Contrastiveness and Faithfulness
Robert Kirchner, University of Illinois/UCLA (to appear in Phonology)

0. Introduction

A fundamental observation of phonological theory is that, out of the rich sound signal of speech, a small subset of phonetic properties is contrastive in any given language. Standardly, this observation is captured by excluding the non-distinctive phonetic properties from some levels of representation, yielding an abstract categorical representation of the contrasts among the speech sounds. Universally non-contrastive features have generally been assumed to be unspecified throughout the phonological component; thus, for example, Keating 1984 and Lombardi 1991 have argued against inclusion of particular laryngeal features in phonological representation on the grounds that they are never contrastive. Language-particular non-contrastive features have generally been assumed to be unspecified only in underlying representation and early stages of the derivation (e.g. Kiparsky 1982; Archangeli 1984, 1988; Archangeli and Pulleyblank 1986, 1995; Steriade 1987; Clements 1988). Moreover, since the discovery of extensive language-particular gradient alternations, ¹ it has standardly been assumed that a subsequent phonetic component is needed, to fill in gradient and universally non-contrastive properties (e.g. Pierrehumbert 1980, Keating 1990; but see Pierrehumbert 1994 for an attack on this view of the phonetics-phonology interface). This model is schematized in Figure 1.

Figure 1:
The standard (representational) treatment of contrastiveness

Underlying Representation (ideally) pure representation of contrast
Phonological component non-contrastive properties may be filled in, particularly if contrastive in other languages
Phonetic component remaining non-contrastive phonetic properties, including gradient values, filled in
Phonic Representation representation of all speaker-controlled phonetic properties of the utterance

The crucial property of this model is its representational characterization of contrastiveness: an abstract representation of pure contrast must be assumed, i.e. underlying representation, with derivations from underlying to surface
phonological representation (and perhaps extensive intermediate levels of representation), and from surface phonological representation to the sea of surface phonetic detail. As Steriade (1994, 1995) has observed, the assumptions of this model have often been disregarded in practice. For example, the value of the feature [sonorant] is predictable for the classes of [+nasal], [-nasal, -continuant], and [-consonantal] segments; yet the feature defines such an important natural class that phonologists have generally treated it as being present from the earliest stages of the derivation, even in these classes of segments. Similarly, syllable structure is not contrastive per se in any language, and so according to this reasoning ought to be consigned to the phonetic component; yet syllabification is generally considered to be the driving force behind much of phonology. However, I will not dwell on these inconsistencies, and whether they might be reconciled with the model’s principal assumptions; rather, I argue that the principal assumptions are superfluous to an adequate treatment of contrastiveness, and therefore should be abandoned.

Further note the all-or-nothing characterization of contrastiveness in this model. If a phonetic property is admitted to the pantheon of phonological features, it is formally equal to any other feature in its potential for signaling contrasts. Similarly, if a feature is contrastive in a given language, it must be present underlyingly, and there is no representational distinction between features which are contrastive in a broad array of contexts and contrasts which surface only in a particular environment. One may, of course, resort to context-sensitive underspecification (e.g. ‘mid vowels are unspecified for [round] in unstressed syllables’), but if there is an independent rule [-high] → [-round] / [C₀₋C₀]₀.isUser(unstressed), or an equivalent constraint, the assumption of underspecification is superfluous (leaving aside the feasibility having underspecification conditioned by derived properties such as stress). A more accurate observation is that features fall along a continuum of potential contrastiveness. Some distinctions, such as the vowel/consonant distinction, are contrastive in every language; others are contrastive in just a single language, e.g. longitudinal vocal fold tension in Musey voiceless obstruents (Shryock 1995). And of course many phonetic properties, such as the distinction between a 53 msec and 54 msec stop closure, are never contrastive. Similarly, while virtually every feature is subject to some distributional restriction, some features are typically contrastive in extremely narrow contexts. For example, contrastive consonant length is typically restricted to intervocalic position. In the standard approach, constraints or rules may be invoked to neutralize contrasts in particular environments; but if so, we now have two theoretical devices for explaining the absence of contrast: (a) representational restrictions (in UR or throughout the phonology), and (b) rules or constraints requiring the neutralization of a contrast.
One may reasonably inquire whether the latter device is sufficient. Moreover, it is typically the contrasts which are banned outright in many languages which are severely restricted in their distribution in the languages that permit them. For example, Kaun (1994) observes that most languages do not permit a contrast in [round] independent of [back]; but in those languages that do, contrastive rounding is typically subject to vowel harmony, i.e. surface restrictions on the vowels that can occur with it (within some domain). The standard model fails to draw this connection.

I propose an alternative treatment, whereby the notion of contrastiveness emerges from the Optimality Theoretic constraint interaction (Prince and Smolensky 1993), specifically with regard to the notion of *faithfulness* (minimal divergence of output from input), without resorting to the representational and derivational assumptions of the standard model. This move permits phonological representations to include as much phonetic detail as may be necessary to adequately characterize a speaker's phonetic competence. A significant derivational residuum, namely the post-phonological phonetic component, is thereby eliminated from the theory, as is shown in Figure 2.

![Figure 2: A constraint-ranking treatment of contrastiveness](image)

Underlying Representation
no restrictions on this level of representation

| Phonological component: | contrastive, categorical behavior of particular features falls out from constraint system |
| Gen + H-eval |

| Phonetic Representation | representation of all speaker-controlled phonetic properties of the utterance |

Furthermore, this model captures the observations noted above: a more scalar notion of the potential contrastiveness of a given feature, and the connection between cross-linguistic markedness and restricted distribution of contrasts.

More importantly, this move permits direct reference to phonetic properties which, though never contrastive per se, may nevertheless play a role in conditioning phonological processes; we can thereby directly capture phonetic explanations for phonological generalizations which elude formal capture using standard, more phonetically abstract representations. As an illustrative example, consider vowel centralization in Nawuri, a Kwa language of Ghana (Casali 1995).
Short non-back vowels (i, i, e, e) are centralized (e, i, #e, a), except in absolute word-initial or phrase-final position.³

(1) a. Non-back vowels centralize, except phrase-finally:

<table>
<thead>
<tr>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>lømberi</td>
<td>'black'</td>
</tr>
<tr>
<td>olenj</td>
<td>'root'</td>
</tr>
<tr>
<td>tøkpori</td>
<td>(type of grass)</td>
</tr>
<tr>
<td>ø-kĩ#ŋ</td>
<td>'fish'</td>
</tr>
<tr>
<td>gĩ#ba: (/gĩ:ba/)</td>
<td>'hand'</td>
</tr>
<tr>
<td>tʃamĩ#ne: (/tʃ-e-mne/)</td>
<td>'friend'</td>
</tr>
<tr>
<td>natt#ba (/natt ba/)</td>
<td>'walk and come'</td>
</tr>
</tbody>
</table>

b. Long vowels do not centralize:

<table>
<thead>
<tr>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>br:la</td>
<td>'learn'</td>
</tr>
</tbody>
</table>

c. Word-initial vowels do not centralize:

<table>
<thead>
<tr>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>i saŋ ikinj</td>
<td>'The fish (pl.) remain'</td>
</tr>
</tbody>
</table>

Similarly conditioned centralization processes occur in Chamburung, Gichode, Krachi, and Gonja (Snider 1989). Rod Casali (p.c.) observes, from both auditory impressions and instrumental measurements, that the 'short' vowels in the blocking contexts are phonetically longer than the vowels in the target contexts, albeit shorter than a truly (i.e. contrastively) 'long' vowel. The extra vowel duration is attributable to cross-linguistically common phenomena of word-initial and phrase-final lengthening (Oller 1973, Klatt 1975). The centralization process can now be readily understood as articulatory 'undershoot' (Lindblom 1963): the tongue body achieves the peripheral 'front' target only in long or phonetically lengthened vowels, when it has enough time to do so without deploying a high velocity fronting gesture.⁴ Assume a feature, [partially long], which distinguishes the truly short vowels from the long or phonetically lengthened vowels. By allowing the phonology to refer directly to such a feature, despite its universal non-contrastiveness, the undershoot explanation can be directly captured, e.g. in terms of a rule, [-partially long] → [-front], or a constraint, *[+front, -partially long] (see Section 5).⁵ The alternative, stipulation of a list of contexts where centralization occurs, is formally inelegant as well as phonetically uninsightful. Note that Nawuri centralization cannot be relegated to the 'phonetic' component, because, as Casali (1995) demonstrates, the centralization in turn conditions a 'lexical' phonological process of rounding harmony.

