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ABSTRACT

We consider a multi-pair two-way relay network with multiple sin-
gle antenna amplify-and-forward relays. The sum rate maximiza-
tion problem subject to a total transmit power constraint is stud-
ied for such network. The optimization problem is non-convex.
First, we show that the problem is a monotonic optimization prob-
lem and propose a polyblock approximation algorithm for obtaining
the global optimum. However, this algorithm is only suitable for
benchmarking because of its high computational complexity. After
observing that the necessary optimality condition for our problem
is similar to that of the generalized eigenvalue problem, we pro-
pose to use the generalized power iterative algorithm which can ap-
proach the global optimum recursively. Finally, we propose the to-
tal signal-to-interference-plus-noise ratio (SINR) eigen-beamformer
which is a closed-form suboptimal solution that reduces the compu-
tational complexity significantly. Simulation results show that the
proposed algorithms outperform the existing scheme. Moreover, the
total SINR eigen-beamformer almost achieves the performance of
the optimal solution.

Index Terms— Two-way relaying, amplify and forward, sum
rate maximization, monotonic optimization.

1. INTRODUCTION

Relay networks are important for future mobile networks since they
can improve the network performance by extending the coverage and
increasing the network capacity. In contrast to one-way relaying,
two-way relaying techniques can compensate the spectral efficiency
loss due to the half-duplex constraint of the relay and, therefore, use
the radio resources in a more efficient manner. The optimal beam-
forming design for the sum rate maximization in two-way amplify
and forward (AF) relay networks with one pair of users has been
studied in [1] and [2]. Only a few references deal with multi-pair
two-way AF relay networks, which include adaptive power alloca-
tion [3] and distributed beamforming [4]. Moreover, the optimum
beamforming design for maximizing the sum rate of this system has
not been studied prior to our work.

In this paper, we consider the problem of maximizing the sum
rate of the multi-pair two-way AF relaying network with a total
power budget. This optimization problem is non-convex. Since the
framework of monotonic optimization is applicable to our task, we
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Fig. 1. Multi-pair two-way relaying with multiple single-antenna
amplify and forward relays.

first propose a global optimization approach which is based on the
polyblock approximation algorithm. However, because of its high
computational complexity, this algorithm is only suitable for bench-
marking. Afterwards, observing that the optimality conditions of our
problem have a similar structure as the generalized eigenvalue prob-
lem, we apply a recursive algebraic solution, i.e., the generalized
power iterative algorithm [5] which is also globally optimal if there
is a dominant eigenvalue. To reduce the computational complexity,
we propose the total signal-to-interference-plus-noise ratio (SINR)
eigen-beamformer which is a closed-form suboptimal solution. Sim-
ulation results show that all the proposed algorithms outperform the
existing scheme in [4]. Moreover, the total SINR eigen-beamformer
is very close to the optimal solution when there is a small number of
relays and it suffers only a small loss in the high SNR regime when
many relays exist.

Notation: Uppercase and lower case bold letters denote ma-
trices and vectors, respectively. The expectation operator, trace of
a matrix, transpose, conjugate, and Hermitian transpose are denoted
by E{·}, Tr{·}, {·}T, {·}∗, and {·}H, respectively. The m×m iden-
tity matrix is Im. The Euclidean norm of a vector is denoted by ‖ · ‖
and � is the generalized inequality. The Hadamard (element-wise)
product is denoted by � and diag{v} creates a diagonal matrix by
aligning the elements of the vector v onto its diagonal entries.

2. SYSTEM MODEL

The scenario under investigation is shown in Fig. 1. K pairs
of single-antenna users would like to communicate with each
other via the help of N single-antenna relays. We assume per-
fect synchronization and the channel is frequency flat and quasi-
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static block fading. The vector channel from the (2k − 1)th
user (on the left-hand side of Fig. 1) to the relays is denoted as
f2k−1 = [f2k−1,1, f2k−1,2, . . . , f2k−1,N ]T ∈ C

N , while the chan-
nel from the 2kth user (on the right-hand side of Fig. 1) to the
relay is denoted as g2k = [g2k,1, g2k,2, . . . , g2k,N ]T ∈ C

N , for
k ∈ {1, 2, · · · ,K}. For notational simplicity, we assume that the
channels are reciprocal [1]. The transmission takes two time slots.
In the first time slot, the signal received at all relays can be combined
in a vector as

r =

K∑
k=1

(f2k−1s2k−1 + g2ks2k) + nR ∈ C
N (1)

where s2k−1 and s2k are i.i.d. symbols with zero mean and unit
power. The vector nR denotes the zero-mean circularly symmetric
complex Gaussian (ZMCSCG) noise and E{nRn

H
R} = σ2

RIN .
Afterwards, the AF relays broadcast the weighted signal as

r̄ = W · r (2)

where W = diag{w∗} and w = [w1, w2, . . . , wN ]T is the vector
which consists of the N complex weights of all the relays.

