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Transmit Radiation Pattern Invariance in MIMO
Radar With Application to DOA Estimation

Aboulnasr Hassanien, Sergiy A. Vorobyov, and Arash Khabbazibasmenj

Abstract—The desired property of having the same beampat-
tern for different columns of a beamspace transformation matrix
(beamforming vectors) often plays a key importance in practical
applications. At most 2M−1 − 1 beamforming vectors with the
same beampattern can be generated from any given beamforming
vector, where M is the size of the beamforming vector. Thus,
one can start with a single (mother) beamforming vector, which
gives a desired beampattern, but may not satisfy some other
desired properties, and generate all other beamforming vectors,
which give the same beampattern, in a computationally efficient
way. Then the beamforming vectors, which in addition satisfy
other desired properties that the mother beamforming vector
may not satisfy, can be selected. Such procedure is developed in
this letter in the application to the transmit beamspace design
that ensures practically important properties for multiple-input
multiple-output radar. A computationally efficient sub-optimal
method for selecting best beamforming vectors from a population
of vectors that give the same beampattern is also developed.

Index Terms—Array processing, beamforming, beampattern
design, dimensionality reduction, multiple-input multiple-output
(MIMO) radar.

I. INTRODUCTION

Beamspace transformation [1], [2] and beamforming [3]
techniques are the key approaches, among others, in array
signal processing [4]-[6], radar [7], multiple-input multiple-
output (MIMO) radar [8]-[21], wireless communications [22]-
[24], data compression and dimensionality reduction [25],
[26], biomedical engineering [27], etc.

In the traditional applications in array processing and di-
mensionality reduction, it is often desirable to reduce the
high dimensional space into a lower one by means of the
beamspace transformations. In more recent applications to
MIMO radar, it has been required not only to design a
lower dimensional transmit beamspace but also to transmit
a number of orthogonal waveforms from a larger number of
transmit antenna elements while achieving transmit coherent
processing gain. While designing such a transmit beamspace,
certain properties have to be satisfied such as a uniform power
distribution for different transmit waveforms in the desired
sector where the targets are likely to be located. The latter
enables, for example, to enforce at the transmitter the very
useful rotational invariance property [28], [29] which can
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significantly simplify and improve, for example, the direction-
of-arrival (DOA) estimation at the receive antenna array.

Practically, generating a transmit beamspace that satisfies
some additional to transmit radiation pattern invariance prop-
erties is desirable [29]. Thus, it is of interest to design
simple technique that starts with a single beamforming vector,
which we call the mother beamforming vector by analogy
with mother wavelet [30], and generate a number of other
beamforming vectors that all have the same beampattern as
the mother beamforming vector. Then, beamforming vectors
satisfing some additional practical properties, e.g., a uniform
power distribution across the transmit array elements can then
be selected from a population of so generated vectors. In
wavelets, self-similarity is an important property where basis
functions are all obtained from a single prototype mother
wavelet using scaling and translation. A similar property can
be used also in our beamspace design problem. To the best
of the authors knowledge, such approach has not been used
before to the transmit beamspace design in MIMO radar.

II. TRANSMIT RADIATION PATTERN INVARIANCE

Consider a uniform linear array (ULA) of size M . The
steering vector of the array towards direction θ is denoted
as a(θ). The transmit array beampattern can be expressed as

p(θ) = ‖wHa∗(θ)‖2 (1)

where w � [w1, w2, · · · , wM ]T is the M × 1 beamforming
vector and ‖ · ‖, (·)T , (·)H and (·)∗ stand for the Euclidean
norm, transpose, Hermitian transpose of a vector and con-
jugation, respectively. Let the beampattern corresponding to
a given beamforming vector w, referred to as the mother
beamforming vector, satisfy certain shape design requirements,
but it does not satisfy other practically important require-
ments. Such a requirement is, for example, a uniform power
distribution across the antenna elements. The question then
arises about existence of other distinct beamforming vectors
which generate the same exact beampattern as the mother
beamforming vector w and which in addition satisfy other
possible design requirements.