This sort of analysis is part of a growing body of research on the role of phonetic factors, including universally non-contrastive and gradient properties, in
conditioning phonological processes. Ohala (1983), for example, has shown that the predictable aerodynamic properties of voicing play a large role in explaining the distribution of voiced segments (see also Ohala 1990). Steriade (1993) has shown that the predictable release properties of stops account for their ability to act as contour segments (partially nasalized or affricated). Similarly, Browman and Goldstein (1992) have argued that subphonemic distinctions in degree of overlap among articulatory gestures can explain a variety of assimilation phenomena. Jun (1995) has observed that the relative salience of the predictable acoustic/auditory consequences of consonantal articulatory gestures can account for certain generalizations concerning the typology of place assimilation (see also Flemming 1995 for an explicit theory of auditory representations in phonology). Hayes and Stivers (1995) have shown that the predictable aerodynamic consequence of velic raising explain the strong cross-linguistic tendency of post-nasal stops to be voiced. Moreover, Steriade (1995) has shown that predictable properties of C-V and V-C formant transitions play a crucial role in explaining the distribution of retroflex consonants. Silverman (1995) shows that a variety of laryngeal and tonal interactions can be explained in terms of predictable auditory consequences of laryngeal gestures; specifically, laryngeal specifications are temporally organized so as to achieve salient auditory effects. Similarly, Steriade (1996) shows that a broad variety of laryngeal neutralization patterns must be understood in terms of a notion of adequate phonetic cues, including non-contrastive properties, such as audible release bursts in the case of glottalized (ejective) obstruents. MacEachern (1996) argues that a variety of laryngeal dissimilation processes refer to a scale of auditory similarity in laryngeal cues. Gordon (1996) shows that the phenomenon of weight- and sonority-sensitive stress (see Kenstowicz 1994) can be understood in terms of a phonetic ‘total energy’ scale (i.e. the auditory intensity of a given segment times its duration). Finally, Kirchner (in progress) argues that minimization of articulatory effort is the driving force behind lenition phenomena; therefore, the predictable effort cost of articulatory gestures must be included in the phonological representation.

The principal goal of this article is not to present further arguments for the role of predictable phonetic properties in phonology. Rather, it is to show that this research program can be pursued, with its attendant phonetic enrichment of phonological representations, while actually improving the ability of phonological theory to distinguish the contrastive and categorical behavior of certain properties from the behavior of the remainder of properties within the sound system.
1. Smolensky's Challenge to the Standard Model

Certain aspects of the standard model, particularly the assumptions surrounding underspecification theory, have been challenged since the development of Optimality Theory (Smolensky 1993, Itô, Mester, and Padgett 1993, Inkelas 1994, Steriade 1995). In particular, Smolensky has shown that the phonological ‘inactivity’ of predictable features may be attributed to rankings of a particular class of constraints, rather than to the absence of such features from the representation at some stage of a derivation. For example, consider the standard underspecification-based treatment of the ‘neutral’ vowels [i,e] in Finnish backness harmony (Kiparsky 1981):

\[
\begin{align*}
(2) & \quad a. \quad u & I & U \\
& \quad +ba \\

& \quad b. \quad *u & æ & U \\
& \quad +ba & -ba \\
I & = \text{-low, -round, 0back vowel;} \\
U & = \text{-low, +round, 0back vowel}
\end{align*}
\]

That is, the non-low unrounded vowel in (2a) is unspecified for [back] at the point in the derivation where the spreading rule applies, and therefore is transparent to spreading of [back] onto the following vowel; whereas the [back] specification of non-neutral vowels such as [æ] (2b) makes them opaque. (The failure of [+back] to spread onto the neutral vowel is attributed to Structure Preservation, namely the ill-formedness of non-low back unrounded vowels in Finnish.) Assume, however, the Optimality Theoretic notion of faithfulness (minimal departure from identity of input and output), formalized, in part, in terms of feature-specific PARSE constraints (cf. Kirchner 1993, Orgun 1995, McCarthy and Prince 1995). Now the transparency of the Finnish neutral vowels can be analyzed in terms of the constraint hierarchy in (3) (modified slightly from Smolensky’s presentation).
ALIGN(+back,right): requires that a [+back] specification be linked to a segment at the right edge of the word (thereby enforcing rightward spreading). *EMBED prohibits embedding of a [-back] domain inside a [+back] domain (i.e., in autosegmental terms, spreading which results in a line-crossing or gapped configuration). The correct outcome is obtained whether we assume an input in which the target vowels are unspecified w.r.t. [back] (3a), a fully specified input (3b), or even an input whose specifications are contrary to the surface values (3c). Since PARSE(back) is ranked below ALIGN(+back, right), it is better to spread [+back] than to preserve underlying values; and since *[low,-round,+back] is ranked above PARSE(back), back unrounded high or mid vowels are ruled out in all contexts (even if this results in a *EMBED violation). That is, the formal expression of the unmarkedness of front unround vowels is shifted from the representations (i.e., the characterization of such sounds in terms of fewer underlying features) to the constraints, which directly state the preference for front unround and back round vowels. The essential observation here is that low-ranking of a constraint on faithfulness to a particular feature results in phonologically inert behavior of that feature within the sound system. There is no need for restrictions on the presence of particular features at underlying or intermediate levels of representation.

<table>
<thead>
<tr>
<th></th>
<th>/u-I-U/</th>
<th>*[low,-round,+back]</th>
<th>ALIGN(+back, right)</th>
<th>PARSE (back)</th>
<th>*[low,+round, -back]</th>
<th>*EMBED</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>u-i-u</td>
<td>!</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>u-I-u</td>
<td>!</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>u-I-ü</td>
<td>!</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ü-I-ü</td>
<td>!</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>/u-I-u/</td>
<td></td>
<td>!</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>u-I-u</td>
<td></td>
<td>!</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>u-I-ü</td>
<td></td>
<td>!</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ü-I-ü</td>
<td></td>
<td>!</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>/u-I-ü/</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>u-I-u</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>u-I-ü</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ü-I-ü</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALIGN(+back, right): requires that a [+back] specification be linked to a segment at the right edge of the word (thereby enforcing rightward spreading). *EMBED prohibits embedding of a [-back] domain inside a [+back] domain (i.e., in autosegmental terms, spreading which results in a line-crossing or gapped configuration). The correct outcome is obtained whether we assume an input in which the target vowels are unspecified w.r.t. [back] (3a), a fully specified input (3b), or even an input whose specifications are contrary to the surface values (3c). Since PARSE(back) is ranked below ALIGN(+back, right), it is better to spread [+back] than to preserve underlying values; and since *(low,-round,+back) is ranked above PARSE(back), back unrounded high or mid vowels are ruled out in all contexts (even if this results in a *EMBED violation). That is, the formal expression of the unmarkedness of front unround vowels is shifted from the representations (i.e., the characterization of such sounds in terms of fewer underlying features) to the constraints, which directly state the preference for front unround and back round vowels. The essential observation here is that low-ranking of a constraint on faithfulness to a particular feature results in phonologically inert behavior of that feature within the sound system. There is no need for restrictions on the presence of particular features at underlying or intermediate levels of representation.
2. **A Definition of Contrastiveness**

