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Abstract. We show that any 18-dimensional non-degenerate quadratic form of trivial
discriminant and Clifford invariant acquires Witt index at least 5 over some finite base
field extension of degree not divisible by 24. Based on previous research, we also establish
a general formula on all possible similar statements for forms of arbitrary dimension.

1. Introduction

Given a split semisimple algebraic group G and a parabolic subgroup P ⊂ G, a G-torsor
E over an extension of the base field of G is called P -isotropic, if the quotient variety E/P
has a rational point, cf. [12]. As an example, for a Borel subgroup B ⊂ G, “B-isotropic”
means the same as “trivial”.

Let E be a generic G-torsor, i.e., the generic fiber of the quotient morphism

GL(N) → GL(N)/G

given by an embedding of G into a general linear group GL(N) for some N ≥ 1. It is
interesting to know the g.c.d. of degrees of finite extensions L of its base field which
are P -isotropy fields of E, i.e., the torsor EL is P -isotropic. This number is the index of
the variety E/P , defined (for any algebraic variety) as the g.c.d. of degrees of its closed
points. For instance, for P = B what we get is the well-studied torsion index of the group
G (see [13, Theorem 1.1]).

Our motivation to consider a generic G-torsor E relies on the fact that any G-torsor
E ′ over an extension of the base field of G is a specialization of E. By that reason, the
index of E ′/P is a divisor of the index of E/P (see [9, Theorem 6.4]).

Below we take for G the split spin group Spin(d) with some d ≥ 3. We write n for
the integer satisfying d = 2n + 1 or d = 2n + 2. The torsion index of G is a 2-power 2t,
depends only on n, and has been computed in [13]; the exponent t is called the torsion
exponent here.

Any G-torsor E yields a d-dimensional non-degenerate quadratic form q of trivial dis-
criminant and Clifford invariant. (The corresponding map of the sets of isomorphism
classes is surjective.) We say that q is generic if E is so. Determination of the index of
E/P for any P easily reduces to the case, where E/P is isomorphic to the variety Xm

of totally isotropic m-planes of q for some m = 0, . . . , n. (The variety X0 is just the
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base point and has index 1.) We call Xm the mth grassmannian of q. Its index is easily
seen to be a 2-power, and we write im for the exponent. We have i0 = 0, in = t, and
im−1 ≤ im ≤ im−1 + 1 for any m = 1, . . . , n. It follows that im = min{m, t} for any m
provided that it = t. By this reason, we say that the tth exponent it is critical.

For generic forms of dimension d ≤ 12, it is easy to see that it = t always except d = 10,
where t = 1 and i1 = 0. For generic forms of dimensions 13 and 14, the equality it = t
has been simultaneously and independently shown in [4] and [5]. In dimensions 15 and
16, the equality has been obtained in [7]. In the light of these results, the exception of 10-
dimensional forms seemed to be a special low-dimensional effect. It has been shown later
in [8] that it ̸= t for dimensions 17–20, but the proofs relied on computer computations.

For a generic form of arbitrary dimension, it has been proven in [10] (based on earlier
[1]) that it ∈ {t − 1, t}. With Theorem 4.1 here, we give a mathematical proof that
it = t − 1 = 3 for generic forms of dimension 17. This implies the same and actually
determines all exponents for dimension 18 (see Corollary 4.4).

We start in §2 by summarizing available results and establishing in Theorem 2.3 a
simple general formula on all possible similar statements for forms of arbitrary dimension
and any m. The case of m = t for forms of arbitrary odd dimension is discussed more
extensively in §3. In final §4, the specific computation for dimension 17 is made.

