching, see Roth and

Sotomayor (1990). The particular setup used here, a two-sided market with horizontal heterogeneity, is

studied in Eeckhout (2000), Clark (2003, 2006), and Klumpp (2009).
2Pissarides (2000) defines a friction as “anything that interferes with the smooth and instantaneous

exchange of goods and services,” with the implication that “individuals are prepared to spend time and

other resources on exchange.” The most common way to introduce frictions to matching markets is by

assuming that agents meet potential match partners randomly over time, and then decide whether to stay

with their partner or wait to draw another partner at random. This is called a search friction.
3Pairwise stability, introduced in Jackson and Wolinsky (1996), means that no individual prefers to sever
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payoff will be simple enough to allow us to answer the next two questions analytically.

In particular, we derive conditions for the existence of a pairwise stable network in which

each individual knows her k nearest neighbors, for k ≤ 3. This will be called a regular

network of size k. We further show that k depends non-monotonically on the parameters

of the model: If the probability that an agent has a positive supply or demand of the good

increases, network size grows at first but then shrinks. We then use simulations to compute

the pairwise stable networks for a wider set of parameters. We show that in general, regular

pairwise stable networks need not exist. When they do exist, our numerical results confirm

that, ceteris paribus, network size is non-monotonic in the probability of needing a trading

partner, and is maximized when each buyer and seller has probability 1/2 of being on the

market.

These results highlight the fact that social networks serve an insurance function in

our model. Links to other agents are necessary for an individual to be paired when the

individual needs a partner, which a priori is uncertain. Reaching out to a large set of

other agents, therefore, acts as insurance against future needs, whose value is largest when

uncertainty is high. In our model, this is the case when the probabilities that an individual

will be on the market are in an intermediate range. In our simulations we also show that an

imbalanced market—in which the expected number of agents on one side is larger than the

expected number of agents on the other side—tends to decrease the size of social networks.

The reason is that, even though social networks facilitate exchange, they also facilitate

competition over match partners. In a state in which one side of the market is rationed by

the other on expectation, competition over match partners will be fierce, thereby diminishing

the value a link creates for the individuals involved.4

The importance of social networks for economic outcomes has long been recognized.

Early studies by Myers and Shultz (1951), Rees and Shultz (1970), and Granovetter (1973),

for example, found that over half of the workers surveyed had obtained jobs through pre-

viously known social contacts. These early works have since spawned a large and growing

literature that investigates the role of networks in labor markets and other environments

theoretically, as well as the incentives for individuals to establish their social ties.5 An

important class of models commonly used to study emergent networks is based on Jackson

and Wolinsky’s (1996) connections model.6 In the basic connections model, it is assumed

a link to another, and no pair of unlinked individuals mutually prefers to establish a link.
4This result suggests that, contrary to popular opinion, the value of social networks for finding employ-

ment in a recession (i.e., if there are more job seekers than job openings on the other) may be less than in

a balanced labor market.
5For example, Montgomery (1991) examines the decision of employers to use their workers’ social contacts

for hiring referrals. A series of recent papers by Calvó-Armengol and Jackson (2004, 2007) and Calvó-

Armengol and Zenou (2004) examine dynamic models in which information about job opening travels through

the workers’ network.
6Other models of strategic network formation include contributions by Boorman (1975), Myerson (1977),

and Dutta and Mutuswami (1997), and Bloch and Jackson (2007).
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that every connection between two individuals provides a certain benefit to the individuals

which is discounted by the number of steps involved in the connection. That is, a friend

of a friend is assumed less valuable than a friend. Numerous extensions of the basic model

have been proposed: For example, the coauthors model (also Jackson and Wolinsky, 1996)

allows for a negative value of indirect connections, Johnson and Gilles (2000) introduce a

spatial topography to the set of agents, and Carayol and Roux (2009) introduce dynamic

link formation to the connections model.7

We borrow from Jackson and Wolinsky (1996) the solution concept of pairwise stability,

and from Johnson and Gilles (2000) the notion of spatial differentiation among the indi-

viduals in the network. However, there is an important difference between the connections

model and the framework presented in this paper. In our model, the value of a network

depends on how well it facilitates exchange in the underlying matching market. No such

market exists in the connections model, and one may think of its payoff function as a reduced

form for the payoff generated by the network in some underlying economic environment.

One contribution of our paper is to develop a structural approach to examine the formation

of networks in one particular such environment —a two-sided matching market, which we

model explicitly. In this setting, we demonstrate how a simple non-anonymity requirement

for trade gives rise a social network whose payoff function cannot be adequately described

in terms of the reduced-form payoff functions commonly assumed in the connections model.

For example, the value of some indirect connections will be negative, while the value of

others will be positive. To understand this property, consider a marriage market. A man

(say i) is always hurt when a woman he knows (say j) becomes acquainted with another

man (say i′), as i is now in direct competition with i′ for j’s hand. On the other hand, i

benefits if i′ befriends another woman j′, since this reduces the amount of competition i can

expect from i′ over woman j (as i′ could now also marry j′). Our model is a step toward

understanding the role of social networks in such environments.

A model with a similar motivation to ours is developed by Galeotti and Merlino (2010).

Their model shares with ours the assumption of uncertainty about which jobs will become

vacant, and which workers will become unemployed. Workers invest in networking be-

fore these uncertainties are resolved. Galeotti and Merlino (2010) show that, similar to our

results, networking activities are most intense for intermediate degrees of uncertainty. How-

ever, their model does not include an explicit description of a two-sided matching market,

and the agents are not differentiated in the same spatial sense as is assumed here.

Our paper is also related to previous work on buyer-seller networks. Kranton and

Minehart (2000, 2001) and Blume et al. (2009) examine settings in which buyers must

know potential sellers before they can buy a good from them. Kranton and Minehart

(2000) and Blume et al. (2009) examine equilibrium prices and allocations in a model

where the network as well as the buyers’ valuations for the good are given. This perspective

7For a detailed review of the literature on social and economic networks, including the connections model,

see Jackson (2008).
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corresponds to the final stage of our model, at which the network is established and the

uncertainty about agents’ trading needs has been lifted. In Kranton and Minehart (2001),

prior uncertainty about the buyers’ valuations as well as a network formation game are

introduced. This perspective corresponds to the entire sequence of stages in our model.

Despite these similarities, there are several key differences between our model and theirs.

First, there is no sense in which buyers or sellers can be considered “close” or “distant,”

which is a central aspect both of our model and of its results. Second, utility is assumed

transferable; in particular, the buyers pay a price for a seller’s good that is determined in

an auction. The terms of trade in the market are thus endogenous, while we take them as

exogenous.8 Finally, Kranton and Minehart (2001) consider a non-cooperative game of link

formation, while we use a coalitional specification.

The remainder of the paper is organized as follows. Section 2 contains our model of a

matching market with network frictions. In Section 3, we explore the relationship between

the uncertainty in the matching market on the one hand, and the expected benefit of social

networks on the other. The next two sections, Sections 4 and 5, treat the network as

endogenous: In Section 4 we model the network formation stage as a cooperative game and

characterize equilibrium networks under certain simplifying assumptions. In Section 5 we

perform numerical simulations for less restrictive assumptions; these extend and complement

the result of Section 4. Section 6 concludes.

2 The Model

In this section, we describe our model of a matching market with network frictions. The

agents belong to two groups which we call sellers and buyers. This terminology does not

preclude other interpretations of two-sided matching environments, such as men and women

in a marriage market, or workers and jobs in a job-worker assignment problem.

2.1 The matching market

Let CS = CB = {1, 2, 3, . . . , N}. Each i ∈ CS is the location of a seller, and each j ∈ CB is

the location of a buyer. Given a seller-buyer pair (i, j) ∈ CS ×CB, define their distance as

follows:

|i, j| ≡ min{ |i− j| , |i+N − j| }.

