A SIMPLIFICATION OF ［1，PROOF OF THEOREM 4．1］

NIKITA A．KARPENKO

The second statement $v_{p}\left(\operatorname{rk} M_{m, D}\right)=n-m$ of［山山，Theorem 4．1］can be proved separately and without induction as follows．Since the degree of any closed point on the variety $X\left(p^{m}, D\right)$ is divisible by p^{n-m} ，we have $v_{p}\left(\operatorname{rk} M_{m, D}\right) \geq n-m$ by［ $\mathbb{\square}$ ，Lemma 2．21］．By［ \mathbb{U} ， Example 2．18］，the rank of the total motive $M\left(X\left(p^{m}, D\right)\right)$ of the generalized Severi－Brauer variety $X\left(p^{m}, D\right)$ is given by the binomial coefficient $\binom{p^{n}}{p^{m}}$ ．Therefore

$$
v_{p}\left(\operatorname{rk}\left(M\left(X\left(p^{m}, D\right)\right)\right)\right)=v_{p}\binom{p^{n}}{p^{m}}=n-m .
$$

Since by［ \mathbb{l} ，Theorem 3．8］the motive $M\left(X\left(p^{m}, D\right)\right)$ is a direct sum of shifts of $M_{l, D}$ with $l \leq m$ ，it follows that $v_{p}\left(\operatorname{rk} M_{m, D}\right)=n-m$ ．

The proof of the first statement of［辿，Theorem 4．1］ends now with the second full paragraph on Page 195．The remainder of［ \mathbb{l} ，Proof of Theorem 4．1］can be omitted．

References

［1］Karpenko，N．A．Upper motives of algebraic groups and incompressibility of Severi－Brauer varieties． J．Reine Angew．Math． 677 （2013），179－198．

Mathematical \＆Statistical Sciences，University of Alberta，Edmonton，CANADA
Email address：karpenko＠ualberta．ca
URL：www．ualberta．ca／～karpenko

Date： 7 Mar 2024.