2. Exponents for arbitrary dimension

Clearly, for any m, the mth exponent im satisfies

(2.1) deg(CH(Xm)) = 2im · Z.
The left-hand side of the formula is the image of the degree homomorphism

deg : CH(Xm) → Z,
of the Chow group given by the push-forward with respect to the structure morphism of
the projective variety Xm. Since the generic quadratic form q, defining Xm, splits over
some field extension, we have a ring homomorphism

(2.2) CH(Xm) → CH(X̄m),

where X̄m is the mth grassmannian of a split non-degenerate d-dimensional quadratic
form. Since degree does not change under field extensions, we can replace CH(Xm) in
(2.1) by the image C̄H of (2.2) and replace the degree map of Xm by the degree map of
X̄m. These replacements provide a simplification because the subring C̄H ⊂ CH(X̄m) is
isomorphic to CH(Xm) modulo torsion and because a computation of the ring CH(X̄m),
unlike CH(Xm), is available.
There is a further simplification, which relies on the fact that q is generic. Unlike the

previous one, it is highly non-trivial. Let CC ⊂ CH(X̄m) be the subring generated by the
Chern classes of all vector bundles on X̄m, or, equivalently, by the Chern classes of virtual
vector bundles – the elements of the Grothendieck group K0(X̄m). Since the group G is
simply connected, the homomorphism K0(Xm) → K0(X̄m) is an isomorphism implying
that CC is a subring in C̄H.

Theorem 2.3. One has
deg(CC) = 2im · Z
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except, possibly, the case where d is even and n−m ≤ 4.

Proof. The proof is simpler for odd d, where the ring CC happens to coincide with C̄H:
by [8, Theorem 3.6], C̄H = CCs, where CCs ⊂ CC is the subring, generated by the
Chern classes of the tautological (rank m) vector bundle T on X̄m together with the
2n−mth Chern class τ of certain (rank 2n−m) virtual vector bundle, described in [8, Proof
of Proposition 3.4].

Now assume that d is even. Here again the subring CCs ⊂ CC, generated by the Chern

classes of T and certain additional element τ ∈ CH2n−m

(X̄m), plays an important role.
The needed element τ is defined in [10, Proposition 5.5] (see also [6, §5]), where it is
shown to be the 2n−mth Chern class of certain (rank 2n−m) virtual vector bundle. The
equalities CCs = CC = C̄H do not hold anymore. However

deg(CCs) = deg(CC) = deg(C̄H)

by [6, Theorem 5.3] provided that n−m ≥ 5: the elements outside CCs do not contribute
to the image of the degree map. □
Remark 2.4. Even though C̄H = CC for odd d and any m, it is not clear if (and rather
not to expect that) the corresponding Chow ring CH(Xm) is generated by Chern classes.

Remark 2.5. The proof of Theorem 2.3 yields the formula

deg(CCs) = 2im · Z,
which makes eventual computation of im more accessible than does the formula with CC.

Remark 2.6. Let us consider the situation of even d = 2n + 2 with n − m ≤ 4. Since
any non-degenerate quadratic form with trivial discriminant and Clifford invariant and of
even dimension ≤ 6 is hyperbolic, we have

in−2 = in−1 = in = t.

Since any such form of dimension 10 is isotropic, we have

in−4 = in−3 ∈ {t− 1, t}.
We are going to show that the exponents in−4 and in−3 can be computed using Theorem
2.3 for the odd dimension d′ := 2n + 1. Let i′0, . . . , i

′
n be the exponents for dimension d′.

By [10, Lemma 2.3], we have in−4 ≤ i′n−4 ≤ in−3 and it follows that in−4 = i′n−4 = in−3.
For the sake of Remark 2.7, note that in−m = i′n−m for n−m = 0, 1, 2, 4 with an exception
of n−m = 3. (Actually, we do not dispose of any example with im ̸= i′m aside from m = 1
for d = 10.)

Remark 2.7. The mth grassmannian X̄ ′
m of a non-degenerate d′-dimensional subform in

the d-dimensional quadratic form defining X̄m, is a closed subvariety of X̄m. The pull-back
of the extra generator τ ∈ CH(X̄m) is the corresponding extra generator τ ′ ∈ CH(X̄ ′

m).
Using this observation, one can show that the formula

deg(CC) = deg(CCs) = 2im · Z
also holds for even d and n − m ≤ 4 except, possibly, the case where n − m = 3 and
in−3 ̸= i′n−3 (in the notation of Remark 2.6). Note that for d = 10 and n − m = 3, the
formula still holds despite that in−3 ̸= i′n−3.
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Remark 2.8. Note that the rings CH(X̄m) and K0(X̄m) do not depend on the base field.
Therefore Theorem 2.3 and Remark 2.6 imply that for any m the exponent im does not
depend on the base field. This fact has been already observed: for odd d in [8], for even
d in [6].