2.1. **Contrastiveness of phonetic representations.** At this point, it is necessary to consider afresh precisely what we mean by ‘contrastiveness.’ Specifically, I wish to develop a characterization of contrastiveness which is independent of assumptions concerning the systematic presence or absence of particular features or feature values in underlying representation. Pretheoretically, speakers have intuitions that two distinct surface forms (traditionally 'phonetic representations', or 'PRs') may or may not count as ‘significantly different,’ depending on the phonological system, whether or not they are actual forms of the language. For example, [splek] and [splEk] would presumably be considered 'different words' by most English speakers, whereas [splek] and [splekǐ] (unreleased [k]) would not, though these are all nonce forms. This notion of significant difference, or contrastiveness, appears to require a level of representation distinct from the surface, traditionally 'underlying representation' or 'UR'; and the minimal theoretical assumption required to capture these intuitions of contrastiveness is that two contrastive PRs correspond to distinct URs. However, as illustrated in the previous section, there may be several possible URs for a given surface form under a grammar, and therefore it is necessary to speak of distinct sets of URs for some pair of PRs:

(4) **Dfn. Contrastiveness of PRs:** Two distinct PRs p and p' are contrastive under grammar G iff the set of URs for p under G is not identical to the set of URs for p' under G.

Thus, p and p' are contrastive in (5a) and (b) below, but not in (c) or (d):

(5)

<table>
<thead>
<tr>
<th></th>
<th>a. u → p</th>
<th>b. u → p</th>
<th>c. u → p</th>
<th>d. u → p</th>
<th>e. u → p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>u' → p'</td>
</tr>
</tbody>
</table>

In (5e) there is no contrast, trivially, since there is no distinct pair of PRs: this corresponds to obligatory neutralization to some surface value (e.g. final laryngeal neutralization in Korean, where a form such as [kap] could in principle derive from /kap/, /kapʰ/ or /kap'/). Note that in the optional neutralization case (5b), contrastiveness obtains, even though p and p' have a common UR (u'), since the sets of URs for each PR are not identical (e.g. the [w]~[ɛ] distinction in certain dialects of English, where, e.g., *witch* is invariably [wɛɪ], but *which* [ɛ] freely varies with [wɛɪ]).
2.2. **Contrastiveness of features.** However, phonological grammars refer not to particular forms, but to features and contexts; and therefore we require some notion of contrastiveness as a systematic property of features within sound systems, as well as a property of pairs of forms. ‘Feature’ is intended here in the broadest possible sense: it encompasses any property of a phonological representation, including relations among features, such as prosodic affiliation, and temporal precedence.

Naively, a feature is contrastive just in case it is sufficient to distinguish a pair of contrastive PRs (analogous to the ‘minimal pair’ criterion of Structuralist phonemics).

2.2.1. Mutually predictable features. A complicating case, however, is presented when two or more features are mutually predictable. For example, if all sonorants in a sound system are voiced and all voiced sounds are sonorant, there will be no output pair which differs solely with respect to [sonorant], nor solely w.r.t. [voice]. By the naive definition, *neither* feature is contrastive; whereas we wish to say that one of the features is contrastive, namely the one which corresponds to an underlying minimal distinction ([son]), and the other feature ([voi]) is predictable from it. Note that, under this treatment, the contrastive feature in (6) cannot be determined solely by inspection of the surface forms. Rather, identification of the contrastive feature is relative to the grammar in question: in particular, to the input-output mappings permitted by that grammar. (I leave aside the distinct question of whether we can non-arbitrarily decide between alternative grammars which generate the same surface forms. As a practical matter, it may be necessary in such cases to speak of contrastive feature *sets*: that is, the set {[son],[voi]} is contrastive, without forcing a choice between [son] or [voi].)

2.2.2. Displaced contrasts. A further problem is posed by displaced contrasts. For example, in certain dialects of Basque, /e/ raises to [i], and /i/ raises to [i] when followed by another vowel (e.g. [seme] (‘son’), [semie] (‘the son’) vs. [eri] (‘village’), [erie] (‘the village’) (Hualde 1991). That is, an underlying distinction in [high] is neutralized under hiatus; but there is a surface distinction in [+super-high].

(7) \[u ([+high,\,?super-high]) \rightarrow p ([+high,\,super-high]) \]
We should not, however, treat [super-high] as a contrastive feature in Basque, although we can find surface minimal pairs, since it is predictable from the underlying value of [high]. On the other hand, we should not treat [high] as being contrastive in this context, since there is no surface [high] distinction. However, all cases of displaced contrast involve features which are directly contrastive in some other context in the sound system. In Basque for example, [high] is contrastive by virtue of its behavior in non-hiatus contexts, where it surfaces directly; therefore the URs in (7) are underlyingly distinguished by a contrastive feature. Indeed, it is precisely the contrastiveness of [high] in pairs such as [seme] and [eri] that motivates the identification of [high] as the underlying distinction in the morphologically derived pair [seme] and [eri]. More generally, we need not say that the contrastiveness of a feature F is established by F’s behavior in contexts where an underlying F distinction is displaced: rather, if F is contrastive, this is so because of its behavior in other contexts. By excluding displaced contrasts from the definition, we are able to provide a formal characterization of contrastiveness in terms of constraint interaction, while keeping this task distinct from the non-trivial problem of opacity (i.e. the interactions which give rise to displaced contrasts) in non-serial Optimality Theory.

2.2.3. Free variation. To handle the complicating cases, then, we must require that a surface F distinction between p and p’ corresponds to a minimal underlying F distinction w.r.t. u and u’. This condition brings us close to an adequate definition, but fails under a particular circumstance, namely neutralizing free variation, shown schematically in (8):

(8)
[+F] u → p [+F]
[-F] u' → p' [-F]

In this case, if we pick {<u,p>,<u’,p’>} as the crucial pair of input/output mappings, we wrongly claim that F is contrastive, when plainly it is not. To exclude this scenario, we must attach a further condition, namely that one of the URs cannot map to one of the PRs.

2.2.4. The definition. We can now define contrastiveness of features as follows:
Dfn. Contrastiveness of a feature: A feature F is contrastive under grammar G iff there is some pair of UR-to-PR mappings \(\{\langle u,p\rangle, \langle u',p'\rangle\} \) under G such that
(a) \(u \) and \(u' \) differ solely w.r.t. some specification for F, and
(b) \(p \) and \(p' \) differ w.r.t. a corresponding specification for F, and
(c) \(u' \) cannot map to \(p \) under G.

(Recall that the URs and PRs under discussion are possible, not necessarily actual forms.) I claim, then, that (9) corresponds to an adequate definition of contrastiveness of features. The fact that \(p \) and \(p' \) are contrastive PRs follows from condition (c): \(u' \) can not map to \(p \), therefore \(p \) and \(p' \) have distinct sets of URs, and so by definition (4) they are contrastive. To review the complicating cases:

(a) The treatment of mutually predictable features depends on the input/output mappings permitted by a particular grammar, thus the feature [sonorant] in (6) meets the definition (while [voice] does not), since the surface [\(\alpha_{\text{son}}, \alpha_{\text{voi}} \)] distinction corresponds to an underlying distinction in [sonorant] alone.

(b) In cases of displaced contrasts, neither the underlying nor the surface distinction is treated as contrastive by virtue of its behavior in the displaced context, thus neither [super-high] nor [high] in (7) meet this definition, since the surface distinction corresponds to an underlying distinction in a different feature (though [high] is contrastive by virtue of its behavior in other contexts).