Thus, one can imagine the locations of the sellers and buyers as a set of points arranged on

a circle, and |i, j| represents the shortest distance on that circle from i to j. In general, we

8Our assumption of non-transferable utility lends itself to a more tractable characterization of stable

assignments in the matching market. Klumpp (2009) shows that in the two-sided matching market we

consider in this paper, this tractability would be lost if utility was transferable. Moreover, the set of possible

side payments that support a stable assignment would not be unique. To avoid these complications, we here

focus on the non-transferable utility case.
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will assume all addition and subtraction operations on CS and CB are modulo N .9

Each seller supplies either zero or one units of an indivisible good, and each buyer

demands either zero or one units of that good. We let xi ∈ {0, 1} denote the quantity

supplied by seller i, and yj ∈ {0, 1} the quantity demanded by buyer j. The vectors x =

(x1, . . . , xN ) and y = (y1, . . . , yN ) will be called the supply configuration and demand

configuration , respectively. We assume that these are random variables. Specifically, we

assume that each xi equals one with with probability p and zero with probability 1 − p.
Likewise, each yj equals one with probability p and zero with probability 1− p. All xi and

yj are drawn independently. We sometimes refer to xi = 1 as a positive supply shock, and

to yj = 1 as a positive demand shock.

If xi = yi = 1, then the pair seller-buyer (i, j) have coincidence of wants, and we denote

by

D(x, y) = {(i, j) ∈ CS × CB : xi = yj = 1}

the set of all seller-buyer pairs that satisfy this condition. If (i, j) ∈ D(x, y) do trade,

the exchange generates value u(|i, j|) for both seller i and buyer j. The utility function

u is positive and strictly decreasing (this represents horizontal differentiation among the

agents). Utility is non-transferable; that is, no side-payments are allowed. Finally, an agent

who does not trade with another agent obtains a zero payoff.

2.2 Networks

Now assume that in order to trade with one another, the agents in the seller-buyer pair

(i, j) must also know each other. That is, they must have established a social relationship

prior to trading. We call this requirement a network friction.

We model the social relations among the players as a bi-partite network whose vertices

are the sellers on one side, and the buyers on the other. Formally, a link (i, j) ∈ CS × CB
between seller i and buyer j represents a social relationship among i and j. A network is

then a collection of links G ⊆ CS×CB. In Section 4 we will introduce a cooperative game of

network formation through which the sellers and buyers in the matching markets establish

their links. Until then, we take the network G ⊆ CS × CB as given.

Given a supply-demand configuration (x, y) and a network G, the set of matches that

can form in the matching market with the network friction is

D(x, y|G) ≡ D(x, y) ∩G.

The intersection of D(x, y) and G represents the fact that a feasible trade must now satisfy

two conditions: The previous requirement that agents have coincidence of wants (xi = yj =

1), and the new requirement that i and j be connected in the network G. Note that a

frictionless market is subsumed as a special case in our setup: If G = CS ×CB (i.e., G is the

complete network) then D(x, y|G) = D(x, y) for all x and y.

9For example, the location three spots to the left of location 1 is N − 2.
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2.3 Assignments

An assignment , or matching, specifies who trades with whom. Formally, an assignment

is a set M ⊆ D(x, y|G) such that

(a) each seller is matched with at most one buyer: (i, j) ∈ M and j 6= j′ implies (i, j′) /∈
M ;

(b) each buyer is matched with at most one seller: (i, j) ∈M and i 6= i′ implies (i′, j) /∈M .

For fixed x and y, we denote by vSi (M) the surplus that seller i ∈ CS receives in assignment

M ,

vSi (M) =

{
u(|i, j|) if ∃j ∈ CB s.t. (i, j) ∈M,

0 otherwise,

and by vBj (M) the surplus that buyer j ∈ CB receives,

vBj (M) =

{
u(|i, j|) if ∃i ∈ CS s.t. (i, j) ∈M,

0 otherwise.

A stable assignment (or equilibrium assignment) is defined as follows:

Definition 1. Given a network G and a supply-demand configuration (x, y), an assignment

M ⊆ D(x, y|G) is stable if there does not exist (i, j) ∈ D(x, y|G)\M such that u(|i, j|) >
vSi (M) and u(|i, j|) > vBj (M).

That is, there does not exist a seller-buyer pair in D(x, y|G) such that both agents prefer

being matched with one another over being matched with their assigned partner, or being

unmatched. Note that, since u is positive, all sellers and buyers prefer being matched over

being unmatched.10

2.4 Market clearing on a network: The inside-out algorithm

Stable assignments, as defined in Definition 1, have a simple recursive structure. Note that,

if (i, j) ∈ D(x, y|G), then i and j have coincidence of want and are linked in G; thus they

can trade with each other and receive a positive surplus. Since all agents prefer shorter

matches to longer matches, both i and j may decline to transact with one another if a

closer match partner is available who agrees to enter into a match. For this to be the case,

this third agent must not have an even closer potential match partner available herself. For

instance, buyer j would decline to obtain the good from seller i if there exists another seller

k such that (k, j) ∈ D(x, y|G), |j, k| < |i, k|, and if there does not exist a buyer l such that

(k, l) ∈ D(x, y|G), |k, l| < |k, j|, and l does not herself decline the transaction with k.

10If this was not the case, we would have had to include the requirement that all agents obtain non-negative

surpluses.
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These considerations show that a stable assignment M ⊆ D(x, y|G) can be built itera-

tively, using the following “inside-out” market clearing process.11 Let

D0 = D(x, y|G) (1)

be the set of all potential matches. If (i, j) ∈ D0 and i = j, then buyer i and seller j

are located just across from each other, and neither of them could obtain a higher utility

matching with any other agent. All such matches are therefore part of the stable assignment.

Thus, we set

M1 =
{

(i, i) ∈ D0
}
.

The matches remaining are those that do not involve an agent who is already in a match

in M0. Let this set be

D1 = D0 \
{

(i, j) : ∃k s.t. (i, k) ∈M1 or (k, j) ∈M1
}
.

The next matches to form are those for which |i, j| = 1, as these generate the next highest

utility. There is now a need for tie-breaking. For example, if y−1 = x0 = y1 = 1 (all other

xi and yj zero) there will be two possible matches, (0, 1) and (0,−1), but only one can

ultimately be in the assignment. We assume that from all possible matches (i, j) ∈ D1

with |i, j| = 1, priority is given to the “left-to-right” matches (i, i+ 1) before any remaining

“right-to-left” matches (i, i− 1) are cleared. Thus, first define

M2 =
{

(i, i+ 1) ∈ D1
}
,

D2 = D1 \
{

(i, j) : ∃k s.t. (i, k) ∈M2 or (k, j) ∈M2
}
,

and then

M3 =
{

(i, i− 1) ∈ D2
}
,

D3 = D2 \
{

(i, j) : ∃k s.t. (i, k) ∈M3 or (k, j) ∈M3
}
.

Then proceed to the next-longest matches:

M4 =
{

(i, i+ 2) ∈ D3
}
,

D4 = D3 \
{

(i, j) : ∃k s.t. (i, k) ∈M4 or (k, j) ∈M4
}
,

M5 =
{

(i, i− 2) ∈ D4
}
,

D5 = D4 \
{

(i, j) : ∃k s.t. (i, k) ∈M5 or (k, j) ∈M5
}
.

Proceed in this fashion for all subsequent matches. The overall assignment resulting from

this algorithm,

M(x, y|G) ≡
⋃

σ=1,2,3,...

Mσ,

is stable per Definition 1. Note that this is typically not the only stable assignment, as we

could have broken ties in a different way. However, M(x, y|G) is the unique assignment

under the assumed tie-breaking rule.

11This algorithm is described (for the frictionless case) in detail in Klumpp (2009), and for similar envi-

ronments also in Alcalde (1995), Eeckhout (2000), and Clark (2003).
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3 The Value of a Network

The aim of this section is to address the question of how valuable the social network G is to

every seller i ∈ CS and buyer j ∈ CB. Note that, unlike the connections model (Jackson and

Wolinsky, 1996; Johnson and Gilles, 2000), we do not assume that there is a given value of

connections in the network. Instead, the value of the network to the individuals must be

derived based on how well it facilitates trade in the underlying matching market. Below,

we show how this can be done. We also provide a series of examples to demonstrate the

complex nature of network values in our setup. The networks discussed in Section 3.3 will

then be used for our results in Section 4 and Section 5.

