
ON SPECIAL CLIFFORD GROUPS
AND THEIR CHARACTERISTIC CLASSES

NIKITA A. KARPENKO

Abstract. We prove a conjecture on the Chow ring of characteristic classes for the
special Clifford groups. This conjecture was the only obstacle for obtaining an algorithm
computing the maximal indexes of twisted spin grassmannians.

Contents

1. Introduction 1
2. A formal computation 4
3. The case of Γ+(12) 8
4. Reduction to Γ+(12) 13
5. The algorithm 15
Appendix A. Computing Steenrod operations 18
Appendix B. Computing f2, f3, f4 18
Appendix C. Conflict of interest statement 19
References 19

1. Introduction

The index i(X) of an algebraic variety X over a field F is defined as the g.c.d. of the
degrees of its closed points. In slightly different terms, i(X) is the g.c.d. of the degrees of
finite field extensions of F over which X acquires a rational point. In particular, i(X) = 1
provided that X has a rational point already over F .
Let X be a projective homogeneous variety under a split reductive group G over a field

F0. For any field F , containing F0, and any G-torsor E over F , twisting X over F by E in
the sense of [6, Proposition 2.12], we get an F -variety XE. Fixing F0, G, X and varying
F and E, one achieves the maximal value of i(XE) on any generic G-torsor E, e.g., the
G-torsor given by the generic fiber of the quotient morphism GL(N) → GL(N)/G for
an embedding of G into the general linear group GL(N) with some N ≥ 1 (see [11, §6]
for a proof). We are interested in computing this maximal value for arbitrary F0 and for
certain G and X. Note that in the cases, where (an algorithm for getting) the answer is

Date: 19 Jul 2023. Revised: 4 December 2023.
Key words and phrases. Affine algebraic groups; spin groups; Clifford groups; projective homogeneous

varieties; classifying spaces; Chow rings. Mathematical Subject Classification (2020): 20G15; 14C25.
Author’s work has been supported by a Discovery Grant from the National Science and Engineering

Research Council of Canada and initiated during his stay at the Institut des Hautes Etudes Scientifiques.
1



2 NIKITA A. KARPENKO

available (e.g. [20, Theorems 0.1 and 3.2] , [19, Theorem 4.1], [4, Theorems 4.2 and 7.2],
[10, Theorem 4.1], [9, Theorems 6.6. and 7.1]), it does not depend on F0.

The split spin groups G = Spin(2n + 1) and G = Spin(2n) have been studied in [4],
[10], [12] in this respect. Since any G-torsor becomes trivial over some finite base field
extension of a 2-power degree, the index i(XE) is always a 2-power for such G. Note that
the case of an arbitrary X for such G is easily reduced to the case where X is a spin
grassmannian given by a standard maximal parabolic subgroup of G. For the standard
maximal parabolic subgroup corresponding to any of the last three vertices of the Dynkin
diagram of G, i(XE) is the torsion index of G, computed in [20, Theorem 0.1].

Let us add some details concerning the last sentence. The Dynkin diagram of the
split spin group G = Spin(2n + 1) is of type Bn, its vertices are numbered as shown in
[14, §24.A]. If P ⊂ G is the standard maximal parabolic subgroup corresponding to mth
vertex, the spin grassmannian X = G/P is the variety of totally isotropic m-planes in the
split (2n+ 1)-dimensional quadratic form q,

q(a1, b1, . . . , an, bn, c) = a1b1 + · · ·+ anbn + c2,

and P is the stabilizer of the rational point

am+1 = · · · = an = b1 = · · · = bn = c = 0

on X. For any G-torsor E, the variety XE is then the variety of totally isotropic m-planes
in the generic (2n+1)-dimensional quadratic form qE of trivial discriminant and Clifford
invariant, given by E. The variety XE has a rational point if and only if the Witt index of
qE is at least m. For m ≥ n− 2 this means that the anisotropic part of qE has dimension
at most 5 and therefore – due to the vanishing of its Clifford invariant – exactly 1. In
other terms, the G-torsor E is trivial. This shows that i(XE) for m ≥ n− 2 and generic
E is the index of E itself, i.e., the torsion index of G.

The Dynkin diagram of the split spin group G = Spin(2n) is of type Dn, its vertices are
numbered as shown in [14, §24.A]. If P ⊂ G is the standard maximal parabolic subgroup
corresponding to mth vertex, the spin grassmannian X = G/P is the variety of totally
isotropic m-planes in the split (2n)-dimensional quadratic form q,

q(a1, b1, . . . , an, bn) = a1b1 + · · ·+ anbn,

provided that m ≤ n − 2, whereas what we get for m = n − 1 and m = n are the
two (isomorphic to each other) connected components of the variety of totally isotropic
n-planes. In the case of m ≤ n− 2, P is the stabilizer of the rational point

am+1 = · · · = an = b1 = · · · = bn = 0

on X. Otherwise, P is the stabilizer of one of the two rational points

b1 = · · · = bn = 0, b1 = · · · = bn−1 = an = 0

on the nth grassmannian depending on which of them lies on X. For any G-torsor E,
the twist XE is then the analogues variety for the generic (2n)-dimensional quadratic
form qE of trivial discriminant and Clifford invariant, given by E. The variety XE has a
rational point if and only if the Witt index of qE is at least the dimension of the planes.
For m ≥ n − 3 this means that the anisotropic part of qE has dimension at most 6 and
therefore – due to the vanishing of its discriminant and Clifford invariant – just 0. In
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other terms, the G-torsor E is trivial. This shows that i(XE) for m ≥ n− 3 and generic
E is the index of E itself, i.e., the torsion index of G.

For G = Spin(2n+ 1), an algorithm computing i(XE) for generic E has been obtained
in [10, Theorem 4.1]. For G = Spin(2n) and X = G/P , where P is a maximal parabolic
subgroup corresponding to mth vertex of Dynkin diagram with m ≤ n− 2, the same ap-
proach delivers a similar algorithm computing i(XE) provided Conjecture 1.2, formulated
below, is positively solved for the split special Clifford group Γ+(2(n − m)) (instead of
Γ+(2n) in terms of which the conjecture will be formulated, see §5 for details).
To formulate Conjecture 1.2, let G be the split special Clifford group Γ+(2n) defined,

e.g., in [14, §23.A] (under the name of an even Clifford group). This is a split reduc-
tive group with the semisimple part Spin(2n) ⊂ G and with the quotient G/ Spin(2n)
isomorphic to Gm. Moreover,

(1.1) G = (Gm × Spin(2n))/µ2,

where µ2 is embedded diagonally into the product of Gm by the center of Spin(2n).
To complete the introduction of G, let us mention that the G-torsors are exactly the