3. Faithfulness

Before demonstrating the connection between faithfulness to a particular feature and contrastiveness of that feature, we must make explicit our notion of featural faithfulness. McCarthy and Prince (1995) and Orgun (1995) present a generalized notion of faithfulness, defined in terms of correspondence between segments in an input and output, base and reduplicant, etc. That is, a class of faithfulness constraints requires each segment in an input to have a corresponding segment (indicated by coindexation) in the output. A further class of faithfulness constraints requires input and output correspondents to be identical w.r.t. specific features. I adopt this general conception of faithfulness here. However, the reference to segments is not crucial: we could instead speak of direct correspondence between the features (since segments are ultimately sets of
features). Since we are concerned with the general behavior of features here, this move simplifies the discussion considerably. Assuming a monostratal grammar, 'Input/Output' is equivalent to 'UR/PR', and we can define faithfulness between a UR and PR w.r.t. some feature F as follows:

\[(9) \text{PRES}(\text{ERVE})(F,\text{Input/Output}): \text{For all } \alpha \in \{+,-\}, \text{ for each } \alpha F \text{ specification in the input there is exactly one corresponding } \alpha F \text{ specification in the output, and for each } \alpha F \text{ specification in the output there is exactly one corresponding } \alpha F \text{ specification in the input.}\]

That is, all and only the following mappings w.r.t. F satisfy PRES(F):

\[(10) \begin{aligned} +F_i &\rightarrow +F_i \\ -F_i &\rightarrow -F_i \\ 0F &\rightarrow 0F \end{aligned}\]

Privative F can be equated with +F above, assuming that no -F is possible. The class of PRES(F,I/O) constraints therefore subsumes all notions of input/output faithfulness, whether featural, segmental, or prosodic.9 I further assume that no constraint other than PRES(F,I/O) refers to the value of F in UR. As Orgun (1995) notes (extending an observation of Lakoff 1993), a parallel Optimality Theoretic model which permits context-sensitive constraints to refer to underlying properties has all the (presumably excessive) descriptive power of a serial framework, like SPE, with an unlimited number of intermediate levels of representation (but see McCarthy 1995).

A final point concerns the treatment of phonological exchange, i.e. \(\alpha F \rightarrow -\alpha F\). Such mappings meet the definition of contrastive features (9), since the definition merely requires a surface distinction between p and p' corresponding to a underlying minimal distinction between u and u', even if the surface and underlying values are flipped. However, since we admit of no input/output 'anti-faithfulness' constraints w.r.t. F, such mappings cannot arise under any grammar. This prediction seems largely correct (see Janda 1987). Nevertheless, there are a few cases of morphologically conditioned exchanges, e.g. Dinka plural formation (Kenstowicz and Kisseberth 1979): if the base (singular) is [along], the derived (plural) form is [-\(\alpha\)long]. Such alternations can be handled in terms of morphologically conditioned constraints which require some feature in the surface form of the base to map to the opposite value in the morphologically derived form (i.e. morphologically conditioned output/output 'anti-faithfulness'), without referring to the value of the feature in UR. (Henceforth, I use PRES(F) as shorthand for PRES(F,I/O), since we will not discuss output/output faithfulness (or anti-faithfulness) constraints further.)
4. **A Language-Specific Predictable Property: Aspiration in English**

To illustrate the connection between Pres(F) and the contrastiveness of F in a sound system, let us consider aspiration of stops in English. As a descriptive approximation, I posit the constraint in (11):\(^{10}\)

(11) **ASPIRATE:** A stop is [+spread glottis] iff it is [-voi], occurring in initial position in a stressed or word-initial syllable.

The English pattern is obtained under the ranking in the tableaux in (12):

<table>
<thead>
<tr>
<th>a.</th>
<th>PEl → ·PEl</th>
<th>*!</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b.</td>
<td>PbE1 → ·PEl</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>SPel → ·SPel</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>SPbE1 → ·SPbE1</td>
<td>*!</td>
<td></td>
</tr>
</tbody>
</table>

I assume that Pres(voi), the stress assignment constraints, etc. are all ranked above Pres(spread), therefore candidates [·bE1], [·PEl] (unstressed), etc. are ruled out. Tableaux (12a) and (b) show that, regardless of underlying specification for [spread], a voiceless stop in initial position within a stressed syllable is aspirated on the surface. Tableaux (12c) and (d) show that, regardless of underlying specification for [spread], a voiceless stop in a non-syllable-initial position (more generally, a stop in any environment other than initial in stressed syllable) is realized as unaspirated. Moreover, we obtain the same result if the stop is unspecified for [spread]:

<table>
<thead>
<tr>
<th>a.</th>
<th>PEl → ·PEl</th>
<th>*!</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b.</td>
<td>PbE1 → ·PEl</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>SPel → ·SPel</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>SPbE1 → ·SPbE1</td>
<td>*!</td>
<td></td>
</tr>
</tbody>
</table>
Under this ranking then, for any pair of URs which differ solely w.r.t. [spread], e.g. /pʰeI/, /peI/ (or /PeI/), the PR neutralizes to a particular value of [spread]: [+spread] in the aspiration environment, and [-spread] elsewhere. Therefore, [spread] is not contrastive under this grammar, by definition (8), at least for the class of stops.

If, however, ASPIRATE is ranked below PRES(spread) (and there is no other higher-ranking constraint on the distribution of [spread] in voiceless stops in this context), then [spread] is contrastive, as in Hindi:

<table>
<thead>
<tr>
<th></th>
<th>PRES(spread)</th>
<th>ASPIRATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pi → ·pi</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>pi → ·pʰi</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>pʰi → ·pi</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>pʰi → ·pʰi</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Pi → ·pi</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>Pi → ·pʰi</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

URs /pi/ and /pʰi/ are solely distinguished by [spread], and the value of [spread] in their respective PRs, [·pi] and [·pʰi], matches the underlying value; therefore, by definition (8), [spread] is contrastive under this grammar.

Finally, consider a grammar where PRES(spread) and ASPIRATE are unranked.

<table>
<thead>
<tr>
<th></th>
<th>PRES(spread)</th>
<th>ASPIRATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pi → ·pi</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>pi → ·pʰi</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>pʰi → ·pi</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>pʰi → ·pʰi</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Pi → ·pi</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>Pi → ·pʰi</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

UR /pi/ freely varies between [·pi] and [·pʰi], while /pʰi/ is invariantly realized as [·pʰi], a pattern attested in Ao (Gurubasave-Gowda 1975). The PRs for /pi/ are [·pi] and [·pʰi]; and the PR for /pʰi/ is [·pʰi]. That is, a [+spread] UR is invariantly realized as surface [+spread], and a [-spread] specification may be realized as [-spread]; therefore, by definition (8), [spread] is contrastive under this grammar.
Observe that the contrastive or predictable status of aspiration in the foregoing tableaux depends on the satisfaction or violation of Pres(spread) in the winning candidates, which in turn depends on the ranking of Pres(spread) with respect to the constraint on its distribution. The predictable status of stop aspiration in English (12) in no way depends on the feature's absence from any level of phonological representation. (This result is straightforwardly translatable into rule-based terms: a feature is non-contrastive just in case a rule or set of rules neutralizes the underlying distinction in all contexts.)

