
ON GENERIC FLAG VARIETIES FOR ODD SPIN GROUPS

NIKITA A. KARPENKO

Abstract. For the spin group G = Spin2n+1 with arbitrary n, a generic G-torsor E
over a field, and a parabolic subgroup P ⊂ G, we consider the generic flag variety E/P
and describe its Chow ring modulo torsion. This description determines the index of
E/P , completing results of [3], where the index has been determined for most P .
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1. Introduction

We consider the split spin group G = Spin2n+1 with arbitrary n ≥ 1 over an arbitrary
field. However, numerous definitions and statements below are valid for an arbitrary
semisimple group G∗. We do formulate them for G∗ but we need them in the case G∗ = G
only.
A generic G∗-torsor E can be defined as the generic fiber of the quotient map

GL(N) → GL(N)/G∗

given by any embedding of G∗ into a general linear group GL(N) with some N . Of course,
different choices of the embedding produce different E. However, our object of interest –
the Chow ring CH(E/P ) for a fixed parabolic subgroup P ⊂ G∗ – is canonic, [9, Lemma
2.1].
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Understanding CH(E/P ) allows one, in particular, to compute the index ind(E/P ) –
the greatest common divisor of degrees of closed points on the variety E/P . In fact, it is
enough to know the quotient C̄H(E/P ) of the ring CH(E/P ) by the ideal of the elements
of finite order.
Let us fix an extension field F̄ of the base field F of E trivializing E (e.g., an alge-

braic closure). Since the Chow ring of the cellular variety G∗/P is not affected by base
field extensions, the change of field homomorphism CH(G∗/P ) → CH(G∗/P )F̄ is an iso-
morphism. Choosing a trivialization of the G∗-torsor EF̄ , we identify CH(E/P )F̄ with
CH(G∗/P )F̄ . Since G∗ acts trivially on CH(G∗/P ) (see [7, Corollary 4.2]), the identifica-
tion is canonical, i.e., does not depend on the choice of trivialization. Summarizing, we
get a homomorphism

CH(E/P ) → CH(G∗/P ).

Since its kernel is exactly the ideal of torsion elements, it identifies C̄H(E/P ) with a
subring in CH(G∗/P ).
For G∗ any split spin group, the indexes ind(E/P ) have been computed in [3] for many

P . The starting point there was the upper bound on C̄H(E/P ) given by the image of the
homomorphism

S(T̂ )W → CH(G/P ),

defined in [3, Remark 2.3] for arbitrary G∗, where T ⊂ P is a split maximal torus, T̂ is

the group of characters of T endowed with the action of the Weyl group W of P , S(T̂ ) is

the symmetric ring, and S(T̂ )W is its subring of the W -invariant elements.

There is a natural ring homomorphism CH(BP ) → S(T̂ )W and a natural surjective
ring homomorphism CH(BP ) →→ CH(E/P ) (see [3, §2]), both departing from the Chow
ring CH(BP ) of the classifying space BP of P (see [14]). The precise value of C̄H(E/P )
is given by the image of the composition

CH(BP ) → S(T̂ )W → CH(G/P )

simply because it coincides with the composition

CH(BP ) →→ CH(E/P ) → CH(G/P ).

Unfortunately, in most cases, we do not understand the Chow ring CH(BP ) well enough.
Its description for G∗ a split spin group involves the ring CH(B Spinl) for certain l, which
is mysterious and complicated if l > 8. (For l < 7, CH(B Spinl) is well understood;
descriptions for l = 7 and l = 8 are given in [6] and [13].) By this reason, a precise
determination of C̄H(E/P ) for general P seemed to be out of reach.