3.1 Utilization probabilities

To start with, recall that given a network G and a supply-demand configuration (x, y), it

is straightforward to compute a stable assignment M(x, y|G) by applying the inside-out

algorithm of Section 2.4 to the set of potential matches D(x, y|G). Note, however, that

the supply and demand configurations x and y are random variables. This implies that the

stable matching M(x, y|G) itself is random. Thus, from an “interim” perspective where G

is known but x and y are not, there is a probability that trade will occur along each link

(i, j) ∈ G. This probability is called the utilization probability of link (i, j) ∈ G and

denoted by

ϕ(i, j|G) = Pr
[

(i, j) ∈M(x, y|G)
]
. (2)

Because M(x, y|G) is unique (owing to our tie-breaking assumption), (2) is well-defined.

The expected benefit of a link (i, j) ∈ G for both seller i and buyer j is then given

by the product ϕ(i, j|G) · u(|i, j|). That is, the probability that the match (i, j) happens,

multiplied by the value of the match if it happens. For a given seller i or buyer j, the value

generated by network G can now be computed by adding the expected benefits of all links

belonging to this agent:

USi (G) ≡
∑

j:(i,j)∈G

ϕ(i, j|G)u(|i, j|), (3)

UBj (G) ≡
∑

i:(i,j)∈G

ϕ(i, j|G)u(|i, j|). (4)

As can be seen from (3)–(4), the crucial determinants of the expected network benefits

for an agent are the link utilization probabilities ϕ(i, j|G). These, in turn, depend on the

probability p that any given seller or buyer is on the market. The following examples

demonstrate how the utilization probabilities of network links can be found.
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3.2 Example 1: A simple network

Consider the network G = {(2, 1), (2, 2), (2, 3), (3, 3)}, shown in Figure 1. We are interested

in the probability that seller 2 utilizes each of her three links (2, 1), (2, 2), (2, 3).

p

p

p

p 1–p

1–p

p

p

1–p 1–p p

p

1–p p
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ϕ(2,2|G) = p2
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2 ......

3 ......

Figure 1: A network containing four links

Let us first consider ϕ(2, 2|G). Clearly, if x2 = y2 = 1 then the seller-buyer pair (2, 2) will

trade, and this event has probability p2. The demand and supply shocks of other agents

do not matter for this match, as seller 2 and buyer 2 are mutually most-preferred match

partners. Thus, the probability that seller 2 and buyer 2 trade in G is ϕ(2, 2|G) = p2 (see

Figure 2).12
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Figure 2: Computation of ϕ(2, 2|G)

Next, let us consider ϕ(2, 3|G). For the pair (2, 3) to trade we need x2 = y3 = 1; this

has probability p2. At the same time, seller 2 must not trade with buyer 2 (to whom she is

linked and whom she would prefer). For this to be the case, we need y2 = 0; this event has

probability 1 − p. Similarly, buyer 3 must not trade with seller 3 (to whom she is linked

and whom she would prefer), and for this to be the case we need x3 = 0; this event also has

probability 1−p. Now, seller 2 is also linked to buyer 1, but the value of y1 does not matter

for the match (2, 3), given our tie-breaking rule: Given the same distance, a left-to-right

match is cleared before a right-to-left match. Thus, the probability that seller 2 and buyer

3 trade in G is ϕ(2, 3|G) = p2(1− p)2 (see Figure 3).

12In all figures in this section, a black dot indicates a positive demand or supply quantity, a white dot

indicates a zero quantity, and a gray dot indicates either a positive or a zero quantity.
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Figure 3: Computation of ϕ(2, 3|G)

Finally, consider ϕ(2, 1|G). For the pair (2, 1) to trade we need x2 = y1 = 1; this has

probability p2. For the same reason as in the previous step, seller 2 must not trade with

buyer 2, so we need y2 = 0, which has probability 1 − p. Seller 2 must also not trade

with buyer 3, as a potential match (2, 3) would beat the match (2, 1) by our tie-breaking

assumption. For this to be the case we need either y3 = 0 (probability 1−p), or x3 = y3 = 1

(probability p2). In the latter case, seller 2 would like to trade with buyer 3, but buyer 3

would refuse the trade in favor of the closer seller 3. Thus, the probability that seller 2 and

buyer 1 trade in G is ϕ(2, 1|G) = p2(1− p)(1− p+ p2) (see Figure 4).
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1

2 ......

3 ......

Figure 4: Computation of ϕ(2, 1|G)

The expected benefit of the network G = {(2, 1), (2, 2), (2, 3), (3, 3)} for seller 2 is there-

fore given by

US2 (G) = ϕ(2, 2|G) · u(0) + ϕ(2, 3|G) · u(1) + ϕ(2, 1|G) · u(1)

= p2 · u(0) + p2(1− p)2 · u(1) + p2(1− p)(1− p+ p2) · u(1)

= p2
[
u(0) + (1− p)(2− 2p+ p2)u(1)

]
.

3.3 Example 2: Regular networks

We now introduce a class of networks we call regular networks. In a regular network

of size k ≥ 0, denoted G(k), each agent is linked to her “k nearest neighbors.” Because

agents prefer shorter matches over longer ones, regular networks are natural candidates for

10



networks which emerge as “equilibrium networks” in our model (a network formation stage

will be formally introduced in the next section).

In keeping with the order in which matches are resolved in the inside-out market clearing

algorithm, the meaning of “k nearest neighbors” is the following:

– If k is zero, G(k) is the empty network. That is, G(0) = ∅.

– If k is odd, every seller is linked to the one buyer who resides at the same location,

as well as the (k − 1)/2 nearest buyers on both her left and right side. Similarly,

every buyer is linked to the seller who resides at the same location, as well as to the

(k − 1)/2 nearest sellers on both her left and right side.

– If k is even (and positive), every seller is linked to the buyer who resides at the same

location, as well as the (k − 2)/2 nearest buyers on both her left and the k/2 nearest

buyers to her right side (and similarly for every buyer).

In a regular network, links of the form (i, i) are called 1st-order links. Links of the form

(i, i+1) are 2nd-order links, (i, i−1) are 3rd-order links, (i, i+2) are 4th-order links, (i, i−2)

are 5th-order links, and so on. Thus, the regular network G(k) contains all lth-order links

for l = 1, . . . , k. Figure 5 depicts the first six regular networks.

G(0)

G(2)

G(4)

G(1)

G(3)

G(5)

G(0) G(2)G(1)

G(3) G(4) G(5)

Figure 5: The regular networks G(0), . . . , G(5)

For regular networksG(k), it is possible to derive the utilization probabilities ϕ(i, j|G(k))

analytically, provided k is not too large. This can be done in the same way as in the previous

examples. For G(0), since it is the empty network, we have

ϕ(i, j|G(0)) = 0 for all i, j. (5)

In G(1) on the other hand, each agent is linked to exactly one other agent. Thus, seller i

and buyer i trade if and only if xi = yi = 1, which has probability p2. It follows that

ϕ(i, j|G(1)) =

{
p2 if i = j,

0 if i 6= j.
(6)
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The regular network G(2) contains 1st-order and 2nd-order links. The utilization prob-

ability of a 1st-order link in G(2) is still p2. Now consider the 2nd-order links, between

sellers i and buyers i+ 1. For the pair (i, i+ 1) to trade, we need xi = yi+1 = 1, which has

probability p2. In addition, we need yi = 0 (otherwise, seller i would trade with buyer i)

and xi+1 = 0 (otherwise buyer i+ 1 would trade with seller i+ 1); each of these events has

probability 1− p. Thus, the utilization probabilities for the links in G(2) are given by

ϕ(i, j|G(2)) =


p2 if i = j,

p2(1− p)2 if j = i+ 1,

0 otherwise.

(7)

Next, for G(3) we get one additional term:

ϕ(i, j|G(3)) =


p2 if i = j,

p2(1− p)2 if j = i+ 1,

p2(1− p)2(1− p+ p2)2 if j = i− 1,

0 otherwise.