In the second time slot, the received signal at the (2k−1)th user
(on the left-hand side of Fig. 1) is expressed as [4]

y2k−1 = w
H
F2k−1g2ks2k︸ ︷︷ ︸
desired signal

+w
H
F2k−1f2k−1s2k−1︸ ︷︷ ︸

self-interference

+ w
H
F2k−1

K∑
��=k
�=1

(f2�−1s2�−1 + g2�s2�)

︸ ︷︷ ︸
inter-pair interference

+ w
H
F2k−1nR + n2k−1︸ ︷︷ ︸

effective noise

(3)

where F2k−1 = diag{f2k−1} and n2k−1 is the ZMCSCG noise
with variance σ2

2k−1. Similar expressions can be obtained for the
2kth user.

Assume that perfect channel knowledge can be obtained such
that the self-interference terms can be canceled. Let PR be the total
transmit power consumed by the relays in the network. Our goal
is to find the weight vector w such that the sum rate of the system
is maximized subject to the sum power constraint. Note that this
power constraint is similar to [1], besides for the fact that we do not
investigate the adaptation of the transmit powers of each user but
consider them to be fixed.

3. SUM RATE MAXIMIZATION

The optimization problem can be formulated as

max
w

1
2

2K∑
m=1

log2(1 + SINRm)

subject to E{‖r̄‖2} ≤ PR, (4)

where the factor 1/2 is due to the two channel uses (half duplex).
When m = 2k − 1, from the expression (3), the SINR of the mth
user can be calculated as

SINR2k−1 =
wHB2k−1w

wH(D2k−1 +E2k−1)w + σ2
2k−1

(5)

where D2k−1 =
∑

��=k
�=1

(h̃
(o)
2k−1,�h̃

(o)H

2k−1,� + h̃
(e)
2k−1,�h̃

(e)H

2k−1,�) and

B2k−1 = h2k−1h
H
2k−1 are N ×N positive semidefinite Hermitian

matrices. Matrices D2k−1 and B2k−1 are related to the interference
power and the desired signal power, respectively, (h2k−1 = f2k−1�

g2k, h̃(o)
2k−1,� = f2k−1 � f2�−1 and h̃

(e)
2k−1,� = f2k−1 � g2�). The

term which is related to the forwarded noise from the relay is denoted
by an N ×N full rank diagonal matrix E2k−1 = σ2

RF2k−1F
H
2k−1.

Similar SINR expression can be obtained when m = 2k. Further-
more, the total transmit power is given by E{‖r̄‖2} = wH

Γw with

Γ =
K∑

k=1

(F2k−1F
H
2k−1 +G2kG

H
2k) + σ2

RIN . (6)

To simplify the optimization problem we note that the inequality
constraint in (4) has to be satisfied with equality at optimality. Oth-
erwise, the optimal w can be scaled up to satisfy the constraint with
equality while increasing the objective function, which contradicts
the optimality. Inserting the constraint into the objective function in
(4), the original problem can be reformulated as an unconstrained
optimization problem

max
w

2K∏
m=1

wHAmw

wHCmw
(7)

where Cm = Dm+Em+
σ2

m

PR
Γ and Am = Bm+Cm are positive

definite. Problem (7) is equivalent to (4) since the objective function
is homogeneous and any scaling inw does not change the optimality.
Nevertheless, if w̄ is the solution to (7), it should be scaled to fullfill
the power constraint, i.e., the optimal solution to (4) is given by

w =

√
PR

w̄HΓw̄
w̄. (8)

Problem (7) is non-convex and in general NP-hard.

3.1. Generalized Polyblock Algorithm

Monotonic optimization (see [6], [7]) deals with the maximization or
minimization of an increasing function over an intersection of nor-
mal and reverse normal sets. The polyblock approximation approach
is a unified algorithm to find the global optimum of the monotonic
optimization problem. Prior work that used this approach in the area
of wireless communications can be found in [8], [9]. We show that
the problem (7) is a monotonic optimization problem and then pro-
pose a version of the polyblock algorithm to solve it.

Proposition 1. Problem (7) is a monotonic optimization problem.

Proof. Problem (7) is equivalent to the following problem

max
y

{Φ(y)|y ∈ D} (9)

where Φ(y) =
∏2K

m=1 ym and D = G ∩ L. The sets G = {y ∈

R
2K
+ |ym ≤ wHAmw

wHCmw
, w ∈ C

N} and L = {y ∈ R
2K
+ |ym ≥

minw
wHAmw

wHCmw
} are normal set and reverse normal set, respectively.