Quite surprisingly, for G∗ = G (our odd split spin group), it turns out that the above
upper bound coincides with C̄H(E/P )! We will prove it here by listing certain generators

for the ring S(T̂ )W and then showing that their images are in C̄H(E/P ) (for a non-
related to CH(BP ) reason: they turn out to be Chern classes of certain elements in the
Grothendieck group of E/P ). This way we get a very handy system of generators for the
ring C̄H(E/P ) and remove the hindrance to computation of ind(E/P ) for arbitrary P .
Note that if G∗ is an even spin group Spin2n, the upper bound on C̄H(E/P ) given by

S(T̂ )W differs from C̄H(E/P ) for most n and P . This makes the case of even spin groups
more complicated and so far unsolved.
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Our main result here is Theorem 3.6 describing C̄H(E/P ) in the case of G∗ = G and
maximal P . (The study of CH(E/P ) and determination of ind(E/P ) for arbitrary P is
easily reduced to the case of maximal P , see [3].) The description is particularly simple
in the situation of Corollary 3.7, explaining and providing a more conceptual proof for [3,
Theorem 4.2].
Theorem 4.1 is the second main result. It gives a formula and an algorithm for deter-

mination of the indexes: in every concrete case the concrete value can be then calculated
by computer (having enough computer time and power).

As an example of application of Theorem 4.1, we do the calculation in some cases.
To formulate the answers, let us first recall that the conjugacy classes of maximal para-
bolic subgroups in G are indexed by the n vertices of the Dynkin diagram of G. Given
m ∈ {1, . . . , n}, we write Pm for the mth standard maximal parabolic subgroup in the
standard realization of G = Spin2n+1 as in [3, §4] and we write Xm for the variety E/Pm.
The G-torsor E yields a non-degenerate (2n + 1)-dimensional quadratic form q of triv-
ial discriminant and Clifford invariant. The variety Xm is identified with the variety of
m-dimensional totally isotropic subspaces of q. In particular, X1 is the projective quadric.
Let us mention that the index of the highest orthogonal grassmannian Xn is computed

in [15]. For all m, the indexes ind(Xm) have been computed so far for n ≤ 7 (i.e.,
dim q < 17) only (see [8]). In §5 and §7, this boundary is pushed further away. As a
byproduct, we also get some new information on the even spin group Spin18 and Spin20

(see §6 and §8).

2. Invariants

We continue to consider the odd split spin group G = Spin2n+1 with some n ≥ 1.
We fix some m ∈ {1, . . . , n} and look at the mth standard maximal parabolic subgroup
P = Pm ⊂ G. The standard split maximal torus T of G is contained in P := Pm. In
order to determine S(T̂ )W , where W is the Weyl group of P , we need a modification of
[3, Proposition 3.3].
We consider the polynomial ring R = Z[x1, . . . , xm, y1, . . . , yl] over the integers Z in the

variables x1, . . . , xm and y1, . . . , yl, where m + l = n. Let A := (Z/2Z)×l be the direct
product of l copies of the group Z/2Z acting on R as follows: for any i = 1, . . . , l, the ith
copy of Z/2Z acts by changing the sign of yi and trivially on the remaining variables.

Instead of A, considered in [3, Proposition 3.3], we are going to work with larger groups.
We start with the Weyl group W ′ of the spin group Spin2l+1 which is a semidirect product
of A and the symmetric group Sl. The action of W ′ on R we are interested in is the
(unique) extension of the action of A, defined above, and the action of Sl by permutation
of y1, . . . , yl. We will also consider the action of Sm by permutation of x1, . . . , xm and the
resulting action of W = Sm×W ′ on R. The latter action extends (uniquely) to an action
of W on R[z], where – as in [3, §3] – R[z] is an R-algebra with a generator z subject to
the relation

2z = x1 + · · ·+ xm + y1 + · · ·+ yl.

The ring S(T̂ ) is identified with R[z] and the action of the Weyl group W of P on S(T̂ )
is the action of W on R[z] just defined.
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As in [3, §3], we define an element z̃ ∈ R[z]A as the product of all elements in the
A-orbit of z. Since the A-orbit of z coincides with its W -orbit, the element z̃ is actually
W -invariant.
We borrow from [3, §3] the construction of A-invariant elements fk ∈ R[z], k ≥ 0. We

set
f0 := 2z − y1 − · · · − yl = x1 + · · ·+ xm ∈ RA.