5. **Universally Non-Contrastive Properties: Partial Lengthening**

Next, consider a universally non-contrastive property, such as the partial lengthening which occurs in Nawuri, in word-initial and phrase-final vowels. That is, the distribution of the feature [partially long] is subject to the following constraints.

\[(16) \text{PHRASE-FINAL LENGTHENING: } V_{\text{Phrase}} \rightarrow [+\text{partially long}].\]
\[(17) \text{WORD-INITIAL LENGTHENING: } [\text{Word}V] \rightarrow [+\text{partially long}].\]
*[HALF-LONG: [\text{-long}] \rightarrow [-\text{partially long}].]\(^{11}\)

The phonological relevance of this property in conditioning centralization is discussed in the Introduction. To complete the analysis, we merely need to rank *[+front,-partially long] above Pres(front).

\[
\begin{array}{|c|c|c|}
\hline
\text{Expression} & *[+\text{front,-pl}] & \text{Pres(front)} \\
\hline
\text{o-liŋ} \rightarrow \text{o-liŋ} & *! & \\
\text{o-liŋ} \rightarrow \text{o-ľn} & * & \\
\text{nati ba} \rightarrow \text{nati ba} & *! & \\
\text{nati ba} \rightarrow \text{nati#ba} & * & \\
\text{lembiri} \rightarrow \text{lembēri}_{\text{Phrase}} & \text{[lemberi]}_{\text{Phrase}} & *! \\
\text{lembiri} \rightarrow \text{lembērē}_{\text{Phrase}} & \text{[lemberē]}_{\text{Phrase}} & *! \\
\text{brila} \rightarrow \text{brila} & \text{[brila]} & \\
\text{brila} \rightarrow \text{br#la} & \text{[br#la]} & \\
\hline
\end{array}
\]

Let us assume that UG contains no corresponding faithfulness constraint, Pres(partially long) (analogous to the standard assumption that [partially long] is unspecified in the phonology). The value of [partially long] is therefore determined by the constraints in (16), regardless of underlying specification for [partially long]. (V. = a [+pl] vowel, V = a [-pl] vowel.)
As shown in (18), for any pair of URs which differ solely w.r.t. [partially long], the distinction neutralizes in PR; the surface value of [partially long] is conditioned by the position of the vowel within the word or phrase. Therefore by (8), [partially long] is not contrastive. Under the opposite ranking, with *HALF-LONG dominating the lengthening constraints, all non-long vowels would be realized as [-partially long] in all contexts; but in no case can the feature behave contrastively.

Once again, the non-contrastive behavior of the feature in question emerges from the constraint system; we require no assumption that such properties are excluded from phonological representation, or from any level of representation within the phonological component. The sole distinction between this case and the discussion of aspiration in the previous section is that [partially long] is non-contrastive under any ranking, due to the lack of a PRES(partially long) constraint; and since rankings are all that distinguish phonological systems in Optimality Theory, this amounts to showing that the feature is non-contrastive universally. We are able to include this phonetic property in the phonological representation, thereby capturing insights into centralization processes; but we do not generate spurious systems in which [partially long] is contrastive per se.

This result does not translate elegantly into a rule-based framework. We would have to stipulate that every language has a rule or set of rules that neutralize this feature in all contexts, contrary to the general view of rules as
language-specific. Nor is it a simple matter to stipulate these universal neutralization rules. For example, the distinction between released and unreleased stops is universally non-contrastive, though stop release is phonologically relevant in licensing contour segments (partially nasalized or affricated) (Steriade 1993). Nevertheless, this feature neutralizes (pre-pausally) to [+released] in French, [-released] in Korean, and is in free variation in English. In a rule-based framework, we must then posit three distinct neutralizing rules for the three languages; and there is no unified formal expression of the feature’s non-contrastiveness. In the OT formalism, however, what unifies the three cases is the lack of a $\text{PRES}($released$)$ constraint in UG; and what distinguishes them is the ranking (or non-ranking) of conflicting constraints on the surface value of [released], such as 'Stops must be released' vs. 'Coda stops must be unreleased.'

6. **Generalizing the Result: the Contrastiveness Theorem**

The ability to characterize the predictable or contrastive status of features in terms of the interaction of $\text{PRES}(F)$ constraints and the rest of the constraint system (either under particular rankings or universally), rather than in terms of representational restrictions, is not limited to the cases just considered, but rather is fully general.

(19) **The Contrastiveness Theorem**
For all features F, F is contrastive under grammar G iff

(a) there is a constraint $\text{PRES}(F)$ in UG, and

(b) there is some PR p such that for any UR u, if the mapping $u \rightarrow p$ is allowed under G, the mapping satisfies $\text{PRES}(F)$ w.r.t. some F specification in u or p, if any.

(Recall that the URs and PRs under discussion are possible, not necessarily actual, forms.) To prove (19), it is sufficient to show that (I) if both the conditions in (19) hold, F is contrastive, and (II), if either of the conditions in (19) do not hold, F is not contrastive.

I. Assume that both the conditions in (19) hold: there is a constraint $\text{PRES}(F)$, and it is unviolated in the mapping between p and all its possible URs w.r.t. some F specification in p, if any. Therefore, by the definition of $\text{PRES}(F)$ (9), for some F specification in p, u must have a corresponding identical F specification, or if p has no F specification, then neither does u. Let u' be a UR which differs from u solely w.r.t. F. That is,
Since $u' \rightarrow p$ would violate $\text{PRES}(F)$, u' cannot map to p. We next show that the PR for u' must differ from p w.r.t. F. For some $\alpha \in \{+, -, 0\}$,

$$
\begin{array}{ccc}
\text{if } p \text{ contains:} & \text{then } u \text{ contains:} & \text{and } u' \text{ contains:} \\
+F_i & +F_i & -F_i \text{ or } 0F \\
-F_i & -F_i & +F_i \text{ or } 0F \\
0F & 0F & +F_i \text{ or } -F_i \\
\end{array}
$$

There is therefore a pair of PRs, p and p' which differ w.r.t. F; among the inputs to p and p' are u and u' respectively, which differ solely w.r.t. F; and u' does not map to p. By definition (8), F is contrastive under G. This result is exemplified by the rankings of $\text{PRES}(\text{spread})$ and ASPIRATE for Hindi (14) and Ao (15).
II. Assume that either of the conditions in (19) do not hold. There is no \textsc{Pres}(F) constraint in UG, or there is no PR \(p \) such that all URs for \(p \) satisfy \textsc{Pres}(F).

\begin{tabular}{|c|c|c|}
\hline
\(\cup \alpha \forall \forall (= u) \rightarrow \forall \alpha \forall X (= p) \) & \text{Other constraints} & \text{\textsc{Pres}(F)} \\
\hline
\(\cup \alpha \forall \forall (= u) \rightarrow \forall \neg \alpha \forall X (= p') \) & \text{\(<\alpha > \)} & * \\
\hline
\(\cup \neg \alpha \forall \forall (= u') \rightarrow \forall \neg \alpha \forall X (= p') \) & \text{\(<\alpha > \)} & * \\
\hline
\end{tabular}

\(p' \) may also be a winner, in free variation with \(p \), if the violations in \(<\alpha > \) are equal to \(<\alpha > \). In either case, since \textsc{Pres}(F) can be violated, no other constraint prevents \(u \) and \(u' \) from both mapping to \(p \). Since \(u' \) can map to \(p \), by definition (6), \(F \) is not contrastive under \(G \). This result is exemplified by the status of [partially long] universally (18), and by the rankings of \textsc{Pres}(spread) and \textsc{Aspirate} for English (12, 13).

Therefore, the conditions in (19) are both necessary and sufficient to show that a feature is contrastive.

The assumption of strongly parallel, one-step UR-PR mapping is not crucial to this result. In a multi-stratal grammar, \(F \) is contrastive just in case (19) (substituting 'input/output' for 'UR/PR') holds true for \(F \) at each stratum. We have shown that, on a single round of evaluation, an underlying distinction in \(F \) maps to an output \(F \) distinction just in case (19) holds w.r.t. \(F \). In a multi-stratal OT grammar, this output is then taken as the input for another round of candidate generation and evaluation. But if (19) characterizes the behavior of \(F \) on the second stratum as well, the same result obtains, and so on, regardless of the number of strata.