2n-dimensional quadratic forms with trivial discriminant and Clifford invariant. Such
quadratic forms also arise from Spin(2n)-torsors; however, non-isomorphic torsors here
may give isomorphic quadratic forms. Let us also note that the groups G and Spin(2n)
have the same torsion index.
For the standard split maximal torus T ⊂ G, let us consider the induced by the em-

bedding homomorphism

Φ: CH(BG) → CH(BT )

of the Chow rings of the classifying spaces BG and BT , defined in [21, §2.2]. In other
terms, these are the rings of Chow characteristic classes for the corresponding groups –
see [21, Theorem 2.8]. The destination ring CH(BT ) of Φ is known to be the symmetric
Z-algebra on the character group of T and as such can be identified with the polynomial
ring Z[z, x1, . . . , xn] in n + 1 variables. The second projection from (1.1) to the special
orthogonal group O+(2n) = Spin(2n)/µ2 (called in [14] the vector representation of G),
maps T to the standard maximal split torus of O+(2n), and x1, . . . , xn correspond to
its standard characters. Under the first projection G → Gm /µ2 = Gm, the standard
(tautological) character of Gm corresponds to 2z − x1 − · · · − xn.
The elements in the image of Φ are invariant under the action of the Weyl group W of

G with respect to T . To describe the group and its action, let W̃ be the subgroup in the
group AutCH(BT ) of ring automorphisms of CH(BT ), generated by the permutations
of x1, . . . , xn along with the automorphisms σ1, . . . , σn, where σi changes the sign of xi

and maps z to z − xi. Then W is the subgroup in W̃ , generated by the permutations of
x1, . . . , xn along with the products of σ1, . . . , σn having an even number of factors.
For the entire ring CH(BT )W of W -invariants, certain generators were found in [12].

One of them is the product

(e) e := x1 . . . xn, called the Euler class.

The remaining generators are:

(p) the elementary symmetric polynomials p1, . . . , pn in x2
1, . . . , x

2
n (called the Pon-

tryagin classes);
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(f) certain homogeneous elements f0, f1, . . . , fn−2 with fi of degree 2i, constructed
inductively as in [12, §4] starting with f0 := 2z − x1 − · · · − xn;

(t) the product

t :=
∏

even I⊂{1,...,n}
(z −

∑
i∈I

xi)

of the elements in the orbit of z, where the product is taken over all subsets I of
{1, . . . , n} with an even number of elements.

Conjecture 1.2. For n ≥ 6, the image of Φ is contained in the subring of CH(BT )W

generated by 2e along with generators (p), (f), (t).

One difficulty of Conjecture 1.2 is that its statement is false for n < 6 (see the proof
of Theorem 5.3). Therefore, proving it by induction on n, we cannot start with a group
smaller than Γ+(12).

Here we prove Conjecture 1.2 (see Theorem 4.9) and, as the main application, describe
the missing algorithm for the even spin groups (see Theorem 5.3).

It is not so difficult to reduce the proof of Conjecture 1.2 to the case of n = 6. This
is done in §4. The hardest step is to prove the conjecture for n = 6, where in the end
a much stronger Theorem 3.16 (in the spirit of [7, Theorem 1.1]) is obtained, providing
a complete computation of the image of Φ. The proof of Theorem 3.16, given in §3, is
based on the preparation work of §2.

For n > 6, we do not determine the image of Φ. It may be possible to do this by similar
(though more complicated) computations with Steenrod operations, possibly using the
recent result of [18] on the Nisnevich classifying spaces of the special Clifford groups.

2. A formal computation

Over the field F := F2 = Z/2Z of 2 elements, let us consider the polynomial algebra
F[z, x1, . . . , xn] in the n+ 1 variables and write

c1, . . . , cn ∈ F[x1, . . . , xn] ⊂ F[z, x1, . . . , xn]

for the elementary symmetric polynomials in x1, . . . , xn. The (formal) total Steenrod
operation

St : F[z, x1, . . . , xn] → F[z, x1, . . . , xn]

is the (non-graded) ring endomorphism, satisfying p 7→ p + p2 for every degree 1 ho-
mogenous polynomial p. For every i ≥ 0, the ith Steenrod operation Sti is the additive
endomorphism given by the homogeneous component of St raising by i the degree of ev-
ery homogeneous polynomial. In particular, St0 is the identity. Since the total Steenrod
operation is a ring homomorphism, its components Sti all together satisfy the Cartan
formulas Stk(ab) =

∑
i+j=k St

i(a) Stj(b) with k ≥ 0.

The subring F[z, c1, . . . , cn] ⊂ F[z, x1, . . . , xn] is stable under the Steenrod operations,
which can be defined directly on this subring by the simple classical formula as in [7, §4]
(based on the formula stated for the first time in [23], proved in [2, Théorème 7.1], and
simplified in [17, Proposition 3.1.12]), expressing Sti(cj) for every i, j > 0 as a polynomial
in c1, . . . , cn over F. This formula is convenient for the actual computations performed be-
low (see Appendix A for the corresponding Maple code). Note that the ring F[z, c1, . . . , cn]
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is also a polynomial ring in n + 1 variables; the variables are weighted however: z has
degree 1 and ci for i = 1, . . . , n has degree i.

The ideal in F[z, c1, . . . , cn], generated by c1, is stable under the Steenrod operations,
which are therefore defined on the quotient. This quotient is a polynomial ring in n
variables z, c2, . . . , cn. The mentioned above formulas for the Steenrod operations are
adapted by removing the numerous monomials containing c1 and become considerably
simpler.

Assume that we are given a homogeneous element y ∈ F[z, c2, . . . , cn] satisfying
St(y) ∈ F[y, c2, . . . , cn].

Then the subring F[y, c2, . . . , cn] ⊂ F[z, c2, . . . , cn] is stable under the Steenrod operations.
If y 6∈ F[c2, . . . , cn], then F[y, c2, . . . , cn] is a polynomial ring in n variables y, c2, . . . , cn.
Otherwise it coincides with F[c2, . . . , cn]. Both situations are allowed in this section but
the first situation will actually occur in the application of §3.
We are going to work with the subrings

B := F[y2, c22, . . . , c2n] ⊂ A := F[y2, c2, . . . , cn] ⊂ F[y, c2, . . . , cn]
which are also stable under the Steenrod operations. Note that A is a free B-module with
the basis

(2.1) {cI}I⊂{2,...,n}, where cI :=
∏
i∈I

ci.

The Cartan formula for St1 is the Leibniz rule St1(aa′) = St1(a)a′+a St1(a′). It follows
that St1 : A → A vanishes on B ⊂ A and is a homomorphism of B-modules. In particular,
its kernel is a B-submodule of A.
The following lemma is actually already implicitly proved in [7, §4]. The proof given

here for completeness is more self-contained.

Lemma 2.2. The kernel of St1 : A → A is the B-submodule of A generated by 1, cn, and
St1(cI) for all I ⊂ {2, . . . , n}.

Proof. In the case with y 6∈ F[c2, . . . , cn], elements of A are polynomials in y2 over the
ring F[c2, . . . , cn] and St1 acts on them coefficient-wise. Therefore it is enough to consider
the case with y ∈ F[c2, . . . , cn], i.e., the case with A = F[c2, . . . , cn].

The composition of St1 with itself vanishes, i.e., St1 is a differential. This is easiest
to see on the ring F[x1, . . . , xn] ⊃ A, generated by degree 1 homogeneous elements p for
which we have St1(St1(p)) = St1(p2) = 0. Since St1(St1(ab)) = St1(St1(a))b+a St1(St1(b))
and the products of various p generate A additively, we get the statement.