(8)

To see why ϕ(i, i−1|G(3)) = p2(1−p)2(1−p+p2)2, consider what must happen for seller i

and buyer i− 1 to trade: As before, we need xi = yi−1 = 1, which has probability p2. Also

as before, we need to ensure that seller i does not trade with buyer i, and that buyer i− 1

does not trade with seller i−1. This will be the case if and only if xi−1 = yi = 0, which has

probability (1− p)2. What is new for 3rd-order links is that we must now ensure that seller

i does not trade with buyer i+ 1. This will be the case either if yi+1 = 0 (buyer i+ 1 is not

on the market), or if yi+1 = xi+1 = 1 (buyer i + 1 is on the market but trades with seller

i+ 1). This gives us the factor 1− p+ p2. Similarly, we must ensure that buyer i− 1 does

not trade with seller i − 2. This will be the case either if xi−2 = 0 or if xi−2 = yi−2 = 1,

yielding another factor 1− p+ p2.

On could, in principle, carry on in the same manner for successively larger networks.

For example, with G(4) we must include the utilization probabilities of 4th-order links:

ϕ(i, j|G(4)) =



p2 if i = j,

p2(1− p)2 if j = i+ 1,

p2(1− p)2(1− p+ p2)2 if j = i− 1,

p2(1−p)2(1−2p+2p2)(1−p+p2(1+(1−p)2))2 if j = i+ 2,

0 otherwise,

(9)

(The analytical derivation of (9) is in the Appendix.) Since matches are cleared “from

the inside out” (i.e., closer matches have priority over more distant ones), the utilization

probability of an lth-order link will be the same in G(k) and in G(k′) if k, k′ ≥ l, and equal

to zero if k < l. However, the utilization probabilities of the higher-order links become

increasingly unwieldy. Also note that, going from the third to the fourth line in (9), the

utilization probability of an lth-order link in G(k) cannot generally be expressed as the
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corresponding probability of the (l−1)st-order link times a new term (this simple pattern

is valid only up to 3rd-order links).

In any event, the value of the regular network G(k) is the same for every seller and every

buyer and can be found by summing the expected benefits of lth-order links for k = 1, . . . , k.

Thus, we get the following network values:

USi (G(0)) = UBj (G(0)) = 0,

USi (G(1)) = UBj (G(1)) = p2u(0),

USi (G(2)) = UBj (G(2)) = p2
[
u(0) + (1− p)2u(1)

]
,

USi (G(3)) = UBj (G(3)) = p2
[
u(0) + (1− p)2

[
1 + (1− p+ p2)2

]
u(1)

]
,

and so on.

3.4 External effects and the value of indirect connections

In our model, a link between two agents enables this pair of agents to trade, but an agent

cannot trade with another agent to whom he is only indirectly linked. For example, consider

seller i who knows buyer j, who in turn knows seller i′, who in turn knows buyer j′. In this

case, we say that seller i has an indirect connection to buyer j′. The indirect connection

from i to j′ does not allow i and j′ to trade—for this, the network would have to contain a

direct link (i, j′). However, the fact that trade can only take place over direct connections

does not imply that agents derive a zero benefit from indirect connections. More generally,

the value generated by a network for an individual depends not only on the links this

individual has to others, but on all links in the network, including links which connect two

entirely different agents.

The reason for this dependence is that links in our network generate externalities on

the utilization probability of other links. To see this, define the external value of the link

(i′, j′) ∈ G to seller i as

zSi (i′, j′|G) ≡ USi (G)− USi (G− (i′, j′)).

That is, zSi (i′, j′|G) is the difference between the overall value that i derives from network

G and the value i derives from the network that arises after (i′, j′) is removed from G. The

external value of an indirect link to buyer j 6= j′ can be defined similarly as zBj (i′, j′|G) ≡
UBj (G) − UBj (G − (i′, j′)). We will show that zSi (i′, j′|G) is not zero, and that it can be

positive or negative (the same is true for zBj ). The possibility of negative link externalities

shows that the role of social networks in matching markets cannot generally be viewed as

a special case of the connections model.

Example 3: A negative externality. As an example of the first possibility, consider the

network G = {(1, 2), (2, 2)}, depicted on the left side of Figure 6.
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Figure 6: Removing link (2, 2) increases the probability that link (1, 2) is utilized

Since seller 1 is directly linked only to buyer 2, we have USi (G) = ϕ(1, 2|G)u(1). For seller

1 and buyer 2 to trade, we must have x1 = y2 = 1, as well as x2 = 0 (otherwise buyer 2

would prefer to trade with seller 2 instead of seller 1). Thus, ϕ(1, 2|G) = p2(1−p). Deleting

link (2, 2) from G eliminates the requirement that x2 = 0: As seller 2 and buyer 2 are no

longer linked they cannot trade, regardless of the value of x2 (see the right side of Figure

6). Thus ϕ(1, 2|G− (2, 2)) = p2, and we have

zSi (2, 2|G(2)) = ϕ(1, 2|G)u(1)− ϕ(1, 2|G− (2, 2))u(1) = −p3u(1) < 0.

Notice that seller 1 values the link between seller 2 and buyer 2 (and thus the indirect

connection between himself and seller 2) negatively because this link puts seller 1 in direct

competition with seller 2 over buyer 2. Removing link (2, 2) hence benefits seller 1.

Example 4: A positive externality. To see the opposite effect, consider the network

G = {(1, 1), (1, 2), (4, 2)} depicted on the left side of Figure 3.4.
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Figure 7: Removing link (1, 1) decreases the probability that link (4, 2) is utilized

Since seller 4 is directly linked only to buyer 2, we have US4 (G) = ϕ(4, 2|G)u(2). For seller

4 and buyer 2 to trade, we must have x4 = y2 = 1; this has probability p2. At the same

time, buyer 2 must not trade with seller 1 (who would be preferred over seller 3 due to 1’s

location). This requires that either x1 = 0 (probability 1− p), or x1 = y1 = 1 (probability

p2). Thus, ϕ(4, 2|G) = p2(1− p+ p2). If we remove the link (1, 1) from G, we eliminate the

last possibility, so that ϕ(4, 2|G− (1, 1) = p2(1− p) (see the right side of Figure 3.4). Thus,

the value of link (1, 1) in G to seller 4 is

zS4 (1, 1|G) = ϕ(4, 2|G)u(2)− ϕ(4, 2|G− (1, 1))u(2) = p4u(2) > 0.
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Seller 4 values the link between seller 1 and buyer 1 (and thus the indirect connection

between himself and buyer 1) positively because this link reduces the competition seller 4

faces from seller 1 over buyer 2. Removing link (1, 1) hence hurts seller 4.

These examples demonstrate that, even though we only assume a very simple non-

anonymity condition which requires direct links between individuals for trade, the indirect

connections of the resulting social network do affect the value the network generates for

the agents. More precisely, indirect connections affect the value of direct links, as indirect

connections can both strengthen and weaken the competition over match partners, thereby

generating either negative or positive externalities for other agents.

4 Network Formation: Theory

The main focus of this and the next section is on the networks that emerge endogenously,

given the matching environment described in the previous section.

To this end, let us assume that the network G is formed in a cooperative game before

the supply and demand configuration (x, y) is known. Specifically, assume that for every

link (i, j) ∈ G, both the seller i and the buyer j incur a networking cost c > 0. This cost

can be interpreted as the time spent by i and j in cultivating their relationship, and must

be paid regardless of whether or not i and j eventually trade with each other.

4.1 Pairwise stable networks

Given the networking cost c, the net-of-cost value generated by network G for seller i is

given by

V S
i (G) ≡ USi (G)−#{j : (i, j) ∈ G} · c =

∑
j:(i,j)∈G

[
ϕ(i, j|G)u(|i, j|)− c

]
.

That is, V S
i (G) is the expected benefit of the network G for seller i minus the network cost

for i. Similarly, the net value of network G for buyer j is

V B
j (G) ≡ UBj (G)−#{i : (i, j) ∈ G} · c =

∑
i:(i,j)∈G

[
ϕ(i, j|G)u(|i, j|)− c

]
.

