A quantum particle moving freely in space is described by a wavefunction $\psi(x,t)$ that satisfies the time-dependent Schrödinger equation

$$i\hbar \frac{\partial \psi}{\partial t} = \hat{H} \psi = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2}.$$

Here, there is no external potential, and the Hamiltonian $\hat{H} = \frac{p^2}{2m}$ consists of a kinetic term only. A complete set of solutions is provided by plane waves of the form $e^{i(kx - E_k t)/\hbar}$. The energy in each mode, $E_k = \frac{\hbar^2 k^2}{2m}$, is a quadratic function of the wavevector k.

An arbitrary wavefunction can be constructed from linear superpositions of such states,

$$\psi(x,t) = \int_{-\infty}^{\infty} dk \, w_k e^{i(kx - E_k t)/\hbar}.$$

At time $t = 0$, the equation above is just a Fourier transform. Hence, a weight $w_k \sim e^{-\sigma_0^2(k - k_0)^2 - ikx_0}$ leads to an initial Gaussian wave packet centred on x_0:

$$\psi(x,0) = \frac{1}{(\sqrt{2\pi}\sigma_0)^{1/2}} \exp\left(-\frac{(x - x_0)^2}{4\sigma_0^2} + ik_0 x\right).$$

At all subsequent times, the probability density has the form

$$|\psi(x,t)|^2 = \frac{1}{\sqrt{2\pi}\sigma(t)} \exp\left(-\frac{(x - x_0 - \hbar k_0 t)^2}{2\sigma(t)^2}\right),$$

where $\sigma(t)^2 = \sigma_0^2 + t^2/4\sigma_0^2$. In other words, the packet centre moves uniformly with group velocity $v_0 = \partial E_k / \partial k|_{k_0} = \hbar k_0/m$ while the packet of width $\sigma(t)$ spreads.

In this special Gaussian case, the solution can be derived analytically. Let’s also solve it numerically by computing the eigenvalue problem $E \psi = \hat{H} \psi$. We proceed by discretizing the spatial derivative:

$$E \psi(x) = \hat{H} \psi(x) = \frac{\hbar^2}{2m} \frac{\psi(x + \Delta x) + \psi(x - \Delta x) - 2\psi(x)}{(\Delta x)^2}.$$

Then the matrix formulation of the problem on some finite line segment is

$$\frac{\hbar^2}{2m(\Delta x)^2} \begin{pmatrix} -2 & 1 & 1 & & \cdots & 1 \\ 1 & -2 & 1 & & \cdots & 1 \\ & & \ddots & & \vdots & \vdots \\ & & \cdots & 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_N \end{pmatrix} = E \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_N \end{pmatrix}.$$

Numerical libraries will give us the eigenvectors $\{\phi^{(a)}_i\}$ and their corresponding energies $\{E^{(a)}\}$. The complete packet evolution is given by

$$\psi(\Delta x \cdot i, t) = \psi_i(t) = \sum_{a=1}^{N} c^{(a)} \phi^{(a)}_i e^{-iE^{(a)}t},$$

where

$$c^{(a)} = \sum_i \phi^{(a)*}_i \psi(x,0).$$

For convenience, we’ll work in simplified units where $\hbar = m = \Delta x = 1$.
1. Download `Lab8.tar.gz` from the class website. Unpack the archive and `cd` into the `Lab8` directory. The `make` command will generate an executable `packet` that simulates a Gaussian wave packet in one and two spatial dimensions. The geometry is controlled by the variables `Lx` and `Ly`, which are set by the user through a command-line flag. The program can be run in one of three modes:

```
./packet
Usage:
  packet -L=#,# dos
  packet -L=#,# evolution -k=#,# -w=#
  packet -L=#,# trajectory -w=#
```

2. Run the program with the `evolution` command line argument, and view the resulting time evolution with the provided `gnuplot` script.

```bash
$ ./packet -L=400 evolution -k=0.1,0 -w=15
A linear mesh of 400 points
Initial wavepacket has wavevector k=(0.1,0) and (half-max) width 15
Diagonalizing the Hamiltonian ...
t=0: 1
t=24: 1
t=48: 1
.
.
t=11952: 1
t=11976: 1
$ gnuplot movie.gp
Press return to start
```

The `gnuplot` animation shows the packet’s motion alongside the exact analytical result. Try running the program with different values of the width. What happens when σ_0 is comparable to or smaller than the discretization length $\Delta x = 1$? Try various values of the wavevector and in particular $-k=1.57$ and $-k=3.14$. What happens to the group velocity? How does the motion differ from that of the continuum packet?