It follows that the B-submodule of A, indicated in Lemma 2.2, is contained in the kernel
of St1. Note that this kernel is a ring and the image of St1 is an ideal of this ring and
so, the quotient Ker St1 / ImSt1 is a ring as well, which can be called the St1-cohomology
ring. For the opposite inclusion in Lemma 2.2, it suffices to show that the homomorphism
of B[cn] to the St1-cohomology ring is onto.
To compute the quotient ring, we proceed as in [1, §9]. Since St1(ci) equals ci+1 for

even i < n and vanishes otherwise, the differential ring A decomposes, depending on the
parity of n, either in the tensor product F[c2, c3]⊗· · ·⊗F[cn−1, cn] or in the tensor product
F[c2, c3]⊗ · · · ⊗ F[cn−2, cn−1]⊗ F[cn]. Let us describe the cohomology rings of the factors.
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Since St1 vanishes on F[cn], the corresponding cohomology ring is the entire F[cn]. For
even i < n, writing an element of F[ci, ci+1] as

a+ b · ci + c · ci+1 + d · cici+1

with a, b, c, d ∈ Bi := F[c2i , c2i+1] and imposing vanishing of St1 on it, we get vanishing of
b · ci+1 + dc2i+1, implying that b = 0 = d. Since ci+1 = St1(ci), the St1-cohomology ring
for F[ci, ci+1] coincides with the image of Bi. It follows by the Künneth Tensor Formula
[15, Theorem 10.1 of Chapter 5] (applied to the differential Z-graded F-algebra A∗ with
Ai := A for every i ∈ Z) that the St1-cohomology ring for A is the image of

(B2 ⊗ B4 ⊗ . . . )[cn] = B[cn]

(or even of just B). �

Below in this section, we work with n = 6 only. The following proposition is actually
already implicitly proved in [7, §5]. The proof given here for completeness is slightly
different.

Proposition 2.3 (The Formal Computation). For n = 6 and a graded B-submodule
M of A, concentrated in even degrees, the following holds: if M is stable under all Steenrod
operations, then M ⊂ B; if M is stable under Sti for i < 8, then M is contained in the
B-submodule generated by 1 and c25 · c6 + c23 · c4c6 + c2c3c5c6.

Proof. To prove the second statement, let us assume that M is stable under Sti for i < 8.
Since M is concentrated in even degrees, it vanishes under St1. By Lemma 2.2, M is
therefore contained in the B-submodule generated by 1, c6, and all St1(cI) with I ⊂
{2, 3, 4, 5, 6} such that cI is of odd degree. There are 16 elements cI of odd degree: the 8
square-free products of c2, c4, c6 multiplied by c3 and the same 8 products multiplied by
c5. Since

St1(c3c2) = c23 ∈ B, St1(c3c4) = c3c5,

St1(c3c2c4) = c23 · c4 + c2c3c5, St1(c5c2) = c3c5,

St1(c5c4) = c25 ∈ B, St1(c5c2c4) = c25 · c2 + c3c4c5,

and St1(c6) = 0, any element of M has the form

(2.4) a · 1 + b · c3c5 + c · (c23 · c4 + c2c3c5) + d · (c25 · c2 + c3c4c5)+(
a∗ + b∗ · c3c5 + c∗ · (c23 · c4 + c2c3c5) + d∗ · (c25 · c2 + c3c4c5)

)
c6

with a, b, c, d, a∗, b∗, c∗, d∗ ∈ B.
We will not obtain any further restriction on M applying just the operation St1: any

linear combination of the form (2.4) vanishes under it. But from the assumption that M
is stable under St2 as well, it follows that

(2.5) a St2(1) + b St2(c3c5) + c St2(c23 · c4 + c2c3c5) + d St2(c25 · c2 + c3c4c5)+

a∗ St
2(c6) + b∗ St

2(c3c5c6) + c∗ St
2(c23 · c4c6 + c2c3c5c6) + d∗ St

2(c25 · c2c6 + c3c4c5c6)

has the shape of (2.4) if α =(2.4).
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Since

St2(1) = 0, St2(c3c5) = c25,

St2(c23 · c4 + c2c3c5) = c22 · c3c5 + c23 · c2c4 + c25 · c2 + c23 · c6,
St2(c25 · c2 + c3c4c5) = (c2c5)

2 + c2c3c4c5 + c25 · c4 + c3c5c6,

St2(c6) = c2c6, St2(c3c5c6) = c2c3c5c6 + c25 · c6,
St2(c23 · c4c6 + c2c3c5c6) = c25 · c2c6 + (c3c6)

2,

St2(c25 · c2c6 + c3c4c5c6) = c26 · c3c5 + c25 · c4c6,

the coefficient at c2c4 in (2.5) is cc23 implying that c = 0. The coefficient at c2c3c4c5 is
d so that d = 0 as well. The coefficient at c3c4c5c6 is 0 and the coefficient at c2c6 is
a∗ + c∗c

2
5; therefore a∗ = c∗c

2
5. Finally, the coefficients at c2c3c5c6 and at c4c6 are b∗ and

d∗c
2
5. Consequently, d∗c

2
5 = b∗c

2
3 from where we conclude that b∗ is divisible by c25, say,

b∗ = xc25 for some x ∈ B, and d∗ = xc23.
Now we know that any element of M has the form

(2.6) a · 1 + b · c3c5 + c(c25 · c6 + c23 · c4c6 + c2c3c5c6)+

d(c25 · c3c5c6 + (c3c5)
2 · c2c6 + c23 · c3c4c5c6)

with a, b, c, d ∈ B, where we changed the notation of the coefficients c∗ and x to c and d.
At this point, the operation St2 cannot provide any additional restriction on M : the

value of St2 at any linear combination of the form (2.6) is again a linear combination like
that. Since St3 = St1 ◦ St2 as a particular case of the general formula St2i+1 = St1 ◦ St2i
for any i ≥ 0 (cf. [22, Lemma 9.6]), St3 is not of help either. Let us proceed to St4 and
use the fact that for α ∈ M , written in the form (2.6), St4(α) should also be of the shape
(2.6). It follows that

(2.7) b · St4(c3c5) + c St4(c25 · c6 + c23 · c4c6 + c2c3c5c6)+

d St4(c25 · c3c5c6 + (c3c5)
2 · c2c6 + c23 · c3c4c5c6)

is of the shape (2.6). Since

St4(c3c5) = c22 · c3c5 + c25 · c2 + c23 · c6 + c3c4c5,

St4(c25 · c6 + c23 · c4c6 + c2c3c5c6) = 0,

St4(c25 · c3c5c6 + (c3c5)
2 · c2c6 + c23 · c3c4c5c6) =

(c2c3c5)
2 · c2c6 + (c2c3)

2 · c3c4c5c6 + (c3c6)
2 · c2c3c5+

c43c
2
6 · c4 + (c3c4)

2 · c3c5c6 + c45 · c2c6 + c25 · c3c4c5c6,

the coefficient at c2 in (2.7) is bc25 implying that b = 0. The coefficient at the basic element
c2c3c5 is d(c3c6)

2 implying that d = 0.
Now we know that every element of M has the simple form

(2.8) a+ c(c25 · c6 + c23 · c4c6 + c2c3c5c6)

with a, c ∈ B, cf. [7, Formula 5.5]. This finishes the proof of the second part of Proposition
2.3.
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To prove the first part, from now on, we are assuming that M is stable under all
Steenrod operations. It turns out that for any a, c ∈ B and any positive i < 8, the
value of Sti at the element (2.8) is in B. So, we have to proceed with a higher Steenrod
operation. Applying St8 to (2.8) and taking into account the formula

St8(c25 · c6 + c23 · c4c6 + c2c3c5c6) = (c22 + c4)
2 · c2c3c5c6 + ((c22 + c4)c3)

2 · c4c6+
((c22 + c4)c5)

2 · c6 + (c2c6)
2 · c3c5 + (c3c5)

2 · c2c6 + (c23c6)
2 + c23 · c3c4c5c6 + c25 · c3c5c6

with, for instance, nonzero coefficient at c3c5, we conclude that c = 0. Thus M ⊂ B as
claimed. �

3. The case of Γ+(12)

In this section, we prove Theorem 3.16 on the standard split special Clifford group
G = Γ+(12), implying Conjecture 1.2 for n = 6. For the sake of the next section, in the
beginning here we work with arbitrary n and with G = Γ+(2n).

