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Preface

It is hard to explain just how a single sight of a tangible
object with measurable dimensions could so shake and
change a man.

The Case of Charles Dexter Ward
H. P. Lovecraft (1941)

The following are course notes for measure theory and probability theory. These
are intended for students who have background in mathematics and probability, but
have not seen measure theory yet. Hence, the first half of these notes focus on measure
theory with the second half discuss how probability theory fits into the setting of measure
theory. It was only about 100 years ago that mathematicians like Kolmogorov and Von
Mises were trying to formalize probability theory while in France, Borel, Baire, and
Lebesgue where working on analysis, and across the channel, Fisher, Pearson, Jeffreys,
and their contemporaries were bringing rigour to the field of statistics. Hence, the
material in this course is still relatively young.

The sources I used to put these notes together are quite numerous. The main text-
books I relied on are Real Analysis and Probability by RM Dudley and Probability and
Measure by Patrick Billingsley. I first learned measure theory apart from probability
theory in a course at McGill University from Dr Paul Koosis. He used W Rudin’s text
Real and Complex Analysis. Later, as a PhD student, I learned more formal probabil-
ity theory from reading the course notes of Dr James R Noris from the University of
Cambridge. I also attended lectures in advanced probability theory from Dr Perla Sousi
and Dr Alan Sola whose course notes I often review. Lastly, I also have referenced the
previous iteration of this course taught by Dr Michael Kouritzin here at the University
of Alberta. I hope you will find these notes as useful to your own understanding of the
subject as I have found the notes written by others for my own understanding.

Adam B Kashlak
Edmonton, Canada

January 2022
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Chapter 1

Measure Theory

Introduction

We innately understand the concept of a measure in the context of lengths, areas, and
volumes. In a mathematical context, a measure assigns a non-negative value to a set.
For example, on the plane R2, we can consider the area of a subset A ⊂ R2. In this
case, A needs to be measureable, which we will make more precise below. If A is a
rectangle, then we can say its area is the length times the width. If A is a union of
disjoint rectangles, we can sum the area of each individual rectangle to get the total
area of A.

On the real line R, we can similarly say that the measure of an interval is the length
of that interval. Hence, the measure of [a, b] for −∞ < a < b <∞ is just b−a. However,
given a probability distribution function Φ(x) = P (X < x) on the real line, we can also
define a measure of [a, b] to be Φ(b) − Φ(a). In this case, the measure will always take
a value between 0 and 1. This is an example of a probability measure on R.

Notation

The set R denotes the real numbers and Rp is the space of p-dimensional real valued
vectors. Also, Z is the set of integers, Q is the set of rational numbers, and C is the
set of complex numbers. ∅ is the empty set or null set. Typically, Ω will be the space
we are working in—e.g. R or Rp. For a set A = {x ∈ Ω : x ∈ A}, the complement
Ac = {x ∈ Ω : x /∈ A}. A collection of sets {Ai}∞i=1 is said to be pairwise disjoint if
Ai ∩Aj = ∅ for all i 6= j.

1.1 Measures and σ-fields

Formally, we need to define what a measure is and what sets can be measured.

Definition 1.1.1 (σ-field). For some set Ω, a σ-field F is a collection of sets A ⊆ Ω
such that

1. ∅,Ω ∈ F
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2. if A ∈ F then Ac ∈ F

3. for a countable collection of sets {Ai}∞i=1 such that Ai ∈ F for i = 1, . . . ,∞,⋃∞
i=1Ai ∈ F .

Note that this definition implies that a σ-field also contains countable intersections
of sets. Indeed, if {Ai}∞i=1 ∈ F then( ∞⋂

i=1

Ai

)c
=

∞⋃
i=1

Aci ⇒
∞⋂
i=1

Ai ∈ F .

This follows from De Morgan’s laws.

Definition 1.1.2 (Measure). For a measure space (Ω,F), a measure µ : F → R+ such
that

1. µ(∅) = 0

2. µ is countably additive—i.e. for any pairwise disjoint countable collection of sets
{Ai}∞i=1, then

µ

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai).

Definition 1.1.3. There are a few special cases of measures µ that will be of interest.
For a measure space (Ω,F , µ), we say that

• µ is a probability measure if µ(Ω) = 1.

• µ is a finite measure if µ(Ω) <∞.

• µ is a σ-finte measure if Ω =
⋃∞
i=1Ai such that µ(Ai) <∞ for all i.

Note that if µ is a probability measure, then we say that (Ω,F , µ) is a probability space.
In this case, the measure is often written as P instead of µ.

The next question is how to construct a measure space (Ω,F , µ) to work with. Given
a set Ω, we can define the power set P(Ω) to be the set of all subsets of Ω. Hence, F ⊂ P
for any σ-field on Ω. Typically, P(Ω) is much to large to work with. A notable example
is the finite space with counting measure.

Example 1.1.4 (Counting Measure). Let Ω = {1, . . . , n}, then the power set P(Ω),
sometimes denoted as 2Ω, contains all 2n subsets of {1, . . . , n}. The counting measure
µ counts the number of elements in a set A ∈ P(Ω). If we normalize this measure, then
we can think of it as a uniform distribution on the integers from 1 to n. For example,

• µ({1, 3, 7}) = 3

• 1
nµ({1, 3, 7}) = 3

n

Instead of just assigning a weight of 1/n to each integer, we could, for example,
assign a binomial probability

(
n
i

)
pi(1 − p)i for some p ∈ (0, 1). The same can be done

with the Poission probabilities, e−λλi/i! for some λ > 0, and taking n→∞.
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1.2 Constructing σ-fields and measures

Consider starting with Ω = R and I the set of all open intervals of the form (a, b) with
−∞ < a < b <∞. Then, the length of the interval can be its measure. More formally,
we define λ((b − a)) = b − a. This λ will be the famous Lebesgue measure. However,
the set I is not a σ-field as (a, b)∪ (c, d) /∈ I for any −∞ < a < b < c < d <∞. Hence,
starting from I (or really any set of subsets of Ω), how do we construct a sensible σ-field
F to work with? Furthermore, how do we extend a measure on I to a measure on F?
Lastly, is such an extension unique?

Let Ω be some set and A a set of subsets of Ω not a σ-field. Then, we can consider
the smallest σ-field that contains A defined as

σ(A) := {B ⊆ Ω : B ∈ F , ∀F such that A ⊂ F} .

Furthermore, let µ be a measure on A. Then, we want to show (1) that µ can be
extended to a measure on σ(A) and (2) that this extension is unique.

To make sure that σ(A) is actually interesting, we will consider sets of sets A that
are semirings, rings, or fields.

Definition 1.2.1 (Semiring). A collection of sets A of Ω is a semiring if ∅ ∈ A and
for all A,B ∈ A then A ∩B ∈ A and B \A =

⋃n
i=1Ci where Ci ∈ A for i = 1, . . . , n.

Definition 1.2.2 (Ring). A collection of sets A of Ω is a ring if ∅ ∈ A and for all
A,B ∈ A both B \A ∈ A and A ∪B ∈ A.

Definition 1.2.3 (Field). A ring A is a field if Ω ∈ A.

Note that fields and σ-fields are sometimes referred to as algebras and σ-algebras, re-
spectively. For more on why semirings are a thing, see [Dudley(2002)], section 3.2.

Definition 1.2.4 (Set Functions). For a general set function µ : A → R+ (i.e. not
necessarilly a measure) and A,B ∈ A, we say that

• µ is increasing if for A ⊂ B, µ(A) ≤ µ(B).

• µ is additive if for A,B disjoint, µ(A ∪B) = µ(A) + µ(B).

• µ is countably additive if for {Ai}∞i=1 pairwise disjoint with
⋃∞
i=1Ai ∈ A, µ(

⋃∞
i=1Ai) =∑∞

i=1 µ(Ai).

• µ is countably subadditive if for {Ai}∞i=1 with
⋃∞
i=1Ai ∈ A, µ(

⋃∞
i=1Ai) ≤

∑∞
i=1 µ(Ai).

Note that such a set function µ is sometimes referred to as a pre-measure when it is
countably additive and µ(∅) = 0.
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1.2.1 Existence

In this subsection, we prove what is typically referred to as the Carathéodory Extension
Theorem. A similar proof can be found in [Billingsley(2008)] Chapter 1 Section 3 but
is restricted to probability measures.

First, we define the outer measure for µ and A to be

µ∗(E) = inf
∑
i

µ(Ai), for any E ⊂ Ω

where the infimum is over all finite and countably infinite collections {Ai} such that
E ⊆

⋃
iAi. Furthermore, let M be the set of all µ∗-measureable sets where a set B is

said to be µ∗-measureable if

µ∗(E ∩B) + µ∗(E ∩Bc) = µ∗(E)

for all E ⊆ Ω. Our aim is to show that µ∗ is the correct way to extend µ from A to
σ(A). We also want to show that M is a σ-field and that it contains σ(A).

Theorem 1.2.1 (Carathéodory Extension Theorem). Let A be a ring on Ω and µ be a
pre-measure. Then, µ extends to a measure on σ(A).

Proof. This proof will proceed in multiple steps. We assume that the B ⊆ Ω below have
finite measure µ∗(B) <∞. Otherwise, the results can still be shown to trivially hold.

(1) We first prove a few properties of µ∗.

1. µ∗(∅) = 0, which follows from µ being a pre-measure.

2. µ∗ is non-negative for all B ⊂ Ω, which follows from the non-negativity of µ.

3. µ∗ is monotone. Let B1, B2 ∈ A and B1 ⊂ B2, then for any {Ai} such that
B2 ⊆

⋃
iAi, B1 ⊆

⋃
iAi. Therefore µ∗(B1) ≤ µ∗(B2).

4. µ∗ is countably subadditive. For {Bi}∞i=1 and a given ε > 0, let Bi ⊆
⋃
j Aij for

Aij ∈ A such that
∑

j µ(Aij) ≤ µ∗(Bi) + ε2−i. As
⋃∞
i=1Bi ⊆

⋃
i,j Aij and µ∗ is

monotone and µ is subadditive,

µ∗

( ∞⋃
i=1

Bi

)
≤ µ

⋃
i,j

Aij

 ≤∑
i,j

µ(Aij) ≤
∑
i,j

µ∗(Bij) + ε.

As ε > 0 is arbitrary, this implies µ∗ is countably subadditive.

(2) Check that µ and µ∗ coincide on A. For any A ∈ A, we immediately have
that µ∗(A) ≤ µ(A) since A ⊆ A. For the reverse, if A ⊂

⋃
iAi, then by countable

subadditivity and monotonicity µ(A) ≤
∑

i µ(A∩Ai) ≤
∑

i µ(Ai). Thus, µ(A) ≤ µ∗(A)
and finally µ(A) = µ∗(A).
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(3) Check that A ⊂ M—i.e. for any A ∈ A, we need to show that A is µ∗-
measureable. Hence, for any A ∈ A and all E ⊆ Ω, we want

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac).

As µ∗(E ∩ A) + µ∗(E ∩ Ac) ≥ µ∗(E) by subadditivity, it suffices to show that µ∗(E ∩
A) + µ∗(E ∩ Ac) ≤ µ∗(E). For some ε > 0, choose {Ai} such that E ⊆

⋃
iAi and∑

i µ(Ai) ≤ µ∗(E) + ε. Furthermore,

E ∩A ⊆
⋃
i(A ∩Ai)

E ∩Ac ⊆
⋃
i(A

c ∩Ai).

Thus,

µ∗(E ∩A) + µ∗(E ∩Ac) ≤∑
i

µ(A ∩Ai) +
∑
i

µ(Ac ∩Ai) =
∑
i

µ(Ai) ≤ µ∗(E) + ε,

which shows that A ⊂M since ε was arbitrary.
(4) Show that M is a σ-field. We first check that M is a field. ∅ ∈ M as ∅ ∈ A.

For Ω and any E ⊆ Ω,
µ∗(E ∩ Ω) + µ∗(E ∩ ∅) = µ∗(E)

and hence Ω ∈M. Next, since A∩B = (Ac∪Bc)c, we will show thatM is closed under
intersections. For B1, B2 ∈M and any E ⊂ Ω,

µ∗(E) = µ∗(B1 ∩ E) + µ∗(Bc
1 ∩ E)

= µ∗(B2 ∩B1 ∩ E) + µ∗(B2 ∩Bc
1 ∩ E)+

µ∗(B2 ∩c B1 ∩ E) + µ∗(Bc
2 ∩Bc

1 ∩ E)

≥ µ∗(B2 ∩B1 ∩ E)+

µ∗ ({B2 ∩Bc
1 ∩ E} ∪ {B2 ∩c B1 ∩ E} ∪ {Bc

2 ∩Bc
1 ∩ E})

= µ∗({B2 ∩B1} ∩ E) + µ∗({B2 ∩B1}c ∩ E)

≥ µ∗(E).

Hence, the B2 ∩ B1 ∈ M. Lastly, since B \ A = B ∩ Ac, we need to show M is closed
under complementation, which trivially follows from the definition as for any B ∈M,

µ∗(E ∩Bc) + µ∗(E ∩ (Bc)c) = µ∗(E).

To extend from a field to a σ-field, we need to show that for a countable pairwise
disjoint collection {Bi} in M, that

⋃
iBi ∈ M.1 Let B =

⋃∞
i=1Bi. Proceeding, once

1It suffices to consider pairwise disjoint sets as countable unions of arbitrary sets
⋃
iAi =

⋃
iBi

where Bi = Ai \ (
⋃i
j=1Bj) are pairwise disjoint.
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again, from the definition,

µ∗(E) = µ∗(E ∩B1) + µ∗(E ∩Bc
1)

= µ∗(E ∩B1) + µ∗(E ∩B2) + µ∗(E ∩Bc
1 ∩Bc

2)

=

n∑
i=1

µ∗(E ∩Bi) + µ∗ (E ∩ {
⋂n
i=1B

c
i }) .

By monotonicity, subadditivity, and taking n→∞, we get

µ∗(E) ≥
∞∑
i=1

µ∗(E ∩Bi) + µ∗(E ∩Bc) ≥ µ∗(E ∩B) + µ∗(E ∩Bc) ≥ µ∗(E).

Thus, M is closed under countable unions. Finally, choosing E = B above, we have

µ∗(E) =

∞∑
i=1

µ∗(E ∩Bi)

and thus µ∗ is countably additive.
(5) The Conclusion. What we have from all of the above is that µ∗ is a set function

on the power set P(Ω), but it is also a measure in M ⊂ P(Ω). Furthermore, since
A ⊂ M and M is a σ-field, we have that σ(A) ⊆ M. Lastly, since µ∗ is a measure on
M it is also a measure on any sub-σ-field. Hence, it is a measure on σ(A).