It is not difficult to show that deg(CCT ) = 2m, where CCT ⊂ CCs is the subring
generated by the Chern classes of T alone. This 2-power is the index of the grassmannian
given by a d-dimensional non-degenerate generic quadratic form (without any restriction
on its discriminant and Clifford invariant). To see how much im is lower than m, one
needs to understand the contribution of the additional generator of CCs. This is what
the next section does in the case of the critical exponent and odd dimension.

Controlling contribution of τ simplifies due to certain duality property of the ring CCT ,
see [11]: the contribution turns out to be determined by the orders of powers of τ modulo
CCT . (This has been first notices and used for m = n in [13].) One shows that the order

for τ 2
i
divides 2 for any i. Because of that, the maximal contribution has to come from

τ 2
i−1 for some i, c.f. [13, §4]. In the case of the critical exponent, τ 3 vanish by dimension

reason (see [10, Proposition A.1]), so that only the order of the class of τ itself needs to
be determined. This explains the statement of Proposition 3.2 below.

3. Critical exponent for odd dimension

Let us describe the determination algorithm of the critical exponent, established in [10],
which works for any odd dimension d.

We fix some d = 2n + 1 and consider the highest grassmannian X := X̄n of a split
d-dimensional quadratic form. Recall from [2, §86] (the result was originally obtained in
[14]) that the Chow ring CH(X) is generated by elements ei ∈ CHi(X), i = 1, . . . , n,
subject to the relations

e2i − 2ei−1ei+1 + 2ei−2ei+2 − · · ·+ (−1)i−12e1e2i−1 + (−1)ie2i = 0.

The additive group of CH(X) is free, a basis is given by the products

eI :=
∏
i∈I

ei, I ⊂ {1, . . . , n}.

For every i, the element (−1)i2ei is the ith Chern class ci of the tautological (rank n)
vector bundle T on X.
Let Y be the variety of complete flags in T . It comes equipped with the tautological

vector bundles T1, . . . ,Tn, where Ti is of rank i and Tn on Y comes from T on X. We
write xi ∈ CHi(Y ) for the first Chern class of the line bundle Ti/Ti−1, where T0 := 0.
The morphism π : Y → X makes CH(Y ) a CH(X)-algebra, generated by the elements
x1, . . . , xn subject to the relations

(3.1) σi = π∗(ci),

where σi is the ith elementary symmetric polynomial in x1, . . . , xn (see [3, Example 3.3.5]).
As a CH(X)-module, CH(Y ) is free with a basis given by the products xa1

1 . . . xan

n satisfying
the conditions ai < i for i = 1, . . . , n (see, e.g., [1, Lemma 4.5]).
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Let us consider the product

e :=
∏

I⊂{t+1,...,n}
(e1 −

∑
i∈I

xi) ∈ CH2n−t

(Y ),

where t is the torsion exponent. The element e is the image in CH(Y ) of the extra
generator τ (for m = t) from the proof of Theorem 2.3. By [10, Proposition 4.4], 2e is
in the subring C ⊂ CH(Y ), generated by x1, . . . , xn. This subring is an analogue of the
subring CCT ⊂ CH(X̄m), considered in §2.

Proposition 3.2 ([8, Theorem 3.6]). One has it = t if and only if e ∈ C.

Remark 3.3. Replacing t by any m = 0, . . . , n in the definition of e, one can define an

element e[m] ∈ CH2n−m

(Y ) (which will be also the image in CH(Y ) of the extra generator
τ from the proof of Theorem 2.3) and show that 2e[m] ∈ C. One has e[m] ̸∈ C for m > t
and one has e[m] ∈ C for m < t − 1. Moreover, e[t−1] ∈ C if and only if it−1 = t − 1;
otherwise it−1 = t− 2. We do not dispose of any actual example with it−1 = t− 2.