7. Categorical Effects with Continuous Representations

It is standardly claimed that ‘phonological’ representations are categorical, whereas ‘phonetic’ representations are gradient. Consider a phonetic dimension such as vowel height. For purposes of phonological analysis, this phonetic continuum is standardly divided into three regions, low, mid and high, which are formally represented in terms of two binary features: [low] and [high], as shown in (21).
(21) Vowel height continuum subdivided using two binary features:

\[
\begin{align*}
-\text{high} & \quad \downarrow & \text{high} \\
-\text{low} & \quad \downarrow & \text{low}
\end{align*}
\]

lower \hspace{2cm} higher

Clearly, the claim of phonological categoricalness cannot mean that there is at most a binary distinction for any phonetic dimension; for at least a ternary distinction in vowel height is required.\(^\text{12}\) If, however, the claim of phonological categoricalness is that the phonology represents phonetic dimensions in terms of some number of discrete, binary features, then the distinction between categorical and gradient representations is vacuous, since this technique can be applied recursively to yield a quasi-continuum. Let the vowel height dimension be subdivided into, say, 100 features of the form \([\pm \text{vowel height (Vht)} > n]\) as shown in (22).

(22)

\[
\begin{align*}
-\text{Vht}>99 & \quad \text{+Vht}>99 \\
-\text{Vht}>2 & \quad \text{+Vht}>2 \\
-\text{Vht}>1 & \quad \text{+Vht}>1 \\
-\text{Vht}>0 & \quad \text{+Vht}>0 \\
\text{lowest} & \quad \text{highest}
\end{align*}
\]

This scale is certainly fine enough for any linguistic phonetic analysis, but if a closer approximation to a true continuum were required, we could simply subdivide the dimension into an even greater number of binary distinctions, such that the increments approach infinitesimal.

\(^\text{13}\)

If there is any truth to the claim of phonological categoricalness, it lies in the observation that a small number of points along the phonetic dimension will be contrastive in any given language. For example, we do not find languages which have anything approaching 100 contrastive degrees of vowel height. \textit{But this is simply a special case of distinguishing between contrastive and non-contrastive properties, which can be adequately handled in terms of the constraint}
system, without representational restrictions, as shown in the preceding sections. That is, the categorical behavior of phonological objects emerges from the constraint system, rather than by reifying the categories in an abstract representation.

To make this clear, let us adopt a quasi-continuous representation of vowel height, as in (22), to describe a language with a three-way distinction of vowel height. We simply need to identify the two features which serve as the boundaries between mid and non-mid vowels in the relevant language: for the sake of concreteness, say [Vht>33] and [Vht>67]:

\[
\begin{align*}
[-Vht>33] &= [+\text{high}] = \text{high} \\
[+Vht>33, -Vht>67] &= [-\text{low}, -\text{high}] = \text{mid} \\
[+Vht>67] &= [+\text{low}] = \text{low}
\end{align*}
\]

To capture the three-way contrast, it suffices to assume that \texttt{Pres}(Vht>33) and \texttt{Pres}(Vht>67) are ranked such that the conditions of (19) hold, i.e. for some set of mappings between a PR and all of its URs, the mappings satisfy \texttt{Pres}(Vht>33) and \texttt{Pres}(Vht>67); and the conditions of (19) do not hold for the remaining possible distinctions in F1 frequency, e.g. [Vht>60], either because there is no \texttt{Pres}(Vht>60) constraint in UG, or this constraint is inactive due to low ranking.

A class of constraints which might render certain faithfulness constraints inactive in all contexts are the polarization constraints, which favor maximal dispersion of the values within the relevant phonetic dimension (cf. Liljencrants and Lindblom 1972, Flemming 1995), thereby enforcing a sort of phonetic categoricalness.

\[
\begin{align*}
\texttt{Polar}(Vht, \text{binary}): Vht &= 0 \text{ or } 100 \\
\texttt{Polar}(Vht, \text{ternary}): Vht &= 0, 50 \text{ or } 100 \\
\texttt{Polar}(Vht, \text{quaternary}): Vht &= 0, 33, 67, \text{ or } 100
\end{align*}
\]

etc.

Under the ranking shown in tableau (25), only three possible surface vowel heights are possible (0, 50 or 100), regardless of underlying values of vowel height, notwithstanding the presence of a constraint \texttt{Pres}(Vht>60) within the hierarchy.
Of the three surface values permitted by \textsc{Polar}(Vht, ternary), the one assigned to a particular UR value is the one which crosses no ‘boundary,’ i.e. violates no active \textsc{Pres} constraint. For example, in (25a), mapping from an underlying value of 84 to a surface value of 100 does not cross the 33 or 67 boundaries enforced by the active constraints \textsc{Pres}(Vht>33) and \textsc{Pres}(Vht>67); if, however, the UR is lower than 67, as in (25b), the surface value which crosses no boundary is 50 Hz (though it violates the inactive \textsc{Pres}(Vht>60)). Again, the ternary surface distinction is attributable entirely to the constraint system; it does not depend on the exclusion of the non-contrastive vowel height distinctions from phonological representation.

Ironically, this approach now appears to be too categorical, i.e. predicting a narrow set of precise and invariant surface values for vowel height, when in fact we observe a great deal of surface variation: indeed, the whole point of introducing quasicontinuous representations is to capture such gradient variation. However, we can reintroduce variation into the picture in a number of ways.

First, to the extent that the variation is completely free, the polarization constraints, rather than identifying precise values, might specify permissible ranges of values:

(26) \textsc{Polar}(Vht, ternary) (revised): Vht = 0-12, 45-53, or 89-100
Second, context-sensitive variation can be captured in terms of conflict between the polarization constraints and other, context-specific, constraints on vowel height, e.g. articulatory constraints favoring reduced vowels in fast speech:

(27) **REDUCE**: *[Vht>20] (i.e. no very low vowels) in fast speech.

<table>
<thead>
<tr>
<th>Vht</th>
<th>REDUCE</th>
<th>PRES(Vht>33)</th>
<th>POLAR(tern)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>*!</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>*!</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>*!</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td>*!</td>
</tr>
</tbody>
</table>

The result here is a (somewhat simplified) case of context-sensitive variation in the frequency of Vht, depending on speech rate.\(^{17}\)

Finally, I do not attempt to spell out here the relation between this gradient but still abstract scale of vowel height and actual physical measures thereof: i.e. frequency of the first formant in Hz (acoustically), or Mels (perceptually); or (roughly speaking) tongue body height in cm (articulatorily). Consequently, there is room for *inter-speaker variation* in this relation. If we are simply concerned with modeling the production of a single speaker, it is possible (if non-trivial) to substitute, e.g., Hz values for the abstract values, as we shall see in the following section. However, inter-speaker variation remains an unsolved problem in this as in all existing theories of phonology and phonetics.

8. **Gradient Phonology: Interpolation between Phonetic Targets**

As a further illustration of the extension of Optimality Theoretic phonology to gradient phenomena, consider the device of interpolation between phonetic targets, which has played an important role in models of phonetic implementation. Pierrehumbert (1980) assumes that surface phonological representations may be highly underspecified for particular features, e.g. tone. In the mapping to the phonetic component, the tonal specifications correspond to ‘targets’ on the F0 frequency dimension.\(^{18}\)
In phonetic realization, F0 frequency values for the underspecified syllables are filled in by a function which linearly interpolates between the targets:

(30)
\[
\begin{array}{cccc}
\sigma & \sigma & \sigma' & \sigma \\
100 & 150 & 200 & 250 & 175 & 100
\end{array}
\]

Finally, the interpolation lines are ‘smoothed,’ to get rid of abrupt transitions.