Example 1.2.5 (Lebesgue Measure). We can construct Lebesgue measure on the half-
open unit interval (0, 1] by considering I to be the set of all finite disjoint unions of half
open intervals of the form (a, b] for 0 ≤ a < b ≤ 1 along with the empty set ∅ for length 0
intervals. That is, A ∈ I is of the form A =

⋃n
j=1 Ij where {Ij}nj=1 are pairwise disjoint

half-open intervals. Then, λ(A) =
∑n

j=1 λ(Ij) is a set function where λ(Ij) is just the
length of the interval Ij.

We can check that I is, in fact, a ring and that λ is a pre-measure. Thus, the
Carathéodory extension theorem tells us that λ can be extended to a σ-field. In this
case, we have

I ⊂ σ(I) ⊂M ⊂ P((0, 1]).

The σ-field σ(I) is the Borel σ-field and is often written as B. The set M contains all
Lebesgue measurable subsets of the unit interval, and it is strictly larger than B. Also,
the power set P((0, 1]) contains subsets of (0, 1] that are not Lebesgue measurable. It’s
very non-trivial to construct sets that fall into these categories, but this leads to some
very interesting excursions.

1.2.2 Uniqueness

Given such an extension as above, we wish to know whether or not it is unique. That
is, if µ1 and µ2 are measures on σ(A) and if µ1(A) = µ2(A) for any A ∈ A, then is it
also true that µ1(B) = µ2(B) for any B ∈ σ(A)? Answer this question, we require two
more definitions.
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Definition 1.2.6 (π-system). A collection of subsets A is called a π-system if ∅ ∈ A
and for A,B ∈ A, then A ∩B ∈ A.

Definition 1.2.7 (λ-system). A collection of subsets L is called a λ-system if Ω ∈ L
and

• for A,B ∈ L with A ⊂ B, then B \A ∈ L.

• for {Ai}∞i=1 pairwise disjoint, then
⋃∞
i=1Ai ∈ L.

Hence, a λ-system is very similar to a σ-field except it is only closed under countable
disjoint unions. Note that if A is a field, then it is a π-system. The theorem we want
to prove is as follows.

Theorem 1.2.2 (Uniqueness of Extension). Let µ1 and µ2 be σ-finite measures on σ(A)
where A is a π-system. Then if µ1(A) and µ2(A) agree for all A ∈ A, then µ1 and µ2

agree on σ(A).2

To prove this theorem, we will make use of the Dynkin π-λ Theorem and the fact
that if F is both a π-system and a λ-system, then it is a σ-field.3

Theorem 1.2.3 (Dynkin π-λ Theorem). Let A be a π-system, L be a λ-system, and
A ⊂ L. Then, σ(A) ⊂ L.

Proof. Let L0 be the smallest λ-system such that A ⊂ L0. Then, we have that L0 ⊆ L.
We aim to show that L0 is also a π-system and hence also a σ-field so that necessarilly
σ(A) ⊂ L0. Thus, we need L0 to be closed under intersections.

Let L′ = {B ∈ L0 : B ∩ A ∈ L0 ∀A ∈ A}. Then, A ∈ L′ as A is a π-system. We
will show that L′ is also a λ-system. Indeed, Ω ∈ L′ as A ⊂ L0 and

• if B1, B2 ∈ L′ such that B1 ⊂ B2, then we have for any A ∈ A that B1∩A,B2∩A ∈
L0. Thus, (B2 ∩A) \ (B1 ∩A) = (B2 \B1) ∩A ∈ L0. Thus, B2 \B1 ∈ L′.

• if {Bi}∞i=1 ∈ L′ are pairwise disjoint, then for all i and A ∈ A, A ∩ Bi ∈ L0 thus⋃∞
i=1(A ∩Bi) = A ∩ (

⋃∞
i=1Bi) ∈ L0. Hence,

⋃∞
i=1Bi ∈ L′.

By definition L′ ⊂ L0, but as L0 is minimal the reverse is true, and thus L′ = L0.
Hence, L0 contains all intersections with sets in A.

Next, let L′′ = {B ∈ L0 : B∩C ∈ L0 ∀C ∈ L0}. Thus, L0 = L′ implies that A ⊂ L′′.
Using the same arguements as for L′, it can be shown that L′′ is a λ-system and thus
L′′ = L0. This implies that L0 is closed under intersections and hence a π-system and
hence a σ-field and hence contains σ(A).

Proof of Theorem 1.2.2 for finite measures. (This is the easier proof for finite measures)
If we additionally assume that µ1(Ω) = µ2(Ω) <∞ (i.e. µ1, µ2 are finite measures),

then the proof is much simpler. This condition is immediately true for probability
measures, which is the main focus of this course.

2By agree, we mean µ1(A) = µ2(A) if finite and µ1(A)∞↔ µ2(A) =∞.
3Exercise: Show that this fact is true, or see Lemma 6 in Section 3 of [Billingsley(2008)].
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Let L = {B ⊂ Ω : µ1(B) = µ2(B)}. We will show that L is a λ-system and
then apply Theorem 1.2.3 to prove this theorem. By assumption, Ω ∈ L. Secondly, if
A,B ∈ L with A ⊂ B, then

µ1(B \A) + µ1(A) = µ1(B) = µ2(B) = µ2(B \A) + µ2(A) <∞.

Hence, B \A ∈ L. Lastly, for {Ai}∞i=1 pairwise disjoint with Ai ∈ L,

µ1

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ1(Ai) =

∞∑
i=1

µ2(Ai) = µ2

( ∞⋃
i=1

Ai

)
<∞.

Hence,
⋃∞
i=1Ai ∈ L. Thus, L is a λ-system and contains A. Hence, L contains σ(A).

Thus, µ1 and µ2 agree on σ(A).

Proof of Theorem 1.2.2 for σ-finite measures. (This is the more general proof)
For any A in A such that µ1(A) = µ2(A) < ∞, we define LA to be the collection

of sets B ⊆ Ω such that µ1(A ∩ B) = µ2(A ∩ B). By a similar argument as above,4 we
have that LA is a λ-system and hence σ(A) ⊂ LA by Theorem 1.2.3.

By σ-finiteness, we can decompose Ω =
⋃∞
i=1Ai where Ai ∈ A and µ1(Ai) =

µ2(Ai) <∞ for all i. Thus, for any B ∈ σ(A) and any n, we can similarly write

µ1

(
n⋃
i=1

(B ∩Ai)

)
=

n∑
i=1

µ1 (B ∩Ai)−
∑
i<j

µ1 (B ∩Ai ∩Aj) + . . .

by the inclusion-exclusion formula. This same formula holds for µ2. Furthermore,
as A is a π-system, we have that Ai ∩ Aj ∈ A and further intersections. Thus, the
µ1 (

⋃n
i=1(B ∩Ai)) = µ2 (

⋃n
i=1(B ∩Ai)) for any finite n. Letting n → ∞ shows that

µ1(B) = µ2(B) concluding the proof.

Remark 1.2.8 (Probability Spaces and π-systems). Condition (1) for Theorem 1.2.2
tells us that we can extend π-systems to σ-algebras. In the context of probability, a π-
system tells us that if we have two events, then we can also consider the joint event. For
example, when rolling two fair dice, D1 and D2, we can note that P (D1 +D2 = 8) =
5/36 and that P (D1 = 0 mod 2) = 1/2. Thus, we can consider the probability of the
intersection of both events P ({D1 +D2 = 8} ∩ {D1 = 0 mod 2}) = 1/12.

Remark 1.2.9 (σ-finiteness). Without σ-finiteness in Condition (2) for Theorem 1.2.2,
uniqueness can fail. One example of this is to take Ω = (0, 1], A to be all finite unions
of half open intervals (a, b], and µ the set function that assigns 0 to the emptyset and
∞ to any non-empty element of A. In this case, µ∗ simply assigns ∞ to any subset of
Ω that is non-empty. However, the counting measure also assigns 0 to ∅ and ∞ to any
element of A. However, it assigns finite values to finte sets like {0.25, 0.5, 0.75} and
hence does not coincide with the outer measure µ∗.

4Exercise: Check the conditions to verify this.
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1.2.3 Completeness

In this section, we want to complete a measure. That is, if some arbitrary set E only
differs from a measureable set A on a set of measure zero, then we wish to assign the
same measure to both sets. However, our σ-field may not contain all sets that should
be measure zero. This is made more precise below.5

Definition 1.2.10 (Symmetric Difference). For two sets A,B, the symmetric difference
is A∆B = (A \B) ∩ (B \A).

For a measure space (X,F , µ) with F ⊂ P(X), we can define the outer measure µ∗

on P(X) as above:

µ∗(B) = inf{µ(A) : B ⊂ A} for any B ∈ P(X).

Then, we can define the set of µ-null sets to be Nµ ⊂ P(X) where N = {N ⊂ X :
µ∗(N) = 0}. A measure space (X,F , µ) is complete if N ⊂ F . Also, Nµ is a ring.6

The completion of σ-field F with respect to µ is F∨Nµ = {A∪N : A ∈ F , N ∈ N}.
In [Dudley(2002)], Proposition 3.3.2, it is proven that this completion is equal to {B ⊆
X : ∃A ∈ F s.t. A∆B ∈ Nµ} and that this set is the smallest σ-field that contains
both F and Nµ. Thus, we can define the completed measure space to be (X,F ∨Nµ, µ̄)
where µ̄(A ∪N) = µ(A) for A ∈ F and N ∈ Nµ.

1.3 Lebesgue Measure

Theorems 1.2.1 and 1.2.2 allow us to construct Lebesgue measure, which is a central
tool of measure theory. As noted before, a standard way to construct Lebesgue measure
on (0, 1] or on R is to begin with the set of finite unions of half-open intervals (a, b].7

Both cases are of interest as the Lebesgue measure on the unit interval coresponds to
the uniform distribution and Lebesgue on R is necessary for defining probability density
functions.

The standard notation for Lebesgue measure is λ. Often, this is used for both the
premeasure assigning lengths to unions of intervals from A and the outer measure on
the Borel σ-field B. We will also denote Mλ to be the set of all Lebesgue measureable
sets. It’s worth noting that B ⊂Mλ. In fact, Mλ is the completion of B with Nλ.

It is also of interest that λ((a, b]) = b− a and that λ is the only such measure with
this property. Indeed, by Theorem 1.2.2 and the fact that the set of half open intervals
A = {(a, b] : a < b} form a π-system, any σ-finite measure µ such that µ((a, b]) = b− a
must coincide with Lebesgue measure on σ(A) being the Borel σ-field B.

5See [Dudley(2002)], section 3.3 for more details on completion of measures.
6Exercise: Try to show this.
7In [Dudley(2002)] Section 3.2, he considers just half-open intervals, which form a semiring.
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1.3.1 Non-Measureable Sets

A classic example of a subset of the unit interval that is not Lebesgue measureable is
the Vitali set8 For x, y ∈ (0, 1], we define addition modulo 1 so that

x+ y =

{
x+ y if x+ y ≤ 1
x+ y − 1 if x+ y > 1

,

which can be thought of as wrapping the unit interval into a circle. The set L of
Lebesgue measureable subsets of (0, 1] such that λ(A+ x) = λ(A) is a λ-system9 where
A + x = {y ∈ (0, 1] : y − x ∈ A}. As A ⊂ L, then σ(A) = B ⊂ L due to Dykin’s π-λ
Theorem. Thus, Lebesgue measure is translation invariant for any Borel set.

Next, we say that x ∼ y if x− y ∈ Q. Hence, we can decompose (0, 1] into disjoint
equivalence classes. Let the set H ⊂ (0, 1] contain one point from each of these equiva-
lence classes.10 Let r1, r2 ∈ Q. Since no two points in H are equivalent, H+r1 = H+r2

is only true if r1 = r2. Thus, we can write (0, 1] =
⋃
r∈Q(H + r), which is a countable

disjoint union.
Finally, by countable additivity, 1 = λ((0, 1]) =

∑
r∈Q λ(H + r). However, this leads

to a contradiction as if λ(H) = 0, then the above equation becomes 0 = 1. Otherwise,
if λ(H) > 0, then the above becomes 1 = ∞. Hence, the set H lies in P((0, 1]) but is
not Lebesgue measureable.

Remark 1.3.1 (Fun Fact!). Lebesgue measure on R is characterized by being trans-
lation invariant. This can be extended into Rn. However, there is no analogue of
Lebesgue measure in infinite dimensions. Indeed, it can be proven that the only lo-
cally finite and translation-invariant Borel measure µ on Ω is the trivial measure,
with µ(A) = 0 for every measurable set A. See https: // en. wikipedia. org/ wiki/

Infinite-dimensional_ Lebesgue_ measure .

1.4 Product Measure, Briefly

Now that we have Lebesgue measure λ on R, it is natural to extend it to Rp. The easiest
way to attempt this is to consider rectangles. That is, For half-open intervals (a, b] and
(c, d] on R, we can consider the rectangle A = (a, b] × (c, d] whose measure (i.e. area)
is simply λ(2)(A) = λ((a, b])λ((c, d]) = (b − a)(d − c). This can be extended to higher
dimensional Euclidean space by defining

λ(k) ((a1, b1]× . . .× (ap, bp]) =

p∏
i=1

λ((ai, bi]) =

p∏
i=1

(bi − ai).

8 https://en.wikipedia.org/wiki/Vitali_set
9Exercise: Check this claim.

10 Constructing H relies on the Axiom of Choice. That is, if we have a decomposition of {Aθ : θ ∈ Θ}.
of some set Ω, then there exists a set C that contains one point from each Aθ. The AoC is typically
assumed true in the standard approach to measure theory.
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As the set of rectangles in Rp form a π-system, we can argue as before to construct
Lebsegue measure on Rp. Similar to λ on R, p-dimensional Lebesgue measure is the
only translation invariant measure on Rp—i.e. λ(k)(A + x) = λ(k)(A) for some x ∈ Rp
where A+ x = {y ∈ Rp : y = a+ x for some a ∈ A}.

Ultimately, we will want to show more generally that for two measure spaces (X,X , µ)
and (Y,Y, ν) that we can rigorously define the product space (X× Y,X × Y, π) where
the measure π is uniquely defined by π(A×B) = µ(A)ν(B) for A ∈ X and B ∈ Y. This
will be explored in more detail in the next chapter.

It is proven in [Dudley(2002)] Proposition 4.1.7. that the product of two Borel σ-
fields B(X)×B(Y) is contained within the Borel σ-field on the product space B(X×Y).
Furthermore, in most nice settings11 like when X = Y = R, there two σ-fields coincide.

1.5 Independence

For random variables and statistics problems, we have an intuitive understanding of
the concept of independence. In some sense, probabilistic measure theory is classical
measure theory with the concept of independence inserted into the σ-fields. This will be
revisited once we consider random variables, but for now, we work with the probability
space (Ω,F , µ).

