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The second statement vp(rkMm,D) = n−m of [1, Theorem 4.1] can be proved separately
and without induction as follows. Since the degree of any closed point on the variety
X(pm, D) is divisible by pn−m, we have vp(rkMm,D) ≥ n−m by [1, Lemma 2.21]. By [1,
Example 2.18], the rank of the total motive M(X(pm, D)) of the generalized Severi-Brauer
variety X(pm, D) is given by the binomial coefficient
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Since by [1, Theorem 3.8] the motive M(X(pm, D)) is a direct sum of shifts of Ml,D with
l ≤ m, it follows that vp(rkMm,D) = n−m.
The proof of the first statement of [1, Theorem 4.1] ends now with the second full

paragraph on Page 195. The remainder of [1, Proof of Theorem 4.1] can be omitted.
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