Function Φ(y) is an increasing function since Φ(ȳ) ≥ Φ(ỹ) for
ȳ � ỹ. Then the proof of the equivalence follows similar steps as
in [7]. Thus, problem (7) is a monotonic optimization problem. The
definitions of increasing function, normal set, and reverse normal set
are the same as in [7].
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A polyblock P with vertex set T ⊂ R
2K
+ is defined as the finite

union of all the boxes [0, z], z ∈ T. It is dominated by its proper
vertices. A vertex z is proper if there is no z̄ 
= z and z̄ � z for
z̄ ∈ T.

According to Proposition 2 in [7], the global maximum of the
problem (9), if exists, is attained on ∂+

D, i.e., the upper boundary
of D. The main idea of the polyblock approximation algorithm for
solving (9) is to approximate ∂+

D by polyblocks, i.e., construct a
nested sequence of polyblocks which approximate D from above,
that is,

P1 ⊃ P2 ⊃ · · · ⊃ D s.t. max
y∈Pk

Φ(y) → max
y∈D

Φ(y) (10)

when k → ∞ and yk � y� for all � ≥ k.
Now we outline how to construct the subset Pk in our case,

which is clearly the critical step of a polyblock approximation. Let
Tk be the proper vertex set of Pk and define the maximizer at itera-
tion k as

ȳk ∈ argmax
ȳ

{Φ(ȳ)|ȳ ∈ Tk}. (11)

Compute the unique intersection point of ∂+
D and ȳk as ŷk =

αkȳk with αk ∈ [0, 1]. Then the proper vertex set Tk+1 of Pk+1 in
step k + 1 is the set obtained by substituting ȳk in Tk with the new
vertices {ȳ1

k, · · · , ȳ
2K
k } defined by

ȳ
m
k = ȳk − (ȳk,m − ŷk,m)em, m = 1, · · · , 2K (12)

and removing all the improper vertices as well as the vertices not
belonging to L. The scalar ȳk,m is the mth element of ȳk and em ∈
R

2K
+ is the mth unit vector. The factor αk is calculated as [7]

αk = max
w

min
m

wHAmw

ȳk,mwHCmw
. (13)

Although (13) is non-convex, it is an easier sub-problem which can
be solved approximately (η−optimality) using the algorithm in [10].
Finally, the proposed (ε, η)-optimal solution using the polyblock al-
gorithm is described in Table 1. The proof of the global convergence
follows similar steps as in [7].

Table 1. (ε, η)-optimal polyblock algorithm for solving (7)
Initialization step: set initial vertex set T0 = {b},1

maximum iteration number Nmax, and the threshold values ε, η.
Main step:
1: for k = 1 to Nmax do
2: Solve (11) and (13) finding ȳk and η−optimal αk.
3: Construct a smaller polyblock Pk using ȳk and αk.
4: if maxm{(ȳk,m − ŷk,m)/ȳk,m} ≤ ε then
5: break
6: end if
7: end for

3.2. Extended GPI Algorithm

The problem (7) can also be solved using the the general power it-
erative (GPI) algorithm which is introduced in [5]. However, the
condition for applying GPI is not explicitly given in [5] and it is not
trivial.

Let us briefly review the GPI method in [5]. According to the
optimality condition, all the local maximizers for the problem (7)
should satisfy

∂λ(w)

∂w

∣∣∣
w=w̄

= 0 (14)

1Here b ∈ R2K
+ satisfies bm = maxw

wHAmw

wHCmw
, m = 1, · · · , 2K.

where λ(w) =
∏2K

m=1
wHAmw

wHCmw
. After differentiation and some

algebraic manipulation, the condition in (14) can be converted into

V (w̄)w̄ = λ(w̄)Q(w̄)w̄ (15)

where V (w̄) =
∑2K

m=1(
∏

i �=m
w̄HAiw̄)Am and Q(w̄) =∑2K

m=1(
∏

i �=m
w̄HCiw̄)Cm. Equation (15) is a generalized eigen-

value problem and λ(w̄) can be thought as the generalized eigen-
value of matrices V (w̄) and Q(w̄). Thus, the maximum general-
ized eigenvalue λmax(w̄) is the maximum of the problem (7). Since
both matrices are functions of w̄, a closed-form solution is not pos-
sible. Therefore, the authors in [5] apply the recursive power method
of [11] to obtain the solution. It is also numerically shown that the
GPI algorithm converges in 30 iterations. However, this is not true
in general. In [11], it is shown that the power method converges
only if the largest eigenvalue is dominant and the convergence speed
depends on the ratio between the largest and the second largest
eigenvalues. Although we can only demonstrate this via numerical
simulations, we claim that GPI should have similar features as the
original power method. Thus, the following conjecture is given.