Definition 1.5.1 (Independence for Sets). For a countable collection of sets Ai, i ∈ I,
we say that the collection is independent if for all finite subsets J ⊂ I, we have

µ

⋂
j∈J

Aj

 =
∏
j∈J

µ(Aj).

This coincides with the idea that sets Ai are events that may occur with some prob-
ability. For example, consider drawing a single card from a standard deck of 52 cards.
Then, let A1 = {card is red}, A2 = {card is a heart or club}, A3 = {card is a Queen}.
This gives the following probablities:

µ(A1) = 1/2 µ(A1 ∩A2) = 1/4

µ(A2) = 1/2 µ(A1 ∩A3) = 1/26

µ(A3) = 1/13 µ(A2 ∩A3) = 1/26

µ(A1 ∩A2 ∩A3) = 1/52

Definition 1.5.2 (Independence for σ-fields). For a countable collection of σ-fields
Fi ⊂ F , i ∈ I, we say that this collection of σ-fields is independent if any set of sets
{Ai ∈ Fi : i ∈ I} is independent in the sense of the previous definition.

We can use the notion of a π-system to construct such independent σ-fields

11that is, when (X,X ) and (Y,Y) are second countable. This includes all seperable metric spaces. See
https://en.wikipedia.org/wiki/Second-countable_space
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Theorem 1.5.1. Let A1,A2 ⊂ F be π-systems. If µ(A1 ∩ A2) = µ(A1)µ(A2) for any
A1 ∈ A1 and A2 ∈ A2, then σ(A1) and σ(A2) are independent.

Proof. For a fixed A1 ∈ A1, we can define two measures for B ∈ F as

ν1(B) = µ(A1 ∩B) and ν2(B) = µ(A1)µ(B).

By assumption, ν1(A2) = ν2(A2) for any A2 ∈ A2. Hence, by Theorem 1.2.2, they
must coincide on σ(A2). Therefore, µ(A1 ∩ B2) = µ(A1)µ(B2) for a fixed A1 and any
B2 ∈ σ(A2).

This argument can be repeated by fixing an element B2 ∈ σ(A2) to get that µ(B1 ∩
B2) = µ(B1)µ(B2) for Bi ∈ σ(Ai).
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Chapter 2

Functions, Random Variables,
and Integration

Introduction

2.1 Simple Functions and Random Variables

We briefly introduce the concept of a simple random variable to set the stage for more
general measurable functions. In these notes, we will use P to denote our probability
measure rather than µ for more general measures (albeit usually σ-finite).

For a probability space (Ω,F , P ), we can define a simple random variable X : Ω→ R
as a real valued function that only takes on a finite number of values x1, . . . , xp and such
that the set

{ω ∈ Ω : X(ω) = xi} ∈ F .

One way to write such a function is to finitely partition Ω into disjoint sets {Ai}pi=1—i.e.⋃p
i=1Ai = Ω and Ai ∩Aj = ∅—and write

X(ω) =
∑p

i=1 xi1[ω ∈ Ai] .

Then the probability that X = xi can be equivalently written as

P (X = xi) = P ({ω : X(ω) = xi}) = P (Ai) .

Furthermore, this allows us to define the expectation of the simple random variable X
to be

EX =
∑p

i=1 xiP (X = xi) .

Example 2.1.1 (Binary Steps). Let Ω = (0, 1] and A1 = (0, 0.25], A2 = (0.25, 0.5], A3 =
(0.5, 0.75], A4 = (0.75, 1] and xi = (i−1)/4. Then, for the probability space ((0, 1],B, λ),
λ(Ai) = 0.25 for any i = 1, 2, 3, 4. Thus, the simple random variable X(4) as above
takes on the values of 0, 0.25, 0.5, 0.75 each with probability 25%. The expectation is
EX(4) = (0.25 + 0.5 + 0.75)/4 = 0.375.
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If we take the number of partitions from 4 to infinity, this simple random variable
X(2m) converges to the Uniform distribution. The method of convergence will be dis-
cussed in a later section.

These same ideas can be modified to get a simple function from (Ω,F , µ) to R defined
as f(ω) =

∑p
i=1 xi1[ω ∈ Bi] for Bi ∈ F . Then, we write the integral of f to be∫

fdµ :=

p∑
i=1

xiµ(Bi).

The sets Bi need not be disjoint, but given a simple function, we can define it in terms
of disjoint Bi.

Exercise: Let f, g : Ω → R be simple functions. Check that f + g, fg, max{f, g},
and min{f, g} are all simple functions.

Exercise: Check that the integral defined above is linear for non-negative functions—
i.e. for simple non-negative functions f, g : Ω→ R+ and scalar c > 0, show that∫

(f + g)dµ =

∫
fdµ+

∫
gdµ and

∫
cfdµ = c

∫
fdµ.

2.2 Measurable Functions and Random Variables

To extend the above idea of a simple random variable, we want to replace the finite xi
with any Borel set B ⊂ R. However, we can also consider general functions mapping
from one measure space to another.

We begin with two measurable spaces1 (X,X ) and (Y,Y). Let f be a function that
maps from X to Y, then we can consider f applied to sets. For A ⊂ X and B ⊂ Y,

f(A) = {y ∈ Y : y = f(x) for some x ∈ A}
f−1(B) = {x ∈ X : y = f(x) for some y ∈ B}.

This allows us to define what it means to be a measurable function.

Definition 2.2.1 (Measurable Function). A function f : X→ Y is said to be measurable
(with repect to X/Y, that is) if f−1(B) ∈ X for any B ∈ Y.

Typically, the σ-fields of interest are the Borel σ-fields and it is sometimes writen
(X,B(X)) when we have a topological space.2 Moreover, the space (Y,Y) is typically
taken to be (R,B(R)) or (R+,B(R+)). In this case, we say that f is Borel measurable. If
we replace B(R) withMλ(R), the set of Lebesgue measurable subsets of R, then we say
f is Lebesgue measurable. The set of Lebesgue measurable functions gives us a much
larger collection of function to define integrals.

Measurablity is a property of functions that is preserved under a variety of operations
and transformations. Here are some useful facts that can be verified:

1Note that measurable spaces do not have a measure specified otherwise they would be measure
spaces. See https://en.wikipedia.org/wiki/Measurable_space

2That is, when we can define the set of open sets to sigma-fy into the Borel sets.
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1. Inverse images of set functions preserve set operations. That is, for f : X → Y
and A,Ai ⊂ Y,

f−1(
⋃
iAi) =

⋃
i f
−1(Ai) and f−1(Y \A) = X \ f−1(A).

For a measurable set function f , this implies that {f−1(B) : B ∈ Y} is a σ-field
and is contained in X . Hence, we want Y to be no larger than X to have measurable
functions. Furthermore, this can be used to show that the measurability of f can
be established by looking only at a collection of sets A ⊂ Y that generate Y. For
example, letting A be the set of all half-lines At = (−∞, t] for t ∈ R will generate
B(R). Thus, f is measurable as long as the sets {x : f(x) ≤ t} are measurable.

2. For any A ∈ X , the indicator functions f(x) = 1[x ∈ A] are measurable. The
σ-field generated by f−1 is simply {∅, A,Ac,X} ⊂ X .

3. For measurable functions f, g : X→ R, the functions f+g and fg are measurable.
This follows from [Dudley(2002)] Proposition 4.1.7. as mentioned in the earlier
discussion on product measures.

4. For measurable functions, {fi}∞i=1 from X to R, the following are also measurable:
supi fi, infi fi, lim supi fi, lim infi fi, and also limi fi if it exists for all x.

Proof Sketch. In set notation, {x : supi fi(x) ≤ t} =
⋂
i{x : fi(x) ≤ t} where the

righthand side is a countable intersection of measurable sets and hence measurable.
Similarly, {x : infi fi(x) ≤ t} =

⋃
i{x : fi(x) ≤ t} and lim supi fi = infi supj≥i fi

and lim infi fi = supi infj≥i fi. If the limit exists then it coincides with the limsup
and liminf.

5. Let f : X→ R be a continuous function, then it is measurable.

Proof. If U is an open set in R, then f−1(U) is open in X.3 Thus, the set f−1(U) is
measurable. Since the open sets of R generate B, the function f is measurable.

6. Given a collection of functions fi : X → Y, we can make them measurable by
constructing the measurable space (X,X ) where σ({fi}i∈I) ⊆ X where σ({fi}i∈I)
is the σ-field generated by the sets f−1

i (B) for all i and B ∈ Y.

All of the above is valid for measurable random variables, which are merely measur-
able functions from Ω to R or otherwise.

Definition 2.2.2 (Almost Everywhere / Almost Surely). Let (Ω,F , µ) be a measure
space. For two functions f, g : Ω→ R, we say that f = g a.e. (almost everywhere) when
the set N = {ω : f(ω) 6= g(ω)} has measure µ(N) = 0. In probability theory, “almost
everywhere” is replaced with “almost surely” abbreviated a.s. and it is equivalently is
written “with probability 1” or wp1.

3This is the definition of a continous function between two topological spaces.

16



Example 2.2.3 (Equal Almost Everywhere). Let ([0, 1],B, λ) be the standard measure
space of Borel sets on the unit interval with Lebesgue measure. A classical example of
being equal almost everywhere is f(t) = 0 for all t ∈ [0, 1] and g(t) = 0 on [0, 1] \Q and
g(t) = 1 on [0, 1] ∩Q where Q is the set of rational numbers.

This is because λ(Q) = 0. This fact can be proven4 by beginning with {qm}∞m=1

the enumerated set of rational numbers. Try surrounding each qm with an interval
(qm − ε2−m−1, qm + ε2−m−1).

2.3 Integration

We have already seen that simple functions can be integrated. Now, we want to extend
this idea to any measurable function. The following theorem allows us to work theoreti-
cally with simple functions on a π-sysmtem and then pass to all measurable functions in
the limit. In what follows we will consider measurable functions mapping from (Ω,F)
to [−∞,∞], which is called the extended real line. This allows us to handle sets such
as f−1(∞), for example.

We also require some new notation. For a sequence of functions fi that are increasing
and converge to f for every ω, we write fi ↑ f . This implies that fi(ω)→ f(ω) and that
fi(ω) ≤ fi+1(ω) for all ω.

Theorem 2.3.1. Let (Ω,F) be a measurable space and A a π-system that generates F .
Let V a the linear space of functions such that V contains

1. all indicators 1Ω and 1A for each A ∈ A

2. all functions f such that there exists a sequence fi ∈ V such that fi ↑ f .

Then, V contains all measurable functions.5

Proof. First, V contains 1A for each A ∈ A. Letting L = {B ∈ F : 1B ∈ V}, we can
show that L is a λ-system and hence L = F , so every indicator function 1B is in V.

For any measurable non-negative f , we can write fi = 2−ib2ifc for i ∈ N. Each fi in
a finite linear combination of indicator functions and hence fi ∈ V. Furthermore, fi ↑ f
and hence f ∈ V.

For a general measurable function f , we can write it as f = f+ − f− where f+, f−

are non-negative measurable functions.

Definition 2.3.1 (Integral of a Measurable Function). For a measurable non-negative
function f on the measure space (Ω,F , µ) and mapping into [−∞,∞], we define the
integral to be ∫

fdµ = sup

[∑
i

{
inf
ω∈Ai

f(ω)

}
µ(Ai)

]
4Exercise: Try it yourself!
5 In [Billingsley(2008)] Theorem 13.5, decreasing sequences fi ↓ f are used to handle the non-positive

functions. Very often, measure theory is developed with everything being non-negative to avoid such
annoyances.
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where the supremum is taken over all finite partitions of Ω into sets Ai.

Inside the square brackets is the integral of the simple function that assigns a value of
infω∈Ai f(ω) for the set Ai. Hence, for a non-negative f , we consider all simple functions
g such that 0 ≤ g ≤ f . To extend this to all measurable functions, we write∫

fdµ =

∫
f+dµ−

∫
f−dµ

where f = f+ − f− and f+, f− are non-negative measurable functions.

Remark 2.3.2 (Dealing with infinities). In the above definition, we may need the fol-
lowing conventions:

0×∞ = 0, c×∞ =∞
for c > 0. Thus, if f = 0 on a set A where µ(A) = ∞, then that term in the above
definition is just 0 as desired. Also, ∞−∞ is undefined. Hence,

∫
fdµ is undefined if∫

f+dµ and
∫
f−dµ are both ∞. In the case that both

∫
f+dµ and

∫
f−dµ are finite,

we say that f is integrable.

Theorem 2.3.2. Let (Ω,F , µ) be a measure space, and let f ≥ 0 be measureable, and
let fn ≥ 0 for n ∈ N be a sequence of measureable simple functions such that fn ↑ f .
Then,

∫
fndµ ↑

∫
fdµ.

Proof. Let g be any simple measureable function such that 0 ≤ g ≤ f . Since fn ↑ f and
f is integrable,

∫
fndµ ↑ c ∈ [0,∞]. We aim to show that

∫
g dµ ≤ c.

Indeed, we can write g =
∑

i∈I ai1Ai where the Ai are a disjoint partition of Ω. And
similarly, we can write fn =

∑
j∈J bj1Bj . Consequently,

fn =
∑
i∈I

fn1Ai =
∑
i,j

bj1Ai∩Bj ,

and
∫
fndµ =

∑
i∈I
∫
Ai
fndµ. Hence, we want to show that for each i ∈ I that

lim
n→∞

∫
Ai

fndµ ≥ aiµ(Ai) (2.3.1)

to conclude the proof. If ai = 0, then inequality 2.3.1 must hold. If ai > 0, we can
divide by ai. Hence, without loss of generality, we take ai = 1 and take g = 1A for
some set A. For any ε > 0, let Cn = {x ∈ A : fn(x) > 1 − ε}. Then, Cn ↑ A in
the sense that C1 ⊆ . . . ⊆ Cn ⊆ Cn+1 ⊆ . . . ⊆ A. By countable additivity, µ(Cn+1) =
µ(C1) +

∑n
m=1 µ(Cm+1 \Cm) and µ(Cn) ↑ µ(A). Since

∫
fndµ ≥ (1− ε)µ(Cn), we have

that c ≥ (1− ε)µ(A) = (1− ε)
∫
g dµ. Taking ε to zero gives c ≥

∫
g dµ. As this holds

for any simple function g, c ≥
∫
f dµ. But since

∫
fndµ ≤

∫
fdµ, we have

∫
fdµ = c,

which completes the proof.

Following from the previous discussion on almost eveywhere equality, we can prove
a similar a.e. equality for integrals. This is important, because it means that most
theorems regarding integrals only require conditions to hold almost everywhere. This
will be seen in the three theorems in the next subsection.
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Theorem 2.3.3. Let (Ω,F , µ) be a measure space, and let f, g : Ω → [−∞,∞] be
measureable and f = g a.e. Then, f is integrable if and only if g is integrable. If f and
g are integrable, then

∫
fdµ =

∫
gdµ.

