• We want to compute the fraction of light (power) that is reflected and transmitted by a flat interface between two dielectric media with different indices of refraction. We are also interested in possible phase shifts.

• As a first step in achieving this, we investigate the relationship between the incident, reflected and refracted <u>electric</u> fields at the interface. The relationship is summarized by the **Fresnel Equations**.

• Suppose that a monochromatic plane wave is incident on the planar surface separating two isotropic media. Whatever the polarization of the incident wave, we shall resolve its \vec{E} (and \vec{B}) field into components \parallel and \perp to the *plane-of-incidence*. The Fresnel Equations treat these components separately.

<u>Note</u>: Some Optics literature use *s* and *p* to refer to $\vec{\mathbf{E}}_{\perp}$ and $\vec{\mathbf{E}}_{\parallel}$, respectively. (In this notation, *s* derives from the German word "senkrecht" which means "perpendicular" and *p* stands for parallel.) In other literature, $\vec{\mathbf{E}}_{\perp}$ is labelled "transverse electric" or TE, indicating that the electric field is transverse (perpendicular) to the plane-of-incidence. In this notation, $\vec{\mathbf{E}}_{\parallel}$ is labelled TM for "transverse magnetic".

• Consider the following scenario for the situation where the incident \vec{E} is <u>perpendicular</u> to the plane-of-incidence (i.e., the page):

Ŕ

 $(\theta_r=\theta_i)$

(θ_t related to θ_i via Snell's Law)

- As usual, the symbol "dot within circle" (as shown in Fig. 1) indicates the vector is coming out of the page. [The symbol "cross within circle" would be used to indicate the vector is going into the page.]

- $\vec{\mathbf{E}}_r$ (the reflected $\vec{\mathbf{E}}$) and $\vec{\mathbf{E}}_t$ (the transmitted $\vec{\mathbf{E}}$) are perpendicular to the plane-of-incidence, but in principle could be phase-shifted compared to the incident $\vec{\mathbf{E}}_i$ (more details later).

• In this scenario where $\vec{\mathbf{E}}_i$ is \perp to the plane-of-incidence, i.e., <u>perpendicular</u> polarization, the **amplitude reflection coefficient** r_{\perp} and the **amplitude transmission coefficient** t_{\perp} are relevant:

$$r_{\perp} = \left(\frac{E_{0r}}{E_{0i}}\right)_{\perp}$$
 and $t_{\perp} = \left(\frac{E_{0t}}{E_{0i}}\right)_{\perp}$

• Consider the following scenario for the situation where the incident \vec{E} is *parallel* to the plane-of-incidence (i.e., the page):

 $(\theta_r=\theta_i)$

(θ_t related to θ_i via Snell's Law)

Fig.2

- $\vec{\mathbf{E}}_r$ (the reflected $\vec{\mathbf{E}}$) and $\vec{\mathbf{E}}_t$ (the transmitted $\vec{\mathbf{E}}$) are entirely parallel to the plane-of-incidence but in principle could be phase-shifted compared to the incident $\vec{\mathbf{E}}_i$ (more details later).

• In this scenario where $\vec{\mathbf{E}}_i$ is \parallel to the plane-of-incidence, i.e., <u>parallel</u> polarization, the **amplitude reflection coefficient** r_{\parallel} and the **amplitude transmission coefficient** t_{\parallel} are relevant:

$$r_{\parallel} = \left(rac{E_{0r}}{E_{0i}}
ight)_{\parallel}$$
 and $t_{\parallel} = \left(rac{E_{0t}}{E_{0i}}
ight)_{\parallel}$

Fresnel Equations

for homogeneous, non-magnetic, dielectric media (see the derivation handout)

Augustin-Jean Fresnel (1788-1827)

Amplitude coefficients	Alternatively, by using Snell's law:
$r_{\perp} \equiv \left(\frac{E_{0r}}{E_{0i}}\right)_{\perp} = \frac{n_i \cos\theta_i - n_t \cos\theta_t}{n_i \cos\theta_i + n_t \cos\theta_t}$	$r_{\perp} = -\frac{\sin(\theta_i - \theta_t)}{\sin(\theta_i + \theta_t)}$
$t_{\perp} \equiv \left(\frac{E_{0t}}{E_{0i}}\right)_{\perp} = \frac{2n_i \cos\theta_i}{n_i \cos\theta_i + n_t \cos\theta_t}$	$t_{\perp} = +\frac{2\mathrm{sin}\theta_t \mathrm{cos}\theta_i}{\mathrm{sin}(\theta_i + \theta_t)}$
$r_{\parallel} \equiv \left(\frac{E_{0r}}{E_{0i}}\right)_{\parallel} = \frac{n_t \cos\theta_i - n_i \cos\theta_t}{n_i \cos\theta_t + n_t \cos\theta_i}$	$r_{\parallel} = + \frac{\tan(\theta_i - \theta_t)}{\tan(\theta_i + \theta_t)}$
$t_{\parallel} \equiv \left(\frac{E_{0t}}{E_{0i}}\right)_{\parallel} = \frac{2n_i \cos\theta_i}{n_i \cos\theta_t + n_t \cos\theta_i}$	$t_{\parallel} = + \frac{2 \sin \theta_t \cos \theta_i}{\sin(\theta_i + \theta_t) \cos(\theta_i - \theta_t)}$
Egn (1)	Egn (2)

<u>Note</u>: In the Optics literature, different sign variations have been labeled as the Fresnel Equations (in particular, for r_{\parallel}). To avoid confusion, the equations should be related to the specific field directions from which they were derived. (The above equations are referred to the directions indicated in Fig. 1 and Fig. 2.)

