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- tangential component of 𝐄.

- tangential component of 𝐁/𝜇.

 Assume linearly polarized waves. Resolve a wave’s 𝐄 and 𝐁 fields into 
components parallel and perpendicular to the plane-of incidence and 
treat them separately.

 The Fresnel Equations can be obtained by making use of the boundary 
conditions of EM fields at the interface of two dielectrics (for derivations of 
these boundary conditions, see most textbooks, etc. on 
Electromagnetism). These boundary conditions state that the following are 
continuous across the interface:

- normal component of 𝜖𝐄.

- normal component of 𝐁.

Derivation of Fresnel Equations
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Situation 1: Incident 𝐄 is ⊥ to the plane-of-incidence

(“s-polarized” or “Transverse Electric (TE) polarized”)

The fields shown are 
actually at the interface 
but have been drawn 
displaced so the vectors 
can be seen more 
clearly.

Fig. 1a

Fig. 1b
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 The continuity of the tangential component of 𝐄 gives

𝐄𝑖 + 𝐄𝑟 = 𝐄𝑡 (A-1)

Each of the terms can be written in the complex form that looks like 

“𝐄 = 𝐄0exp 𝑖 Ԧ𝐤 ⋅ Ԧ𝐫 − 𝜔𝑡 + 𝜀 ”. Since eqn (A-1) is valid at any location on 

the interface and for any time, it must be independent of time 𝑡 and 

position Ԧ𝐫. This implies that 𝐄𝑖 , 𝐄𝑟 and 𝐄𝑡 have the same functional 
dependence on the variables t and Ԧ𝐫, and hence the phases (which look like 

“Ԧ𝐤 ⋅ Ԧ𝐫 − 𝜔𝑡 + 𝜀”) are always the same. Hence, the exponential phase terms 
cancel out in eqn (A-1) and the continuity condition can be applied to the 
amplitudes. 

𝐄0𝑖 + 𝐄0𝑟 = 𝐄0𝑡 (A-2a)

 The continuity of the tangential component (along the 𝑥 direction in 

Fig. 1) of 𝐁/𝜇 gives:

[When the tangential component of the 𝐁-field points in the 
negative 𝑥-direction it is entered with a minus sign.]

−
𝐵𝑖
𝜇𝑖
cos𝜃𝑖 +

𝐵𝑟
𝜇𝑖

cos𝜃𝑟 = −
𝐵𝑡
𝜇𝑡

cos𝜃𝑡 (A-3)

𝐸0𝑖 + 𝐸0𝑟 = 𝐸0𝑡 (A-2b)or

As an example, Fig. 2 shows 
how to obtain the tangential 
component of the magnetic 
field of the incident light (see 
Fig. 1b), i.e., the 1st term in 
eqn (A-3).  

Fig. 2
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𝑛𝑖
𝜇𝑖𝑐

𝐸0𝑖 − 𝐸0𝑟 cos𝜃𝑖 =
𝑛𝑡
𝜇𝑡𝑐

𝐸0𝑡cos𝜃𝑡

𝑛𝑖
𝜇𝑖

𝐸0𝑖 − 𝐸0𝑟 cos𝜃𝑖 =
𝑛𝑡
𝜇𝑡

𝐸0𝑡cos𝜃𝑡

(A-5a)

(A-5b)

By substituting (A-2b) into the RHS of (A-5b) and re-arranging:

𝐸0𝑟
𝐸0𝑖 ⊥

=

𝑛𝑖
𝜇𝑖
cos𝜃𝑖 −

𝑛𝑡
𝜇𝑡

cos𝜃𝑡

𝑛𝑖
𝜇𝑖
cos𝜃𝑖 +

𝑛𝑡
𝜇𝑡

cos𝜃𝑡

The subscript ⊥ in (A-6) serves as a reminder that we are dealing with 

𝑬 that is ⊥ to the plane-of-incidence.