(31)

The interpolation device yields results which accord fairly closely with actual measurements over a broad range of phenomena. And though various refinements of this model have since been proposed (e.g. Pierrehumbert and Beckman 1988, Cohn 1990, Huffman 1990, Keating 1990, Choi 1992), the role of interpolation functions in phonetic realization seems empirically well established, as well as conceptually plausible. That is, any excursion in F0 values presumably corresponds to displacement of some articulators; and smooth, interpolatory articulatory trajectories are presumably less effortful than abrupt, jerky trajectories.

However, this phenomenon may be captured in terms of Optimality Theoretic constraint interaction, without recourse to underspecification, nor to a post-phonological interpretive component.

(32)
a. L\%: Phrase begins and ends with a value around the F0 floor (100 Hz).

b. STRESS-TO-PITCH: The most prominent (i.e. nuclear stressed) syllable of a phrase has a value near the F0 ceiling (250 Hz).

c. LAZY: Minimize articulatory effort.

d. PRES(F0): (stands for the set of PRES constraints for F0 dimension features; since they are all inactive in this hypothetical, we need not concern ourselves with the internal ranking of this set, nor with assessing relative violations thereof.)
As a first approximation, the articulatory effort involved in producing F0 contours can be equated with peak velocity, measured as the sum of the squares of the difference between each F0 value and the following value in the array:

\[E = \sum (F0_{i} - F0_{i+1})^2 \]

where \(n \) is the number of F0 values in the array.

The differences are squared to get rid of negative values, and to magnify the cost of steep local increases or decreases in F0 frequency. For example, given the array of F0 values in (30), \(E = (100-150)^2 + (150-200)^2 + (200-250)^2 + (250-175)^2 + (175-100)^2 = 18750 \).

Under the following ranking, we see that the effect of linear interpolation obtains:

<table>
<thead>
<tr>
<th>(F0)</th>
<th>L%</th>
<th>STRESS-TO-PITCH</th>
<th>LAZY</th>
<th>PRES(F0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>σσσσσσ</td>
<td>*!</td>
<td>0</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>a. 100 100 100 100 100 100</td>
<td>*!</td>
<td>55000</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b. 200 100 100 250 100 100</td>
<td>*!</td>
<td>45000</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>c. 100 100 100 250 100 100</td>
<td></td>
<td>18750</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>d. 100 150 200 250 175 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LAZY is best satisfied by an F0 monotone (candidate a). However, the higher-ranked constraints, L\% and STRESS-TO-PITCH, require low initial and final F0 values, and a high F0 value on the nuclear stressed syllable. Among the candidates which satisfy these constraints (c and d), the intonation contour which best satisfies LAZY is (d), in which the F0 values for the intermediate syllables rise or fall linearly towards the next ‘target’ syllable, just as if these values were filled in by linear interpolation, but without requiring a distinct, post-phonological level of representation. Indeed, this is a standard result of Optimality Theoretic reanalysis: the ranking of violable constraints captures an effect attributed to derivational ordering of operations in rule-based frameworks (see Prince and Smolensky, p. 23).

Moreover, we could easily adopt a closer approximation to a continuous temporal representation, without changing the substance of the analysis. Assume that the representation is divided into intervals of 10 msec, a fine enough scale for
any linguistic phonetic analysis. Rather than having an F0 array with a single value per syllable, we now have a much richer array, with an F0 value for each 10 msec interval. However, LAZY can be evaluated over any array of F0 values. Because each difference is squared, the raw value of E increases with the richness of the array (i.e. the sampling rate); nevertheless, for a candidate set displaying F0 values at a given sampling rate, LAZY correctly identifies the candidate which minimizes the steepness of local increases or decreases in F0 frequency.

\[
\text{E = } \sum \frac{1}{n} \left(F_0 - \frac{F_{0_{prev}} + F_{0_{next}}}{2} \right)^2 + k
\]

where \(n\) = the number of F0 values, and \(k\) is a constant.

The second term boosts the value of E by the sum of the squares of the accelerations (i.e. the difference between each actual F0 value and its expected value, based on the two previous values in the array), multiplied by a constant. Since accelerations are greater at abrupt transitions, contours with abrupt transitions have a higher value for E. Therefore, modulo the higher-ranked constraints, the optimal contour has smoothed transitions. This treatment is clearly preferable to the algorithm of applying an interpolation function and then smoothing the result, as in (30) and (31), in that linear interpolation has no empirical status other than as a step towards a smoothed contour: no language, for example, has a phonetic interpolation process without smoothing.

A final point is to allay concerns over the introduction of numerical computation into phonology. Although numerical computation is employed to assess the degree to which a given candidate violates a scalar constraint, namely LAZY, note that the interaction between constraints involves no numerical computation whatsoever. Rather, strict domination obtains, and evaluation of candidate sets proceeds exactly as in Prince and Smolensky 1993, ch. 5.

9. Conclusion
Let us return to the observation that, contrary to the standard approach, contrastiveness is not an all-or-nothing property; that features fall along a continuum of potential contrastiveness. In the approach developed herein, the contrastiveness of a feature follows from the satisfaction of \(\text{Pres}(F) \), which in the OT framework in turn depends on the ranking of \(\text{Pres}(F) \) relative to potentially conflicting constraints, namely constraints on the surface distribution of \(F \). The higher the ranking of \(\text{Pres}(F) \), the more distributional constraints \(\text{Pres}(F) \) outranks, hence the broader the contexts in which \(F \) is contrastive.

Intuitively, the position of \(\text{Pres}(F) \) in the constraint hierarchy of a grammar for a given speaker corresponds to the degree to which the speaker attends to feature \(F \) in the mapping between input and output. Thus, for example, speakers of Hindi attend to stop aspiration distinctions in a way that English speakers do not. Although constraint ranking is generally a language-specific matter, it must be recognized that certain featural distinctions are inherently more salient than others, e.g. [consonantal] (characterized by abrupt, large-scale changes in amplitude) vs. [longitudinal vocal fold tension] (principally cued by subtle F0 distinctions in the beginning of a following vowel) mentioned in the Introduction. The notion of inherent salience can be formalized in terms of a set of universal ranking conditions s.t. for a certain feature \(F \), \(\text{Pres}(F) \) outranks certain constraints on the distribution of \(F \); or \(\text{Pres}(F) \) outranks \(\text{Pres}(G) \) (for some other feature \(G \)), reflecting the claim that \(F \) is inherently more salient than \(G \) (cf. Jun 1995). Features which are inherently highly salient have corresponding faithfulness constraints which are universally highly ranked; while inherently subtler features have lower-ranked faithfulness constraints. And, as discussed in Sections 5 and 6, universally non-contrastive features lack a faithfulness constraint altogether.

Moreover, this approach captures the connection between the frequent non-contrastiveness of some feature and its restriction to narrow environments when it is contrastive. The lower the ranking of \(\text{Pres}(F) \), the more constraints on the distribution of \(F \) dominate \(\text{Pres}(F) \), hence the narrower the contexts in which \(F \) is contrastive, and the greater the likelihood that \(F \) is not contrastive in any context at all. Central to this treatment of contrastiveness is the Optimality Theoretic notion of faithfulness. The analog of faithfulness in rule-based frameworks is a mere default state, the absence of neutralization rules w.r.t. a particular feature in a given language; thus there is no corresponding formal expression in such a framework of a feature's cross-linguistic tendency to resist neutralization.
In sum, I have shown that some standard assumptions concerning phonological representation, and the ‘phonetics-phonology interface,’ warrant reevaluation in light of Optimality Theory. Specifically, the motivation for excluding non-contrastive properties from the phonological representation, or any derivational stage therein, evaporates under Optimality Theoretic analyses which include feature-specific faithfulness constraints. By the Contrastiveness Theorem, the contrastiveness of a particular feature depends entirely on whether there is a corresponding faithfulness constraint which is satisfied under some set of mappings, which in turn depends on the position of the constraint within the constraint hierarchy. This result extends even to properties which are not contrastive in any language, if we simply assume that such properties lack a corresponding PRES constraint. Finally, the distinction between categorical and gradient properties, standardly assumed to characterize the difference between phonological and phonetic representation, proves to be a special case of the previous result. Consequently, we may capture the categorical and contrastive behavior of particular phonetic properties (and the predictable or gradient behavior of the remainder) in terms of constraint interaction, while using representations which in principle may contain complete phonetic detail, including gradient properties. Thus, Optimality Theory permits the removal of the representational blinders imposed by the standard treatment of contrastiveness: a move which promises to lead to new insights into the phonetic bases of many phonological phenomena.
* I wish to express thanks for helpful comments to Donca Steriade, Bruce Hayes, Rod Casali, Edward Flemming, audiences at Berkeley Linguistics Society and the South-West Optimality Theory workshops, at which earlier versions of this paper were presented, and three anonymous reviewers. All errors are, of course, my sole responsibility.