Assume that for some k > 0 the element fk is already constructed and has the shape

(2.1) fk = 2z · gk + a1 + · · ·+ as,

where gk is a polynomial with integer coefficients in z, y1, . . . , yl and where a1, . . . , as for
some s ≥ 0 are monomials in y1, . . . , yl. Then we define fk+1 as one half of the difference

(2.2) f 2
k − (a21 + · · ·+ a2s) = 2

(
2z
(
zg2k + (a1 + · · ·+ as)gk

)
+

∑
i<j

aiaj

)
.

Note that the new element fk+1 has the shape (2.1) allowing to continue the procedure.

Lemma 2.3. For any k ≥ 0, the element fk is W -invariant.

Proof. By construction, the element fk is in the subring Z[z, y1, . . . , yl] ⊂ R[z]Sm . There-
fore, fk is Sm-invariant. Since fk is A-invariant as well, it remains to check that fk is
Sl-invariant.

The element f0 = x1 + · · · + xm is Sl-invariant. So, let us assume fk is Sl-invariant
for some k ≥ 0 and let us then check that fk+1 is also Sl-invariant. To do this, we view
Z[z, y1, . . . , yl] as a polynomial ring in z over Z[y1, . . . , yl]. Note that z is an independent
generator and Sl acts trivially on z. So, a polynomial in Z[z, y1, . . . , yl] = Z[y1, . . . , yl][z]
is Sl-invariant if and only if all its coefficients are. From the formula (2.1) we see that
the sum a1 + · · · + as is the constant term of the polynomial fk. Therefore this sum is
Sl-invariant. Now it follows by formula (2.2) that fk+1 is also Sl-invariant. �
Proposition 2.4. The RW -algebra R[z]W is generated by the elements f1, . . . , fl−1, z̃.

Proof. As a first step, acting as in the proof of [3, Proposition 6.1], we prove that the

Z[x1 + · · ·+ xm, y1, . . . , yl]
W ′

-algebra Z[y1, . . . , yl][z]W
′

is generated by the indicated elements. As a second (and final) step we apply [11, Lemma
8.1]. �

3. Images of invariants

We continue using the settings of §2. We also let B ⊂ G be the standard Borel subgroup;
we have T ⊂ B ⊂ P .

We are going to prove that the image in CH(G/P ) of S(T̂ )W lies in

C̄H(Xm) = C̄H(E/P ) ⊂ CH(G/P ).

We start with the easiest part of S(T̂ )W whose image is in the subring C ⊂ C̄H(E/P )
generated by the Chern classes of the tautological (rank m) vector bundle T on Xm.
Note that one can also view or define T as the tautological vector bundle on the split
orthogonal grassmannian G/P .
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Proposition 3.1. The image in CH(G/P ) of RW ⊂ S(T̂ )W lies in C ⊂ C̄H(E/P ).

Proof. The images of x1, . . . , xm in CH(G/B) are the roots of the vector bundle T (pulled
back to G/B along the projection G/B → G/P ). The roots of the vector bundle T⊥,
given by the orthogonal complement, are the images of x1, . . . , xm along with the images
of ±y1, . . . ,±yl and 0. Finally, the roots of the trivial vector bundle V given by the
vector space of definition of q are the images of all ±x1, . . . ,±xm, ±y1, . . . ,±yl, and 0 all
together. (Concerning the root 0, see [4, Proof of Proposition 86.13].)
The ring RW is easily seen to be generated by the elementary symmetric polynomials in

x1, . . . , xm together with the elementary symmetric polynomials in y21, . . . , y
2
l . The images

in CH(G/P ) of the first ones are the Chern classes of T . The images of the second ones
are the Chern classes of the quotient T⊥/T . The isomorphism V/T⊥ = T∨, where T∨ is
the dual vector bundle, shows that the Chern classes of T⊥ are polynomials in the Chern
classes of T . �
Proposition 3.2. For any i ≥ 0, the images in CH(G/P ) of fi ∈ S(T̂ )W also lie in
C ⊂ C̄H(E/P ).

