Performing linear algebra calculations in C/C++ is a little awkward. Unlike conventional mathematical notation, which uses one-based indexing, C/C++ array elements are counted from zero. Moreover, there is no completely standard (or even convenient) way to set up matrices. You have several choices:

1. You can use two-dimensional C arrays.

   ```c
   const size_t N = 100, M = 150;
   double A[N][M];
   ```

 The code snippet above creates storage elements

 $\begin{pmatrix}
 A_{1,1} & A_{1,2} & \cdots & A_{1,M} \\
 A_{2,1} & \ddots & & \\
 \vdots & \ddots & \ddots & \\
 A_{N,1} & A_{N,2} & \cdots & A_{N,M}
 \end{pmatrix} =
 \begin{pmatrix}
 A[0][0] & A[0][1] & \cdots & A[0][M-1] \\
 A[1][0] & \ddots & & \\
 \vdots & \ddots & \ddots & \\
 \end{pmatrix}
 $

 Except for the indices being offset by one, this is conceptually close to the mathematical notation of an $N \times M$ matrix $A_{i,j}$ with $i = 1, 2, \ldots, N$ and $j = 1, 2, \ldots, M$. In reality, the elements are laid out linearly in memory in row-major order. Each term $A[n]$ is a pointer to the first element of the nth row.

 $\begin{pmatrix}
 A[0][0] & A[0][1] & \cdots & A[0][M-1] \\
 \uparrow & \uparrow & & \\
 \end{pmatrix}
 $

 A serious disadvantage to this scheme is that multi-dimension arrays cannot be passed to functions in the way you would expect.

2. You can use one-dimensional C arrays and explicitly implement the row-major or column-major ordering.

   ```c
   double B[N*M];
   double C[N*M];
   ```

   ```c
   for (size_t n = 0; n < N; ++n)
       for (size_t m = 0; m < M; ++m)
           B[n+m*N] = C[n*M+m] = A[n][m]; // B by row and C by column
   ```

 An important consideration is that LAPACK, the most important numerical library of linear algebra routines, is written in FORTRAN. By convention, FORTRAN stores matrices ordered by column.

3. The C++ language standard does not (yet) provide a standard matrix class. But you can create your own or use one the many freely-available class definitions.

   ```c
   class matrix
   ```
In the code snippet above, `operator+` implements matrix addition. In practice, it’s often better to use the low-level matrix and vector operations provided by BLAS (Basic Linear Algebra Subprograms). Many computer vendors ship hand-tuned versions of these routines that are very fast. The LAPACK (Linear Algebra PACKage) library is build on top of BLAS. It can compute matrix inversion, single-value decomposition, and eigenvectors using a variety of methods.

For maximum compatibility with older code, LAPACK is written in FORTRAN and uses FORTRAN77 bindings. It assumes that matrices use column-major order and one-based indexing. The library functions are named according to the convention TXXYYY, where T denotes the working type, XX the storage format of the matrices, and YYY the nature of the computation. LAPACK uses conventional storage for two-dimensional arrays and packed storage for symmetric, Hermitian, or triangular matrices.

<table>
<thead>
<tr>
<th>T</th>
<th>s</th>
<th>d</th>
<th>c</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>float</td>
<td>double</td>
<td>complex<float></td>
<td>complet<double></td>
</tr>
<tr>
<td></td>
<td>ge</td>
<td>gb</td>
<td>sy</td>
<td>sp</td>
</tr>
<tr>
<td></td>
<td>general</td>
<td>general band</td>
<td>symmetric</td>
<td>symmetric (packed)</td>
</tr>
<tr>
<td></td>
<td>diagonal</td>
<td>general tridiagonal</td>
<td>hermitian</td>
<td></td>
</tr>
</tbody>
</table>

For example, the upper triangular (‘U’) part of an $N \times N$ symmetric matrix can be packed into a
linear array of size $N(N+1)/2$.

\[
\begin{pmatrix}
A_{1,1} & A_{1,2} & A_{1,3} & A_{1,4} \\
A_{2,1} & A_{2,2} & A_{2,3} & A_{2,4} \\
A_{3,1} & A_{3,2} & A_{3,3} & A_{3,4} \\
A_{4,1} & A_{4,2} & A_{4,3} & A_{4,4}
\end{pmatrix}
\]

For elements $1 \leq i \leq j \leq N$, the matrix is reorganized according to $i, j \rightarrow i + \frac{1}{2}j(j - 1)$.

\[
\begin{pmatrix}
A_{1,1} & A_{1,2} & A_{1,3} & A_{1,4} \\
A_{2,1} & A_{2,2} & A_{2,3} & A_{2,4} \\
A_{3,1} & A_{3,2} & A_{3,3} & A_{3,4} \\
A_{4,1} & A_{4,2} & A_{4,3} & A_{4,4}
\end{pmatrix}
\]

In the following code, we use the equivalent zero-indexed rule, $i, j \rightarrow i+j*(j+1)/2$ with $0 \leq i \leq j < N$, to build a symmetric matrix. The matrix is then put into the `eig` eigenvalue solver. In this case, additional integer and double-precision work space is required.

```cpp
int eigensolve(vector<double> &H, vector<double> &Eval, vector<double> &Evec) {
    // Solve the eigenvalue problem with LAPACK's dspevd routine
    int N = Eval.size();
    assert(H.size() == N*(N+1)/2);
    assert(Evec.size() == N*N);

    int info;
    char jobz='V';
    char uplo='U';
    vector<double> work(1+6*N+N*N);
    int lwork = work.size();
    vector<int> iwork(3+5*N);
    int liwork = iwork.size();

    dspevd_(&jobz,&uplo,&N,&(H[0]),&(Eval[0]),&(Evec[0]),
            &M,&(work[0]),&lwork,&(iwork[0]),&liwork,&info);

    return info;
}

vector<double> H(55);
vector<double> Eval(10);
vector<double> Evec(100);

for (size_t j = 0; j < 10; ++j)
    for (size_t i = 0; i <= j; ++i)
        H[i+j*(j+1)/2] = some_function(i,j);

if (eigensolve(H,Eval,Evec)) { ... }
else {
    cerr << "Solver failed!" << endl;
    exit(1);
}
```