Proof. Let f = g on Ω \ N where µ(N) = 0. For any measureable function h : Ω →
[−∞,∞], we can consider when

∫
Ω hdµ and

∫
Ω\N hdµ coincide. This is true when h is

an indicator function, say, h = 1A as µ(A) = µ(A \ N). Thus, the integrals are also
equal when h is a simple function. As a consequence of the previous Theorem, we can
take non-negative simple functions h to any non-negative measureable function. Lastly,
using the above definition that

∫
hdµ =

∫
h+dµ−

∫
h−dµ shows that the integrals will

coincide for any integrable measureable function.
To complete the proof, we note that∫

fdµ =

∫
Ω\N

fdµ =

∫
Ω\N

gdµ =

∫
gdµ.

This result basically tells us that we can modify functions on a set of measure zero
without breaking anything.

2.3.1 Three Important Convergence Theorems

When I first learned these results in a graduate measure theory class taught be Prof
Paul Koosis at McGill University, I recall him saying over and over again that these
are the most important results to learn. Basically every subsequent proof used these to
some extent.

In what follows, we are interested in how to handle a sequence of integrals
∫
fidµ

of measureable functions as i → ∞. Under what conditions does it converge to some∫
fdµ? From a probability perspective,

∫
Xidµ is the expectation of some random

variable Xi, so you can think of the following as theorems about convergence of the
mean of a sequence of random variables.

Theorem 2.3.4 (Monotone Convergence). Let (Ω,F , µ) be a measure space and let
{fi}∞i=1 be measurable functions from Ω to R such that fi ↑ f a.e. and

∫
f1dµ > −∞.

Then,
∫
fidµ ↑

∫
fdµ.

Proof. First, we need to check that f is measureable.6 For c ∈ R, we consider the sets
(c,∞], which generate the Borel σ-field. Since fi ↑ f , f−1((c,∞]) =

⋃∞
i=1 f

−1
i ((c,∞])

and f−1
i ((c,∞]) ∈ F , we have that f is measureable.

Now, we assume that f1 ≥ 0, and for each fi we take simple functions gij such
that gij ↑ fi. Thus, by Theorem 2.3.2,

∫
gijdµ ↑

∫
fidµ. Furthermore, let g?i =

max{g1i, . . . , gii}.7 These g?i are simple functions and g?i ↑ f . Once again, Theorem 2.3.2

6 Note that measureabiliy of f is not assumed in the theorem but implied via the convergence
condition.

7 Note that we set j = i in this expression and take the max over the first i functions.
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implies that
∫
g?i dµ ↑

∫
fdµ. But since g?i ≤ fi by construction,

∫
g?i dµ ≤

∫
fidµ ≤∫

fdµ. Thus,
∫
fidµ ↑

∫
fdµ.

Now, we assume that f ≤ 0. In this case fi ↑ f implies that −fi ↓ −f . Writing
h = −f and hi = −fi, we have that 0 ≤

∫
hdµ ≤

∫
hidµ. Next, note that 0 ≤ h1 − hi ↑

h1 − h. Applying the above result gives that
∫

(h1 − hi)dµ ↑
∫

(h1 − h)dµ. Since all of
the h have finite integrals, we are allowed to subtract to get that

∫
hidµ ↓

∫
hdµ and

thus
∫
fidµ ↑

∫
fdµ.

For a general function f = f+ − f−, we have that f+
i ↑ f+ and f−i ↓ f− and∫

f−dµ < ∞. So by the above special cases,
∫
f+
i dµ ↑

∫
f+dµ and

∫
f−i dµ ↓

∫
f−dµ

and finally
∫
fidµ ↑

∫
fdµ.

Remark 2.3.3. From Theorem 2.3.3, we only require fi ↑ f to hold almost everywhere
to establish the result. Hence convergence can fail on a set of measure (probability) zero
and we still have convergence of the integrals.

Secondly, we can redo the above proof for fi ↓ f with
∫
f1dµ < ∞ to get a similar

result for decreasing sequences.

Theorem 2.3.5 (Fatou’s Lemma). Let (Ω,F , µ) be a measure space and let {fi}∞i=1 be
non-negative measurable functions from Ω to R. Then,

∫
lim inf fidµ ≤ lim inf

∫
fidµ.

Proof. Recall that lim infi→∞ fi = supj infi≥j fi. Hence, let gj = inf{fi : i ≥ j}.
Then, gj ↑ lim infi→∞ fi and f1 ≥ 0 by assumption, so Theorem 2.3.4 says that∫
gjdµ ↑

∫
lim infi→∞ fidµ. By construction, gj ≤ fi for any i ≥ j, and thus,

∫
gjdµ ≤∫

fidµ for any i ≥ j, and subsequently,
∫
gjdµ ≤ infi≥j

∫
fidµ. Taking j → ∞, gives

limj→∞
∫
gjdµ =

∫
lim inf fidµ ≤ lim inf

∫
fidµ.

Theorem 2.3.6 (Dominated Convergence). Let (Ω,F , µ) be a measure space and let
{fi}∞i=1 and g be absolutely integrable. If |fi| ≤ g for all i and fi(ω) → f(ω) for each
ω ∈ Ω (i.e. pointwise convergence), then f is absolutely integrable and

∫
fidµ→

∫
fdµ.

Proof. Let f∧i = inf{fj : j ≥ i} and f∨i = sup{fj : j ≥ i}. Then, f∧i ≤ fi ≤ f∨i . We
have that f∧i ↑ fi and that

∫
f∧1 dµ ≥ −

∫
g dµ > −∞, so Theorem 2.3.4 implies that∫

f∧i dµ ↑
∫
fdµ.

Doing the same for f∨i , we have that f∨i ↓ f and hence that
∫
f∨i dµ ↓

∫
fdµ. Since∫

f∧i dµ ≤
∫
fidµ ≤

∫
f∨i dµ, we have the desired result that

∫
fidµ→

∫
fdµ.

2.3.2 Lebesgue-Stieltjes measure

Given two measureable spaces, (X,X ) and (Y,Y), and a measureable function ψ : X→
Y, the function ψ can induce an image measure. Let µ be a measure on X , then we
can define ν = µ ◦ ψ−1 to be a measure on Y. That is, for a set B ∈ Y, we define
ν(B) = µ(ψ−1(B)). This allows us to turn Lebesgue measure into Lebesgue-Stieltjes
measures. The most obvious application of such is the cumulative distribution function
for a probability distribution.
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Theorem 2.3.7. Let F : R→ R be non-constant, right-continuous, and non-decreasing.
Then, there exists a unique measure dF on R such that for all a, b ∈ R with a < b,

dF ((a, b]) = F (b)− F (a).

Proof. Let F (∞) = limx→∞ F (x) and F (−∞) = limx→−∞ F (x). We define an open
interval I = (F (−∞), F (∞)) and define g(y) = inf{x ∈ R : y ≤ F (x)}. We want to
define dF to be λ ◦ g−1 where λ is Lebesgue measure on R, so we need to show that this
makes sense.

We first show that g is left continuous and non-decreasing and for y ∈ I and x ∈ R,
g(y) ≤ x if and only if y ≤ F (x). To show this, fix a y ∈ I and consider Jy = {x ∈
R : y ≤ F (x)}. As F is non-decreasing, if x ∈ Jy and x′ ≥ x then x′ ∈ Jy. As F
is right continuous, if xn ∈ Jy and xn ↓ x, then x ∈ Jy. Therefore, Jy = [g(y),∞).
And furthermore, g(y) ≤ x if and only if y ≤ F (x). Secondly, for y ≤ y′, we have that
Jy′ ⊆ Jy and thus g(y) ≤ g(y′). So for yn ↑ y, we have that Jy =

⋂
n Jyn and further

that g(yn)→ g(y), which implies that g is left continuous and non-decreasing.
From the above, we have that g is Borel measureable (see useful fact 1 in Section 2.2).

And thus defining dF = λ ◦ g−1 gives us that

dF ((a, b]) = λ ({y : g(y) > a, g(y) ≤ b}) = λ((F (a), F (b)]) = F (b)− F (a).

Furthermore, this measure, dF , is unique by using the same arguments as before for
Lebesgue measure.

In the case that F : R→ [0, 1] such that the interval I = [0, 1], we have a cumulative
distribution function, which induces a measure on the real line. This allows us to do
things like integrate with respect to such measures—i.e. take an expectation.

Definition 2.3.4 (Radon Measure). Let (Ω,B, µ) be a measure space where B is the
Borel σ-field. The measure µ is said to be a Radon measure if µ(K) <∞ for all compact
K ∈ B.

Note that ’most’ measures you will encounter in practice are Radon measures.

Going one step beyond the above proof, we can note that dF is a Radon measure
and, more interestingly, that every non-zero Radon measure on B(R) can be written as
dF = λ ◦ g−1 for some F .

Indeed, if µ is a Radon measure on R, then we can define F as

F (x) =

{
µ((0, x]) if x ≥ 0
−µ((x, 0]) if x < 0

.

Thus, F (b)− F (a) = µ((a, b]) for a < b and hence µ = dF by uniqueness.8

8 Question to consider: Why is µ being Radon necessary?
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2.4 Product Measure, in detail

Now that we have defined the integral, we can more formally construct product mea-
sures. First, given two σ-fields X and Y, we will denote the product σ-field to be X ×Y,
which is the σ-field generated by the rectangles A × B for A ∈ X and B ∈ Y. Sets of
the form A×B for A ∈ X and B ∈ Y are called rectangles. The collection of all rectan-
gles will be denoted as R. Our goal is to prove the following existence and uniqueness
theorem:

Theorem 2.4.1 (Existence and Uniqueness of Product Measure). Let (X,X , µ) and
(Y,Y, ν) be σ-finite measure spaces. Let π be a set function on X × Y such that for
A ∈ X and B ∈ Y, π(A × B) = µ(A)ν(B). Then, π extends uniquely to a measure on
(X× Y,X × Y) such that for any E ∈ X × Y,

π(E) =

∫∫
1E(x, y)dµ(x)dν(y) =

∫∫
1E(x, y)dν(y)dµ(x).

We will approach this proof by first proving the result for finite measures µ and ν
and then extending it to σ-finite measures. It can be shown that the set function π
where π(A×B) = µ(A)ν(B) is countably additive on R.9 By including finite unions of
rectangles, the collection R can be extended to a field A.

First, we will prove a similar theorem to Dynkin’s π-λ theorem involving montone
classes.

Definition 2.4.1 (Monotone Class). A collection of subsetsM of Ω is said to be mono-
tone if

1. for {Ai}∞i=1 such that Ai ∈M and Ai ↑ A =
⋃∞
i=1Ai, then A ∈M,

2. for {Ai}∞i=1 such that Ai ∈M and Ai ↓ A =
⋂∞
i=1Ai, then A ∈M.

Note that if a field A is also monotone, then it is a σ-field. Furthermore, recall that
we defined a field to be such that ∅,Ω ∈ A, if B,A ∈ A then B \A ∈ A, and if B,A ∈ A
then A ∪ B ∈ A. Instead, we can replace B \ A ∈ A with Ac ∈ A. This is because
B \A = B ∩Ac.

Theorem 2.4.2 (Monotone Class Theorem). Let A be a field andM be monotone such
that A ⊂M. Then, σ(A) ⊆M.

Proof. In this proof, we will show that σ(A) ⊂ m(A) where m(A) is the smallest
monotone class that contains A—i.e. the intersection of all monotone classes than
contain A. This is done by showing that m(A) is a field and thus a σ-field and thus
contains σ(A) as σ(A) is minimal.

Step 1 is to show that m(A) is closed under taking complements. Let F = {A ∈
m(A) : Ac ∈ m(A)}. This means that A ∈ F since A is closed under complements.
Furthermore, for {Ai}∞i=1 such that Ai ∈ F and Ai ↑ A =

⋃∞
i=1Ai, then Aci ∈ F and

9 Exercise: Try to prove this fact.
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Aci ↓ Ac =
⋂∞
i=1A

c
i = (

⋃∞
i=1Ai)

c. Therefore,
⋃∞
i=1Ai ∈ F . Thus, F is monotone and

F ⊆ m(A). Doing the same for Ai ↓ A shows that F = m(A) by minimality of m(A),
and therefore, m(A) is closed under complementation.

Step 2 is to show that m(A) is closed under finite unions. Let

G1 = {A ∈ m(A) : A ∪B ∈ m(A) for all B ∈ A}.

As with F from the previous paragraph, we note that A ∈ G1. Also, G1 is monotone,
since (

⋃∞
i=1Ai)∪B =

⋃∞
i=1(Ai∪B) ∈ m(A) and (

⋂∞
i=1Ai)∪B =

⋂∞
i=1(Ai∪B) ∈ m(A).

Thus by minimality, m(A) = G1 and thus m(A) is closed under finite unions with
elements of A. Now, let

G2 = {B ∈ m(A) : A ∪B ∈ m(A) for all A ∈ m(A)}.

Once again, A ⊂ G2, since if B ∈ A, then A ∪ B ∈ m(A) for any A ∈ m(A) from the
argument with G1. G2 is also monotone. Hence G2 = m(A), which means m(A) is closed
under finite unions, and hence it is a field, and hence it is a σ-field. Thus, σ(A) ⊆ m(A)
by minimality.

We will also require a lemma that allows us to swap the above order of integration
for finite measures.

Lemma 2.4.2. Let (X,X , µ) and (Y,Y, ν) be finite measure spaces, and let

F =

{
E ⊂ X × Y :

∫∫
1E(x, y)dµ(x)dν(y) =

∫∫
1E(x, y)dν(y)dµ(x)

}
.

Then, X × Y ⊂ F .

Proof. First, let E = A×B for A ∈ X and B ∈ Y, i.e. E ∈ R. Then,∫∫
1E(x, y)dµ(x)dν(y) = µ(A)

∫
1B(y)dν(y) = µ(A)ν(B)

= ν(B)µ(A) = ν(B)

∫
1A(x)dµ(x) =

∫∫
1E(x, y)dν(y)dµ(x).

Therefore, R ⊂ F . Also, for disjoint R1, R2 ∈ R, 1R1∪R2 = 1R1 + 1R2 . Hence, F
contains finite disjoint unions of rectangles. This implies that the field generated by the
set of rectangles A ⊂ F .10

We next consider {Ei}∞i=1 with Ei ∈ F . If Ei ↑ E then monotone convergence implies
that ∫∫

1Ei(x, y)dµ(x)dν(y) ↑
∫∫

1E(x, y)dµ(x)dν(y)

and ∫∫
1Ei(x, y)dν(y)dµ(x) ↑

∫∫
1E(x, y)dν(y)dµ(x)

Thus, E ∈ F , and the same holds if Ei ↓ E. Therefore, F is a monotone class. Finally,
applying the monotone class theorem shows that X × Y = σ(A) ⊂ F .