Using V S
i and V B

j as payoff functions, we can now define an equilibrium network by em-

ploying the pairwise stability concept of Jackson and Wolinsky (1996):

Definition 2. A network G ⊆ CS × CB is pairwise stable if the following holds for each

(i, j) ∈ CS × CB:

(a) (i, j) ∈ G implies V S
i (G) ≥ V S

i (G− (i, j)) and V B
j (G) ≥ V B

j (G− (i, j)),

(b) (i, j) /∈ G implies V S
i (G ∪ (i, j)) ≤ V S

i (G) or V B
j (G ∪ (i, j)) ≤ V B

j (G).
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Pairwise stability is a relatively weak definition of network stability, imposing only two

requirements: Neither party in a link has a strict preference for severing the link (condition

(a)), and no two unlinked agents strictly prefer forming a link (condition (b)).13 Note that

the first condition can equivalently be expressed as the requirement that the external value

of every link G be at least c for the two individuals connected by the link:

zSi (i, j|G), zBj (i, j|G) ≥ c ∀(i, j) ∈ G.

Similarly, the second condition says that the external value of every link not in G would be

at most c (for the two individuals involved) if it was added to G:

zSi (i, j|G ∪ (i, j)), zBj (i, j|G ∪ (i, j)) ≤ c ∀(i, j) /∈ G.

In order to determine whether a network G is pairwise stable, one needs to know the

utilization probabilities ϕ(i, j|G) for all its links (i, j) ∈ G, as well as the utilization proba-

bilities of links in the network that result when links are added to, or subtracted from, G.

In principle, these can be found in the same way as demonstrated in Section 3. However,

as is apparent from the examples presented there, doing so may not be practically feasible

except for simple cases. Below, one such simple case will be discussed.

4.2 Stability of small regular networks

Given the fact that the utility from a match decreases with the distance between the two

match partners, it seems intuitive that an agent would want to form close links first and

then add more distant links until the cost of doing so outweighs the benefit. This reasoning

suggests that regular networks are natural candidates for pairwise stable networks.

To determine analytically whether regular networks are stable, we need to make an

additional assumption: For the time being, assume that u(0) = 1, u(1) = δ < 1, and

u(d) = 0 for d > 1. This implies that a seller i wants to form links to at most three buyers

j: The buyer directly across from the seller (j = i), as well as the buyers one step to

the seller’s left or right (j = i ± 1). This simplifying assumption allows us to restrict our

attention to the regular networks G(0), . . . , G(3), for which we already know the relevant

utilization probabilities (see Example 2 of Section 3). One of these networks will be a

pairwise stable network, as the following result states (the proof is in the Appendix):

13The reason why pairwise stability is a weak equilibrium concept is that it precludes, among other things,

deviations that result from combining the moves (a) and (b) of Definition 2. For example, a network may be

pairwise stable even if there are two unlinked agents who both prefer to cut one link to another agent and

replace it with a link to one another. Thus, to verify pairwise stability of a candidate network, it needs to be

compared to only a small number of alternative networks. Pairwise stability can therefore be implemented

in numerical simulations with relative ease, which is the main reason why we adopt it here.
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Proposition 1. Suppose that u(0) = 1, u(1) = δ < 1, and u(d) = 0 for d ≥ 2. There exists

a regular, pairwise stable network G(k), where

k =


0 if c ≥ p2,

1 if p2 ≥ c ≥ p2(1− p)2δ,
2 if p2(1− p)2δ ≥ c ≥ p2(1− p)2(1− p+ p2)2δ,

3 if p2(1− p)2(1− p+ p2)2δ ≥ c.

We remark here that, in general, the result in Proposition 1 does not always carry

over to larger regular networks. That is, if we assumed that u stayed sufficiently large

long enough for more links to be added, then agents would not necessarily want to add

successively longer links to their networks. Thus, contrary to what one might perhaps

expect, decreasing c does not necessarily create a series of regular networks of increasing

size, as it does in the simple case of Proposition 1. For regular networks to be stable in

general, one must not only assume that u decreases but that it decreases at a sufficiently

fast rate. This effect will be demonstrated, through simulations, in Section 5.

4.3 Comparative statics

For δ = 0.75, Figure 8 shows the stable networks identified in Proposition 1 graphically.

(There are typically more stable networks than the ones characterized in Proposition 1;

however, these will not be regular.)
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G(2)
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Figure 8: Pairwise stable networks when u(0) = 1, u(1) = δ = 0.75, u(d) = 0 (d > 1)

As expected, network size increases as the networking cost c falls. It is more interesting,

however, to examine how network size adjusts in response to a change in the parameter

p. Even though it only applies to certain utility functions u, the plot in Figure 8 reveals

an important aspect of networks in matching markets: The size of equilibrium networks is
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non-monotonic in p. As p goes from zero to one the following happens (provided c is small

enough): At first, the only stable network is the empty one, as it is too unlikely that agents

ever need a partner for the cost c of a single link to be incurred. Then, as p increases, the

stable network grows first to G(1), then to G(2), and then to G(3), which will be reached

before p reaches 1/2. As p increases further, however, the network shrinks.

There are two reasons for this. First, while it is true that there is now a larger chance

that an agent will have a trading need, any seller will also be more likely to meet a buyer’s

needs (and vice versa), which means that there is less reason for any agent to maintain a

large network for “insurance reasons.” Second, even conditional on an agent’s acquaintances

being unable to fulfill this individual’s trading needs, the chance that an added link would

remedy this situation becomes smaller, as a more distant agent will be more likely to have a

closer match partner available herself. In the end, when p = 1, there is indeed no reason for

any individual to be linked to anyone other than the individual directly across from her, as

this agent can, with probability one, fulfill the individual’s trading needs.14 Thus, networks

are large when the agents’ uncertainty about their future needs is large, and this is the case

when p = 1/2.15

5 Network Formation: Numerical Analysis

In this section, we explore the structure and size of stable networks numerically. We compute

utilization probabilities ϕ(i, j|G) for networks other than the ones considered previously,

through simulation methods. We then use these probabilities to check under which condi-

tions the regular network structure revealed by Proposition 1 carries over to larger networks

and more general utility functions u. We also consider the networks which would arise under

asymmetric probabilities for the supply and demand shocks.

5.1 Monte-Carlo simulation of utilization probabilities

Recall from Definition 2 that, in order to check whether a given network G is pairwise

stable, one needs to compute the value of G for every seller and buyer, as well as the values

of networks that result from adding a link to G or deleting a link from G. In order to do so,

one requires the utilization probabilities of the links in these networks. As we have shown,

14Observe that, as p→ 1, network size decreases but does not become zero: Even if p = 1, it is necessary

to know at least one other agent in order to trade. Thus, the graph in Figure 8 is asymmetric in that the

line dividing the empty network G(0) from the network G(1) only appears on the left side.
15The insurance function of networks is also demonstrated in Bajeux-Besnainoua, Joshi, and Vonortas

(2010). There, a link between two firms gives each firm the option to invest in joint project at some future

date. The value of a link is hence an option value, which depends on the probability that the link will

be utilized given an underlying stochastic process for the profitability of the project. In our model, a link

between two agents gives the two players jointly the option to trade with one another. The value of a link is,

in a sense, an option value, as it depends on the probability that the link will be utilized given the underlying

uncertainty of being on the matching market.
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even if we restrict G to be in the class of regular networks the analytical derivation of these

probabilities becomes exceedingly cumbersome for networks other than very small ones.

The aim of this section, therefore, is to test the pairwise stability of larger regular

networks through numerical methods. We simulated the market clearing process described

in Section 2.4 for the following networks:

1. The “candidate” network G(k), for k = 1, . . . 10.

2. The network that arises from adding a single link (i, j) to G(k), up to 20th-order links.

(Due to computational constraints, we were unable to check for longer links. At the

end of Section 5.2 we argue below that this is not a severe limitation.)