Remark 3.4. We need some observations on the formula defining e. Let us replace e1
by a formal variable x and let us view x1, . . . , xn as formal variables as well. For any
m = 0, . . . , n, let us define the polynomial

fm(x) :=
∏

I⊂{m+1,...,n}
(x−

∑
i∈I

xi) ∈ Z[xm+1, . . . , xn][x].

Then fn(x) = x and fm−1(x) = fm(x) · fm(x − xm) for any positive m. It follows by
descending induction on m = n, n− 1, . . . , 0 that, modulo 2, fm(x) is a sum of monomials
of 2-power degrees (in x). It follows then that

(3.5) fm(x) ≡ fm+1(x)
2 + fm+1(x) · fm+1(xm+1) (mod 2)

and that xm+1 appears in fm(x)mod 2 only with 2-power exponents as well. By symmetry
of fm(x) in the variables xm+1, . . . , xn, each of them also appears with 2-power exponents
only.

4. Critical exponent for dimension 17

Here we apply Proposition 3.2 to calculate the critical exponent for dimension d = 17.
Note that t = 4 for this d.

Theorem 4.1. For d = 17 we have it = t− 1.

Proof. The modulo 2 Chow group Ch(Y ) := CH(Y )/2CH(Y ) has an Z/2Z-basis given by
the products xa1

1 . . . xa8
8 eI with ai < i and I ⊂ {1, . . . , 8}. The Z/2Z-subspace C ⊂ Ch(Y )

is generated by the part of the basis without eI (i.e., with I = ∅).
By Remark 3.4, e, as a polynomial in e1, contains monomials of 2-power degrees only.

For e1 ∈ Ch(Y ) one has e2
i

1 = e2i for any i ≥ 0 with the agreement ei := 0 for i > n. To
prove that e ̸∈ C, it suffices to find a nonzero term with some i > 0. We choose to take
i = 3, i.e., we look at the term with e2

3

1 = e81 = e8.
The coefficient at e8 is a sum of

(4.2) xa5
5 xa6

6 xa7
7 xa8

8
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with 2-powers a5, a6, a7, a8 satisfying a5 + a6 + a7 + a8 = 8. Since

x8
8 = c1x

7
8 + c2x

6
8 + · · ·+ c7x8 + c8 ∈ Ch(Y )

and ci = 0 ∈ Ch(X) for i > 0, we have x8
8 = 0. By symmetry in x1, . . . , x8 ∈ Ch(Y ) of

relations (3.1), we have x8
i = 0 for every i = 1, . . . , 8. It follows that the nonzero terms

(4.2) have exponents a5, a6, a7, a8 ≤ 4. Therefore they belong to the above basis. At
least one term (4.2) actually appears as, for instance, the term x4

7x
4
8: using formula (3.5)

from Remark 3.4 one sees that f6(x) contains the monomial x7x8x
2 and therefore f4(x)

contains (x7x8 · x2)4 = x4
7x

4
8 · x8. Consequently e ̸∈ C.

Proposition 3.2 terminates the proof. □
Remark 4.3. The proving method of Theorem 4.1 does not extend to higher dimensions:
for d = 19 as well as for most higher odd d, the element e vanishes modulo 2. This does
not allow to detect if e is in C the way as in the proof of Theorem 4.1.

Corollary 4.4. For d = 18, the exponents are computed as follows:

i0 i1 i2 i3 i4 i5 i6 i7 i8

0 1 2 3 3 3 4 4 4

Proof. Since n = 8 for d = 18, Remark 2.6 and Theorem 4.1 yield a computation of
i4 = in−4 and i5 = in−3 for d = 18. The remaining exponents for this dimension have
been computed in [10]. □

In particular, “any 18-dimensional non-degenerate quadratic form of trivial discriminant
and Clifford invariant acquires Witt index at least 5 over some finite base field extension
of degree not divisible by 24”, as claimed in Abstract. Since i3 = 3, the result is best
possible.
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