3. Take a look at the code listing for `packet.cpp`. Read through the subroutines `build_Hamiltonian` and `eigensolve`, both of which are called in the first few lines of `main`. Be sure you understand how the Hamiltonian matrix is organized in “packed” storage format and sent to LAPACK’s `DSEPVD` routine for diagonalization. (Notice that we have left all the elements on the main diagonal empty. This just amounts to an energy shift of 2 in the one-dimensional case and 4 in the two-dimensional case.) Write additional code in `eigensolve` to verify that the resulting eigenvectors obey the orthonormality conditions

\[
\sum_{\alpha=1}^{N} \phi_{i}^{(\alpha)} \phi_{j}^{(\alpha)} = \delta_{i,j} \quad \text{and} \quad \sum_{i=1}^{N} \phi_{i}^{(\alpha)} \phi_{i}^{(\beta)} = \delta_{\alpha,\beta}.
\]

4. Observe the two-dimensional problem.

```bash
./packet -L=40,40 evolution -k=1.57,1.57 -w=3
```
A rectangular 40x40 mesh of 1600 points
Initial wavepacket has wavevector $k=1.57$ and (half-max) width 3
Diagonalizing the Hamiltonian ...
t=0: 1
t=0.152866: 1
.
.
t=76.2803: 1
t=76.4331: 1
gnuplot movie.gp

What difference do you notice when you run it again with $k=1.57,0$?

5. Run the program with the dos command line argument. This will cause the program to dump a histogram of the density of states

$$g(E) = \sum_\alpha \delta(E - E^{(\alpha)})$$

to a file named dos.dat. In one dimension, the exact result is

$$\int dk \delta(E - E_k) = \int dk \delta(E + 2 - k^2/2) = \frac{1}{2\pi\sqrt{2+E}}.$$

Try making the comparison in gnuplot.

$\$./packet -L=400 dos
$\$ gnuplot
> plot "dos.dat" with lines, 1/sqrt(2+x)/(2*pi)

Increase the mesh size up from 400 until the plot looks smooth. What kind of discrepancy is there?
The exact density of states in two dimensions is a constant, independent of E. Try systematically changing the aspect ratio from $L_x = 400$, $L_y = 1$ to $L_x = 20$, $L_y = 20$ (or larger).

$\$./packet -L=400,1 dos
$\$./packet -L=200,2 dos
$\$./packet -L=100,4 dos
$\$./packet -L=80,5 dos
$\$
$\$./packet -L=20,20 dos

Does the density of states flatten out?

6. Complete the body of the function \texttt{ave_position} so that it’s last two arguments are assigned the position expectation values

$$\langle x(t) \rangle = \int dx \int dy |\psi(x,y,t)|^2 x,$$

$$\langle y(t) \rangle = \int dx \int dy |\psi(x,y,t)|^2 y.$$

The \texttt{trajectory} mode shows how the semi-classical trajectory $(\langle x(t) \rangle - x_0, \langle y(t) \rangle - y_0)$ changes with the choice of initial wavevectors.
./packet -L=400 trajectory -w=5
A linear mesh of 400 points
Diagonalizing the Hamiltonian ...
Computing k=0
Computing k=0.261799
Computing k=0.523599
Computing k=0.785398
Computing k=1.0472
Computing k=1.309
Computing k=1.5708
Computing k=1.8326
Computing k=2.0944
Computing k=2.35619
Computing k=2.61799
Computing k=2.87979
Computing k=3.14159
$ gnuplot
 > plot "traj.dat" u 2:3 w l
 > plot "traj.dat" i 1 u 2:3, 0.261799*x
 > plot "traj.dat" i 2 u 2:3, 0.523599*x
 > f(x) = a*x
 > fit f(x) "traj.dat" i 1 u 2:3 via a
 > print a
 0.257528127931512
 > fit f(x) "traj.dat" i 2 u 2:3 via a
 > print a
 0.497505902926639

Extract the slopes of these curves and plot them versus their wavevector. The continuum result
is \(\frac{\partial E_k}{\partial k} = k \). Convince yourself that the numerical result is actually \(\frac{\partial E_k}{\partial k} = \sin k \) (and with
the units, \(\frac{\partial E_k}{\partial k} = \sin(k\Delta x)/\Delta x \)).