The total number of other distinct beamforming vectors
with the same exact beampattern as the mother beamforming
vector w, which corresponds to a ULA of size M , is at most
2M−1 − 1. This can be justified by considering the fact that
the beampattern in equation (1) is a non-linear mapping of the
frequency response of a finite impulse response (FIR) filter
with coefficients wi, i = 1, · · · ,M . Such an FIR filter has
at most M − 1 distinct roots and it is quite well-known that
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reflecting each root against the unit circle, i.e., inverse con-
jugating, does not change the frequency response magnitude
[31]. More details can be found in [32]. From the viewpoint of
constructing a population of all possible beamforming vectors
that have the same beampattern as the mother beamforming
vector w, let us consider (1) as an invariant for the following
function of a single variable x

f(x)�

First Multiplicative Term︷ ︸︸ ︷
(w1 + w2x+ w3x

2 + · · ·+ wMx
M−1) (2)

×
Second Multiplicative Term︷ ︸︸ ︷

(w∗
1 + w∗

2x
−1 + w∗

3x
−2 + · · ·+ w∗

Mx
−M+1) .

From equation (1), it can be immediately concluded that
p(θ) = f(ejπ sin(θ)). Let x0 be a non-zero root of the first mul-
tiplicative term in (2), i.e., w1+w2x+w3x

2+ · · ·+wMx
M−1.

Then, it is simple to verify that 1/x∗
o is also a root of the

second multiplicative term w∗
1 + w∗

2x
−1 + w∗

3x
−2 + · · · +

w∗
Mx

−M+1 of f(x). One implication of this observation is
that the inverse conjugate of every root of the function ( 2) is
also a root of f(x) and, therefore, the roots of f(x) can be
denoted as xi and 1/x∗i , i = 1, · · · ,M − 1 and f(x) can be
decomposed as

f(x)= |wM |2
(
w1

wM
+

w2

wM
x+

w3

wM
x2 + · · ·+ xM−1

)

×
(
w∗

1

w∗
M

+
w∗

2

w∗
M

x−1 +
w∗

3

w∗
M

+ · · ·+ x−M+1

)

= |wM |2
M−1∏
i=1

(x− xi)

M−1∏
i=1

(x−1 − x∗i ). (3)

Furthermore, it is easy to verify that the product (x−x i)(x
−1−

x∗i ) can be equivalently expressed as

(x − xi)(x
−1 − x∗i ) = |xi|2

(
x− 1

x∗i

)(
x−1 − 1

xi

)
. (4)

Note that the product terms
∏M−1

i=1 (x−xi) and
∏M−1

i=1 (x−1−
x∗i ) that appear in (3) will preserve the structure of the first
and second multiplicative terms in (2) for any arbitrary xi, i =
1, · · · ,M − 1. Based on these observations, the function (2)
can be decomposed as the multiplication of two terms in the
form of v1 + v2x+ v3x

2 + · · ·+ vMx
M−1 and v∗1 + v∗2x−1 +

v∗3x
−2 + · · ·+ v∗Mx

−M+1 in 2M−1 different ways depending
on whether xi (or 1/x∗i ,) i = 1, · · · ,M − 1 is the root of the
first polynomial.

III. APPLICATION TO TRANSMIT BEAMSPACE DESIGN IN

MIMO RADAR

Consider a MIMO radar with transmit ULA of M antenna
elements spaced half a wavelength apart. The total transmit
power is normalized to Pt = M . Waveform diversity in
tandem with transmit beamforming have been employed in
the literature via transmitting multiple orthogonal waveforms
over multiple transmit beams. The M × 1 vector of baseband
representation of the signals at the input of the transmit
antennas is given as

x(t) =

K∑
k=1

ψk(t)w
∗
k (5)

where t is the fast time index, ψk(t), k = 1, . . . ,K are K
orthogonal waveforms, and wk, k = 1, . . . ,K are the associ-
ated transmit weight vectors. Existing methods for designing
transmit beamforming in MIMO radar adopt joint design
approach which can be computationally expensive especially
if the involved optimization is non-convex. Moreover, the
resulting solution always yields transmit beamforming weight
vectors which have different individual transmit power radia-
tion patterns. As a result, the received data at the output of the
matched-filters at the receive array becomes contaminated with
non-uniform noise, interference, and/or clutter components
which may deteriorate the DOA estimation performance.

Here we develop a simpler approach via designing a sin-
gle mother transmit beamforming weight vector. Then, the
required K transmit beamforming weight vectors, which are
guaranteed to have the exact same transmit radiation pattern,
can be selected from the population of 2M−1 − 1 associated
weight vectors. Note that existing sophisticated and computa-
tionally efficient FIR filter design techniques can be used to
obtain the mother beamforming weight vector [31], [33], [34].