(A-6)

 Furthermore, the LHS of (A-6) can be written as, using (A-2b),  

𝐸0𝑟
𝐸0𝑖

=
𝐸0𝑡 − 𝐸0𝑖

𝐸0𝑖
=
𝐸0𝑡
𝐸0𝑖

− 1 (A-7)

Hence,

𝐸0𝑡
𝐸0𝑖 ⊥

= 1 +
𝐸0𝑟
𝐸0𝑖 ⊥

=
2
𝑛𝑖
𝜇𝑖
cos𝜃𝑖

𝑛𝑖
𝜇𝑖
cos𝜃𝑖 +

𝑛𝑡
𝜇𝑡

cos𝜃𝑡

(A-8)

using eqn (A-6)

 By using "𝐵 = 𝐸/𝑣“ and since 𝑣𝑖 = 𝑣𝑟 (“𝑖” and “𝑟” are in the same 
medium) and 𝜃𝑖 = 𝜃𝑟 (Law of Reflection), eqn (A-3) yields

1

𝜇𝑖𝑣𝑖
𝐸𝑖 − 𝐸𝑟 cos𝜃𝑖 =

1

𝜇𝑡𝑣𝑡
𝐸𝑡cos𝜃𝑡 (A-4)

Recall from our above discussion that the phases of the electric fields are 
the same; hence the exponential phase terms that are present in 𝐸𝑖, 𝐸𝑟, 𝐸𝑡
of eqn (A-4) cancel. We can also substitute "𝑣 = 𝑛𝑐“ into eqn (A-4). Hence,
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 If we are primarily interested in non-magnetic materials, then 𝜇𝑖 ≈ 𝜇𝑟 ≈ 𝜇0, 
and (A-6) and (A-8) can be simplified to yield the commonly used forms of the 
Fresnel equations:

𝑟⊥ ≡
𝐸0𝑟
𝐸0𝑖 ⊥

=
𝑛𝑖cos𝜃𝑖 − 𝑛𝑡cos𝜃𝑡
𝑛𝑖cos𝜃𝑖 + 𝑛𝑡cos𝜃𝑡

𝑡⊥ ≡
𝐸0𝑡
𝐸0𝑖 ⊥

=
2𝑛𝑖cos𝜃𝑖

𝑛𝑖cos𝜃𝑖 + 𝑛𝑡cos𝜃𝑡
(A-10)

(A-9)

 Eqns (A-6) and (A-8) apply to any linear, isotropic, homogeneous media, 
and are two of the Fresnel Equations.
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Situation 2: Incident 𝐄 is ∥ to the plane-of-incidence

(“p-polarized” or “Transverse Magnetic (TM) polarized”)

 The calculations for this situation proceeds in an analogous way to Situation 1. 

The fields shown are 
actually at the interface 
but have been drawn 
displaced so the vectors 
can be seen more 
clearly.

Fig. 3a

Fig. 3b



7

 The continuity of the tangential component of 𝐄 gives

(A-11)

 By using "𝐵 = 𝐸/𝑣“, 𝑣𝑖 = 𝑣𝑟 and "𝑣 = 𝑛𝑐" , (A-13) yields:

𝐵𝑖
𝜇𝑖

+
𝐵𝑟
𝜇𝑖

=
𝐵𝑡
𝜇𝑡

𝐸𝑖cos𝜃𝑖 − 𝐸𝑟cos𝜃𝑟 = 𝐸𝑡cos𝜃𝑡
Again, the phases of electric fields are the same; hence the exponential 
phase terms that are present in 𝐸𝑖, 𝐸𝑟, 𝐸𝑡 of eqn (A-11) cancel. This yields:

𝐸0𝑖cos𝜃𝑖 − 𝐸0𝑟cos𝜃𝑟 = 𝐸0𝑡cos𝜃𝑡 (A-12)

 The continuity of the tangential component of 𝐁/𝜇 gives:

or
𝐵0𝑖
𝜇𝑖

+
𝐵0𝑟
𝜇𝑖

=
𝐵0𝑡
𝜇𝑡

(A-13)