Proof. The pull-back ring homomorphism CH(G/P ) → CH(G/B) is injective and the
quotient

CH(G/B)/CH(G/P )

is a free abelian group (see [3, Proof of Lemma 2.2]).
The variety G/B is the variety of complete flags of totally isotropic subspaces of q.

Let CB ⊂ CH(G/B) be the subring generated by the Chern classes of all (from rank
1 to rank n) tautological vector bundles on G/B. Then C is a subring of CB and the
quotient CB/C is also a free abelian group. The claim on the quotient can be shown by
identifying respectively C and CB with the Chow rings of the two varieties: the variety Ym

of m-dimensional totally isotropic subspaces and the variety Y of complete flags of totally
isotropic subspaces of a (2n)-dimensional non-degenerate alternating bilinear form (see
[10, Remark 2.6] and Remark 3.3): there is such an identification for which the respective
Chern classes of the respective tautological vector bundles correspond to each other. The
quotient CH(Y )/CH(Ym) is free abelian by the argument of [3, Proof of Lemma 2.2] once
again.

It has been shown in [3, Lemma 3.5] that for every i ≥ 0, the image in CH(G/B) of fi
is in CB. Since 2ifi ∈ R, the image of 2ifi is in C. It follows that the image of fi is in
C. �
Remark 3.3 (Geometric interpretation of the homomorphism CH(Ym) → C, cf. [15,
§4]). The existence of the isomorphism CH(Ym) = C, used in the above proof, is justified
in [10, Remark 2.6] by information about relations on the generators. So, its geometric
construction, described below is not actually needed (but still interesting to look at). Note
that both rings are independent of the base field and, in particular, of its characteristic.
In characteristic 2, defining Ym by the associated (alternating) bilinear form b of q on the
vector space V modulo the (1-dimensional) radical Rad(b) ⊂ V , we get a morphism of
varieties Xm → Ym, mapping every m-dimensional totally isotropic subspace of V (viewed
as a point of Xm) to its image in the quotient V/Rad(b) (which is anm-dimensional totally
isotropic subspace giving a point of Ym). Since T is the pull-back of the tautological vector
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bundle T ′ on Ym and since the Chow ring of Ym is generated by the Chern classes of T ′,
the pull-back homomorphism CH(Ym) → CH(Xm) lands in C ⊂ CH(Xm) and is the one
we are looking for.

Proposition 3.4. The image in CH(G/P ) of the generator z̃ ∈ S(T̂ )W lies in C̄H(E/P ).

Proof. Since the group G is simply connected, the Grothendieck group K(E/P ) coincides
with K(G/P ), [12].

The following considerations are valid for a split maximal torus T contained in a Borel
subgroup B of any split semisimple group G∗ in place of G. We will use them in our case
with G∗ = G.
Let us consider the group ring Z[T̂ ]. Since the addition in T̂ becomes multiplication

in Z[T̂ ], we use the exponential notation χ ∈ T̂ 7→ exp(χ) ∈ Z[T̂ ] for the embedding

T̂ ↪→ Z[T̂ ]. Any character χ ∈ T̂ extends uniquely to B and determines a line bundle on
the variety G∗/B, see [2, §1.5]. There is a (surjective) ring homomorphism

Z[T̂ ] → K(G∗/B),

mapping the exponent exp(χ) ∈ Z[T̂ ] of any character χ ∈ T̂ to the class of the line
bundle on G∗/B given by χ. Restricting to the W -invariants, where W is the Weyl group
of a parabolic subgroup P ⊃ B, we get a ring homomorphism

Z[T̂ ]W → K(G∗/P ) ⊂ K(G∗/B).

