Canonical Dimension
of (semi-)spinor Groups of Small Ranks

Nikita A. Karpenko

Abstract: We show that the canonical dimension $\text{cd} \text{Spin}_{2n+1}$ of the spinor group Spin_{2n+1} has an inductive upper bound given by $n + \text{cd} \text{Spin}_{2n-1}$. Using this bound, we determine the precise value of $\text{cd} \text{Spin}_n$ for all $n \leq 16$ (previously known for $n \leq 10$). We also obtain an upper bound for the canonical dimension of the semi-spinor group $\text{cd} \text{Spin}_n^\sim$ in terms of $\text{cd} \text{Spin}_{n-2}$. This bound determines $\text{cd} \text{Spin}_n^\sim$ for $n \leq 16$; for any n, assuming a conjecture on the precise value of $\text{cd} \text{Spin}_{n-2}$, this bound determines $\text{cd} \text{Spin}_n^\sim$.

Keywords: Algebraic groups, projective homogeneous varieties, Chow groups.

1. Introduction

Let X be a smooth algebraic variety over a field F. A field extension L/F is called a splitting field of X, if $X(L) \neq \emptyset$. A splitting field E of X is called generic, if it has an F-place $E \rightarrow L$ to any splitting field L of X. Given a prime number p, a splitting field E of X is called p-generic, if for any splitting field L of X there exists an F-place $E \rightarrow L'$ to some finite extension L'/L of degree prime to p. Note that since X is smooth, the function field $F(X)$ is a generic splitting field of X; besides, any generic splitting field of X is p-generic for any p.

Received May 30, 2006.

2000 Mathematical Subject Classifications: 14L17; 14C25.
Supported by the Max-Planck-Institut für Mathematik in Bonn.
The canonical dimension $\text{cd}(X)$ of the variety X is defined as the minimum of $\text{tr. deg}_F E$, where E runs over the generic splitting fields of X; the canonical p-dimension $\text{cd}_p(X)$ of X is defined as the minimum of $\text{tr. deg}_F E$, where E runs over the p-generic splitting fields of X. For any p, one evidently has $\text{cd}_p(X) \leq \text{cd}(X)$.

Let G be an algebraic group over F. The notion of canonical dimension $\text{cd}(G)$ of G is introduced in [1]: $\text{cd}(G)$ is the maximum of $\text{cd}(T)$, where T runs over the G-torsors over all field extensions K/F. The notion of canonical p-dimension $\text{cd}_p(G)$ of G is introduced in [3]: $\text{cd}_p(G)$ is the maximum of $\text{cd}_p(T)$, where T runs over the G-torsors over all field extensions K/F. For any p, one evidently has $\text{cd}_p(G) \leq \text{cd}(G)$.

A recipe of computation of $\text{cd}_p(G)$ for an arbitrary p and an arbitrary split simple algebraic group G is given in [3]; the value of $\text{cd}_p(G)$ is determined there for all G of classical type (the remaining types are treated in [4]).

Let G be a split simple algebraic group over F and let p be a prime. As follows from the definition of the canonical p-dimension, $\text{cd}_p(G) \neq 0$ if and only if p is a torsion prime of G. It is shown in [2], that $\text{cd}(G) = \text{cd}_p(G)$ for any G possessing a unique torsion prime p with the exception of the case where G is a spinor or a semi-spinor group.

According to [3], for any $n \geq 1$ one has

$$\text{cd}_2(\text{Spin}_{2n+1}) = \text{cd}_2(\text{Spin}_{2n+2}) = n(n+1)/2 - 2^l + 1,$$

where l is the smallest integer such that $2^l \geq n + 1$ (the prime 2 is the unique torsion prime of the spinor group). As shown in [1], $\text{cd}(\text{Spin}_{2n+1}) = \text{cd}(\text{Spin}_{2n+2})$ for any n and $\text{cd}(\text{Spin}_n) = \text{cd}_2(\text{Spin}_n)$ for all $n \leq 10$.