10 See [Dudley(2002)] Proposition 3.2.3, which states that for a semi-ring such as R, the collection of
all finite disjoint unions of elements of R is a ring. And X× Y ∈ R.
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Proof of Theorem 2.4.1. We first consider the case that µ and ν are finite measures. We
begin with π(A×B) = µ(A)ν(B) for A×B ∈ R. Then, we extend π to the set function

π(E) :=

∫∫
1E(x, y)dµ(x)dν(y)

for any E ∈ X × Y. The above lemma says that we can define this set function and
the order of integration can be reversed for any E ∈ X × Y. Linearity of the integral
implies that the set function π is finitely additive, and monotone convergence further
implies that π is countably additive. Thus, π is a measure on X × Y.

To show that π is unique, let ρ be some other set function such that ρ(A × B) =
µ(A)ν(B) for A × B ∈ R. Let M = {E ⊂ X × Y : π(E) = ρ(E)}. Then, M is a
monotone class, because for Ei ↑ E =

⋃∞
i=1Ei, we can rewrite E =

⋃∞
i=1Di where

D1 = E1 and Di = Ei \ Ei−1 for i ≥ 2 are disjoint. Thus, by countable additivity
π(E) = ρ(E), so E ∈ M. Arguing similarly for Ei ↓ E shows that M is monotone.
Hence, application of the monotone class theorem implies that X ×Y ⊂M. Thus, π is
unique on X × Y for finite measures µ and ν.

Now let µ and ν be σ-finite measures. Let {Ai}∞i=1 and {Bi}∞i=1 be disjoint partitions
of X and Y, respectively, such that µ(Ai) <∞ and ν(Bi) <∞. Then, for any E ∈ X×Y,
we define Eij = E ∩ (Ai ×Bj). Thus, from the above finite measure case,∫∫

1Ei,j (x, y)dµ(x)dν(y) =

∫∫
1Ei,j (x, y)dν(y)dµ(x).

Summing over all i and j, we can extend π using monotone convergence again to get

π(E) =

∫∫
1E(x, y)dµ(x)dν(y) =

∫∫
1E(x, y)dν(y)dµ(x)

for any E ∈ X × Y. Monotone convergence implies that π is countably additive and
hence a measure on X × Y. For any other measure ρ such that ρ(A×B) = µ(A)ν(B),
countably additivity and uniqueness for finite measures implies that

π(E) =
∑
i,j

π(Ei,j) =
∑
i,j

ρ(Ei,j) = ρ(E)

for any E ∈ X × Y. Hence, the extension of π to X × Y is unique.

2.4.1 The Fubini-Toneli Theorem

The above existence and uniqueness theorem for product measures allows us to swap the
order of integration for indicator functions. The following important theorem allows us
to similarly swap the order of integration for measureable functions in product spaces.

Theorem 2.4.3 (Fubini-Toneli Theorem). Let (X,X , µ) and (Y,Y, ν) be σ-finite mea-
sure spaces, and let f : X×Y→ R be measurable with respect to X ×Y such that either
f ≥ 0 or

∫∫
|f |d(µ× ν) <∞. Then,∫
f d(µ× ν) =

∫∫
f(x, y)dµ(x)dν(y) =

∫∫
f(x, y)dν(y)dµ(x).

Also,
∫
f(x, y)dµ(x) is Y-measurable and

∫
f(x, y)dν(y) is X -measurable.
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Proof. This result is immediate if f is a simple function due to the above existence and
uniqueness theorem for product measure and the linearity of the integral. That is,∫∫ n∑

i=1

1Ei(x, y)dµ(x)dν(y) =

∫∫ n∑
i=1

1Ei(x, y)dν(y)dµ(x).

Secondly, applying the monotone convergence theorem to simple functions implies that
the above holds for non-negative measureable functions.

If instead we assume that
∫∫
|f |d(µ × ν) < ∞, then f = f+ − f− and the above

holds for both f+ and f−. That is, both
∫
f+(x, y)dµ(x) <∞ for ν-almost-every y and∫

f+(x, y)dν(y) <∞ for µ-almost-every x and similarly for f−. Therefore,∫
|f |(x, y)dν(y) =

∫
f+(x, y)dν(y) +

∫
f−(x, y)dν(y) <∞ (µa.e.)

and thus ∫
f(x, y)dν(y) =

∫
f+(x, y)dν(y)−

∫
f−(x, y)dν(y) <∞ (µa.e.).

As Theorem 2.3.3 tells us that we only require finiteness to occur almost everywhere to
have the integral exist, we can integrate both sides of the above with respect to µ to get∫∫

f(x, y)dν(y)dµ(x) =

∫∫
f+(x, y)dν(y)dµ(x)−

∫∫
f−(x, y)dν(y)dµ(x).

The same can be done swapping the role of µ and ν to conclude the theorem.

Remark 2.4.3. The above theorem lets us swap the order of integration for the product
of two measure spaces. This can be extended by induction to the finite product of n
measure spaces. For the sake of stochastic processes, we will have to consider the infinite
product of probability spaces, which will be discussed later.

2.4.2 Infinite Product Probabilities

As noted in the previous remark, induction allows us to extend from the product of two
measure spaces to the product of n measure spaces. However, in fields like statistics, we
often want to take n→∞. In general, a countably infinite product of finite or σ-finite
measure spaces may not retain its finiteness or σ-finiteness. However, we will show in
this section that a countable product of probability spaces will still be a probability
space.

For notation, let (Ωn,Fn, Pn) for n ∈ N be a sequence of probability spaces. Then,
Ω := ⊗∞n=1Ωn consists of elements of the form ω = {ωi}∞n=1 where ωn ∈ Ωn. This is
a space of sequences; for example, if Ωn = R for all n, then Ω would be the space of
all real-valued sequences. We define the set R to be the space of all finite dimensional
rectangles in Ω. That is, for R ∈ R, R ⊆ Ω and we can write R =

⊗∞
n=1An for

An ∈ Fn but we also require An = Ωn for all but a finite number of n. As for finite
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product spaces, it can be shown that R is a semi-ring. Furthermore, we will denote
the field generated by R to be S. We define P to be a set function on R such that
P (R) =

∏∞
n=1 Pn(An). Note that this infinite product must converge as all but a finite

number of these Pn(An) = 1. Lastly, we require a σ-field F on Ω. This is constructed
by considering the projections $n : Ω → Ωn where $n((ω1, ω2, . . .)) = ωn. Then,
F is the smallest σ-field such that all $n are measurable mappings from (Ω,F) into
(Ωn,Fn). That is, F contains all sets of the form $−1

n (An) for An ∈ Fn. We can write
F = σ($1, $2, . . .).

11 Note that sometimes sets of the form $−1
n (An) are called cylinder

sets. For the product of two measure spaces, (X × Y,X × Y, π) and a set A ∈ X × Y,
for any x ∈ X, we denote Ax := {y ∈ Y : (x, y) ∈ A}. This can be thought of as slicing
set A along x. Furthermore, it can be shown that Ax ∈ Y for any x ∈ X.

Theorem 2.4.4 (Existence and Uniqueness of Infinite Product Probabilities). The set
function P on R extends uniquely to a probability measure on F .

We first need a lemma that gives us a condition for a finitely additive set function
on a field to be a countably additive set function on a field. That is, we eventually want
to show that P is a pre-measure on S.

Lemma 2.4.4. Let µ be a finitely additive set function on a field S. Then, µ is countably
additive if and only if for any sequence Ai ↓ ∅ with Ai ∈ S, then µ(Ai)→ 0.

Proof Exercise. Try to show this yourself by replacing the Ai with disjoint sets. Also,
recall that if a series converges, then the summands have to go to zero.

Proof of Theorem 2.4.4. First, we want to extend P from R to the field S and show
that it makes sense. It can be shown12 that any S ∈ S can be written as a disjoint
union of elements of R. Hence, we can write

S =
k⋃
i=1

Ri =
k⋃
i=1

∞⊗
n=1

Ai,n

where Ai,n ∈ Fn and all but of finite number of these Ai,n are equal to Ωn. Thus, there
exists an m ∈ N such that Ai,n = Ωn for all i and for all n > m. Thus, we can treat
P (S) as a finite product measure on Ω1 × . . .× Ωk and it is finitely additive on S.

Carathéodory’s Extension Theorem tells us that if P is countably additive on the
field S then it extend to a measure on F = σ(S). To show that P is countably additive,
we apply the above lemma via a contradiction argument. That is, for some decreasing
sequence {Ai}∞i=1 such that for some ε > 0, P (Ai) > ε for all i, then

⋂∞
i=1Ai 6= ∅.

Let P (0) be the set function P on S. For n ≥ 1, we define Ω(n) :=
⊗

m>n Ωm, and

similarly we let S(n) be the set of disjoint unions of rectangles on Ω(n) and P (n) to be

11 In probability theory, we often think of a sequence of random variables X1, X2, . . ., and we can
consider the smallest σ-field such that these are all measurable. This is denoted as σ(X1, X2, . . .).

12 See [Dudley(2002)] Proposition 8.2.1.
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P defined on S(n). These are all concerned with the tail of the sequence of spaces. For
any subset E ⊆ Ω and (x1, . . . , xn) ∈ Ω1 × . . .× Ωn, we can define

E(n)(x1, . . . , xn) =
{
{xm}m>n ∈ Ω(n) : {xm}m≥1 ∈ E

}
which is the set of all tail sequences such that the entire sequence lies in E.

From the above discussion, for any E ∈ S, then there exists an N such that we can
write E = F ×

⊗
n>N Ωn for some F ⊆

⊗N
n=1 Ωn—i.e. E is a finite product F and a

trivial tail sequence. Thus, we can decompose F =
⋃k
i=1 Fi =

⋃k
i=1

⊗N
n=1 Fi,n where

Fi,n ∈ Fn, that is, F is a finite union of N -dimensional rectangles. For any choice of

m < N and (x1, . . . , xm), E(m)(x1, . . . , xm) = G × Ω(N) for G =
⋃
i:xi∈Fi,n

⊗N
n=m Fi,n.

This implies that E(n)(x1, . . . , xn) ∈ S(n). Thus, P (n) is defined on S(n).
Through application of Fubini-Toneli theorem, we have

P (E) =

∫
1E dP1 × . . .× dPn × dP (n)

=

∫
P (n)

(
E(n)(x1, . . . , xn)

)
dP1 × . . .× dPn.

Returning to the Ai from above, let {Ai}∞i=1 be a decrease sequence such that P (Ai) >

ε > 0. Then, for each Ai, we further define Fi :=
{
x1 ∈ Ω1 : P (1)(A

(1)
i (x1)) > ε/2

}
,

which is the set of x1 ∈ Ω1 such that the set of tail sequences has P (1)-measure greater
than ε/2. Using the above integral formula with n = 1, we can set E = Ai to get

ε < P (Ai) =

∫
P (1)(A

(1)
i (x1)) dP1(x1)

=

∫
Fi

P (1)(A
(1)
i (x1)) dP1(x1) +

∫
Ω1\Fi

P (1)(A
(1)
i (x1)) dP1(x1)

≤ P1(Fi) + ε/2,

because on Ω1\Fi, P (1)(A
(1)
i (x1)) < ε/2 by construction and, of course, P (1)(A

(1)
i (x1)) ≤

1 on Fi. Note that we are relying on P being a probability measure at this step.
The conclusion of the above derivation is that P1(Fi) > ε/2 for all i, and since the

Ai’s are decreasing, so are the Fi’s. Furthermore, P1 is a countably additive probability
measure on (Ω1,F1). Hence,

P1

( ∞⋂
i=1

Fi

)
=

∫
1⋂∞

i=1 Fi
dP1 =

∫
inf
i

1FidP1 = inf
i

∫
1FidP1 = inf

i
P1(Fi) ≥ ε/2

where we can swap the infimum and integral using monotone convence since 1⋂m
i=1 Fi

↓
1⋂∞

i=1 Fi
. Thus, applying the above lemma results in

⋂∞
i=1 Fi 6= ∅.

Next, we can fix some y1 ∈
⋂∞
i=1 Fi, and we can define

Gi := {x2 ∈ Ω2 : P (2)(A
(2)
i (y1, x2)) > ε/4},
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which is all of the x2 ∈ Ω2 such that the set of tail sequences after fixing x1 = y1 have a
measure greater than ε/4. Thus, redoing the above with Gi replacing Fi, we find that
the Gi are also decreasing, but with P2(Gi) > ε/4. Hence, the

⋂
iGi 6= ∅, so we can fix

a y2 ∈
⋂
iGi.

Continuing via induction, we can construct a sequence {yi}∞i=1 with yi ∈ Ωi such

that P (n)(A
(n)
i (y1, . . . , yn)) ≥ ε/2n for all i. Lastly, we need to show that the sequence

{yi}∞i=1 ∈ Aj for all j = 1, . . . ,∞. Thus, for each j, we can select an nj ∈ N large

enough so that for all (x1, . . . , xnj ) ∈ Ω1 × . . . ,Ωnj , we have A
(nj)
j (x1, . . . , xnj ) is either

∅ or Ω(n), which is possible since each Aj ∈ S. Thus, we must have that for n large

enough A
(n)
j (y1, . . . , yn) = Ω(n). Since (y1, y2, . . .) ∈ Aj for all j,

⋂
j=1∞ Aj 6= ∅. Thus,

P is countably additive on S and thus we can extend it uniquely to F .
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Chapter 3

Probability Theory

Introduction

In this chapter, are aim to to prove the Law of Large Numbers and the Ergodic theorem.
To get there, we will require two preliminary sections discussing some theory around Lp

spaces and what it means for a sequence of measures to converge to another measure.

3.1 Lp spaces

Lp spaces are a standard example of Banach spaces, which are complete normed linear
space. We have already seen these when discussing the space of all absolutely integrable
functions. More generally, we have the following definition.

Definition 3.1.1 (Lp space). Let (Ω,F , µ) be a measure space and f : Ω→ [−∞,∞] a
measurable function, then we say f ∈ Lp(Ω,F , µ), for 1 ≤ p <∞ if∫

|f |pdµ <∞.

For p =∞, we say f ∈ L∞(Ω,F , µ) if inf{t ∈ [−∞,∞] : |f | ≤ t µ a.e.} <∞.

This definition allows us to write down the Lp norm, which will be shown to be a
norm below:

‖f‖p =

[∫
|f |pdµ

]1/p

1 ≤p <∞

‖f‖∞ = inf {t ∈ [−∞,∞] : |f | ≤ t µ a.e.} p =∞
= inf {t ∈ [−∞,∞] : µ({|f | > t}) = 0}

The L∞ norm is sometimes referred to as the essential supremum. For 1 < p, q < ∞,
we say that p and q are conjugate indices if p−1 + q−1 = 1. In this context, we also say
that 1 and ∞ are conjugates.