Now we return to G∗ = G. The image in CH(G/P ) of the generator z̃ is the 2lth Chern
class of the image in K(E/P ) = K(G/P ) of the element∑

I⊂{1,...,l}
exp(z −

∑
i∈I

yi) ∈ Z[T̂ ]W . �

Remark 3.5. Propositions 3.1, 3.2, and 3.4 show that the ring C̄H(E/P ) is generated by
Chern classes (of elements of K(E/P )). Actually, RW and z̃ are already in the subring

of S(T̂ )W generated by Chern classes (of elements of Z[T̂ ]W ). However, in the process of
showing that the images of f1, . . . , fl−1 are in C, certain relations are used which occur
only after S(T̂ )W is mapped to C̄H(E/P ).

The ring C (which depends only on n) is well understood. In particular, the relations
on its generators – the Chern classes (or rather the Segre classes) of T – are well known
(see, e.g., [10]). As we just proved,

Theorem 3.6. The C-algebra C̄H(E/P ) is generated by the image of z̃ in C̄H
2l
(E/P ).

�

The index ind(E/P ) has been computed in [3] in the situation where 2l > dim(E/P ).
This situation is simpler by the following reason:

Corollary 3.7. We have C̄H(E/P ) = C provided that 2l > dim(E/P ). �
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4. How to compute ind(Xm)

We keep notation of the previous section and provide an algorithm computing ind(Xm).

Since the element 22
l
z̃ is in R, it yields an element c̃ ∈ C. The additive group of the

ring C is free abelian of finite rank ([10, Theorem 2.1]). For every integer j ≥ 0, let 2kj

be the highest 2-power diving c̃ j in C. Here we define c̃ 0 to be 1 and therefore k0 = 0.
Let k be the maximum of j2l − kj over all j ≥ 0 with j2l ≤ dimXm.

Theorem 4.1. ind(Xm) = 2m−k.

Example 4.2. If 2l > dimXm, then k = 0 and we recover [3, Theorem 4.2].

Example 4.3. In the case of m = n, Theorem 4.1 is [15, Lemma 4.1].

Proof of Theorem 4.1. Recall that C is the Chow ring of the cellular variety Ym defined
in the proof of Proposition 3.2. Let j be such that k = j2l − kj. Then c̃ j = 2kjd for some
d ∈ C non-divisible by 2. Therefore, by Poincaré duality (see [15, §4] or [11, Remark 5.6])
there exists d′ ∈ C such that dd′ has an odd degree e on Ym. Since the class of a rational
point in CH(Ym) equals 2m times the class of a rational point in CH(G/P ) ⊃ C̄H(Xm),
the product dd′ ∈ C̄H(Xm) has degree 2m · e on Xm and is divisible by 2k in C̄H(Xm). It
follows that ind(Xm) divides 2

m−k.
For the opposite, applying Theorem 3.6, write the class in C̄H(Xm) of a 0-cycle of degree

ind(Xm) on Xm as a polynomial in 2−2l c̃ over C. The polynomial contains a monomial

M = 2−j2lcc̃ j (with some c ∈ C and some j) of degree an odd multiple of ind(Xm). Then

2j2
l−kjM is in C and has degree an odd multiple of 2j2

l−kj−m+i on Ym, with i such that
2i = ind(Xm). It follows that j2

l−kj −m+ i ≥ 0 so that i ≥ m− (j2l−kj) ≥ m− k. �

5. Spin17

Note that for any n the index ind(Xn) is known (due to [15]) and coincides with
ind(Xn−1) and ind(Xn−2).

All indexes are known for q of dimension lower than 17 (see [8]). For q of dimension 17
we have n = 8. Let n = 8 and m = 5.

