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Overview
I Neural Networks trained online on a correlated stream of

data su�er from catastrophic forge�ing.
I We propose learning a representation that is robust to

forge�ing.
I To learn the representation, we propose OML, a

second-order meta-learning objective that directly
minimizes interference.

I Highly sparse representations naturally emerge by
minimizing our proposed objective.

Motivation
I �estion: Can we learn representations that are robust to

catastrophic forge�ing?
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I Hypothesis: Some knowledge representations (right) are
more conducive for continual learning than others (le�).

Proposed architecture

Representation Learning Network (RLN)
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I Meta-parameters: A deep neural network that transforms
high-dimensional input data to a representation Rd more
conducive for continual learning.

I Adaptation parameters A simple neural network that
learns continually from Rd.

Meta-training

Step 1: Adaptation (Inner loop updates)
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Online updates on the complete task dataset

Task
 Incrementally learn a classifier for English Alphabet

X = AAAAA BBBBB CCCC DDDDD ….. ZZZZ
Y = 00000 11111 2222 33333 ….. 25 25 25 25

Dataset of size k

Step 2: Meta-loss
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Differentiating meta-loss through the 
adaptation phase — similar to MAML.

Step 3: Meta-update 

Meta-testing

Task
 Incrementally learn a classifier for numerical digits

Step 1: Adaptation (Inner loop updates)

Step 2: Evaluation
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Compute accuracy on the complete task dataset

Online updates on the complete task dataset

Results
We compare OML with a Pretraining, a method that learns a representation by
pre-training on the meta-training dataset, MAML-Rep, a MAML like fast adaptation
objective that also learns an RLN and SR-NN, a recent method that learns sparse
representations.
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What sort of representations does OML learn?
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Figure: OML learns highly sparse representations without directly optimizing for sparsity. Moreover,
unlike SR-NN, OML utilizes the complete representation space to represent di�erent inputs.

Can we meta-learn a model initialization instead?
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OML: Learning an Initialization
Answer: No!

Not effective when meta-testing 
involves hundreds of updates.
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Future Work
I Continually meta-update the RLN as opposed to fixing it a�er meta-learning.
I Preliminary results show that it’s possible to use OML to update representations

online using an experience replay bu�er. This can extend OML to more exciting
se�ings, such as reinforcement learning.