Recall that in §1 we identified the Chow ring CH(BT ) of the standard split maxi-
mal torus T ⊂ G with the polynomial ring Z[z, x1, . . . , xn]. So, the polynomial ring
F[z, x1, . . . , xn] is identified with the modulo 2 Chow ring

Ch(BT ) := CH(BT )/2CH(BT ).

We are investigating the image of the homomorphism

ϕ : Ch(BG) → Ch(BT ) –

the modulo 2 reduction of Φ.
The Steenrod operations on the modulo 2 Chow groups, constructed in [3] and [16]

for smooth quasi-projective varieties, are also defined for the classifying spaces of affine
algebraic groups (not necessarily smooth) via their approximations by smooth varieties
(see [21, §2.2]). On the polynomial ring Ch(BT ) they coincide with the formal Steenrod
operations considered in the previous section. They yield for every i ≥ 0 a commutative
square

(3.1)

Ch(BG)
φ−−−→ Ch(BT )ySti

ySti

Ch(BG)
φ−−−→ Ch(BT )

from which it follows that the image of ϕ is stable under Sti.
The Weyl group W acts on CH(BT ) and on Ch(BT ). Let us write t ∈ Ch(BT ) as well

for the modulo 2 reduction of the orbit product t ∈ CH(BT ) from §1. The polynomial
ring

Â := F[t, c1, . . . , cn]
coincides with the W -invariants of Ch(BT ) (cf. [4, Lemma 3.2]). Therefore Â is stable

under the Steenrod operations and Imϕ is a subring in Â. Note that for even n (e.g., for
n = 6), the image of t in the quotient

A = Â/c1Â = F[t, c2, . . . , cn] ⊂ F[z, c2, . . . , cn]
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equals y2, where

y =
∏

even I⊂{2,...,n}
(z −

∑
i∈I

xi) ∈ F[z, c2, . . . , cn].

The element y satisfies St(y) ∈ F[y, c2, . . . , cn]. This can be verified directly or by identi-
fying the ring F[z, x1, . . . , xn]/(x1+ · · ·+xn) with the modulo 2 Chow ring of the standard
split maximal torus of Spin(2n) and noticing that F[y, c2, . . . , cn] is its subring of Weyl
invariants (see [7, Proposition 3.2]). With this information in hand, we will be in position
to apply Proposition 2.3 from the previous section.

Returning to arbitrary (not necessarily even) n, one sees that the elements t, c1, c
2
2, . . . , c

2
n

are in the image of ϕ, because they are the images under ϕ of the Chern classes of certain
G-representations. Namely, the element t comes from the highest Chern class of a half-spin
G-representation; c22, . . . , c

2
n come from Chern classes of the orthogonal G-representation

– the composition of the vector representation with the standard representation of the
special orthogonal group; finally, c1 comes from the G-representation G → Gm mentioned
in §1. It follows that

Imϕ ⊃ B̂ := F[t, c1, c22, . . . , c2n].
Note that Â as a B̂-module is free with the basis (2.1).

As we already know, the ring Imϕ is contained in a smaller than Â ring R̂ ⊂ Â,
which we define as the image in Â = Ch(BT )W of the integral W -invariants CH(BT )W .
The computation of the integral W -invariants, made in [12] and formulated here in §1,

tells us that R̂ as a B̂-algebra is generated by the elements f1, . . . , fn−2 and the element
cn. Indeed, the modulo 2 reduction of e, f0 ∈ CH(BT )W are cn and c1. Note that the

generators of the ring R̂ (including the generators of B̂) are homogeneous. Besides, for
even n (e.g., for n = 6), all of them but c1 are of even degrees.

The inductive definition of the integral elements fi ∈ CH(BT )W , i ≥ 0, given in [12,
§4], implies that their modulo 2 reductions will not change if the definition is modified as
follows:

f0 := c1 = x1 + · · ·+ xn ∈ Z[x1, . . . , xn] and fi+1 := (f 2
i − f ′

i)/2 ∈ Z[x1, . . . , xn],

where f ′
i = f ′

i(x1, . . . , xn) is the polynomial fi(x
2
1, . . . , x

2
n). Note that the variable z,

involved in the old definition, does not intervene in the new one.
Below we work with the modulo 2 reductions of fi and, abusing notation, denote them

the same way. One has

(3.2) f1 = c2 and f2 = c1c3 − c4 ∈ F[x1, . . . , xn],

where with the new definition of fi both formulas also hold integrally. The formulas for
fi with i ≥ 3 are much more complicated.
Let us refer as Steenrod operation to any element of the F-algebra generated by all

Sti, i ≥ 0. Let R ⊂ R̂ be the subset of the elements whose image under every Steenrod
operation is also in R̂. It is easy to check that R is a subring in R̂. Since Imϕ is Steenrod
stable, R contains Imϕ as a subring.

Summarizing, we have defined a chain of subrings we are going to work with:

B̂ ⊂ Imϕ ⊂ R ⊂ R̂ ⊂ Â .
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It is time to switch to the case n = 6. Our plan is to show that R = B̂ and this will
imply that Imϕ = B̂.

We need the following formulas for the generators f3, f4 ∈ Â of the B̂-algebra R̂ (see
Appendix B for the corresponding Maple code):

f3 ≡ c1c3c4 + c2c
2
3 + c2c6 + c3c5 + c24, and

f4 ≡ c1c2c
3
3c4 + c1c

5
3 + c1c2c3c4c6 + c1c

2
3c4c5 + c1c3c

3
4 + c1c3c

2
6 + c1c

3
5+

c42c
2
4 + c22c

2
3c6 + c2c

3
3c5 + c43c4 + c22c

2
6 + c2c3c5c6+

c2c
2
4c6 + c2c4c

2
5 + c23c4c6 + c23c

2
5 + c3c

2
4c5 + c4c

2
6 + c25c6,

where the congruences are modulo c21Â. The formulas for the actual values of f3 and
especially of f4 are more complicated, but fortunately we only need their reductions.
Since we are only interested in describing the B̂-algebra R̂, generated by f1, f2, f3, f4 and
c6, we can do further simplifications.

Subtracting from f3 the polynomial c2c
2
3+ c2c6+ c24 in f1 = c2 and c6 over B̂, we replace

the old f3 by the new – simpler one:

(3.3) f3 = c1c3c4 + c3c5.

To simplify f4, let us note that the image of f4 in A = Â/c1Â is a polynomial in (the
images of) f1, f2, f3, c6 over

B := B̂/c1B̂ = F[t = y2, c22, . . . , c
2
6].