A computation (made on Maple 2021), using the Chow ring package (Version 4.0) by
S. Nikolenko, V. Petrov, N. Semenov, and K. Zainoulline, shows that the image c̃3 of
(22

3
z̃)3 ∈ R in C ⊂ C̄H(X5) is not divisible by 23·2

3−1. It follows by Theorem 4.1 that
ind(X5) divides 2

3. Since ind(X6) = 24, we conclude that ind(X5) = 23 (see §1).
If ind(X3) would be at most 22, we could find a finite extension field L of the base field

of degree not divisible by 23 such that the anisotropic part of qL would have dimension
at most 11. Then qL splits completely over a finite field extension of degree dividing 2,
a contradiction to ind(X8) = 24. It follows that ind(X3) = 23 implying ind(Xm) = 2m

for m < 3 as well (the latter being also confirmed by [3, Theorem 4.2] as well as by [1,
Theorem 4.2]).
Summarizing, we get the whole list of indexes of ind(Xm) for Spin17:

ind(Xm) = 2m for m ≤ 3, ind(Xm) = 23 for m ∈ {4, 5} , and ind(Xm) = 24 for m ≥ 6,

where the box marks the values which were not known before.
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For more credibility, we provide further details on the computation with the Chow
package in §A.

6. Spin18

Let q be a generic quadratic form of dimension 18 of trivial discriminant and Clifford
invariant (given by a generic Spin18-torsor). The result of the previous section allows one
to determine the index of mth orthogonal grassmannian Xm (i.e., the variety of totally
isotropic m-planes) of q for all m.

Let q′ be a 1-codimensional subform of q and let X ′
m be the mth orthogonal grassman-

nian of q′. Then we have ind(X ′
m) ≥ ind(Xm) for m = 1, . . . , 8 and ind(X ′

m) has the upper
bound given by the index of §5. We also have

ind(X9) = ind(X8) = ind(X7) = ind(X6) = 24.

Besides, by the same argument as in the previous section, we have ind(X3) = 23, implying
ind(Xm) = 2m for m ≤ 3.

Summarizing, we get the whole list of indexes of ind(Xm) for Spin18:

ind(Xm) = 2m for m ≤ 3, ind(Xm) = 23 for m ∈ {4, 5} , and ind(Xm) = 24 for m ≥ 6.

7. Spin19

Here we start to work out the case of n = 9. First of all, we have ind(Xm) = 2m for
m = 1, 2, 3 by [3, Theorem 4.2] because the condition 2n−m > dimXm of [3, Theorem 4.2]
is satisfied for m = 3:

2n−m = 26 = 64 > dimXm = m(m− 1)/2 +m(2n− 2m+ 1) = 42.

For m = 4, [3, Theorem 4.2] does not work anymore because

2n−m = 25 = 32 ≤ dimX4 = 50.

A computation with the Chow ring package (see §B) shows that the image c̃ of 22
5
z̃ ∈ R

in C ⊂ C̄H(X4) is not divisible by 22
5
inside of C. (It is divisible by 22

5−1 though.) It

follows by Theorem 4.1 that ind(X4) = 23 .

8. Spin20

We do not expect that knowledge of indexes for Spin2n−1 always allows one to determine
the indexes for Spin2n. This happens with the highest orthogonal grassmannians by the
very special reason that they are isomorphic to each other. It looks like coincidence that
in §6 we were able to determine all indexes for Spin18 using the information on Spin17.

For Spin20 and ind(X4), the information on Spin19 helps again.
First of all, ind(Xm) = 2m for Spin20 and m = 1, 2, 3 by [3, Theorem 7.2] because for

m = 3 we have the inequality

2n−m−1 = 210−3−1 = 64 > dimXm = m(m− 1)/2 + 2m(n−m) = 45.

It follows that ind(X4) is 2
3 or 24, but for precise determination, [3, Theorem 7.2] does

not help anymore since

2n−m−1 = 25 = 32 ≤ dimXm = 54
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for m = 4. We are going to use the result of §7 instead.
Let q′ be a 1-codimensional subform of q and let X ′

4 be the 4th orthogonal grassmannian
of q′. Since dim q′ = 19, we know from §7 that ind(X ′

4) ≤ 23. Since ind(X ′
4) ≥ ind(X4),

we conclude that ind(X4) = 23 .