We note that the Spin$_{10}$-torsors are related to the 10-dimensional quadratic forms of trivial discriminant and trivial Clifford invariant, and that the value of $\text{cd}(\text{Spin}_{10})$ is obtained due to a theorem of Pfister on those quadratic forms.

In [2], an upper bound on $\text{cd}(\text{Spin}_{2n+1})$ given by $n(n - 1)/2$ is established. If $n + 1$ is a power of 2, this upper bound coincides with the lower bound given by the known value of $\text{cd}_2(\text{Spin}_{2n+1})$. Therefore $\text{cd}(\text{Spin}_n) = \text{cd}_2(\text{Spin}_n)$, if n or $n + 1$ is a 2 power.

In the current note, we establish for an arbitrary n the following inductive upper bound on $\text{cd}(\text{Spin}_{2n+1})$ (see Theorem 2.2):

$$\text{cd}(\text{Spin}_{2n+1}) \leq n + \text{cd}(\text{Spin}_{2n-1}).$$

This bound together with the computation of $\text{cd}(\text{Spin}_n)$ for $n \leq 10$, cited above, shows (see Corollary 2.4) that $\text{cd}(\text{Spin}_n) = \text{cd}_2(\text{Spin}_n)$ for any $n \leq 16$ (the really new cases are $n \in \{11, 12, 13, 14\}$). More generally, if $\text{cd}(\text{Spin}_{2m+1}) = \text{cd}_2(\text{Spin}_{2m+1})$ for some positive integer m, then our inductive bound shows that
\(\mathfrak{c}(\text{Spin}_n) = \mathfrak{c}_2(\text{Spin}_n) \) for any \(n \) lying in the interval \([2^m + 1, 2^{m+1}]\) (see Corollary 2.3).

Note that \(\mathfrak{c}_2(\text{Spin}_{2n+1}) = \mathfrak{c}_2(\text{Spin}_{2n}) \). Therefore the crucial statement needed for a further progress on \(\mathfrak{c}(\text{Spin}_n) \) is the statement that \(\mathfrak{c}(\text{Spin}_{17}) = \mathfrak{c}(\text{Spin}_{16}) \). As mentioned above, the similar equality \(\mathfrak{c}(\text{Spin}_9) = \mathfrak{c}(\text{Spin}_8) \), concerning the previous 2 power, is a consequence of the Pfister theorem.

We finish the introduction by discussing the semi-spinor group \(\text{Spin}_n^\sim \). Here \(n \) is a positive integer divisible by 4. To see the parallels with the spinor case, it is more convenient to speak on \(\text{Spin}_{2n+2}^\sim \) with \(n \) odd. The lower bound on \(\mathfrak{c}_2(\text{Spin}_{2n+2}^\sim) \) given by the canonical 2-dimension (the prime 2 is the unique torsion prime of the semi-spinor group) is calculated in [3] as

\[
\mathfrak{c}_2(\text{Spin}_{2n+2}^\sim) = \frac{n(n+1)}{2} + 2^k - 2^l,
\]

where \(k \) is the largest integer such that \(2^k \) divides \(n+1 \) (and \(l \) is still the smallest integer with \(2^l \geq n+1 \)). The upper bound \(\mathfrak{c}(\text{Spin}_{2n+2}^\sim) \leq \frac{n(n-1)}{2} + 2^k - 1 \), established in [2], shows that the canonical 2-dimension is the value of the canonical dimension if \(n+1 \) is a power of 2. In particular, \(\mathfrak{c}(\text{Spin}_n^\sim) = \mathfrak{c}_2(\text{Spin}_n) \) for \(n \in \{4, 8, 16\} \).

In the current note we establish the following general upper bound on the canonical dimension of the semi-spinor group in terms of the canonical dimension of the spinor group (see Theorem 3.1):

\[
\mathfrak{c}(\text{Spin}_{2n+2}^\sim) \leq n - 1 + 2^k + \mathfrak{c}(\text{Spin}_{2n})
\]

(with \(k \) as above). This bound together with the computation of \(\mathfrak{c}(\text{Spin}_{10}) \) shows (see Corollary 3.3) that \(\mathfrak{c}(\text{Spin}_{12}) = \mathfrak{c}_2(\text{Spin}_{12}^\sim) = 11 \); therefore the formula \(\mathfrak{c}(\text{Spin}_n) = \mathfrak{c}_2(\text{Spin}_n^\sim) \) holds for all \(n \leq 16 \) (where the only new case is \(n = 12 \)).