3. The network that arises from deleting a single link (i, j) from G(k).

The specifics of our computations are as follows. We set N = 50 and considered p ∈
{0.05, 0.10, 0.15, . . . , 0.95}. For each p-value, we drew 500, 000 supply-demand configura-

tions (x, y) to which the “inside-out” market clearing algorithm was subsequently applied,

given the network in question. By counting how often each link was utilized, we obtained

numerical estimates of the link utilization probabilities. The results of these simulations

are presented in Figures 9 and 10, for p = 0.5.16

Adding links to networks. Figure 9 shows the utilization probabilities of links in regular

networks, as well as links added to regular networks. The figure is plotted for the case

p = 0.5. The links are numbered 1, . . . , 15, by the order in which they are resolved in the

inside-out algorithm.17 For example, the column in cell 〈G(10), 8〉 depicts the probability

that an 8th-order (i.e., (i, i + 4)) is utilized in network G(10), while the column in cell

〈G(10), 12〉 depicts the probability with which a 12th order link (i.e., (i, i + 6)) would be

used if a single such link were added to the network G(10).

Deleting links from networks. Figure 10 shows the utilization probabilities of all links

belonging to an agent who has deleted one single link from the regular network G(10) (while

all other agents maintain their links). Again, this is plotted for the case p = 0.5, and the

links are numbered by the order in which they are resolved in the inside-out algorithm. For

example, the column in cell 〈8, 6〉 (“existing link 8,” “deleted link 6”) depicts the probability

that an 8th-order link is utilized by an agent who has deleted his 6th-order link from G(10).

Note that we only need to perform this exercise for G(10), the largest regular network we

consider: Since matches are cleared “from the inside out,” the corresponding probabilities

for G(k) (k < 10) must the same as those displayed in the figure. (For example, the column

in cell 〈8, 6〉 also depicts the probability that an 8th-order link is utilized by an agent who

has deleted his 6th-order link from G(9).)

16The complete set of simulation results is available, in tabular form, from the authors.
17The figure only displays links up to order 15, but we computed up to order 20.
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Figure 9: Simulated utilization probabilities: Link addition (p = 0.5)
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5.2 Testing for pairwise stability

Let us now fix a parametric class for the match utility function, u(d) = δd for δ < 1. Given

values for the parameters p, c, and δ, and using our simulated probabilities, it is easy to

verify whether or not a given network G(k) is pairwise stable. It turns out that, in general,

we cannot expect regular networks to be stable, as the following example illustrates:

Example 5. Let c = 0.006, p = 0.5, and δ = 0.95. Table 1 shows the values for seller i of

every regular network from G(0) to G(10), as well as the best possible link addition and the

best possible link deletion for this individual (i.e., the maximum value generated by deleting

some existing link, and the maximum value generated by adding some new link).18 As can

be seen from the values in the table, no regular network is pairwise stable: For networks

G(7) and smaller there will always exist a link that should be added to the network; and

for networks G(8) and larger there will always exist a link that should be deleted. Thus, a

pairwise stable, regular network does not exist in this case (we do not know which network

G is pairwise stable in this case, or if one exists.)

Delete V S
i (G) k V S

i (G(k)) Add V S
i (G)

0 .00000 #1 (i, i) .24400

1 .24400 #2 (i, i+1) .29738

2 .29738 #3 (i, i−1) .32477

3 .32477 #6 (i, i+3) .33902

4 .33761 #7 (i, i−3) .34575

5 .34346 #10 (i, i+5) .34800

6 .34648 #11 (i, i−5) .34905

7 .34753 #12 (i, i+6) .34827

#8 (i, i+4) .34753 8 .34660

#9 (i, i−4) .34660 9 .34503

#10 (i, i+5) .34503 10 .34256

Table 1: No G(k) is pairwise stable (p=0.5, c=0.006, δ=0.95)

Example 5 is somewhat surprising: The fact that the utility of matches decreases in the

distance between match partners suggests that agents would indeed want to build networks

by adding successively longer links—generating a regular network of growing size in the

process, until the added benefit of an additional link falls below the cost c. However,

this intuition is incorrect, for the following reason. Recall that the expected benefit of a

link (i, j) added to a network G is not u(|i, j|), but ϕ(i, j|G ∪ (i, j))u(|i, j|). Even though

18Note that the symmetry of the regular network G(k) across agents implies that V S
i (G(k)) = V B

j (G(k))

and V S
i (G(k) ∪ (i, j)) = V B

j (G(k) ∪ (i, j)). Thus, if seller i benefits from adding a link to buyer j, so does

buyer j; it is therefore sufficient to only check if one of these agents wants to add a link to test for pairwise

stability. For general networks G, of course, this is not the case.
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u(|i, j|) is decreasing in the distance |i, j|, the utilization probability ϕ(i, j|G ∪ (i, j)) of

an added link (i, j) may be increasing in |i, j|, at least locally.19 Thus, given G(k) and

(i, j), (i, j′) /∈ G(k) with |i, j| > |i, j′|, it is possible that ϕ(i, j)|G(k) ∪ (i, j))u(|i, j|) >

ϕ(i, j′)|G(k)∪(i, j′))u(|i, j′). This, in turn, implies that agents may want to create networks

with “holes” instead of regular networks. For example, as can be seen in Table 1 the best

addition to G(6) is not the 7th-order link (i, i−3) but instead the 11th-order link (i, i−5)

To counteract this phenomenon, we must assume that the u-function is decreasing at a

sufficiently fast rate for the expected link benefit ϕ(i, j|G(k)∪(i, j))u(|i, j|) to be decreasing

in |i, j|. If this is satisfied, the most beneficial links to add to G(k) are the ones of the order

k + 1. In our simulations, we found δ ≤ 0.8 to be sufficient for this purpose for all p.

(Similarly, one must assure that the best link to delete from G(k) is a kth-order link, and

for this we found δ ≤ 0.94 to be sufficient.) A regular network can then be constructed by

successively adding longer links, until the expected benefit of a new link falls below its cost

c. At this point, we will have reached a regular, pairwise stable network. The following

example demonstrates this process:

Example 6. As in the previous example, let c = 0.006 and p = 0.5. This time, however,

use δ = 0.75. Table 2 shows the regular network G(5) to be pairwise stable: For every

k < 5 the individuals want to add the (k+1)st-order links to G(k), and for every k > 5 the

individuals want to delete their kth-order links. For G(5), on the other hand, even the best

deletion and the best addition will result in values that are less than V S
i (G(5)); therefore

G(5) is pairwise stable.

Delete V S
i (G) k V S

i (G(k)) Add V S
i (G)

0 .00000 #1 (i, i) .24400

1 .24400 #2 (i, i+1) .28510

2 .28510 #3 (i, i−1) .30547

3 .30547 #4 (i, i+2) .31106

4 .31106 #5 (i, i−2) .31245

#5 (i, i−2) (.31106) 5 .31245 #6 (i, i+3) (.31088)

#6 (i, i+3) .31245 6 .31088

#7 (i, i−3) .31088 7 .30835

#8 (i, i+4) .30835 8 .30432

#9 (i, i−4) .30432 9 .30004

#10 (i, i+5) .30004 10 .29512

Table 2: G(5) is pairwise stable (p=0.5, c=0.006, δ=0.75)

19This can be seen by inspecting Figure 9. For example, the gray columns representing the utilization

probabilities for links added to G(7) clearly have increasing parts when going from link #8 to link #15.
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Let us now briefly revisit the issue that we do not consider links longer than 20th-order

links in our simulations. It is conceivable that some network G(k) (with k ≤ 10) is not

stable because agents want to add, say, a 21st-order link but not any shorter links of order

11, . . . , 20. Our verification procedure would then miss this possibility. In this regard, a low

δ-value in the utility function u means that the expected benefit of higher-order links will

decrease quickly. Take δ = 0.75, for example, and suppose that we have verified that the

agents do not wish to add links of order 11 through 20 to G(10). Then for them wanting

to add a 21st-order link would require the utilization probability of this link to be more

than four times as large as the utilization probability of the last link in G(10), in order to

override the decrease in u. This appears very unlikely to be the case, as the variation in

the utilization probabilities for added links is less than 85% of the smallest probability in

each one of our simulations.