Appendix A. Programming Spin17

Everyone with access to Maple, can download the Chow package from

mathematik.uni-muenchen.de/~semenov/software/chowring5.txt

and verify the computation of §5. The algorithm used in the package is described in [5,
§5].
Open a Maple Worksheet and load the package with

read("C:/Packages/chowring5.txt");

indicating your way to the package file. You should receive the message

Chow ring package v. 4.0 loaded

In Maple 2021, there will be a Warning on an implicitly local variable t, which can be
ignored.1

Run the following definitions:

x1:=omega[8]; x2:=omega[7]-omega[8]; x3:=omega[6]-omega[7];

x4:=omega[5]-omega[6]; x5:=omega[4]-omega[5]; y1:=omega[3]-omega[4];

y2:=omega[2]-omega[3]; y3:=omega[1]-omega[2];

This defines our elements x1, . . . , x5, y1, y2, y3 in the ring R = Z[x1, . . . , x5, y1, y2, y3] of
§2, which we view as the symmetric ring of the group of characters of the standard split
maximal torus of the symplectic group Sp(16) (of type C8). The simple roots are num-
bered backwards in the Chow package and omega[i] is the notation for the ith fundamental
weight, used in the package.

Next step is the construction of the element 23z̃ ∈ R, denoted a here:

x:=x1+x2+x3+x4+x5;

a:=(x+y1+y2+y3)*(x-y1+y2+y3)*(x+y1-y2+y3)*(x+y1+y2-y3)*

(x-y1-y2+y3)*(x-y1+y2-y3)*(x+y1-y2-y3)*(x-y1-y2-y3);

(The Maple Warning on multi-line expression can be ignored; to avoid it, put the definition
of a in a single line.)

Now we compute the image c̃ of a in CH(Y5). This is done with the procedure c_func

of Chow package. The element c̃ is denoted just c for simplicity:

c:=c_func([1,2,3,5,6,7,8],C8,a);

The first argument [1, 2, 3, 5, 6, 7, 8] of the procedure c_func indicates the parabolic sub-
group we are interested in. (Recall that the simple roots are numbered backwards. In the
usual numbering, our maximal parabolic subgroup is obtained by erasing the 5th root,
not the 4th.) The second argument is the Dynkin type and the third argument can be

1To get rid of the warning, it suffices to add t to the list of local variables in the second line of the
definition of the procedure “fundam invariant” in “chowring5.txt”. (Thanks to Nikita Semenov for this
information.)
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any W -invariant element of the ring R. We take a for the third argument. Maple output,
coming almost immediately, is:

c:=128Z[5, 4, 3, 2, 1, 2, 3, 4] + 128Z[4, 3, 2, 1, 2, 3, 5, 4]+

128Z[3, 2, 1, 2, 4, 3, 5, 4] + 128Z[2, 1, 2, 4, 3, 6, 5, 4]+

128Z[2, 1, 3, 2, 4, 3, 5, 4] + 128Z[1, 3, 2, 4, 3, 6, 5, 4]+

128Z[1, 2, 5, 4, 3, 6, 5, 4] + 128Z[1, 2, 4, 3, 7, 6, 5, 4]

where Z[...] stand for certain Schubert classes in CH(Y5) constituting its Z-basis.
To simplify, we divide by 128

c:=c/128;

and compute the cube in CH(Y5) of the result, using the procedure chow_expand of the
Chow package:

c3:=chow_expand([1,2,3,5,6,7,8],C8,c^3);

In the end, we divide by 2 and reduce modulo 2:

c3/2 mod 2;

The output is

Z[2, 1, 2, 3, 2, 1, 2, 4, 3, 7, 6, 5, 4, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4] +

Z[1, 2, 4, 3, 2, 1, 2, 5, 4, 3, 6, 5, 4, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4] +

Z[1, 2, 3, 2, 1, 2, 5, 4, 3, 7, 6, 5, 4, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4] +

Z[1, 3, 2, 1, 4, 3, 2, 5, 4, 3, 6, 5, 4, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4] +