One key practical requirement in MIMO radar is to have
uniform power distribution across the transmit array elements.
The selection of K weight vectors from the population of
2M−1−1 vectors while satisfying the uniform power constraint
can be cast as the following optimization problem

min
w1,...,wK

η

s.t.
K∑

k=1

|w[k,m]|2 ≤ η, m = 1, . . . ,M (6)

{w1, . . . ,wK} ∈ Wpop

where Wpop is the population of 2M−1−1 associated weight
vectors obtained from the mother weight vector and w [k,m]

refers to the mth entry of wk. The optimization problem (6)
is computationally demanding when exhaustive search is done
over all vectors on Wpop.

It is worth noting, however, that while building the pop-
ulation Wpop, the larger the magnitude of a certain root x i

(xi ≥ 1), the larger the deviation between the two weight
vectors associated with xi and 1/x∗i , respectively. Using this
observation, a computationally efficient way of solving the
optimization problem (6), at least sub-optimally, is to obtain
a reduced size population W̃pop ⊂ Wpop and then search
within this reduced size population. This can be done by
dividing the roots (3) into two groups. The first group consists
of the Q roots with the largest magnitude and the second group
contains the remaining M − Q − 1 roots. Therefore, (3) can
be rewritten as

f(x)= |wM |2
Q∏
i=1

(x− xi)

M−Q−1∏
i=1

(x− xi)

×
Q∏
i=1

(x−1 − x∗i )
M−Q−1∏

i=1

(x−1 − x∗i )

= |wM |2h(x)
Q∏
i=1

(x− xi)

Q∏
i=1

(x−1 − x∗i ) (7)
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where h(x) �
∏M−Q−1

i=1 (x−xi)
∏M−Q−1

i=1 (x−1−x∗i ). Using
(7), a reduced population of size 2Q − 1 can be obtained.
Thus, the use of small to moderate values of Q will result
in a computationally achievable sub-optimal solution to the
problem (6) even if exhaustive search is used.

IV. SIMULATION RESULTS

We assume a ULA of M = 10 transmit antenna elements
spaced half a wavelength apart from each other. Two mother
transmit beamforming weight vectors are designed in two
different ways to focus the transmit energy within the sector
Θ = [−10◦, 10◦]. The first mother beamforming weight
vector is designed using spheroidal sequences technique [2]
(see also [19] in application to transmit beamforming design
in MIMO radar). Specifically, it is computed as wSPH =√
M/2(u1 + u2) where u1 and u2 are the two principle

eigenvectors of the matrix A =
∫
Θ a(θ)aH(θ)dθ. The second

mother beamforming weight vector is designed using convex
optimization to control the sidelobe levels. In particular, it
is obtained by solving the following convex optimization
problem [19]

min
w

max
i

‖wHa(θi)− e−jφi‖, θi ∈ Θ, i = 1, . . . , I

subject to ‖wHa(θk)‖ ≤ δ, θk ∈ Θ̄, k = 1, . . . ,K

combined with the ripple and transition band control design
capability [33], [34]. Here Θ̄ combines a continuum of all out-
of-sector directions, i.e., directions lying outside the sector-
of-interest Θ; φi, i = 1, . . . , I is the desired transmit phase
profile of user choice; and δ > 0 is the parameter of the
user choice that characterizes the worst acceptable level of
transmit power radiation in the out-of-sector region Θ̄. The
phase φi = 2π sin(θi) and the parameter δ = 0.1 are chosen,
i.e, the sidelobe levels are kept below 20 log δ = −20 dB.
The resulting mother beamforming weight vector is referred to
hereafter as wCVX. The transmit beampatterns associated with
wSPH and wCVX are shown as the dotted and solid curves,
respectively, in Fig. 1.