The following subsections contain many important inequalities in the theory of Lp

spaces. In the following theorems, we assume f and g are measurable functions in
(Ω,F , µ) unless stated otherwise.
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3.1.1 Markov / Chebyshev and Jensen’s inequalities

The following results are ambiguously referred to as Markov’s inequality, Chebyshev’s
inequality, and Chernoff’s inequality. They allow us to bound the measure of a set by an
integral of a measurable function. In the context of probability theory, we are bounding
a tail probability by the moments of a random variable.

Theorem 3.1.1 (Markov’s Inequality). Let f be a non-negative measurable function
and t > 0. Then, denoting {f > t} := {ω ∈ Ω : f(ω) > t},

µ({f > t}) ≤ t−1

∫
fdµ.

Proof. Noting that t1{f>t} ≤ f , then by monotonicity of the integral,

tµ({f > t}) =

∫
t1{f>t}dµ ≤

∫
fdµ,

which proves the theorem.

There are two useful inequalities resulting from Markov’s inequality, which are

1. Chebyshev’s Inequality: For f measurable and m ∈ R,

µ({|f −m| > t}) ≤ t−2

∫
(f −m)2dµ.

For probability measures and random variables this is P (|X−EX| > t) ≤ Var (X) /t2.

2. Chernoff’s Inequality: For f measurable and η ∈ R,

µ({f > t}) ≤ e−ηt
∫

eηfdµ.

In probability theory, the right hand side becomes the moment generating function
or the Laplace transform.

For Jensen’s inequality, we need the definition of a convex function.

Definition 3.1.2 (Convex Functions on R). Let I ⊆ R be an interval. A function
φ : I → R is convex if for all t ∈ [0, 1] and all x, y ∈ I,

φ(tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y).

Theorem 3.1.2 (Jensen’s Inequality). Let (Ω,F , P ) be a probability space and X an
integrable random variable1 such that X : Ω→ I ⊆ R. For any convex φ : I → R,

φ

(∫
Xdµ

)
≤
∫
φ(X)dµ,

which is φ(E[X]) ≤ E[φ(X)].
1 i.e. a measurable function in L1(Ω,F , P )
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Proof. For some c ∈ I, if X = c, P-a.e., then the result is immediate. Otherwise, let
m = EX be the mean of X, which lies in the interior of interval I. Then, we can
choose a, b ∈ R such that φ(x) ≥ ax + b for all x ∈ I with equality at x = m.2 Then,
φ(X) ≥ aX + b, and

φ(E[X]) = am+ b = E[aX + b] ≤ E[φ(X)].

To check that E[φ(X)] is well defined (i.e. not∞−∞), we note that φ = φ+−φ− where
φ− is concave and φ−(x) ≤ |a||x|+ |b|. Hence, E[φ(X)] ≤ |a|E|x|+ |b| <∞.

3.1.2 Hölder and Minkowski’s Inequalities

Theorem 3.1.3 (Hölder’s inequality). Let p, q ∈ [1,∞] be conjugate indices and f and
g be measurable, then ‖fg‖1 ≤ ‖f‖p‖g‖q.

Proof. If either ‖f‖p = 0,∞ or ‖g‖q = 0,∞, then the result is immediate. Hence, for f
such that 0 < ‖f‖p < ∞, we can normalize and without loss of generality assume that
‖f‖p = 1. Hence, we can define a probability measure P on F such that for any A ∈ F ,

P (A) :=

∫
A
f dµ.

Then, using Jensen’s inequality and noting that q(p− 1) = p,

‖fg‖1 =

∫
|fg|dµ =

∫
|g|
|f |p−1

1|f |>0|f |pdµ

≤
[∫

|g|q

|f |q(p−1)
1|f |>0|f |pdµ

]1/q

≤
[∫
|g|qdµ

]1/q

= ‖f‖p‖g‖q.

The most famous version of Hölder’s inequality is the Cauchy-Schwarz inequality,
which is just the setting where p = q = 2.

Corollary 3.1.3 (Cauchy-Schwarz Inequality). For measurable f and g, ‖fg‖1 ≤
‖f‖2‖g‖2.

Minkowski’s inequality shows that ‖·‖p is subadditive, which is one of the conditions
for ‖·‖p to be a norm.

Theorem 3.1.4 (Minkowski’s inequality). Let p ∈ [1,∞] and f and g be measurable,
then ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

2This is a property of convex functions. Try to show it yourself!
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Proof. If either ‖f‖p =∞ or ‖g‖p =∞, then we are done. If ‖f + g‖p = 0, then we are
done. If p = 1, then |(f + g)(ω)| ≤ |f(ω)|+ |g(ω)|, and the result follows quickly.

In all other cases, note that

|f + g|p = 2p
∣∣∣∣f + g

2

∣∣∣∣p ≤ 2p
(

1

2
|f |p +

1

2
|g|p
)

= 2p−1 (|f |p + |g|p) .

This implies that ∫
|f + g|pdµ ≤ 2p−1

∫
|f |pdµ+ 2p−1

∫
|g|pdµ <∞

Thus, f + g ∈ Lp(Ω,F , µ) if both f, g ∈ Lp(Ω,F , µ).
Assuming ‖f + g‖p > 0 and p > 1 and p, q conjugates, we have that

‖|f + g|p−1‖q =

[∫
|f + g|(p−1)qdµ

]1/q

=

[∫
|f + g|pdµ

] p−1
p

= ‖f + g‖p−1
p .

Finally, using the above equality, we have

‖f + g‖pp =

∫
|f + g|pdµ ≤

∫
|f ||f + g|p−1dµ+

∫
|g||f + g|p−1dµ

≤ ‖f‖p‖|f + g|p−1‖q + ‖g‖p‖|f + g|p−1‖q
≤ ‖f‖p‖f + g‖p−1

p + ‖g‖p‖f + g‖p−1
p .

Dividing both sides by ‖f + g‖p−1
p finishes the proof.

A nice application of the above results is showing that simple functions can approxi-
mate any Lp functions. In the previous chapter, we used simple functions to approximate
measurable functions and their integrals (for example, see Theorem 2.3.2).

Theorem 3.1.5 (Lp approximation). Let (Ω,F , µ) be a measure space, and let A be a
π-system such that σ(A) = F and µ(A) < ∞ for all A ∈ A and there exists Ai ↑ Ω,
Ai ∈ A.3 Let the collection of simple functions be

V0 :=

{
n∑
i=1

ai1Ai : ai ∈ R, Ai ∈ A, n ∈ N

}
.

For p ∈ [1,∞), V0 ⊂ Lp, and for all f ∈ Lp and all ε > 0, there exists a v ∈ V0 such
that ‖f − v‖p < ε.

Proof. For any A ∈ A, ‖1A‖p =
(∫

1Adµ
)1/p

= µ(A)1/p < ∞. Thus, 1A ∈ Lp for all
A ∈ A. Since Lp is a linear space, V0 ⊂ Lp.

Next, let V ⊆ Lp be all of the f that can be approximated by some v ∈ V0. Let f
be approximated by vf and g by vg, then by Minkowski’s inequality,

‖(f + g)− (vf + vg)‖p ≤ ‖f − vf‖p + ‖g − vg‖p ≤ 2ε.

3 For example, Lebesgue measure λ with the A being half-open bounded intervals and F = B.
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Hence, V is also a linear space.
Now, we assume Ω ∈ A (i.e. µ(Ω) <∞). Let L = {B ∈ Ω : 1B ∈ V }, which we will

show is, in fact, a λ-system. We know that A ⊆ L and thus Ω ∈ L. Next, for A,B ∈ L
such that A ⊆ B, then 1B\A = 1B − 1A ∈ V since V is linear, so B \A ∈ L. Lastly, for

{Ai}∞i=1 pairwise disjoint with Ai ∈ L, let A =
⋃∞
i=1Ai and Bj =

⋃j
i=1Ai. Then, Bj ↑ A

and ‖1A − 1Bj‖p = µ(A \ Bj)1/p → 0. Therefore, A ∈ L, and thus L is a λ-system. By
Dynkin’s π-λ theorem, F ⊆ L and thus 1B ∈ V for any B ∈ F . Therefore, for any
nonnegative f ∈ Lp, we can construct simple functions fn = min{n, 2−nb2nfc} such
that fn ↑ f . Then, |f − fn|p → 0 pointwise and |f − fn|p ≤ |f |p. Hence, by dominated
convergence, ‖f − fn‖p → 0. Therefore, f ∈ V and, by the linearity of V , V = Lp.4

Lastly, for general Ω, we have by assumption a sequence Ai ↑ Ω. Hence, for any
f ∈ Lp, we have that f1Ai ∈ V , and similarly to above, |f − f1Ai |p → 0 pointwise and
|f − f1Ai |p ≤ |f |p. Therefore, ‖f − f1Ai‖p → 0 by dominiated convergence. Therefore,
f ∈ V .

3.2 Convergence in Probability & Measure

In this section, we will discuss many types of convergence. Argueably, there are too
many different types of convergence all with their own special properties and hierachies
from weakest to strongest notion.

3.2.1 Convergence of Measure

Note that in this section, all measures are probability measures unless otherwise stated.
Given a measurable space (Ω,F) and a sequence of probability measures {Pi}∞i=1,

what do we want Pi → P to mean? At a minimum, we want Pi(A) → P (A) for any
A ∈ F , which is sometimes called setwise convergence, but this often is not enough. One
of the most used notions of covergence of measure is weak convergence, which requires
us to switch to a metric space.

Definition 3.2.1 (Weak Convergence of Measure). Let S be a metric space and S be
the Borel σ-field on S. Then, for a measure P and a sequence {Pi}∞i=1, we say that Pi
converges weakly to P , i.e. Pi ⇒ P , if∫

f dPi →
∫
f dP

for all f bounded continuous real-valued functions on S. We will write f ∈ CB(R) for
such functions.

The notion of weak convergence is tied into the topology of S generated by the metric
d. Furthermore, having measures converge implies a closeness between measures Pi and
Pi+1. For a finite collection of f1, . . . , fn ∈ CB(R), we can define an ε-neighbourhood
of P to be all of the measures Q such that |

∫
fidP −

∫
fidQ| < ε. There are many

equivalent notions of weak convergence, which are listed in the Portmanteau Theorem.

4 i.e. as before write a general f = f+ − f−.
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Theorem 3.2.1 (Portmanteau Theorem). For P and Pi on (S,S), the following are
equivalent:

1. Pi ⇒ P

2.
∫
f dPi →

∫
f dP for all bounded uniformly continuous functions f

3. lim supi Pi(C) ≤ P (C) for all closed C

4. lim infi Pi(U) ≥ P (U) for all open U

5. limi Pi(A) = P (A) for all A ∈ S such that P (∂A) = 05

Proof. (1)→(2) If convergence holds for every f ∈ CB then is certainly hold for all
bounded uniformly continous f .

(2)→(3) For any C closed and ε > 0 there exists a δ > 0 such that for Cδ = {x ∈
S : d(x,C) < δ}, we have P (Cδ) < P (C) + ε as Cδ ↓ C as δ → 0+. Then, we can
define an f such that f = 1 on C, f = 0 on S \ Cδ, and f is uniformly continuous and
0 ≤ f ≤ 1.6 Then, by assumption (2), we have that

Pi(C) ≤
∫
f dPi →

∫
f dP ≤ P (Cδ) < P (C) + ε.

Thus, taking the lim sup and ε to zero gives lim supi Pi(C) ≤ P (C).
(3)→(1) Let f ∈ CB. Our goal is to show that lim supi

∫
f dPi ≤

∫
f dP and

similarly for lim inf to show (1) holds. As f is bounded, we can shift and scale it, and
without loss of generality, we assume that 0 < f < 1. Then, for any choice of n ∈ N, we
can define nested closed sets Cj = {x ∈ S : f(x) ≥ j/n} for j = 0, 1, . . . , n and cut f
into pieces to get

n∑
j=1

j − 1

n
P (Cj−1 \ Cj) ≤

∫
f dP ≤

n∑
j=1

j

n
P (Cj−1 \ Cj).

Noting that P (Cj−1 \ Cj) = P (Cj−1)− P (Cj), the above becomes

1

n

n∑
j=1

P (Cj) ≤
∫
f dP ≤ 1

n
+

1

n

n∑
j=1

P (Cj).

Thus,

lim sup
i

∫
f dPi ≤

1

n
+

1

n

n∑
j=1

lim sup
i

Pi(Cj) ≤
1

n
+

1

n

n∑
j=1

P (Cj) ≤
1

n
+

∫
f dP.

Taking n→∞ gives lim supi
∫
f dPi ≤

∫
f dP . Replacing f with−f gives lim infi

∫
f dPi ≥∫

f dP . Thus the lim sup and lim inf coincide proving that (3)→(1).
The equivalence of (4) and (5) with the rest is omitted, but can be found in most

probability textbooks.
5 where ∂A is the boundary of A, which is ∂A = Ā ∩ Āc where Ā is the closure of A.
6 See Urysohn’s Lemma or Theorem 1.2 in [Billingsley(2013)]
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Remark 3.2.2 (Other ways measures converge). As noted about Pi converges weakly
if
∫
fdPi →

∫
fdP for each f ∈ CB. Changing the space where f lives changes the

convergence. Convergence in the Radon metric is

sup
f

{∫
fdP −

∫
fdPi

}
→ 0

where the sup is taken over all continuous functions f : S → [−1, 1]. If we take the
sup over all measurable f : S → [−1, 1], then we have convergence in total variation. If
the sup is over all Lipschitz f : S → [−1, 1] with a Lipschitz constant of 1, then this is
convergence in the 1-Wasserstein metric.

3.2.2 Convergence of Random Variables

Convergence in Distribution

In contrast to convergence of measures, let (Ω,F , µ) be a probability space and (S,S) be
a metric space with Borel sets as above. Then, for a random variable (i.e. measurable
function) X : Ω→ S, we can define a probability measure

P (A) = µ(X−1(A)), A ∈ S.

This is the distribution of X. For a sequence of random variables {Xi}∞i=1, we say

that Xi converges to X in distribution—denoted Xi
d−→ X—means that Pi ⇒ P .7 The

expectation of a random variable can be written in multiple ways due to change of
variables:

E[X] =

∫
Ω
X(ω)dµ(ω) =

∫
S
xdP (x).

We also often write Pi(A) as P (Xi ∈ A), which is a bit ambiguous. Note that above
Portmanteau theorem can be rephrased for random variables as follows.

Convergence in Probability

Given the same setup as above, we say that Xi converges in probabilty to X—denoted

Xi
P−→ X—if for all ε > 0

µ ({ω ∈ Ω : d(Xi(ω), X(ω)) > ε})→ 0.