So, subtracting from f4 ∈ Â a polynomial in f1, f2, f3, c6 over B̂, we can make the new f4
divisible by c1: f4 = c1g, where the image of g ∈ Â in A is

(3.4) c23 · (c3c6 + c4c5) + c25 · (c2c3 + c5) ∈ A.

We now proceed to a further analysis of the rings R̂ and R. Let Ř ⊂ R̂ be the subring
given by the direct sum of the homogeneous components of R̂ of even degrees. Clearly,
R̂ = Ř ⊕ c1Ř; in other terms, c1Ř is the direct sum of the homogeneous components of
R̂ of odd degrees. The ring Ř is generated by the generators of R̂ with c1 replaced by
c21. Similarly, let B̌ ⊂ B̂ be the subring given by the direct sum of the homogeneous

components of B̂ of even degrees. Explicitly, B̌ = F[t, c21, c22, . . . , c26].

Lemma 3.5. Ř ∩ c21Â = c21Ř.

Remark 3.6. The equality of Lemma 3.5 with R̂ in place of Ř is false: the product c1f4
belongs to R̂ ∩ c21Â and does not belong to c21R̂.

Proof of Lemma 3.5. We only need to prove the inclusion ⊂ and so we take some α ∈
Ř ∩ c21Â. Since α ∈ Ř, it is a linear combination over B̌ of the square-free products of
f1, f2, f3, f4, c6. Since f4 vanishes in A whereas f1, f2, f3 map to c2, c4, c3c5 by (3.2) and
(3.3), the image of α in A turns out to be a linear combination over B of the square-free
products of c2, c4, c3c5, c6. These products constitute a part of the basis (2.1) of A over

B (which actually is the even degree part exactly). Since α ∈ c21Â ⊂ c1Â, the image
of α in A vanishes. It follows that modulo c21Ř, α is f4 times a linear combination of
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the square-free products of f1, f2, f3, f4, c6. Subtracting from α an appropriate element
of c21Ř, we come to the situation, where α = f4β and β is a linear combination of the

square-free products of f1, f2, f3, f4, c6. The image of α in Â/c21Â is then in c1Â/c
2
1Â ' A,

the corresponding element of A is the product by (3.4) of the image of β in A. Since the
image of α actually vanishes, we conclude that β ∈ c21Ř. Consequently α ∈ c21Ř. �

Corollary 3.7. For any even i ≥ 0, one has Ř ∩ ci1Â = ci1Ř.

Proof. We induct on even i ≥ 0. Since Ř ∩ ci+2
1 Â ⊂ Ř ∩ c21Â = c21Ř, we have

Ř ∩ ci+2
1 Â ⊂ c21Ř ∩ ci+2

1 Â = c21(Ř ∩ ci1Â) = c21(c
i
1Ř) = ci+2

1 Ř. �

Proposition 3.8. For any even i ≥ 0, one has

R ∩ ci1Ř ⊂ ci1B̌ +R ∩ ci+2
1 Ř.

Proof. By Corollary 3.7, we may replace Ř by Â on the right hand side of the inclusion.
Furthermore, since ci1B̌ ⊂ R, we may remove R from the right hand side. The inclusion
we get then to check for every even i ≥ 0 is

(3.9) R ∩ ci1Ř ⊂ ci1B̌ + ci+2
1 Â.

We prove inclusion (3.9) in two steps. For the first step, we map the intersection

R ∩ ci1Ř ⊂ ci1Â to the B-module ci1Â/c
i+1
1 Â, which we identify with the B-module A =

Â/c1Â via the isomorphism Â/c1Â → ci1Â/c
i+1
1 Â induced by multiplication by ci1. Note

that this isomorphism respects the action of the Steenrod operations. To make sense to
this remark, let us mention that ci1Â and ci+1

1 Â are stable under the Steenrod operations

on Â and therefore the Steenrod operations are defined on the quotient.
Let us consider the image N of R ∩ ci1Ř in A. By Corollary 3.7, N is the image of

R ∩ Ř ∩ ci1Â, i.e., the image of the even degree part of R ∩ ci1Â. Since the odd degree

part vanishes in A, N coincides with the image of the entire R ∩ ci1Â and therefore is a
graded B-submodule of A, concentrated in even degrees and stable under the Steenrod
operations. By Proposition 2.3 it is contained in B. It follows that

R ∩ ci1Ř ⊂ ci1B̌ + ci+1
1 Â.

This inclusion is our frist step. Our second and final step will be the inclusion

(3.10) R ∩ Ř ∩ ci+1
1 Â ⊂ ci+2

1 Â.

Note that

R ∩ Ř ∩ ci+1
1 Â ⊂ Ř ∩ ci1Â = ci1Ř

by Corollary 3.7. The image of ci1Ř ∩ ci+1
1 Â in the quotient ci+1

1 Â/ci+2
1 Â = A is the free

B-module with the basis consisting of the square-free products of c2, c4, c6, c3c5 multiplied
by (3.4). In particular, this image is concentrated in odd degrees. The image M of

R ∩ Ř ∩ ci+1
1 Â, we are interested in, coincides with the image of R ∩ ci+1

1 Â and is a
Steenrod stable submodule here. Let M ′ be the B-submodule in B[c2, c4, c6, c3c5] such
that M ′ multiplied by (3.4) is M . Then M ′ is concentrated in even degrees. One checks
that for positive i < 8 the operation Sti vanishes on (3.4). It follows that M ′ is stable
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under Sti for such i. By the second part of Proposition 2.3, we conclude that every element
of M ′ has the form

(3.11) a+ b(c25 · c6 + c23 · c4c6 + c2c3c5c6)

with a, b ∈ B. This means that every element of M has the form (3.4)·(3.11)=

(3.12) aα + bβ with α = c23 · (c3c6 + c4c5) + c25 · (c2c3 + c5) and

β = c43c
2
6 · (c2c5 + c3c4) + (c22c

2
3c

2
5 + c43c

2
4 + c45) · c5c6 + c23c

2
5c

2
6 · c3.

Let µ be an element of M written in the form (3.12) with some coefficients a, b ∈ B.
Since M is Steenrod stable, St8(µ) has to have the same form (with some other coefficients
in B). As already mentioned after (2.8), for every positive i < 8, Sti maps (2.8)=(3.11)
to B. Besides, (3.4) vanishes under Sti for those i. It follows that

(3.13) a St8(α) + b St8(β) = a′α + b′β

for some a′, b′ ∈ B. One has

St8(α) = (c42 + c24)
(
c23 · (c3c6 + c4c5) + c25 · (c2c3 + c5)

)
+

c23c
2
5 · (c2c5 + c3c4) + c43 · c5c6 + c45 · c3,

St8(β) = c43c
2
6

(
c23 · (c3c6 + c4c5) + c25 · (c2c3 + c5)

)
+

c22c
2
3c

2
5c

2
6 · (c2c5 + c3c4) + c22c

4
3c

2
6 · c5c6 + c22c

4
5c

2
6 · c3.

Looking at the coefficient at c3 in (3.13), we get

(3.14) b′c23c
2
6 = ac25 + bc22c

2
5c

2
6.