In general, if \(\mathfrak{c}(\text{Spin}_{2n}) = \mathfrak{c}_2(\text{Spin}_{2n}) \) for some (odd) \(n \), then our upper bound on \(\mathfrak{c}(\text{Spin}_{2n+2}^\sim) \) shows that \(\mathfrak{c}(\text{Spin}_{2n+2}^\sim) = \mathfrak{c}_2(\text{Spin}_{2n+2}^\sim) \) for this \(n \) (see Corollary 3.2).

2. The spinor group

Our main tool is the following general observation made in [2]. Let \(G \) be a split semisimple algebraic group over a field \(F \), \(P \) a parabolic subgroup of \(G \), \(P' \) a special parabolic subgroup of \(G \) sitting inside of \(P \). Saying special, we mean that any \(P' \)-torsor over any field extension \(K/F \) is trivial.

For any \(G \)-torsor \(T \) over \(F \), let us write \(\mathfrak{c}'(T/P) \) for \(\min\{\dim X\} \), where \(X \) runs over all closed subvarieties of the variety \(T/P \) admitting a rational morphism \(F(T/P') \to X \).
Lemma 2.1 ([2, lemma 5.3]). In the above notation, one has
\[\text{cd}(T) \leq \text{cd}'(T/P) + \max_Y \text{cd}(Y), \]
where \(Y \) runs over all fibers of the projection \(T/P' \to T/P \).

In this section, we apply Lemma 2.1 in the following situation: \(G = \text{Spin}_{2n+1} = \text{Spin}(\varphi) \), where \(\varphi : F^{2n+1} \to F \) is a split quadratic form; \(P \) is the stabilizer of a rational point \(x \) under the standard action of \(G \) on the variety of 1-dimensional totally isotropic subspaces of \(\varphi \); \(P' \subset P \) is the stabilizer of a rational point \(x' \), lying over \(x \), under the standard action of \(G \) on the variety of parabolics consisting of a 1-dimensional totally isotropic subspace sitting inside of an \(n \)-dimensional (maximal) totally isotropic subspace of \(\varphi \).

The parabolic subgroup \(P' \) of \(G \) is clearly special.

Let \(T \) be a \(G \)-torsor over \(F \) and let \(\psi : F^{2n+1} \to F \) be a quadratic form such that the similarity class of \(\psi \) is the class corresponding to \(T \) in the sense of [3, §8.2]. Note that the even Clifford algebra of \(\psi \) is trivial.

The algebraic variety \(T/P \) is identified with the projective quadric of \(\psi \); in particular, \(\dim(T/P) = 2n - 1 \). The variety \(T/P' \) is identified with the variety of flags consisting of a 1-dimensional totally isotropic subspace sitting inside of an \(n \)-dimensional (maximal) totally isotropic subspace of \(\psi \). The morphism \(T/P' \to T/P \) is identified with the natural projection of the flag variety onto the quadric.

Let \(X \subset T/P \) be an arbitrary subquadric of dimension \(n \) (\(X \) is the quadric of the restriction of \(\psi \) onto an \((n + 2) \)-dimensional subspace of \(F^{2n+1} \)). Since over the function field \(F(T/P') \) the quadratic form \(\psi \) becomes split, the variety \(X_{F(T/P')} \) has a rational point, or, in other words, there exists a rational morphism \(T/P' \dashrightarrow X \). Therefore \(\text{cd}'(T/P) \leq \dim X = n \).