Conjecture 1. The GPI algorithm converges if there is a dominant
eigenvalue. The convergence behavior depends on the dispersion of
the eigenvalue profiles of the matrices of Am and Cm.

Nevertheless, the GPI algorithm can be applied to our sce-
nario especially when Dm is rank deficient (N > 2(K − 1) since
rank{Dm} = min{N, 2K − 2}), i.e., there will be a dominant
eigenvalue when SNR → ∞. Moreover, it converges faster in the
high SNR regime with a given error tolerance factor. For a detailed
implementation one can be referred to [5].

3.3. Total SINR Eigen-Beamformer

Although the polyblock algorithm and the GPI algorithm solve the
problem (7) in an optimal way, they require many iterations. In
this section, we propose a closed-form suboptimal design. This
closed-form solution is based on the observation that for our scenario
nulling the inter-pair interferences by forcing every interference term
to zero is equivalent to nulling the sum of the inter-pair interferences.
That is, if the sum of the interference powers wH(

∑2K
m=1 Dm)w =∑2K

m=1(w
HDmw) = 0, it is clear that wHDmw = 0, for all m

since Dm � 0.
Let us define Stot =

∑2K
m=1 Bm and Utot =

∑2K
m=1 Cm.

Thus, wHStotw and wHUtotw are the sum of the signal power
and the sum of the interference plus noise power of all the users, re-
spectively. Then the proposed total SINR eigen-beamformer solves
the following problem

max
w

wHStotw

wHUtotw
. (16)

It is obvious that the maximum value of (16) is the maximum gener-
alized eigenvalue λmax{Stot,Utot} and the optimal w is the dom-
inant eigenvector of the matrix U−1

totStot (Utot is always invertible
due to the noise term). In the end, a scaling has to be performed as
in (8).

Remark 1. Although all the proposed algorithms do not have
any requirements on N , to cancel the interference completely
N > 2K(K − 1) is required since the rank of the sum of the
interference terms is equal to rank{

∑2K
m=1 Dm} = 2K(K − 1)

[4]. If N ≤ 2K(K − 1), the results will be unfair for some users
since they will suffer from extremely lower throughputs compared to
the other users.
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Fig. 2. Sum rate comparison.

4. SIMULATION RESULTS

In this section, the performance of the proposed algorithms is eval-
uated via Monte-Carlo simulations. The simulated flat fading chan-
nels are spatially uncorrelated Rayleigh fading channels. The total
relay power PR is fixed to unity. The noise variances at all nodes
are the same, i.e., σ2

R = σ2
m and thus SNR = 1/σ2

m. There are
K = 2 pairs of users in the network. All the simulation results are
obtained by averaging over 100 channel realizations. “Polyblock”,
“GPI”, “Total SINR”, and “Method 1” denote the algorithms in Sec-
tions 3.1, 3.2, 3.3, and [4], respectively. For the polyblock algorithm,
ε = 10−1 and η = 10−6.

Fig. 2 shows the comparison of different algorithms with N = 5
relays and N = 12 relays in the network. “Method 1” is available
only for the case N = 12 since it requires that N ≥ 2K2 + K.
It is obvious that “Polyblock”, “GPI” and “Total SINR” outperform
“Method 1”. One possible reason is that in “Method 1” a part of
the transmit power is used to force the self-interference power to a
certain level. The polyblock algorithm performs slightly worse than
the GPI algorithm. This is due to the (ε, η)-optimality. Moreover,
the total SINR eigen-beamformer performs almost the same as the
optimal solution with a small number of relays (N = 5) and suffers
only a small loss when many relays (N = 12) exist.

Fig. 3 demonstrates the convergence property of the GPI algo-
rithm under different N and SNRs. As we discussed in Section 3.2,
the convergence speed increases when the number of relays increases
in the network or the SNR is high.

5. CONCLUSION

In this paper, we have investigated the sum rate maximization prob-
lem in two-way AF relaying networks. Given a total network power
constraint, the optimization problem fits into the monotonic opti-
mization framework and thus can be solved using the generalized
polyblock approximation algorithm. Since the optimality condi-
tion yields a generalized eigenvalue problem, we propose to apply
the GPI algorithm which can also approach the global optimum
since there is a dominant eigenvalue. To reduce the computational
complexity, we propose the total SINR eigen-beamformer which
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Fig. 3. Convergence property of GPI under different N and SNRs.

maximizes the total SINR of the network. The total SINR eigen-
beamformer only suffers a little loss compared to the two optimum
solutions. All the proposed algorithms outperform the recently
proposed algorithm in [4].
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