Looking at the coefficient at c5c6, we see

b′(c22c
2
3c

2
5 + c43c

2
4 + c45) = ac43 + bc22c

4
3c

2
6.

Multiplying by c23c
2
6 and substituting (3.14), we obtain the relation

(3.15) ax = by with x = c25(c
2
2c

2
3c

2
5 + c43c

2
4 + c45) + c63c

2
6 and

y = c22c
2
5c

2
6(c

2
2c

2
3c

2
5 + c43c

2
4 + c45) + c22c

6
3c

4
6.

Let d ∈ B be the g.c.d. of x and y. It follows that M is contained in the B-module M̃ ,
generated by y′α + x′β with x′ := x/d and y′ := y/d. One checks that the coefficients at
c3 and at c5 in yα + xβ = d(y′α + x′β) are nonzero. Therefore every nonzero element of
M̃ has the same property.

Let us take an arbitrary element µ ∈ M and write it as µ = c(y′α + x′β) with c ∈ B.
Then M 3 dµ = c(yα+ xβ). One checks that Sti(yα+ xβ) = 0 for every positive i < 16.
It follows that

M 3 St16(dµ) =
(
St16(cy)α + St16(cx)β

)
+ c

(
y St16(α) + x St16(β)

)
.

The first summand here is in M̃ ⊃ M . Therefore the second summand is also in M̃ .
One checks that the coefficients at c3 in y St16(α) + x St16(β) is zero and the coefficient

at c5 is not. It follows that c = 0, implying that µ = 0. Therefore M = 0 and inclusion
(3.10) is proved. �
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We are in position to prove Conjecture 1.2 for n = 6 now. In fact, we get a result on
Γ+(12) that goes far beyond the statement of Conjecture 1.2 for n = 6 and is similar to
[7, Corollary 3.5] on Spin(12):

Theorem 3.16. For n = 6, one has R = B̂. For G = Γ+(12), the image of ϕ : Ch(BG) →
Ch(BT ) is the subring generated by t, c1, c

2
2, . . . , c

2
6. The image of Φ: CH(BG) → CH(BT )

is the subring generated by 2CH(BT )W along with t, f0, and the Pontryagin classes
p1, . . . , p6.

Proof. Employing the inclusion of Proposition 3.8 several times, we prove that every
homogeneous element of R of a given even degree is in B̌ ⊂ B̂. For an odd degree
homogeneous α ∈ R we then have c1α ∈ B̌ implying that α ∈ B̂. Thus we get the first
statement of Theorem 3.16.
The equality R = B̂ just proved, together with the inclusions B̂ ⊂ Imϕ ⊂ R, imply

the equality Imϕ = B̂ which is the second statement of Theorem 3.16.
Concerning Φ, the Pontryagin classes are in its image because, up to a sign, they are

the images of Chern classes of the orthogonal G-representation. The element f0 is in the
image as well being the image of the Chern class of the character G → Gm. And t is the
image of the highest Chern class of a half-spin G-representation. Finally, since the torsion
index of G is 2, ImΦ ⊃ 2CH(BT )W by [20, Theorem 1.3(1)]. This directly proves one of
the two inclusions. Since

2CH(BT ) ∩ CH(BT )W = 2CH(BT )W ,

the opposite inclusion follows from the second statement of Theorem 3.16. �

4. Reduction to Γ+(12)

In this section, we work with arbitrary n ≥ 6. We do computations inside the polyno-
mial rings

CH(BT ) = Z[z, x1, . . . , xn] and Ch(BT ) = F[z, x1, . . . , xn],

where T is the standard split maximal torus of the special Clifford group G = Γ+(2n).
Recall from §1 that these rings are equipped with an action of the Weyl groups W ⊂ W̃
and with the Steenrod operations Sti, i ≥ 0. We consider the F-algebra generated by all
Sti, and refer as Steenrod operation to any element of this algebra.

Recall from the previous section that we write R̂ for the image of the composition

(4.1) CH(BT )W ↪→ CH(BT ) →→ Ch(BT )

of the embedding followed by the mod 2 reduction. As a ring, R̂ is generated by
c22, . . . , c

2
n−1, f0 = c1, f1, . . . , fn−2, cn, and t. We write R ⊂ R̂ for the subring of the

elements whose images under any Steenrod operation are in R̂. It follows from the com-
mutative square (3.1) that Imϕ ⊂ R.
By Theorem 3.16, the following conjecture holds for n = 6:

Conjecture 4.2. For n ≥ 6, R is contained in the subring of R̂, generated by c22, . . . , c
2
n−1,

f0, . . . , fn−2, and t.
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Clearly, Conjecture 4.2 implies Conjecture 1.2. So, let’s concentrate on proving Con-
jecture 4.2. As a first step, we are going to replace Conjecture 4.2 by a simpler state-
ment, involving a ring smaller than R̂. Let R′ be the subring in F[c1, . . . , cn] generated
by the squares and f0, . . . , fn−2. Note that R′ ⊂ R̂. We will also work with the ring
R′[cn] = R′ +R′ · cn ⊂ R̂. The sum is actually direct:

Lemma 4.3. R′[cn] = R′ ⊕R′ · cn.

Proof. The ring R′[cn] is the image under (4.1) of the ring generated by p1, . . . , pn,
f0, . . . , fn−2, and e. Since e2 = pn, the latter decomposes as R̃+R̃·e, where R̃ ⊂ CH(BT )W

is the subring generated just by p1, . . . , pn and f0, . . . , fn−2. Note that R̃ consists of W̃ -
invariant elements whereas any element of W̃ \W changes the sign of e. It follows that
R̃ ∩ (R̃ · e) = 0. This implies Lemma 4.3 because the image of R̃ under (4.1) is R′. �
Conjecture 4.4. For n ≥ 6, assume that an element x ∈ R′[cn] is such that the image
of x under any Steenrod operation is again in R′[cn]. Then x ∈ R′.

Lemma 4.5. Conjecture 4.4 is equivalent to Conjecture 4.2.

Proof. Note that R̂ is the polynomial ring in t over R′[cn].
Let us assume Conjecture 4.2 and take some x ∈ R′[cn] satisfying the condition of

Conjecture 4.4. Then x ∈ R and so x ∈ R′[t] by Conjecture 4.2. Since the intersection
R′[t]∩R′[cn] is R

′, we get that x ∈ R′. This proves that Conjecture 4.2 implies Conjecture
4.4.

To prove that Conjecture 4.4 implies Conjecture 4.2, let us take an element of R and
write it as a polynomial

(4.6) amt
m + · · ·+ a1 + a0

in t with coefficients am, . . . , a1, a0 ∈ R′[cn]. Let S be the Steenrod operation, given by
the composition of several Sti with various i ≥ 0. By induction on the degree j of the
operation S, we show that the value of S at every coefficient of (4.6) is in R′[cn]. For
j = 0, we have S = id. For j > 0, S(amt

m + · · ·+ a1t+ a0) equals

(4.7) S(am)t
m + · · ·+ S(a1)t+ S(a0)

plus remaining terms which are in R′[cn][t] by induction hypothesis and because t ∈ R.
Therefore (4.7) is in R′[cn][t] which means that the coefficients of (4.7) are in R′[cn]. It
follows by Conjecture 4.4 that the coefficients of (4.6) are in R′. �
Proposition 4.8. Conjectures 4.2 and 4.4 hold.