This means that the measure of the set of ω where Xi(ω) and X(ω) differ by more
than ε goes to zero as i → ∞. Note that this is often written in shorthand as
P (d(Xi, X) > ε) → 0. Convergence in probability is closely connected to the metric
d on (S,S).

7 Note that since we only really care about weak convergence of measure, the metric space (S,S)
must be fixed, but the initial probabilty space (Ω,F , µ) is allowed to change.
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Convergence Almost Surely

Given the same setup as above, we say that Xi converges almost surely to X—denoted
Xi

a.s.−−→ X—if
µ ({ω ∈ Ω : Xi(ω)→ X(ω)}) = 0.

This was already mentioned in the section on important integral convergence theorems.
It implies that Xi converges to X pointwise except on a set of measure zero.

Convergence in Lp

Given the same setup as above, we say that Xi converges to X in Lp if

E[d(Xi, X)p] =

∫
d(Xi(ω), X(ω))pdµ(ω)→ 0.

Here, we can think of d(Xi(ω), X(ω)) as a function from Ω to R+. In the case that we
have real valued random variables, i.e. S = R, then this is∫

|Xi −X|pdµ→ 0.

Hierarchy of Convergence Types

Some of the above types of convergence are stronger or weaker than others in the sense
that one type implies another. Here is a short list of such implications:

• Convergence almost surely implies convgerence in probability.

• Convergence in probability implies convgence in distribution.

• For 1 ≤ q < p ≤ ∞, convergence in Lp implies convergence in Lq.8

• For any p ∈ [1,∞], convergence in Lp implies convergence in probability.9

Also, consider what extra conditions are necessary to make almost sure convergence
imply Lp convergence and vice versa.

3.2.3 Borel-Cantelli Lemmas

Let (Ω,F , µ) be a probability space as before. For {Ai}∞i=1, Ai ∈ F , then

lim sup
i

Ai =

∞⋂
i=1

⋃
j>i

Aj and lim inf
i

Ai =

∞⋃
i=1

⋂
j>i

Aj .

The set lim supiAi is sometimes referred to as Ai infinitely often or Ai i.o. This is
because ω ∈ lim supiAi implies that for any N ∈ N there exists an n > N such that

8 Try to show this using one of the inequalities from the previous section.
9 Once again, try to show this using one of the inequalities from the previous section.
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ω ∈ An. Similarly, some write Ai eventually (or Ai ev.) for lim infiAi. This is because
for ω ∈ lim infiAi then there exists an N large enough such that ω ∈ An for all n ≥ N .

The Borel-Cantelli lemmas are a very useful tool to use when proving convergence
theorems. We will use these to prove the strong law of large numbers.

Theorem 3.2.2 (1st Borel-Cantelli Lemma). Let {Ai}∞i=1 with Ai ∈ F . If
∑∞

i=1 µ(Ai) <
∞, then µ(lim supiAi) = 0.10

Proof. Noting that if a summation converges, then the tail sum has to tend to zero, we
have simply that

µ(lim sup
i

Ai) = µ

 ∞⋂
i=1

⋃
j>i

Ai

 ≤ µ
⋃
j>i

Ai

 ≤∑
j>i

µ(Ai)→ 0

as i → ∞ where the first inequality comes from monotonicity and the second comes
from subadditivity.

Theorem 3.2.3 (2nd Borel-Cantelli Lemma). Let {Ai}∞i=1 be an independent collection
with Ai ∈ F . If

∑∞
i=1 µ(Ai) =∞, then µ(lim supiAi) = 1.11

Proof. Note that 1− t ≤ e−t for all t ∈ R. One can check that the independence of the
{Ai}∞i=1 implies the independence {Aci}∞i=1. Therefore, for any i ∈ N and k ≥ i,

µ

 k⋂
j=i

Acj

 =
k∏
j=i

[1− µ(Aj)] ≤ exp

− k∑
j=i

µ(Aj)

 .
Taking k →∞ takes the right hand side to zero. Hence, µ(

⋂
j>iA

c
j) = 0 for all i. Thus,

µ(lim sup
i

Ai) = µ

 ∞⋂
i=1

⋃
j>i

Aj

 = 1− µ

 ∞⋃
i=1

⋂
j>i

Acj

 = 1.

3.2.4 Prohorov’s Theorem

In this section, we just quickly state Prohorov’s Theorem12 to be used later in proving
the Central Limit Theorem. Prohorov’s Theorem discusses sequential compactness for
a sequence of measures much as how the Bolzano-Weierstrauss Theorem13 discusses
compactness for bounded sequences in Rd. See [Billingsley(2013)] Chapter 1, Section 6
for more.

10 i.e. the set of ω that occur infinitely often as zero probability.
11 i.e. the set of ω that occur infinitely often has probability 1.
12 https://en.wikipedia.org/wiki/Prokhorov%27s_theorem
13 https://en.wikipedia.org/wiki/Bolzano%E2%80%93Weierstrass_theorem
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Definition 3.2.3 (Uniform Tightness). A collection of probability measures {µi}i∈I in
a metric space is said to be uniformly tight if for every ε > 0, there exists a compact set
Kε such that µi(Kε) > 1− ε for all i.

Theorem 3.2.4 (Prohorov’s Theorem). For a sequence of probability measures {µi}∞i=1,
if the sequence is uniformly tight then it is relatively compact (sequentially compact)—
i.e. for every subsequence µik there exists a weakly convergence subsubsequence µikr ⇒ µ
for some probability measure µ depending on the subsequence.

A nice convergence result relying on subsubsequences is the following proposition.

Proposition 3.2.4. If {µi}∞i=1 and µ are probability measures such that for every sub-
sequence µik , there exists a subsubsequence µikr ⇒ µ, then µi ⇒ µ.

Proof. Assume this is not the case, then there exists a continuous bounded function f
such that

∫
fdµi 6→

∫
fdµ. Thus, for some subsequence ik and ε > 0,∣∣∣∣∫ fdµik −

∫
fdµ

∣∣∣∣ > ε

for all k. However, µikr ⇒ µ contradicts this.

3.3 Law of Large Numbers

The goal of this section is to prove the strong law of large numbers, which is a pivotal
result in probability and statistics. First, we will prove the weak law of large numbers
with stronger than necessary assumptions. This is mainly to contrast how much more
work in involved to prove the strong law with weaker assumptions.

In this section, we will consider an infinite collection of random variables {Xi}∞i=1

from (Ω,F , P ) to (R,B). Hence, for A ∈ B, we write

P (X ∈ A) := P ({ω ∈ Ω : X(ω) ∈ A})

and EX =
∫
X(ω)dP . Furthermore, we define the partial sum Sn =

∑n
i=1Xi, which is

also a measurable random variable.
Before discussing the laws of large numbers, we need to define independence for

random variables.

Definition 3.3.1. For random variables X and Y on the same probability space (Ω,F , P )
but possibly with different codomains, (X,X ) and (Y,Y) respectively, we say that X and
Y are independent if

P ({X ∈ A} ∩ {Y ∈ B}) = P (X ∈ A)P (Y ∈ B)

for all A ∈ X and B ∈ Y.
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This definition can be extended to a finite collection of random variables {Xi}ni=1

implying

P

(
n⋂
i=1

{Xi ∈ Ai}

)
=

n∏
i=1

P (Xi ∈ Ai)

for all Ai. We say that an infinite collection of random variables is independent if all
finite collections are independent.

Note that since {X ∈ A} is shorthand for {ω ∈ Ω : X(ω) ∈ A} = X−1(A),
random variables X and Y are independent if and only if the σ-fields σ(X) and σ(Y )
are independent as discussed in Chapter 1 of these notes.

We also need to rigorously define what it means to have radom variables that are
identically distributed. For X : Ω → R, the law or distribution of X is the measure
induced by X. That is, P ◦X−1(A) for A ∈ B, say. We say that X and Y are identically
distributed if P ◦ X−1 and P ◦ Y −1 coincide almost surely. Note that if X and Y
are identically distributed, then we are implying that they have the same domain and
codomain.

Theorem 3.3.1 (Weak Law of Large Numbers). Let (Ω,F , P ) be a probability space and
{Xi}∞i=1 be random variables (measurable functions) from Ω to R such that EXi = c ∈ R
and EX2

i = 1 for all i and E[(Xi − c)(Xj − c)] = 0 for all i 6= j. Then Sn/n
P−→ c.

Proof. Without loss of generality, we assume c = 0. Otherwise, we can replace Xi with
Xi − c. Then, for any t > 0, Chebyshev’s inequality implies that

P

(
|Sn|
n
≥ ε
)
≤ ES2

n

t2n2
=

∑n
i,j=1 EXiXj

t2n2
=

1

nt2
→ 0

as n→∞.

Note that in the above proof, we only require that the Xi be uncorrelated (i.e.
E[(Xi− c)(Xj− c)] = 0) and not independent. In the next theorem, we require indepen-
dence, but remove all second moment conditions. However, we still need the notation

Var (X) =

∫
(X − EX)2dP (ω).

Theorem 3.3.2 (Strong Law of Large Numbers). Let {Xi}∞i=1 be iid random variables

from Ω to R. If E|Xi| < ∞, then Sn/n
a.s.−−→ c for c = EXi. If E|Xi| = ∞, then Sn/n

does not converge to any finite value.

Proof. We first quickly prove the second part of the theorem. Assume that n−1Sn →
c ∈ R but also that E|Xi| = ∞, and note that n−1Xn = n−1(Sn − Sn−1) → 0. Since
E|Xi| = ∞, then

∑∞
n=0 P (Xi > n) = ∞ and Borel-Cantelli says that |Xn| > n for

infinitely many n. Thus

P
(
{ω : n−1(Sn(ω)− Sn−1(ω))→ 0}

)
= 0.
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Thus, n−1Sn 6→ c ∈ R.
Most our effort will be for proving the above assuming EXi = c ∈ R. Without loss

of generality, we assume Xi ≥ 0 for all i. This is doable as we can write a general
X = X+ −X− and independence of X and Y implies independence for X+ and Y +.14

Also, we use F to denote the law of X, i.e. F (x) = P (X ≤ x).
We define Yi = Xi1Xi≤i and Tn =

∑n
i=1 Yi as bounded analogues to Xi and Sn,

so that their variance is finite. Our goal is to use both Chebyshev and Borel-Cantelli.
For any δ > 1, we can define a non-decreasing integer sequence kn = bδnc. Then,
1 ≤ kn ≤ δn < kn + 1 ≤ 2kn and k−2

n ≤ 4δ−2n and furthermore

∞∑
n=1

k−2
n 1kn≥i ≤ 4

∞∑
n=1

δ−2n1δn≥i ≤
4

i2(1− δ−2)
≤ c0i

−2 (3.3.1)

for some constant c0 > 0. We also note that
∑∞

i=k+1 i
−2 <

∫∞
k x−2dx = 1/k. By

Chebyshev’s inequality, for any t > 0, there exists a constant c1 depending on t and δ
such that

∞∑
n=1

P (|Tkn − ETkn | > tkn) ≤ c1

∞∑
n=1

k−2
n Var (Tkn) [Chebyshev]

= c1

∞∑
n=1

1

k2
n

kn∑
i=1

Var (Yi)

= c1

∞∑
i=1

Var (Yi)
∑
{kn≥i}

1

k2
n

≤ c2

∞∑
i=1

i−2EYi [Eqn 3.3.1]

= c2

∞∑
i=1

i−2

∫ i

0
x2dF (x)

= c2

∞∑
i=1

i−2

{
i−1∑
k=0

∫ k+1

k
x2dF (x)

}

≤ c3

∞∑
k=0

1

k + 1

∫ k+1

k
x2dF (x)

≤ c3

∞∑
k=0

xdF (x) = c3EXi <∞. [x/(k + 1) < 1]

And thus
∑∞

n=1 P (|Tkn − ETkn | > tkn) < ∞. Hence, by Borel-Cantelli, k−1
n |Tkn −

ETkn |
a.s.−−→ 0. Since EYn ↑ EXi, we have that k−1

n ETkn ↑ EXi and in turn that
k−1
n Tkn

a.s.−−→ EXi.

14 Check that for any measureable f, g : R → R that X and Y independent implies that f(X) and
g(Y ) are independent.
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To get back to Xi and Sn, we note that EX < ∞ if and only if
∑∞

i=0 P (X > i) <
∞.15 Thus

∑∞
i=1 P (Xi 6= Yi) =

∑∞
i=1 P (Xi > i) < ∞ and Borel-Cantelli says that

P (lim sup{Xi 6= Yi}) = 0 so for i large enough, Xi = Yi a.s. We define “large enough”
to be i > m(ω).16 Furthermore, k−1

n Sm(ω) → 0 and k−1
n Tm(ω) → 0 as n→ meaning that

the contribution of the terms where Xi and Yi may not coincide becomes negligible.
Hence, k−1

n Skn
a.s.−−→ EXi, so we have almost sure convergence of a subsequence.

Finally, since kn+1/kn → δ, there exists an n large enough such that 1 ≤ kn+1/kn <
δ2. Thus, for kn < i < kn+1,

k−1
n Skn ≤ δ2Si

i
≤ δ4k−1

n+1Skn+1 and

δ−2EXi ≤ lim inf
i→∞

Si
i
≤ lim sup

i→∞

Si
i
≤ δ2EXi.

Thus, taking δ ↓ 0 concludes the proof.

3.4 Central Limit Theorem

To discuss the central limit theorem, we must first discuss what a Gaussian random
variable is.

Definition 3.4.1 (Gaussian Measure on R). A Borel measure γ on (R,B) is said to be
Gaussian with mean m and variance σ if

γ((a, b]) =
1

σ
√

2π

∫ b

a
exp

(
− 1

2σ2
(x−m)2

)
dλ(x)

If γ = δm, a Dirac measure at m, we say γ is a degenerate Gaussian measure.

Definition 3.4.2 (Gaussian Measure on Rd). A Borel measure γ on (Rd,B) is said to
be Gaussian if for all linear functionals f : Rd → R, the induced measure γ ◦ f−1 on
(R,B) is Gaussian.

Definition 3.4.3 (Gaussian Random Variable). A random variable Z from a probability
space (Ω,F , µ) to (Rd,B) is said to be Gaussian if γ := µ ◦ Z−1 is a Gaussian measure
on (Rd,B).

For vectors u, v ∈ Rd, we define the inner product (dot product) to be 〈u, v〉 =∑d
i=1 uivi. Note that the inner product is bilinear. We also define |u|2 := 〈u, v〉. A col-

lection of random variables {Xi}∞i=1 is said to be independent and identically distributed
(iid) if Xi and Xj are independent for all i 6= j and the induced measures for each Xi

coincide.
There are many ways to prove the Central Limit Theorem, Theorem 3.4.2 below. In

these notes, we will use the standard approach based on convergence of the characteristic

15 Consider sets of the form Ik = {k < X ≤ X + 1} to show this.
16 Note that this m depends on ω ∈ Ω as for each ω there exists an m(ω) such that Xi(ω) = Yi(ω)

for all i > m(ω).