Any fiber \(Y \) of the projection \(T/P' \to T/P \) is the variety of \(n \)-dimensional (maximal) totally isotropic subspaces of \(\psi \), containing a fixed 1-dimensional subspace \(U \). The latter variety is identified with the variety of \((n - 1) \)-dimensional (maximal) totally isotropic subspaces of the quotient \(U^\perp/U \). Note that we have \(\dim U^\perp/U = 2n - 1 \); besides, the quadratic form on \(U^\perp/U \), induced by the restriction of \(\psi \), is Witt-equivalent to \(\psi \) and, in particular, its even Clifford algebra is trivial. Since \(\text{cd}(\text{Spin}_{2n-1}) \) is the maximum of the canonical dimension of the variety of maximal totally isotropic subspaces of a \((2n - 1) \)-dimensional quadratic forms with trivial even Clifford algebra, it follows that \(\text{cd}(Y) \leq \text{cd}(\text{Spin}_{2n-1}) \).

Applying Lemma 2.1, we get our main inequality for the spinor group:

Theorem 2.2. For any \(n \), one has \(\text{cd}(\text{Spin}_{2n+1}) \leq n + \text{cd}(\text{Spin}_{2n-1}) \). \(\blacksquare \)
Corollary 2.3. Assume that \(c_0(\text{Spin}_{2m+1}) = c_0(\text{Spin}_{2m+1})\) for some positive integer \(m\). Then \(c_0(\text{Spin}_n) = c_0(\text{Spin}_n)\) for any \(n\) lying in the interval \([2^m + 1, 2^{m+1}]\).

Proof. Let \(n\) be such that \(2n \pm 1 \in [2^m, 2^{m+1}]\) and \(c_0(\text{Spin}_{2n-1}) = c_0(\text{Spin}_{2n-1})\). Then

\[
c_0(\text{Spin}_{2n+1}) \leq n + c_0(\text{Spin}_{2n-1}) = n + n(n - 1)/2 - 2^m + 1 = n(n + 1)/2 - 2^m + 1 = c_0(\text{Spin}_{2n+1}) \leq c_0(\text{Spin}_{2n+1}).
\]

Consequently, \(c_0(\text{Spin}_{2n+1}) = c_0(\text{Spin}_{2n+1})\).

Since \(c_0(\text{Spin}_n) = c_0(\text{Spin}_n)\) for \(n \leq 10\) (see [1, example 12.2]), the assumption of Corollary 2.3 holds for \(m = 3\), and we get

Corollary 2.4. The equality \(c_0(\text{Spin}_n) = c_0(\text{Spin}_n)\) holds for any \(n \leq 16\). □

3. The semi-spinor group

In this section, we apply Lemma 2.1 in the following situation: \(G = \text{Spin}_{2n+2} = \text{Spin}^\sim(\varphi)\), where \(\varphi : F^{2n+2} \to F\) is a hyperbolic quadratic form; \(P\) is the stabilizer of a rational point \(x\) under the standard action of \(G\) on the variety of 1-dimensional totally isotropic subspaces of \(\varphi\); \(P' \subset P\) is the stabilizer of a rational point \(x'\), lying over \(x\), under the standard action of \(G\) on the scheme of flags consisting of a 1-dimensional totally isotropic subspace sitting inside of an \((n + 1)\)-dimensional (maximal) totally isotropic subspace of \(\varphi\).

The parabolic subgroup \(P'\) of \(G\) is clearly special.

Let \(T\) be a \(G\)-torsor over \(F\) and let \(\pi\) be a quadratic pair on a degree \(2n + 2\) central simple \(F\)-algebra \(A\) such that the isomorphism class of \(\pi\) corresponds to \(T\) in the sense of [3, §8.4]. Note that the discriminant and a component of the Clifford algebra of \(\pi\) are trivial.

The quotient \(T/P\) is identified with the variety of rank 1 isotropic ideals of \(\pi\); in particular, \(\dim(T/P) = 2n\). The quotient \(T/P'\) is identified with a component of the scheme of flags consisting of a rank 1 ideal sitting inside of a rank \((n + 1)\) (maximal) isotropic ideal of \(\pi\). The morphism \(T/P' \to T/P\) is identified with the natural projection.