5.3 Results

We assume that the match surplus function is u(d) = δd, with δ = 0.75. This value is below

the threshold beyond which stable regular networks may fail to exist. Figure 11 shows

the size of regular, stable networks as a function of both the networking cost c and the

probability p.

As one would expect, network size increases as c decreases. Going from top to bottom

in the graph, each line represents the jump from network G(k) to G(k + 1). Furthermore,

for a given c, network size initially increases as p increases, is the largest when p = 0.5,

and then decreases as p increases further. This is consistent with our theoretical analysis in

Section 4. To understand this effect, notice that a link to other agents can be regarded as

(imperfect) insurance against the risk of future trading needs. Large networks are costlier,

but also provide better insurance. As p increases, the risk of being in need of a future

match partner increases. At the same time, each individual is more likely to be available for

trade; thus, the network grows in size. However, there is a countervailing effect: Consider

seller i contemplating the creation of a link to a distant buyer j. If p increases, it becomes

more likely that some buyer closer to i is available to trade with i, so linking to the more

distant buyer j is less beneficial on expectation. Second, even if no closeby buyers are

available, buyer j is now less likely to be available for i, as he himself is more likely to be in

a match with a seller who is closer to j than i is. This increased within-network competition

over match partners eventually overrides the “insurance benefits” of large networks. In the

extreme, if p = 1, a single link from seller i to buyer j = i provides perfect insurance for

seller i (and vice versa), while any additional links would be of no value to either i or j.

Thus, for very large values of p, the stable network is G(1).20

We now turn to an extension of our model not considered so far. Assume that each

20It should also be noted that changes in networking costs seem to play a larger role in determining

network size than do changes in p. This is evidenced by the relative “flatness” of the curves in the middle

part of the p-range. For example, for c = 0.005, the stable network is G(5) for all p ∈ [0.2, 0.8].
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Figure 11: Pairwise stable networks G(0), . . . , G(10) (δ = 0.75)

seller is on the market with probability p and each buyer is on the market with probability

q (which is not necessarily the same as p). For example, suppose the underlying matching

environment is a job market, with networking being a tool for workers (sellers) to find

jobs, and for firms (buyers) to get to know potential hires. An imbalance between p and

q, such that p > q, then represents a recessionary situation in the sense that the number

of job seekers on expectation exceeds the number of job openings. Similarly, if q > p,

we could interpret this as a labor shortage. As a response to such imbalances, should we

expect an increased or a decreased use of job networking? To answer this question, we

simulated the utilization probabilities and network values for all (p, q)-combinations with

p, q ∈ {0.05, 0.10, . . . , 0.95} (if p = q then this corresponds to the symmetric probability

model considered so far).

Figure 12 shows the stable networks as a function of the networking cost c and the

sellers’ probability p, with the corresponding probability for the buyers being constant at

q = 0.25. The match surplus function is the same as before. Unlike the symmetric case,

network size is no longer maximized at p = 0.5. Instead, given a fixed value for c, networks

tend to be largest when p is slightly larger than 0.25 but less than 0.5. Starting at the

vertical line where p = q = 0.25, an increase in p increases the network size by at most one
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Figure 12: Pairwise stable networks with asymmetric shocks (q = 0.5, δ = 0.75)

link. Furthermore, for small values of c the largest networks tend to arise when p ≈ q.
Figure 13 provides an alternative perspective. There, we hold the per-link cost fixed at

c = 0.006, but let both p and q vary between 0.05 and 0.95. The (p, q)-space is partitioned

into regions by the size of the stable network that arises. The largest equilibrium network is

G(5). The region in which G(5) is stable is a tilted ovoid shape, oriented along the 45◦-line

where supply and demand are balanced on expectation (i.e., p = q). Starting at any point

on the 45◦-line and moving away from the line either horizontally or vertically decreases

network size.

6 Conclusion

Using a two-sided matching market as our starting point, we examined the social networks

that arise if agents must know each other in order to trade. We assumed that the individuals

are spatially separated and prefer closeby match partners over those located further away.

In this setting we examined under which circumstances regular equilibrium networks exist,

in which individuals know their k nearest neighbors. We further examined the effect of
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Figure 13: Pairwise stable networks with asymmetric shocks (c = 0.006, δ = 0.75)

uncertainty on the size of these networks. Our theoretical and numerical results suggest

two things. First, networking is most intense in balanced markets where supply and demand

shocks happen to individual agents with roughly the same probability. Within the set of

balanced markets, the largest networks arise when p = q = 0.5. Second, an unbalanced

market tends to not increase networks, unless the imbalance is very small.21

There are several interesting questions which we do not address in this paper. It seems

promising to investigate the structure and size of efficient networks, as well as the equilib-

21This result contradicts some popular advice that in a recession, when there are more job seek-

ers than openings, job seekers should rely more heavily on networking to find employment. For

example, a March 24, 2009 article on CNN.com reports that as of February 2009, the number

of registered users on the job networking website LinkedIn.com had more than doubled over the

previous year, and suggests that the 2008/2009 recession was responsible for this growth. (See

http://money.cnn.com/2009/03/24/technology/hempel linkedin.fortune/index.htm.) However, these

registrations were presumably made after the users had learned of their unemployment. In the context

of our model, on the other hand, networking is an ex-ante activity which individuals undertake to insure

against the risk of becoming unemployed. Everything else equal, if this risk increases then networks will

typically decrease as the benefits of links are being “competed away.”
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rium networks that arise when no stable, regular networks exist. Furthermore, one could

examine the effects of a network friction in other matching environments, such as one-sided

markets, or markets that exhibit vertical instead of horizontal differentiation or which allow

for transferable utility. These questions are left for future research.

Appendix

Derivation of equation (9)

The utilization probabilities for 1st-order, 2nd-order, and 3rd-order links are derived in the

text already. To see why the utilization probability of a 4th-order link is ϕ(i, i+ 2|G(4)) =

p2(1− p)2(1− 2p+ 2p2)(1− p+ p2(1 + (1− p)2))2, consider what must happen for seller i

and buyer i− 1 to trade:

– First, xi = yi+2 = 1, which has probability p2.

– Second, we need to ensure that seller i does not trade with buyer i, and that buyer

i+ 2 would trade with seller i+ 2. This will be the case if and only if xi+2 = yi = 0,

which has probability (1− p)2.

– Third, we must ensure that seller i does not trade with buyer i + 1, and that buyer

i + 2 does not trade with seller i + 1. This will be the case if and only if one of

the following holds: xi+1 = yi+1 = 0 (neither seller i + 1 nor buyer i + 1 are on the

market), or xi+1 = yi+1 = 1 (both seller i+ 1 and buyer i+ 1 are on the market and

trade with each other). This gives us the factor (1− p)2 + p2 = 1− 2p+ 2p2.

– Fourth, we must ensure that seller i does not trade with buyer i − 1. This will be

the case if and only if one of the following holds: yi−1 = 0 (buyer i − 1 is not on

the market), or yi−1 = xi−1 = 1 (buyer i − 1 is on the market but trades with seller

i − 1), or yi−1 = xi−2 = 1 and xi−1 = yi−2 = 0 (buyer i − 1 is on the market and

trades with seller i− 2, who accepts because buyer i− 2 is not on the market). This

gives us the factor (1− p) + p2 + p2(1− p)2 = 1− p+ p2(1 + (1− p)2). Similarly, we

must ensure that buyer i + 2 does not trade with seller i + 3. This will be the case

if and only if one of the following holds: xi+3 = 0 (seller i+ 3 is not on the market),

or xi+3 = yi+3 = 1 (seller i + 3 is on the market but trades with buyer i + 3), or

xi+3 = yi+4 = 1 and xi+4 = yi+3 = 0 (seller i + 3 is on the market and trades with

buyer i + 4, who accepts because seller i + 4 is not on the market). This gives us

another factor (1− p) + p2 + p2(1− p)2 = 1− p+ p2(1 + (1− p)2).

Proof of Proposition 1

Throughout the proof, we will employ the utilization probabilities (5)–(8), derived in Section

3. In addition to these probabilities, it will be necessary to derive the utilization probabilities
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for links in networks which result from adding links to regular networks, or deleting links

from them. These can be found by taking the same steps as in the examples of Section 3;

that is, by determining the supply-demand configurations which will lead to trade over a

link and adding their probabilities. In all but a few cases this will be straightforward and

not be reiterated here; the rest is explained in the footnotes.