The mother beamforming weight vector wSPH is used to
generate a population of 210−1 − 1 = 511 other vectors.
To implement a MIMO radar system with four orthogonal
transmit waveforms, four beamforming weight vectors among
the population that achieve the best transmit power distribution
across the transmit array elements are chosen by solving (6)
using exhaustive search for Q = 4 and Q = M . It is found
that the final solution for both selections of Q are identical.
Therefore, the choice of Q << M is sufficient in practice.
The four chosen weight vectors are denoted as w

(j)
SPH, j =

1, . . . , 4, and are scaled such that
∑

j ‖w(j)
SPH‖2 = M . Each

of the vectors w
(j)
SPH, j = 1, . . . , 4 has the same transmit

radiation pattern as the mother vector except for a magnitude
scaling factor of 1/4. Note that the beampattern magnitude
in the mainlobe as well as in the sidelobe regions is scaled
by the same scaling factor, i.e., the relative attenuation of the
sidelobes with respect to the mainlobe remains unchanged. The
transmit power distribution across the transmit array elements
for the mother transmit beamforming vector wSPH operated
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Fig. 1. Transmit beampattern using spheroidal sequences and convex
optimization based designs.
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Fig. 2. Transmit power distribution across the transmit array elements for
spheroidal-sequences based transmit beamforming design.

in a single-input-multiple-output (SIMO) radar mode and for
the chosen vectors w

(j)
SPH, j = 1, . . . , 4 operated in a MIMO

radar mode are shown in Fig. 2. It can be seen from the figure
that the mother beamforming vector has very poor transmit
power distribution across antenna elements. For example, the
power radiated from the third transmit array element is over
25 dB less than the average transmit power per transmit array
element. On the other hand, the four chosen beamforming
weight vectors exhibit transmit power distribution that is
almost uniform, which is desirable in practice.

Similarly, the mother beamforming weight vector wCVX is
used to generate a population of 511 beamforming vectors
which have the exact same beampattern. The four beam-
forming weight vectors among the population that achieve
the best transmit power distribution across the transmit array
elements are then chosen by solving (6) using exhaustive
search for Q = 4. The four chosen weight vectors are denoted
as w

(j)
CVX, j = 1, . . . , 4. The transmit power distributions
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Fig. 3. Transmit power distribution across the transmit array elements for
convex optimization based transmit beamforming design.

across the transmit antenna array elements for the mother
weight vector and for the vectors w

(j)
CVX, j = 1, . . . , 4 are

shown in Fig. 3. It can be seen from the figure that the four
chosen vectors yield much better transmit power distribution
as compared to the mother beamforming weight vector.

In the last example, we test our design via estimating
the DOAs of two targets that are assumed to be located at
directions 3◦ and 5◦, respectively. The total transmit power
is fixed to Pt = M = 10. We compare the performance of
the SIMO radar with the spheroidal-sequences based mother
weight vector wSPH to the performance of MIMO radar
with w

(j)
SPH, j = 1, . . . , 4 from the previous example. For

both scenarios tested, we perform the simulations for the
(practically unattractive) case when no transmit power clipping
is used as well as for the (practically attractive) case of
restricting each antenna to transmit maximum power which is
set to be unity. In the latter case, if the power of the signals fed
to each antenna is less than unity it is left unchanged while
if the power is more that unity then the weights associated
with this antenna are scaled such that the power of signal fed
to the corresponding antenna is unity, i.e., power clipping is
enforced. Figs. 4 and 5 show the DOA estimation root-mean-
square-error (RMSE) and the probability of source resolutions,
respectively. It can be seen form the figures that the MIMO
radar case has better performance than the SIMO radar case
even without power clipping. When power clipping is en-
forced, the performance of SIMO radar deteriorates even more.
On the other hand, the performance of the MIMO radar with
power clipping is almost the same as that of the MIMO radar
without power clipping which can be attributed to the careful
selection of the best four weight vector among the population
that achieve near uniform transmit power distribution across
the array elements.

V. CONCLUSION

Efficient approach for designing a transmit beamspace trans-
formation in MIMO radar that satisfies transmit radiation
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Fig. 4. RMSE versus SNR.
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Fig. 5. Probability of source resolution versus SNR.

pattern invariance property and other practically significant
properties has been developed. It starts with designing a
mother beamforming vector, which gives a desired radiation
pattern, and is based on generating other at most 2M−1 − 1
vectors with the same radiation pattern, and selecting the
vectors, which also satisfy additional properties. It has been
shown how this design can be utilized in the field of transmit
beamspace design for MIMO radar, where it is desirable that
different transmit waveforms are radiated with the same trans-
mit beampattern and the distribution of transmit power across
antenna elements is uniform. The computationally efficient
sub-optimal approach for selecting best beamforming vectors
from a population of vectors that give the same beampattern
has been developed. The proposed approach has been also
tested by simulations in application to DOA estimation.
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