41



function. For a probability measure µ on (Rd,B), the characteristic function (Fourier
transform) µ̃ : Rd → C is defined as

µ̃(t) :=

∫
exp {i 〈x, t〉} dµ(x).

We can also invert the above transformation. That is, if µ̃ is integrable with respect to
Lebesgue measure on Rd, then

p(x) = (2π)−d
∫
µ̃(t) exp {−i 〈x, t〉} dλ(t) λ a.e.

where p(x) is the probability density function for the measure µ.
Characteristic functions determine probability measures as discussed below in The-

orem 3.4.1. First, we must define the convolution.

Definition 3.4.4 (Convolution). For two measures µ and ν on (Rd,B), the convolution
measure is defined as

(µ ∗ ν)(B) :=

∫
ν(B − x)dµ(x)

for any B ∈ B where B − x = {y ∈ Rd : y + x ∈ B}.

Note that it can be shown that the convolution operation, ∗, is associative and
commutative. Also, the characteristic function of µ∗ν is µ̃ν̃. Lastly, it can also be shown
that for two independent random variables X and Y with corresponding measures µ and
ν that the measure induced by X + Y is µ ∗ ν.

Theorem 3.4.1. Let µ and ν be probability measures on (Rd,B). If µ̃ = ν̃ then µ = ν.

Proof. Let γσ be a mean zero Gaussian measure on Rd with variance σ2I. We denote
µ(σ) = µ ∗ γσ and similarly for ν(σ). It can be shown that the corresponding density
functions for µ(σ) and ν(σ) is

p(σ)(x) = (2π)−d
∫
µ̃(t) exp

{
−i 〈t, x〉 − 1

2
σ2|t|2

}
dλ(t)

q(σ)(x) = (2π)−d
∫
ν̃(t) exp

{
−i 〈t, x〉 − 1

2
σ2|t|2

}
dλ(t).

Thus, if µ̃ = ν̃ then µ(σ) = ν(σ) for all σ > 0.
Next, we consider the limit as σ ↓ 0. Let X be a random variable corresponding

to µ and Z to γ1. Then, the measure µσ is paired with the random variable X + σZ.
Thus, X + σZ

a.s.−−→ X, that is, pointwise for almost all ω. Thus, this convergence holds
in probability and thus in distribution, i.e. µ(σ) ⇒ µ as σ ↓ 0.

Lastly, we have that µ(σ) ⇒ µ and ν(σ) ⇒ ν. Since the limit is unique µ = ν.

Theorem 3.4.2 (Central Limit Theorem). Let (Ω,F , µ) be a probability space, {Xn}∞n=1

be iid random variables on (Rd,B) such that EXn = 0 and E|Xn|2 < ∞. Let Sn =∑n
j=1Xj. Then, n−1/2Sn

d−→ Z where Z is a Gaussian random variable with zero mean
and covariance Σ with jkth entry Σjk = E[XnjXnk].
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Lemma 3.4.5. For a uniformly tight sequence of probability measures µi on Rd, if for
all v ∈ Rd µ̃i(v)→ µ̃(v), then µi ⇒ µ where µ is a measure with characteristic function
µ̃.

Proof. As the µi are uniformly tight, Prohorov’s Theorem says that every subsequence
µik has a convergence subsubsequence µikr . But all of these subsubsequences have
characteristic functions that all converge to µ̃. By uniqueness of characteristic functions,
all subsubsequences converge to the same measure µ. Thus, by Proposition 3.2.4, µi ⇒
µ.

Proof of Theorem 3.4.2. As the random vectors Xj are mean zero and independent
E 〈Xj , Xk〉 = 0, for j 6= k. In turn, for any n,

E|n−1/2Sn|2 = n−1E

 n∑
j,k=1

〈Xj , Xk〉

 = E|Xj |2.

For any ε > 0, there exists anMε > 0 such that E|Xj |2/M2
ε < ε. Thus, from Chebyshev’s

inequality, we have that P
(
|n−1/2Sn| > Mε

)
< ε. This implies that the sequence n−1/2Sn

is uniformly tight.
For a vector v ∈ Rd, the random variables 〈v,Xj〉 are iid real-valued with E 〈v,Xj〉 =

0 and E 〈v,Xj〉2 <∞. Let h(v) := E exp(i 〈v,Xj〉). Then, h(0) = 1 and ∇h(0) = 0 and
∇2h(0) = −Σ. Thus, by Taylor’s Theorem, we have

h(v) = 1− 1

2
vTΣv + o(‖v‖22).

Thus, for any fixed vector v,

E exp
{
i
〈
n−1/2Sn, v

〉}
= h(n−1/2v)n =

(
1− vTΣv

2n
+ o

[
‖v‖22
n

])n
→ exp

{
−1

2
vTΣv

}
, n→∞.

This limit is the characteristic function for Z. Thus, by applying the above lemma, we

conclude that n−1/2Sn
d−→ Z.

3.5 Ergodic Theorem

In this section, we prove two Ergodic Theorems; Birkhoff’s is for convergence almost
everywhere much like the SLLN being for almost sure convergence; von Neumann’s is for
Lp convergence. These results are very powerful and imply the SLLN from the previous
section. Roughly, the egodicity applies to dynamical systems and stochastic processes
that uniformly visit an entire space.

We first require the notion of a measure-preserving map, invariance and ergodicity.
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Definition 3.5.1 (Measure Preserving Map). Let (Ω,F , µ) be a measure space A map-
ping T : Ω→ Ω is called measure preserving if

µ(T−1(A)) = µ(A), for all A ∈ F .

Definition 3.5.2 (Invariant Set and Function). A set A ∈ F is T -invariant if T−1(A) =
A. The set of all T -invariant sets forms a σ-field FT .17

A measurable function f is invariant if f = f ◦ T . f is invariant if and only if f is
FT -measurable.18

Definition 3.5.3 (Ergodic Map). A mapping T is said to be ergodic if for any A ∈ FT ,
we have

µ(A) = 0 or µ(Ac) = 0.

For Lebesgue measure on (0, 1], two examples of measure preserving maps are the
shift map

T (x) = x+ a mod 1

and Baker’s Map19

T (x) = 2x− b2xc.

Furthermore, it can be shown that

• If f is integrable and T is measure preserving then f ◦ T is integrable and∫
fdµ =

∫
f ◦ Tdµ.

• If T is ergodic and f is invariant, then f = c µ-a.e. for some constant c.

3.5.1 Birkhoff and von Neumann’s Theorems

In what follows, we let (Ω,F , µ) be a measure space, T be a measure preserving trans-
formation, f : Ω→ R a measurable function, and

Sn = Sn(f) = f + f ◦ T + . . .+ f ◦ Tn−1

where S0 = 0.

Lemma 3.5.4 (Maximal Ergodic Lemma). Let f be integrable and S∗ = supn≥0 Sn(f).
Then, ∫

S∗>0
fdµ ≥ 0.

17 Check this!
18 Check this!
19 https://en.wikipedia.org/wiki/Baker%27s_map
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Proof. Let S∗n = max0≤m≤n Sm(f) and An = {ω ∈ Ω : S∗n(ω) > 0}. Then, for 1 ≤ m ≤
n,

Sm = f + Sm−1 ◦ T ≤ f + S∗n ◦ T.

Furthermore, on the set An,

S∗n = max
0≤m≤n

Sm(f) ≤ f + S∗n ◦ T.

On the set Acn, S∗n = 0 ≤ S∗n ◦ T. Thus, integrating both sides of the above gives∫
Ω
S∗ndµ ≤

∫
An

fdµ+

∫
Ω
S∗n ◦ Tdµ.

Since S∗n is integrable and T is measure preserving,
∫
S∗ndµ =

∫
S∗n◦Tdµ <∞. Therefore,∫

An
fdµ ≥ 0. As n→∞, An ↑ {S∗n > 0}, we have that∫

S∗>0
fdµ = lim

n→0

∫
An

fdµ ≥ 0

due to dominated convergence with |f | as the dominating function.

Theorem 3.5.1 (Birkhoff’s Ergodic Theorem). Let (Ω,F , µ) be a σ-finite measure space
and f ∈ L1(Ω,F , µ). Then, there exists an invariant f̄ ∈ L1(Ω,F , µ) such that∫

|f̄ |dµ ≤
∫
|f |dµ

and n−1Sn(f)→ f̄ as n→∞ µ-a.e.

Proof. Both lim infn→∞ n
−1Sn(f) and lim supn→∞ n

−1Sn(f) are T -invariant. Indeed,
n−1Sn(f) ◦ T = n−1[Sn+1(f)− f ] = [(n+ 1)/n](n+ 1)−1Sn+1(f)− n−1f. Thus, we can
define a set for a < b

Da,b =

{
ω ∈ Ω : lim inf

n→∞

Sn(f)

n
< a < b < lim sup

n→∞

Sn(f)

n

}
which means that the lim inf and lim sup are separated, and this set Da,b is T -invariant.
The goal of the proof is to show that µ(Da,b) = 0. Without loss of generality, we take
b > 0. Otherwise, a < 0 and we multiply everything by -1.

For some B ∈ F such that µ(B) < ∞, then we set g = f − b1B. Function g is
integrable and for each x ∈ Da,b, there is an n such that Sn(g)(x) ≥ Sn(f)(x)− nb ≥ 0
since b < lim supn→0 n

−1Sn(f). Thus, S∗(g) > 0 and the maximal Ergodic lemma 3.5.4
says that

0 ≤
∫
D

(f − b1B)dµ =

∫
D
fdµ− bµ(B).

As µ is σ-finite, there exist such a sequence of sets Bn ∈ F such that Bn ↑ Da,b and
µ(Bn) <∞ for all n. Thus,

bµ(Da,b) = lim
n→∞

bµ(Bn) ≤
∫
Da,b

fdµ.
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This implies that µ(Da,b) <∞.
Redoing the above argument for −a and −f results in −aµ(Da,b) ≤

∫
Da,b

(−f)dµ.

Therefore

bµ(Da,b) ≤
∫
Da,b

fdµ ≤ aµ(Da,b)

and since a < b, we have that µ(Da,b) = 0.
Next, let

E = {ω ∈ Ω : lim inf
n→∞

n−1Sn(f) < lim sup
n→∞

n−1Sn(f)}.

Then, E is T -invariant as the lim inf and lim sup are. Furthermore, E =
⋃
a,b∈Q,a<bDa,b.

Thus, µ(E) = 0.
This means that n−1Sn(f) converges in [−∞,∞] on Ec. Therefore, we define

f̄ :=

{
limn→∞ n

−1Sn(f) ω ∈ Ec
0 ω ∈ E .

Lastly,
∫
|f ◦ Tn|dµ =

∫
|f |dµ and thus

∫
|Sn(f)|dµ ≤ n

∫
|f |dµ for all n. Applying

Fatou’s lemma 2.3.5 gives∫
|f̄ |dµ =

∫
lim inf
n→∞

|n−1Sn(f)|dµ ≤ lim inf
n→∞

∫
|n−1Sn(f)|dµ ≤

∫
|f |dµ

finishing the proof.

Theorem 3.5.2 (von Neumann’s Ergodic Theorem). Let µ(Ω) < ∞ and p ∈ [1,∞).
Then, for all f ∈ Lp(Ω,F , µ), there exists an f̄ ∈ Lp such that n−1Sn(f)→ f̄ in Lp.

Proof. We begin by noting that

‖f ◦ Tn‖pp =

∫
|f |p ◦ Tndµ = ‖f‖pp.

By the above and Minkowski’s inequality, ‖n−1Sn(f)‖p ≤ ‖f‖p. Since f ∈ Lp, given a
ε > 0, we can choose a C > 0 such that ‖f − g‖p < ε/3 with g = min[max{−C, f}, C],
i.e. g is f bounded above and below by C and −C. By Birkhoff’s Theorem 3.5.1,
n−1Sn(g)→ ḡ µ-a.e.

Next, we note that |n−1Sn(g)| ≤ C for all n, and thus by dominated convergence20

2.3.6 there exists an N such that for all n > N ,

‖n−1Sn(g)− ḡ‖p < ε/3.

Applying Fatou’s Lemma 2.3.5 gives that

‖f̄ − ḡ‖pp =

∫
lim inf
n→∞

|n−1Sn(f − g)|pdµ ≤ lim inf
n→∞

∫
|n−1Sn(f − g)|pdµ = ‖f − g‖pp.

Thus, for n > N ,

‖n−1Sn(f)− f̄‖p ≤ ‖n−1Sn(f − g)‖p + ‖n−1Sn(g)− ḡ‖p + ‖ḡ − f̄‖p < ε.

20 Recall, µ(Ω) <∞!
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3.5.2 Law of Large Numbers, again

Let (Ω,F , P ) be a probability space with iid real-valued random variables {Xi}∞i=1 with
distribution function dF . Let (S,S) be a measurable space with S = RN, a countably
infinite product of R, and S generated by the π-system

A =

{∏
n∈N

An : An ∈ B ∀n,Am = R eventually

}
.

Let the random variable X : Ω → RN to be X(ω) = (X1(ω), X2(ω), . . .). Then, X
induces the measure

µ(A) = P ◦X−1(A) =
∏
n∈N

dF (An)

for A =
∏
An. For a sequence (x1, x2, . . .), we can define the shift map T : RN → RN to

be
T (x1, x2, . . .) = (x2, x3, . . .).

Proposition 3.5.5. The shift map is measure preserving and ergodic.

If you want to show this yourself, consider Kolmogorov’s zero-one law.21

Theorem 3.5.3 (Strong Law of Large Numbers, again). Let {Xi}∞i=1 be iid random

variables from Ω to R. If E|Xi| <∞, then Sn/n
a.s.−−→ c for c = EXi.

Proof. Let f : RN → R by taking the first coordinate, that is, f(X1, X2, . . .) = X1. Then,
for T being the shift map,

Sn = f + f ◦ T + . . .+ f ◦ Tn−1 = X1 + . . .+Xn.

Thus, Birkhoff’s Ergodic Theorem 3.5.1 says that there exists an invariant f̄ ∈ L1 such
that

n−1Sn → f̄ a.s.

Since T is ergodic, the result from the beginning of this section states that f̄ = c,
a constant, almost surely. Lastly, using von Neumann’s Ergodic Theorem 3.5.2 with
p = 1,

c =

∫
f̄dµ = lim

n→∞

∫
n−1Sn(f)dµ = EXi.

21 https://en.wikipedia.org/wiki/Kolmogorov%27s_zero%E2%80%93one_law
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