Proof. Since we already know that Conjectures 4.2 and 4.4 are equivalent and hold for
n = 6, it suffices to prove Conjecture 4.4 for a given n > 6.

Let W̃6 be the subgroup of W̃ generated by the permutations of x1, . . . , x6 and the

sign changes σ1, . . . , σ6 ∈ W̃ . The ring Z[z, x1, . . . , xn]
W̃6 is the polynomial ring over

Z[z, x1, . . . , x6]
W̃6 in the variables x7, . . . , xn.

Besides of the subring R′ ⊂ F[x1, . . . , xn], we have a similar subring in F[x1, . . . , x6]
that will be denoted R′

6 below in the proof. Note that R′ is contained in the polyno-
mial ring R′

6[x7, . . . , xn] over R′ in the variables x7, . . . , xn. Indeed, R′ is the image of
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Z[z, x1, . . . , xn]
W̃ in F[t, c1, . . . , cn] intersected with F[c1, . . . , cn]. It coincides with the im-

age of Z[z, x1, . . . , xn]
W̃ in F[t, x1, . . . , xn] intersected with F[x1, . . . , xn] and contained in

the image of Z[z, x1, . . . , xn]
W̃6 in F[t, x1, . . . , xn] intersected with F[x1, . . . , xn]. The latter

intersection is exactly R′
6[x7, . . . , xn].

Assume that we are given an element x ∈ R′[cn] satisfying the condition of Conjecture
4.4. In view of Lemma 4.3, let us write x in the form x = x′+x′′cn with x′, x′′ ∈ R′. Note
that

cn = (x1 . . . x6) · (x7 . . . xn).

By the n = 6 case of Conjecture 4.4, x ∈ R′
6[x7, . . . , xn]. Therefore x′′ = 0. �

Proposition 4.8 implies

Theorem 4.9 (Main Theorem). Conjecture 1.2 holds. �

5. The algorithm

In this section, G is the split spin group Spin(2n) = Spin(q) with n ≥ 3, given by the
split 2n-dimensional quadratic form q over a field, where

q(a1, b1, . . . , an, bn) = a1b1 + · · ·+ anbn,

and P ⊂ G is the standard maximal parabolic subgroup corresponding to the mth vertex
of the Dynkin diagram of G, where m ∈ {1, . . . , n − 2}. We describe an algorithm
computing i(XE) for a generic G-torsor E, where X := G/P is the variety of totally
isotropicm-planes of q. For the similar problem related to the odd spin group Spin(2n+1),
the corresponding algorithm is already provided in [10]. As already mentioned in §1, the
answer for m ∈ {n− 1, n} is the same as for m = n− 2 and has been already obtained in
[20, Theorem 0.1].

We start by summarizing facts established in [4] and [12]. One has i(XE) = i(X̃E) for
X̃ := G/P̃ , where P̃ ⊂ G is the standard parabolic subgroup given by the first m vertices
of the Dynkin diagram. The variety X̃ is the variety of flags of totally isotropic subspaces
of dimensions 1, . . . ,m of the quadratic form q.
The integer i(X̃E) is the positive generator of the image of the composition

(5.1) CH(BP̃ ) −−−→ CH(G/P̃ ) = CH(X̃)
deg−−−→ Z.

In view of the interpretation [21, Theorem 2.8] of CH(BP̃ ), the first homomorphism in the
composition is given by evaluation at the P̃ -torsor G → G/P̃ . The degree homomorphism
deg is the push-forward to the Chow ring of the base field with respect to the structure
morphism of the proper variety X̃. It vanishes on the components of the Chow group
other than CH0(X̃).

The reductive part (i.e., the Levi subgroup)

P̃red =
(
G×m

m × Spin(2l)
)
/µ2

of P̃ , where µ2 is embedded diagonally into the product of Gms and the center of Spin(2l),
is isomorphic to the product ofm−1 copies of Gm by the special Clifford group Γ := Γ+(2l)
with l := n −m. So, CH(BP̃red) is the polynomial ring over CH(BΓ) in m − 1 variables
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y := {y1, . . . , ym−1}, given by the standard characters of the split torus G×(m−1)
m . The

homomorphism

CH(BP̃ ) → CH(BP̃red) = CH(BΓ)[y],

induced by the embedding P̃red ↪→ P̃ , is an isomorphism. The first homomorphism in
(5.1) decomposes as

(5.2) CH(BP̃ ) = CH(BΓ)[y]
Φ[y]−−−→ CH(BT )W [y]

f−−−→ CH(G/P̃ ),

where T ⊂ Γ is the standard split maximal torus of the special Clifford group, W is the
Weyl group, Φ is the homomorphism CH(BΓ) → CH(BT )W induced by the embedding,
and f is defined in [4, Lemma 2.2]. As a clarification for the reference, let us note that W

is also the Weyl group of P̃ with respect to its standard split maximal torus G×(m−1)
m ×T ,

and CH(BT )[y] = CH(B(G×(m−1)
m × T )).

Recall that X̃ is the variety of flags of totally isotropic subspaces of dimensions 1, . . . ,m
in q and as such is equipped with the tautological vector bundles of ranks 1, . . . ,m. Let
C ⊂ CH(X̃) be the subring generated by their Chern classes. We also set

ε := f(e) ∈ CH(X̃), τ := f(t) ∈ CH(X̃)

with e, t ∈ CH(BT )W defined in §1, and consider the C-subalgebra C[τ ] ⊂ CH(X̃) gener-
ated by τ . The image of the composition (5.2) contains C[τ ] and is contained in C[τ, ε].
In fact, by [12, §5.b], the image under (5.2) of y1, . . . , ym−1 and of every generator of
CH(BT )W other than t and e is in C. It follows by Theorem 4.9 that the image of the
composition (5.2) is contained in C[τ, 2ε] for l ≥ 6.
Although we don’t know exactly what the image of (5.2) is equal to, the above approx-

imate information turns out to be sufficient for determination of the image of (5.1) and
therefore for determination of the index:

Theorem 5.3 (The Algorithm). For l ≥ 6, one has deg(C[τ ]) = deg(C[τ, 2ε]) and
i(XE) = deg(C[τ ]). For l < 6, one has i(XE) = deg(C[τ, ε]).

Proof. We use the identification CH(BT ) = Z[z, x1, . . . , xl] of §1. The involutional au-
tomorphism of the quadratic form q, given by the exchange of the vectors in the last
hyperbolic pair of q, yields an involutional automorphisms of the group G, globally fixing

the subgroups T ⊂ G×(m−1)
m × T ⊂ P̃ ⊂ G, and of X̃. Indeed, in coordinates, the auto-

morphism of q just exchanges an and bn. The parabolic subgroup P̃ ⊂ G is the stabilizer
of the rational point on X̃ given by the standard full flag of the totally isotropic m-plane

am+1 = · · · = an = 0, b1 = · · · = bn = 0. The standard split maximal torus G×(m−1)
m ×T of

G is the preimage under the isogeny of G → O+(2n) of the torus of the diagonal matrices
diag(λ1, λ

−1
1 , . . . , λn, λ

−1
n ).