 \Rightarrow It can be shown that:

 $t_{\perp} + (-r_{\perp}) = 1$ always $t_{\parallel} + r_{\parallel} = 1$ only at normal incidence

(I) External Reflection $[n_i < n_t]$,

transmitted medium is optically denser

Example:

Light going from air ($n_i = 1.0$) to glass ($n_t = n = 1.5$).

Sir David Brewster (1781-1868)

Notes:

 \Rightarrow Although the material is considered to be "transparent", in general, light is actually both transmitted and reflected from the material.

 \Rightarrow At normal incidence, i.e., $\theta_i = 0^0$, and hence $\theta_t = 0^0$ from Snell's Law Eqn (1) then gives [Eqn (2) might be harder to use]:

$$r_{\parallel} = -r_{\perp} = \frac{n_t - n_i}{n_t + n_i}$$
(3)
$$t_{\parallel} = t_{\perp} = \frac{2n_i}{n_t + n_i}$$
(4)

(The expressions displayed in the graph can then be obtained by substituting $n_i = 1$ and $n_t = n$).

 \Rightarrow If the incident ray is at *glancing incidence* to the interface, i.e., $\theta_i = 90^0$, Eqn (2) and some trigonometric identities yield $r_{\parallel} = r_{\perp} = -1$ and $t_{\parallel} = t_{\perp} = 0$. This implies that all the light is reflected.

For example:

$$r_{\perp} = -\frac{\sin(\theta_i - \theta_t)}{\sin(\theta_i + \theta_t)} = -\frac{\sin(90^0 - \theta_t)}{\sin(90^0 + \theta_t)} = -\frac{\cos(\theta_t)}{\cos(\theta_t)} = -1$$
$$r_{\parallel} = +\frac{\tan(\theta_i - \theta_t)}{\tan(\theta_i + \theta_t)} = \frac{\tan(90^0 - \theta_t)}{\tan(90^0 + \theta_t)} = \frac{\cot(\theta_t)}{-\cot(\theta_t)} = -1$$
etc.

⇒ Notice that the Fresnel amplitude coefficients can take on both positive and negative values. This implies the reflected light can undergo phase shifts (more later...).

Polarization Angle (Brewster's Angle)

 \Rightarrow At the so-called **polarization angle** or **Brewster's angle** θ_p the value $r_{\parallel} = 0$. This means that light that is polarized parallel to the plane of incidence (*p*-polarized light) is <u>not</u> reflected. Note that if *unpolarized* light is incident on the interface, the reflected light will be fully polarized \perp to the plane-of-incidence.

Note that in Eqn (2), $r_{\parallel} = 0$ occurs when the denominator is $\tan 90^0 = \infty$. Hence,

$$\theta_p + \theta_t = 90^0 \tag{5}$$

i.e., the reflected and transmitted rays are perpendicular.

Physically, the $\|$ -polarized (*p*-polarized) light cannot reflect because the reflected \vec{k}_r and the transmitted \vec{k}_t are perpendicular. A reflection would require the microscopic dipoles at the surface of the second material (with n_t) to radiate along their axes, which they cannot do.

Polarization Angle (Brewster's Angle) con't

From Snell's Law:

$$n_{i}\sin\theta_{p} = n_{t}\sin\theta_{t}$$
$$= n_{t}\sin(90^{0} - \theta_{p})$$
$$= n_{t}\cos\theta_{p}$$

$$\tan\theta_p = \frac{n_t}{n_i} \tag{6}$$

e.g.
$$n_i = 1.00; n_t = 1.50$$

 $\tan \theta_p = \frac{n_t}{n_i} = \frac{1.50}{1.00} \implies \theta_p = 56.3^0$

(II) Internal Reflection $[n_i > n_t]$, incident medium is optically denser <u>Example</u>:

Light going from glass ($n_i = n = 1.5$) to air ($n_t = 1.0$).

Additional Notes:

 \Rightarrow New behavior: Both r_{\parallel} and r_{\perp} reach +1 at the **critical angle** θ_{c} . As we shall discuss later, if the incident angle is larger than θ_{c} , the light ray is fully reflected, i.e., the regime of **total internal reflection (TIR)**. (In this regime, the Fresnel coefficients are complex.) The numerical value of θ_{c} can be found using Snell's Law with the refracted angle set to 90⁰ (it is equal to 41.8⁰ in the figure above).

Internal Reflection (con't)

re: Critical angle θ_C (con't)

$$n_t = 1.00 \qquad \qquad \theta_t = 90^0$$
$$n_i = 1.50 \qquad \qquad \theta_c$$

$$n_i \sin \theta_C = n_t \sin 90^0$$
$$1.50 \sin \theta_C = 1.00 \sin 90^0$$
$$\theta_C = 41.8^0$$

 \Rightarrow Here, the polarization angle (Brewster's angle) is $\theta_p = 33.7^0$.

i.e., from
$$\tan \theta_p = \frac{n_t}{n_i} = \frac{1.00}{1.50}$$

<u>Note</u>: Recall that the polarization (Brewster's) angle for external reflection, i.e., from air to glass, was $\theta'_p = 56.3^0$. Hence, $\theta_p + \theta'_p = 90^0$. This is a general result: i.e., polarization (Brewster's) angles for internal and external reflection at a given interface are complementary.

 \Rightarrow Note that the transmission coefficients $t_{\parallel} > 1$ and $t_{\perp} > 1$, implying that the amplitudes of the transmitted electric fields are larger than that of the incident electric field...!

(At θ_C , the values of t_{\parallel} and t_{\perp} are finite; here $t_{\parallel} = 3$ and $t_{\perp} = 2$.)