Stability of G(0). Note that for every network G and every link (i, j) ∈ G, ϕ(i, j|G) ≤ p2

(because for i and j to trade, it is necessary but not sufficient that xi = yi = 1). This

implies that if p2 · u(0) = p2 ≤ c, the expected benefit of a link does not strictly exceed its

cost. Thus, if c ≥ p2, the empty network G(0) is pairwise stable.

Stability of G(1). Now assume c ≤ p2 and consider the regular network G(1). The

expected net value of G(1) for each agent is

V S
i (G(1)) = V B

j (G(1)) = ϕ(i, i|G(1)) · 1− c = p2 · 1− c > 0.

If a buyer or seller cut the single link she has in G(1), she would receive an expected payoff

of zero. Thus, no agent wants to cut her link from G(1).

Consider next the possibility of adding a link between two agents. Since u(2) < c, the

only possible additions are those from some seller i to buyer i + 1 or i − 1. Consider first

the network G′ = G(1) ∪ (i, i + 1), for some seller i. It can be verified that ϕ(i, i|G′) = p2

and ϕ(i, i + 1|G′) = p2(1 − p)2. The expected net payoffs to seller i and buyer i + 1 in G′

are this

V S
i (G′) = V B

i+1(G
′) = ϕ(i, i|G′) · 1 + ϕ(i, i+ 1|G′) · δ − 2c

= p2 + p2(1− p)2δ − 2c.

Now consider the network G′′ = G(1)∪ (i, i− 1). It can be verified that ϕ(i, i|G′′) = p2 and

ϕ(i, i− 1|G′′) = p2(1− p)2, and thus

V S
i (G′′) = V B

i−1(G
′′) = p2 + p2(1− p)2δ − 2c.

Seller i and buyer i + 1 (resp. i − 1) hence prefer the network G(1) to G′ (resp. G′′) if

c ≥ p2(1− p)2δ. Thus, as long as p2 ≥ c ≥ p2(1− p)2δ, the network G(1) is pairwise stable.

Stability of G(2). Now assume c ≤ p2(1 − p)2δ and consider the regular network G(1).

The expected net value of G(2) for each agent is

V S
i (G(2)) = V B

j (G(2)) = p2 + p2(1− p)2δ − 2c.

Consider first the possibility of seller i cutting her link to buyer i+1. In this case ϕ(i, i|G(2)−
(i, i+ 1)) = p2, and seller i’s expected payoff becomes

V S
i (G(2)− (i, i+ 1)) = p2 − c,
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which is less than p2 + p2(1 − p)2δ − 2c (since c ≤ p2(1 − p)2δ is assumed). On the other

hand, if seller i cuts her link to buyer i we have ϕ(i, i+ 1|G(2)− (i, i)) = p2(1− p).22 Thus,

seller i’s expected payoff becomes

V S
i (G(2)− (i, i)) = p2(1− p)δ − c.

Clearly V S
i (G(2)−(i, i)) < wSi (G(2)−(i, i+1)), and since seller i does not want to sever the

link to buyer i+1 she also does not want to sever the link to buyer i. Symmetric arguments

apply to the case where a buyer is cutting one of her links to a seller. It follows that no

agent wants to cut a link from G(2).

Consider next the possibility of adding a link between two agents. Since u(2) < c,

the only possible addition is a link from some seller i to buyer i − 1. Thus, consider the

network G′ = G(2) ∪ (i, i − 1), for some seller i. It can be verified that ϕ(i, i|G′) = p2,

ϕ(i, i + 1|G′) = p2(1 − p)2 and ϕ(i, i − 1|G′) = p2(1 − p)2(1 − p + p2)2. The expected net

payoff to seller i and buyer i− 1 are

V S
i (G′) = V B

i−1(G
′) = ϕ(i, i|G′) · 1 + ϕ(i, i+ 1|G′) · δ + ϕ(i, i− 1|G′)− 3c

= p2 + p2(1− p)2δ + p2(1− p)2(1− p+ p2)2δ − 3c.

Seller i and buyer i− 1 hence prefer the network G(2) to G′ if c ≥ p2(1− p)2(1− p+ p2)2δ.

Thus, as long as p2(1 − p)2(1 − p + p2)2δ ≥ c ≥ p2(1 − p)2δ, the network G(2) is pairwise

stable.

Stability of G(3). Now assume c ≤ p2(1 − p)2(1 − p + p2)2δ and consider the regular

network G(3). The expected net value of G(3) for each agent is

V S
i (G(3)) = V B

j (G(3)) = p2 + p2(1− p)2δ + p2(1− p)2(1− p+ p2)2δ − 3c.

Given that u(d) < c for d > 1, clearly no additional links will be worthwhile, so we only

need to consider the possibility of cutting links. First, suppose seller i cuts her link to buyer

i− 1. In this case ϕ(i, i|G(3)− (i, i− 1)) = p2 and ϕ(i, i+ 1|G(3)− (i, i− 1) = p2(1− p)2,
and seller i’s expected payoff becomes

V S
i (G(3)− (i, i− 1)) = p2 + p2(1− p)2δ − 2c,

which is less than p2 + p2(1− p)2δ + p2(1− p)2(1− p+ p2)2δ − 3c (since c ≤ p2(1− p)2(1−
p + p2)2δ is assumed). Second, suppose seller i cuts her link to buyer i + 1. In this case

ϕ(i, i|G(3)− (i, i+ 1)) = p2 and ϕ(i, i− 1|G(3)− (i, i+ 1)) = p2(1− p)2(1− p+ p2),23 and

seller i’s expected payoff becomes

V S
i (G(3)− (i, i+ 1)) = p2 + p2(1− p)2(1− p+ p2)δ − 2c.

22For seller i to trade with buyer i + 1, we need xi = yi+1 = 1 (probability p2) and xi+1 = 0 (probability

1− p).
23For seller i to trade with buyer i− 1, we need xi = yi−1 = 1 (p2), xi−1 = yi = 0 (probability (1− p)2),

and either xi−2 = 0 or xi−2 = yi−2 = 1 (probability 1− p + p2).
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Note that V S
i (G(2)− (i, i+ 1)) < V S

i (G(2)− (i, i− 1)), and since seller i does not want to

sever the link to buyer i− 1, she also does not want to sever the link to buyer i+ 1. Third,

suppose seller i cuts her link to buyer i. In this case ϕ(i, i+ 1|G(3)− (i, i)) = p2(1− p) and

ϕ(i, i− 1|G(3)− (i, i)) = p2(1− p)(1− p+ p2)2,24 and seller i’s expected payoff becomes

V S
i (G(3)− (i, i)) = p2(1− p)δ + p2(1− p)(1− p+ p2)2δ − 2c.

We now show that V S
i (G(2)− (i, i)) < V S

i (G(2)− (i, i− 1)). After some algebraic manipu-

lations, this inequality can be written as

1

(1− p)δ
+ 1− p > 1 + (1− p+ p2)2,

and since δ < 1 it is sufficient to show

1

(1− p)
+ 1− p > 1 + (1− p+ p2)2.

After further algebra, this can be expressed as (1 + p)/(1− p4) > 1, which is satisfied for all

p ∈ (0, 1). Thus, since seller i does not want to sever the link to buyer i − 1 she also does

not want to sever the link to buyer i. It follows that for c ≤ p2(1 − p)2(1 − p + p2)2δ, the

network G(3) is pariwise stable.

24For seller i to trade with buyer i + 1, we need xi = yi+1 = 1 (probability p2) and xi+1 = 0 (probability

1−p). For seller i to trade with buyer i−1, we need xi = yi−1 = 1 (probability p2) and xi−1 = 0 (probability

1− p). In addition, either xi−2 = 0 or xi−2 = yi−2 = 1 (probability 1− p+ p2), and similarly either yi+1 = 0

or xi+1 = yi+1 = 1 (probability 1− p + p2).
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