We write σ for the automorphism of CH(X̃) given by the involutional automorphism of
X̃. The induced automorphism of CH(BT ) is the automorphism σl from §1, changing the

sign of xl and mapping z to z−xl. The induced automorphism of CH(B(G×(m−1)
m ×T )) =
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CH(BT )W [y] is the extension σl[y] of σl to CH(BT )W [y] identical on y. The square

CH(BT )W [y]
f−−−→ CH(X̃)

σl

y σ

y
CH(BT )W [y]

f−−−→ CH(X̃)

commutes.
Since the automorphism σ of CH(X̃) is induced by an automorphism of the variety X̃,

we have deg(σ(x)) = deg(x) for any x ∈ CH(X̃).
The sum τ+σ(τ) is in C (cf. [12, Proposition 5.6]). It follows that the C[τσ(τ)]-module

C[τ ] is generated by 1 and τ . Since ε2 ∈ C, the C[τ ]-module C[τ, 2ε] is generated by 1
and 2ε. Consequently, the C[τσ(τ)]-module C[τ, 2ε] is generated by 1, 2ε, τ, 2ετ . Since
σ(ε) = −ε and σ is identical on C[τσ(τ)], we have deg(C[τσ(τ)]2ε) = 0. Since 2τ ∈ C[ε]
by [12, Proposition 5.6], we have deg(C[τσ(τ)]2ετ) = deg(C[τσ(τ)]). Therefore

deg(C[τ, 2ε]) ⊂ deg(C[τσ(τ)] + C[τσ(τ)]τ) = deg(C[τ ]),

proving Theorem 5.3 for l ≥ 6.
To prove Theorem 5.3 for l < 6, it suffices to show that the image of the homomorphism

Φ: CH(BΓ) → CH(BT )W

contains the sum e + α of the Euler class e and certain polynomial α in the remaining
generators of CH(BT )W . (This in particular means that the statement of Conjecture 1.2
is false for n < 6.)

If l ≤ 3, then the torsion index of Γ is 1 implying that Φ is surjective (see [20, Theorem
1.3(1)]). Below we assume that l is 4 or 5.
Let us take n = l + 1. Then m = 1 and the variety X̃m = X̃1 = X1 is the projective

quadric of q. There are exactly two distinct rational equivalence classes

λ 6= λ′ ∈ CHl(X1)

of n-dimensional totally isotropic subspaces in q (see, e.g., [5, Proposition 68.2]). Their
sum λ′ + λ is a power of the hyperplane section class, which lies in C ⊂ CH(X1) and in
the image of (5.2). Note that n ≤ 6 meaning that dim q ≤ 12. It follows that 2λ is in the
image of of the homomorphism

(5.4) CH(XE
1 ) → CH(X1),

obtained as the composition of the change of field homomorphism of CH(XE
1 ), given

by a splitting field of E, followed by the inverse of the change of field isomorphism of
CH(X1). By [11, Theorem 6.4(2)], the image of (5.4) coincides with the image of (5.2).
Consequently, λ′ − λ = (λ′ + λ)− 2λ is in the image of (5.2) as well.
We claim that λ′−λ = ±ε. Since the whole group CHl(X1) is generated by λ′ and λ, we

a priori know that ε = a′λ′+aλ for some integers a′ and a. The involutional automorphism
σ exchanges λ′ with λ and changes the sign of ε. Therefore we have a′ = −a. Finally, to
see that a = ±1, note that the degree of t is 2l−1 > l. Besides, the image under f of any
of the generators of CH(BT )W other than t and e is a power of the hyperplane section.
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We conclude that ImΦ contains an element of the form ae+α, where α is a polynomial
in the remaining (i.e., distinct from e) generators of CH(BT )W and a is an odd integer.
Since l = 4, 5, the torsion index of Γ is 2 so that 2e ∈ ImΦ and we can replace the
appeared above odd integer a by 1. �

Theorem 5.3 provides an algorithm for computing i(XE) in the sense that it reduces
determination of i(XE) to a computations of g.c.d. of degrees of certain elements in the
Chow group of a split projective homogeneous variety (namely, the elements of C[τ, ε] in
CH(X̃)). This is not yet an algorithm of a practical value, but it reduces the original
difficult problem to an “elementary” computation. It also implies

Corollary 5.5. The index i(XE) does not depend on the initial field F0 and, in particular,
on its characteristic. �

Based on Theorem 5.3, a more efficient algorithm, computing i(XE), can be obtained
using the duality result of [13] in the spirit of how the Poincaré duality had been used in
[20, §4] (see also [10, §4]). However, it still needs further improvements. Since this work is
not yet finished, we do not provide further details here. Also note that all indexes i(XE)
for Spin(2n) with n ≤ 9 have already been determined without Theorem 5.3, see [8].

Appendix A. Computing Steenrod operations

To compute the Steenrod operations Sti for all i ≥ 0 on the ring F[c1, . . . , c6]/(c1), the
following simple Maple code can be used:

c[0]:=1: c[1]:=0:

for i from 7 to 12 do c[i]:=0 od:

for j from 1 to 6 do Sc[j]:=0:

for i from 0 to j do for k from 0 to i do

Sc[j]:=Sc[j]+binomial(i-j,k)*c[i-k]*c[j+k]*t^i mod 2

od: od: od:

After it is run, Sc[j] for j = 1, . . . , 6 becomes the value of the total Steenrod operation
on cj (with its homogeneous components separated with a help of a variable t). Now, in
order to compute Sti(P ) for a polynomial P in cj, one uses the command

expand(coeff(SP, t, i)) mod 2;

where SP is P with Sc[j] substituted for cj.

Appendix B. Computing f2, f3, f4

In order to compute the generators f2, f3, f4 ∈ F[c1, . . . , c6], the following Maple code
can be used. It requires the Maple Symmetric Polynomials package by Kahtan H.
Alzubaidy loaded with

restart; with(ListTools); with(combinat);

with(PolynomialTools); with(Groebner);

es:=proc() local V, A, p, L, K;

V:=[seq(args[i],i=2..nargs)];A:=[seq(sigma[i],i=1..nargs-1)];

p:=simplify(expand(mul(x_-args[i],i=2..nargs)),x_);

L := Reverse([seq((-1)^(r+nargs-1)*coeff(p, x_, r), r = 0..nargs-2)])-A;
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K:=Basis(L,tdeg(V[])); NormalForm(args[1],K,tdeg(V[])); end proc;

This package expresses symmetric polynomials in terms of the elementary ones. Note
that once such an expression for a given polynomial is determined, its correctness is easily
verified (without employing the package).

The following simple code computes fi, i ≤ 4, as polynomials in x1, . . . , x6:

f[0]:= x[1] + x[2] + x[3] + x[4] + x[5] + x[6]:

for i from 1 to 4 do

f[i]:=expand(f[i-1]^2-subs(x[1]=x[1]^2, x[2]=x[2]^2,

x[3]=x[3]^2,x[4]=x[4]^2,x[5]=x[5]^2,x[6]=x[6]^2, f[i-1]))/2; od:

To rewrite f[i] as polynomials in c1, . . . , c6, use

for i from 1 to 4 do

f[i]:=es(f[i], x[1], x[2], x[3], x[4], x[5], x[6]) mod 2; od;

Warning: the computation of f[4] requires about 15 minutes of a standard computer
time. The computation of f[i] for i ≤ 3 is immediate. It is recommended to run the
Repetition Statement from 1 to 3 for testing first.
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