The index of the degree \(2n + 2\) central simple algebra \(A\) is a 2 power dividing \(2n + 2\). Therefore \(A\) is Brauer-equivalent to a central simple algebra \(A'\) of degree \(n + 1 + 2^k\), where \(k\) is the largest integer such that \(2^k\) divides \(n + 1\). Let \(\pi'\) be the adjoint quadratic pair on \(A'\) and let \(X\) be the variety of rank 1 isotropic
ideals of π'. The variety X is a closed subvariety of the quotient T/P. Over the function field $F(T/P')$ the variety T/P becomes a hyperbolic quadric and the closed subvariety X becomes its subquadric; since $\dim X > \dim(T/P)$, the variety $X_{F(T/P')}$ has a rational point, or, in other words, there exists a rational morphism $T/P' \dashrightarrow X$. Therefore $\cd'(T/P) \leq \dim X = n - 1 + 2^k$.

Let y be a point of T/P. The algebra $A_{F(y)}$ is isomorphic to the algebra of $(2n + 2) \times (2n + 2)$ matrices over $F(y)$. Let $\psi : F(y)^{2n+2} \rightarrow F(y)$ be the adjoint quadratic form. Note that the discriminant and the Clifford algebra of ψ are trivial.

The fiber Y of the projection $T/P' \rightarrow T/P$ over the point y is a component of the scheme of rank $n + 1$ (maximal) isotropic ideals of π, containing a fixed rank 1 isotropic ideal. Therefore Y is identified with a component of the scheme of $(n + 1)$-dimensional (maximal) totally isotropic subspaces of ψ, containing a fixed 1-dimensional subspace U. The latter variety is identified with a component of the scheme of n-dimensional (maximal) totally isotropic subspaces of the quotient U^1/U. Note that $\dim U^1/U = 2n$; besides, the quadratic form on U^1/U, induced by the restriction of ψ, is Witt-equivalent to ψ and, in particular, its discriminant and Clifford algebra are trivial.

Since $\cd(Spin_{2n})$ is the maximum of the canonical dimension of a component of the scheme of maximal totally isotropic subspaces of a $2n$-dimensional quadratic form with trivial discriminant and Clifford algebra, it follows that $\cd(Y) \leq \cd(Spin_{2n})$. Applying Lemma 2.1, we get our main inequality for the semi-spinor group:

Theorem 3.1. For any odd n, one has $\cd(Spin^{\sim}_{2n+2}) \leq n - 1 + 2^k + \cd(Spin_{2n})$. □

Corollary 3.2. Assume that $\cd(Spin_{2n}) = \cd_2(Spin_{2n})$ for some odd n. Then

$$\cd(Spin^{\sim}_{2n+2}) = \cd_2(Spin^{\sim}_{2n+2})$$

for this n.

Proof. Let l be the smallest integer such that $2^l \geq n + 1$. Since n is odd, l is also the smallest integer such that $2^l \geq n$, therefore $\cd(Spin_{2n}) = \cd_2(Spin_{2n}) = n(n - 1)/2 - 2^l + 1$. By Theorem 3.1 we have

$$\cd(Spin^{\sim}_{2n+2}) \leq (n - 1 + 2^l) + (n(n - 1)/2 - 2^l + 1) = n(n + 1)/2 + 2^k - 2^l = \cd_2(Spin^{\sim}_{2n+2}) \leq \cd(Spin^{\sim}_{2n+2}).$$

Consequently, $\cd(Spin^{\sim}_{2n+2}) = \cd_2(Spin^{\sim}_{2n+2})$. □
Since the assumption of Corollary 3.2 holds for \(n \leq 8 \) (see Corollary 2.4), we get

Corollary 3.3. The equality \(c_d(\text{Spin}_n) = c_d(\text{Spin}_n^\sim) \) holds for any \(n \leq 16 \). \(\square \)

References

Nikita A. Karpenko
Institute de Mathématiques de Jussieu
Université Pierre et Marie Curie - Paris 6
4 place Jussieu
F-75252 Paris CEDEX 05
FRANCE
Web page: www.math.jussieu.fr/~karpenko
E-mail: karpenko@euler.univ-artois.fr