Z[1, 2, 1, 4, 3, 2, 5, 4, 3, 7, 6, 5, 4, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4] +

Z[1, 2, 1, 3, 2, 6, 5, 4, 3, 7, 6, 5, 4, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4] +

Z[2, 1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4] +

Z[1, 2, 3, 4, 6, 5, 4, 3, 2, 1, 2, 3, 4, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4] +

Z[3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 5, 4, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4] +

Z[2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 6, 5, 4, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4] +

Z[1, 2, 3, 5, 4, 3, 2, 1, 2, 3, 6, 5, 4, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4]

All computations run almost immediately on my small laptop with an exception of the
last one, taking a bit longer.

Appendix B. Programming Spin19

Here is the input used in §7. We switch to notation xm+1, . . . , xn for y1, . . . , yl so that
the polynomial ring R is simply Z[x1, . . . , xn]. We are computing ind(X4) for Spin19 so
that we have n = 9, m = 4, and l = n−m = 5.

We are defining x1, . . . , x9 in terms of the fundamental weights, next defining a = 22
5
z̃ ∈

R in terms of x1, . . . , x9, and finally computing c = c̃ ∈ C = CH(Y4):

x[1]:=omega[9];

for i from 2 to 9 do x[i]:=omega[10-i]-omega[11-i] od;

a:=1: for s5 from -1 by 2 to 1 do

for s6 from -1 by 2 to 1 do

for s7 from -1 by 2 to 1 do

for s8 from -1 by 2 to 1 do

for s9 from -1 by 2 to 1 do

a:=a*(x[1]+x[2]+x[3]+x[4]+s5*x[5]+s6*x[6]+s7*x[7]+s8*x[8]+s9*x[9])



ON GENERIC FLAG VARIETIES FOR ODD SPIN GROUPS 11

od; od; od; od; od; a;

c:=c_func([1,2,3,4,5,7,8,9],C9,a);

The computation of the last line takes about 30 minutes.
Below is the value of c/2^31 mod 2;

Z[2, 1, 2, 3, 5, 4, 3, 2, 1, 2, 3, 6, 5, 4, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 8, 7, 6, 5, 9, 8, 7, 6] +

Z[1, 2, 4, 3, 5, 4, 3, 2, 1, 2, 3, 6, 5, 4, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 8, 7, 6, 5, 9, 8, 7, 6] +

Z[2, 1, 3, 2, 4, 3, 2, 1, 2, 5, 4, 3, 6, 5, 4, 3, 2, 1, 2, 3, 7, 6, 5, 4, 8, 7, 6, 5, 9, 8, 7, 6] +

Z[5, 4, 6, 5, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 8, 7, 6, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6] +

Z[2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 5, 4, 7, 6, 5, 8, 7, 6, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6] +

Z[1, 2, 3, 4, 3, 2, 1, 2, 3, 6, 5, 4, 7, 6, 5, 8, 7, 6, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6] +

Z[2, 3, 5, 4, 3, 2, 1, 2, 3, 6, 5, 4, 7, 6, 5, 8, 7, 6, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6] +

Z[4, 3, 5, 4, 3, 2, 1, 2, 3, 6, 5, 4, 7, 6, 5, 8, 7, 6, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6] +

Z[2, 1, 2, 3, 2, 1, 2, 4, 3, 6, 5, 4, 7, 6, 5, 8, 7, 6, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6] +

Z[1, 2, 3, 2, 1, 2, 5, 4, 3, 6, 5, 4, 7, 6, 5, 8, 7, 6, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6] +

Z[4, 3, 5, 4, 6, 5, 4, 3, 2, 1, 2, 3, 4, 7, 6, 5, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 9, 8, 7, 6] +

Z[1, 2, 4, 3, 2, 1, 2, 5, 4, 3, 6, 5, 4, 7, 6, 5, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 9, 8, 7, 6] +

Z[3, 2, 4, 3, 2, 1, 2, 5, 4, 3, 6, 5, 4, 7, 6, 5, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 9, 8, 7, 6]
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