𝑛𝑖
𝜇𝑖
𝐸0𝑖 +

𝑛𝑖
𝜇𝑖
𝐸0𝑟 =

𝑛𝑡
𝜇𝑡

𝐸0𝑡 (A-14)

 Dividing both (A-12) and (A-14) by 𝐸0𝑖, use Law of Reflection 𝜃𝑖 = 𝜃𝑟, 
(and carrying out some slight rearrangement of terms) we obtain the two 
simultaneous linear equations:

𝐸0𝑡
𝐸0𝑖

cos𝜃𝑡 +
𝐸0𝑟
𝐸0𝑖

cos𝜃𝑖 = cos𝜃𝑖

𝐸0𝑡
𝐸0𝑖

𝑛𝑡
𝜇𝑡

−
𝐸0𝑟
𝐸0𝑖

𝑛𝑖
𝜇𝑖

=
𝑛𝑖
𝜇𝑖

(A-15)

(A-16)

 Of course, the two equations (A-15) and (A-16) can be solved by various 
methods for 𝐸0𝑡/𝐸0𝑖 and 𝐸0𝑟/𝐸0𝑖. For example, in matrix notation:

cos𝜃𝑡 cos𝜃𝑖
𝑛𝑡
𝜇𝑡

−
𝑛𝑖
𝜇𝑖

𝐸0𝑡/𝐸0𝑖

𝐸0𝑟/𝐸0𝑖

cos𝜃𝑖
𝑛𝑖
𝜇𝑖

= (A-17)
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cos𝜃𝑡 cos𝜃𝑖
𝑛𝑡
𝜇𝑡

𝑛𝑖
𝜇𝑖

cos𝜃𝑡 cos𝜃𝑖
𝑛𝑡
𝜇𝑡

−
𝑛𝑖
𝜇𝑖

=

𝑛𝑡
𝜇𝑡

cos𝜃𝑖 −
𝑛𝑖
𝜇𝑖
cos𝜃𝑡

𝑛𝑖
𝜇𝑖
cos𝜃𝑡 +

𝑛𝑡
𝜇𝑡

cos𝜃𝑖

𝐸0𝑟
𝐸0𝑖

=

 One method is to use Cramer’s rule (forming the appropriate ratio 
of the determinants): 

cos𝜃𝑖 cos𝜃𝑖
𝑛𝑖
𝜇𝑖

−
𝑛𝑖
𝜇𝑖

cos𝜃𝑡 cos𝜃𝑖
𝑛𝑡
𝜇𝑡

−
𝑛𝑖
𝜇𝑖

=
2
𝑛𝑖
𝜇𝑖
cos𝜃𝑖

𝑛𝑖
𝜇𝑖
cos𝜃𝑡 +

𝑛𝑡
𝜇𝑡

cos𝜃𝑖

𝐸0𝑡
𝐸0𝑖

=

(A-18)

(A-19)

 If we are primarily interested in non-magnetic materials, then 𝜇𝑖 ≈ 𝜇𝑟 ≈ 𝜇0, 
and (A-18) and (A-19) can be simplified to yield the two remaining commonly 
used forms of the Fresnel equations:

 Eqns (A-18) and (A-19) apply to any linear, isotropic, homogeneous 
media, and are the remaining two of the Fresnel Equations.

The subscript ∥ in (A-20) serves as a reminder that we are 

dealing with 𝑬 that is ∥ to the plane-of-incidence.

𝑟∥ ≡
𝐸0𝑟
𝐸0𝑖 ∥

=
𝑛𝑡cos𝜃𝑖 − 𝑛𝑖cos𝜃𝑡
𝑛𝑖cos𝜃𝑡 + 𝑛𝑡cos𝜃𝑖

𝑡∥ ≡
𝐸0𝑡
𝐸0𝑖 ∥

=
2𝑛𝑖cos𝜃𝑖

𝑛𝑖cos𝜃𝑡 + 𝑛𝑡cos𝜃𝑖

(A-20)