1 This includes alternations once thought to be categorical, e.g. final devoicing in German (Port and O'Dell 1985); and place assimilation in casual speech in English (Barry 1985, 1991; Nolan 1992).

2 See generally Ladefoged and Maddieson 1996, for a surprisingly large number of features which are contrastive in only one or two languages. The list of potentially contrastive features which they document, incidentally, is considerably larger than the feature inventory standardly contemplated by phonologists. Therefore, even if we take potential contrastiveness as a necessary condition for inclusion, a large expansion of the feature inventory beyond the standard 15 or so features is clearly in order.

3 Casali (1995) characterizes the centralization environment as 'interconsonantal'; however, VV sequences in Nawuri are subject to a set of hiatus-avoiding processes (coalescence and glide formation), which yield long vowels (Casali 1996). Therefore, the interconsonantal condition reduces to the (surface) vowel length condition.

4 Further supporting the undershoot account, Rod Casali (p.c.) reports that centralization occurs to a lesser degree when the target vowel follows a coronal consonant, i.e. when the tongue body is already relatively 'front' due to the advancement of the tongue blade for the coronal articulation.

5 More generally, undershoot can be captured in terms of a family of constraints disfavoring effortful articulations; this idea is deployed in Section 8 with regard to intonation, and is more fully developed in Kirchner (in progress). Nevertheless, the computation of the effort level feature which conditions the Nawuri centralization under this approach must refer to phonetic duration, so the phonological relevance of phonetic duration is still established.

6 That is, if in a given representation feature F temporally precedes feature G, we can treat the relation between F and G as a feature itself: [+precedes(F,G)]. Similarly, if syllable σ dominates F, there is a feature [+dominates(σ,F)]. I am not proposing this as the most perspicuous notation for featural relations: I am merely showing that the notion of feature can encompass all such relations.

7 Hualde transcribes this as [iy]; phonetically, the vowel in [iy] is presumably higher than plain [i], due to coarticulation with the glide. I assume that it is the extreme closeness of the vowel which gives rise to the stronger percept of a glide in the transition to the following vowel, rather than vice-versa.

8 Modulo, of course, analyses using displaced underlying distinctions purely as diacritics marking exceptional forms: Kiparsky (1973) argues persuasively against such use of underlying features.

9 Prince and Smolensky's (1993) arguments for independent ranking of segmental PARSE and FILL constraints concerned the distinction between languages that break up consonant clusters by inserting a vowel vs. deleting a consonant, and between languages that break up vowel sequences by deleting a vowel vs. inserting a consonant. These distinctions can be reanalyzed in terms of independent ranking of PARSE(consonantal) and PARSE(vocalic) constraints, with [consonantal] and [vocalic] treated as distinct, privative features. Indeed, Prince and Smolensky (ch. 7) are forced to posit such a distinction in any case (in their terms, PARSE(C) vs. PARSE(V), and FILL(Ons) vs. FILL(Nuc)).
Phonetic studies (e.g. Pierrehumbert and Talkin 1992) indicate that the degree of aspiration in English actually varies gradiently, depending on the stress level and phrasal position of the relevant syllable. To handle this gradient variation, a more sophisticated, gradient version of the ASPIRATE constraint is required (see Section 7 on gradient properties in the phonological representation); nevertheless, such elaboration does not change the essence of the present analysis, namely conflict between faithfulness and some constraint on the surface distribution of aspiration.

[+long] entails [+partially long] by definition.

Nor is non-binarity unique to vowel height: ternary (or greater) distinctions are also required for the F0 frequency dimension (i.e. tone), and for the 'sonority' dimension (e.g. Clements 1990).

Similarly, the categorical treatments of aspiration and vowel duration in sections 4 and 5 can be recast in gradient terms by adopting more continuous representations of voice onset time and vowel duration, respectively.

This point has also been made by Steriade (1995) and Flemming (1995), though Flemming’s approach relies on a family of constraints which refer explicitly to the maintainance of contrasts (by globally comparing inventories of possible distinct outputs), rather than relying on faithfulness constraints.

A constraint is ‘active’ on an input if it is satisfied by some candidates and violated by others, and no higher ranking constraint has already ruled out all of the satisfiers or all of the violators (Prince and Smolensky 1993:82).

Flemming (1995) claims that polarization of values only comes into play with respect to contrastive features. This generalization, if correct, might be captured in terms of a ranking condition such that no constraint may be crucially ranked between the PRES constraints and any active POLAR constraint for a given phonetic dimension.

More gradient context-sensitive variation can be obtained simply by adopting more sophisticated context-specific constraints: for example, a REDUCE constraint which makes the amount of reduction/raising inversely proportional to duration, e.g. ‘Vowel height must be no lower than 0 (the ‘ideal’ minimum vowel height) + (a constant divided by the duration of the vowel).’ Alternatively, reduction (like Nawuri centralization) can be understood as articulatory undershoot, an effort minimization effect (see Section 8 and Kirchner (in progress)). Further note that register-sensitive variation may also be regarded as a special case of context-sensitive variation: the relevant ‘context’ includes speech register (adequately formalized), in addition to phonetic properties. For an approach to OT modelling of register-sensitive variation, see Kirchner (1995:, in progress).

The mapping from tonal specifications to phonetic targets is itself non-trivial, and I will not attempt to analyze this here; however, it seems plausible that adjustments of target values, e.g. due to downdrift and downstep, can likewise be handled by constraint interaction. For example, downdrift can be attributed to a constraint which requires an F0 peak to be lower (by some amount) than all preceding F0 peaks within some prosodic domain.

An anonymous reviewer notes, ‘[T]he tacit assumption here is that an F0 monotone would constitute the least effortful thing for a speaker to do. I think that this is probably inaccurate and suggest that sustaining an F0 monotone requires a degree of precision antithetical to the notion of LAZY.’ The reviewer is, strictly speaking, correct; the least effortful intonation contour probably involves some declination. However (33) and (36) are merely intended as a rough analog of articulatory effort; a more sophisticated theory would quantify effort in terms of articulatory gestures directly, using all available techniques of articulatory experimentation. In any case, by drawing a connection between interpolatory movement and effort minimization, I am not diverging from the assumptions of the standard target-and-interpolation framework: for
Pierrehumbert (1980) likewise assumes that effort minimization lies behind interpolatory movement.

20 The lower the value of k (for $k \geq 0$), the lower the penalty for abrupt transitions, hence the closer the contour to a straight line interpolation.

REFERENCES

Kirchner, R. (1993) Turkish Vowel Harmony and Disharmony: an Optimality Theoretic Account, paper presented at Rutgers Optimality Workshop I.

Kirchner, R. (in progress) *Lenition Typology in Phonetically Based Optimality Theory*, Doctoral Dissertation, UCLA.

SPE = Chomsky and Halle 1968.