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Abstract. We study the ring of Chow characteristic classes (also called the Chow ring
of the classifying space) for the split spin group Spin(n) with n odd or divisible by 4.
For such n up to 12, we determine this ring modulo torsion.
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1. Introduction

For an affine algebraic group G over a field, the (graded) ring CH(BG) of its Chow
characteristic classes (also called the Chow ring of the classifying space of G) has been
introduced in [22].
Assume that G is reductive and has a split maximal torus T . The kernel of the ring

homomorphism Φ: CH(BG) → CH(BT ), given by the inclusion T ↪→ G, is precisely the
ideal of the elements of finite order so that the ring CH(BG) modulo torsion is identified
with the image of Φ. Every element in the image is invariant under the action of the Weyl
group W of G and the quotient CH(BT )W/ ImΦ (as well as the kernel of Φ) is killed by
the torsion index of G, [23, Theorem 1.3(1)]. Note that the ring CH(BT ) is know to be
the symmetric Z-algebra on the character group of T .
Let G be the split spin group Spin(n) over some field (on which we don’t put any

restriction). For arbitrary n, unlike as in topology, where the cohomology of the classifying
space of G is well-understood (see [18] and [1]), its Chow ring in algebraic geometry is
“notoriously difficult to study” ([21, Page 43]).
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For n ≤ 6 however, the torsion index of G is 1 so that CH(BG) = ImΦ = CH(BT )W .
Note that the subring CH(BT )W ⊂ CH(BT ) of the W -invariants has been computed for
arbitrary n (in the topological context) in [1, Theorem 7.1]. One can also mention [6,
Table 16] showing for n ≤ 6 that G is isomorphic to a classical group for which CH(BG)
is computed in [22] and [16]. We do not consider these values of n any further in the
paper.
For n ≥ 13, the torsion index is divisible by 4. Note that the torsion index of Spin(n)

has been determined for any n in [23, Theorem 0.1].
For the remaining values 7, . . . , 12 of n, the torsion index is 2. Determination of ImΦ

in this case is equivalent to determination of the image for the modulo 2 reduction

ϕ : Ch(BG) → Ch(BT )

of Φ, where Ch(−) is the Chow ring CH(−)/2CH(−) with coefficients Z/2Z. Our main
result affirms that for n 6= 10 the image of ϕ is the subring

(Ch(BT )W )2 := {a2, a ∈ Ch(BT )W} ⊂ Ch(BT )W

of squares in Ch(BT )W :

Theorem 1.1. For the algebraic group G = Spin(n) with n = 7, 8, 9, 11, 12, 13 and its
split maximal torus T , the image of ϕ : Ch(BG) → Ch(BT ) is the ring (Ch(BT )W )2 of
squares of the W -invariants.

The consequence for the integral Chow group is captured in Corollary 3.5.
The value n = 13 is included into Theorem 1.1 because it does not require additional

efforts.
The value 10 of n is excluded because the statement of Theorem 1.1 fails for every n ≥ 7

which is 2 modulo 4: the image under ϕ of the highest Chern class in Ch(BG) of the half-
spin representation of G is not a square in Ch(BT )W (cf. the proof of Proposition 3.4). At
the same time, the odd degree Euler class (defined in Proposition 2.1), occurring for such
n, creates additional complications for our approach to determination of the image of ϕ.
For n = 10, the Euler class is in the image of Φ (see Lemma A.1) and, viewed modulo 2,
yields another example of a non-square element in Im ϕ; applying appropriate Steenrod
operations to it (see §4), one can enlarge the number of such examples even further.
The ring Ch(BT )W of W -invariants in the Chow ring Ch(BT ) with coefficients Z/2Z is

easy to compute for arbitrary n – see Proposition 3.2. Note that the image of CH(BT )W

under the reduction modulo 2 homomorphism CH(BT ) → Ch(BT ) is in general smaller
than Ch(BT )W (see Remark 3.3).

Since the entire ring CH(B Spin(n)) (over a field of characteristic different from 2) is
computed for n = 7 in [7] and [19] as well as for n = 8 in [19], the statement of Theorem
1.1 in these cases is not new.
Concerning the proof of Theorem 1.1, it is easy to check that (Ch(BT )W )2 ⊂ Imϕ for

any n – see Proposition 3.4: the job is done by computing the images in Ch(BT ) of the
Chern classes in Ch(BG) for the (half-)spin and the orthogonal representations of G.

The opposite inclusion (now for the specified in Theorem 1.1 values of n) is obtained by
combining the methods of [11] (summarized in §2) and [10] (pushed further in §4), where
the second approach makes use of the Steenrod operations Sti, i ≥ 0 on the modulo 2
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Chow groups. These operations extend to the Steenrod operations Sq2i, i ≥ 0 in the
motivic cohomology with coefficients Z/2Z, where, like as well in topology, the Steenrod
algebra has one more generator – the Bockstein homomorphism Sq1. We observe a formal
similarity between Sq1 and St1. The similarity observed allows us to apply to our setting
some topological techniques and computations related to the Bockstein cohomology (see
the proof of Lemma 4.2). This results in a new bound on Im ϕ valid for arbitrary n ≥ 7
which is odd or divisible by 4 (see Proposition 4.3). Adding on top the restrictions
provided by the even Steenrod operations St2, St4, and St8, we achieve the proof of
Theorem 1.1.
Theorem 1.1 has been recently applied in [8] to prove a conjecture on the Chow ring of

characteristic classes for the special Clifford groups. This conjecture was the only obstacle
for obtaining an algorithm computing the maximal indexes of twisted spin grassmannians.

2. Known restrictions on ImΦ

Here we describe a stronger than CH(BT )W upper bound on ImΦ obtained in [11].
Depending on parity, we write the integer n ≥ 7 in the form n = 2l + 1 or in the form

n = 2l (with an integer l) and identify the graded ring CH(BT ) with the polynomial ring
Z[z, x1, . . . , xl] in the l+1 variables modulo the homogeneous relation 2z = x1 + . . .+ xl.
For odd n = 2l + 1, the Weyl group W is a semidirect product of the symmetric group
Sl and the direct product (Z/2Z)×l of l copies of Z/2Z. The action of W on CH(BT ) is
induced by its action on the polynomial ring, in which Sl acts trivially on z and permutes
x1, . . . , xl, whereas the ith copy of Z/2Z acts by xi 7→ −xi, z 7→ z − xi, and trivially on
the remaining variables. We let z̃ to be the product of the elements in the orbit of z:

z̃ =
∏

I⊂{1, ..., l}
(z −

∑
i∈I

xi) ∈ Z[z, x1, . . . , xl].

For even n = 2l, the Weyl group W is a semidirect product of Sl and the subgroup
in (Z/2Z)×l of the elements with an even number of nonzero components, acting by
restriction of the odd case action. We let ž to be the product of the elements in the orbit
of z:

ž =
∏

even I⊂{1, ..., l}
(z −

∑
i∈I

xi),

where an even subset is a subset with even number of elements.
It is shown in [11] that ImΦ is contained in the image of Z[z, x1, . . . , xl]

W (which,
in general, is strictly smaller than CH(BT )W ). Moreover, the ring Z[z, x1, . . . , xl]

W is
computed in [12, Proposition 2.4] and [14, Proposition 5.1] (see also [5]). As a part of this
computation, for n = 2l + 1 and every i ≥ 0, certain homogeneous W -invariant element
fi ∈ Z[z, x1, . . . , xl]

W of degree 2i is constructed. The element f0 equals 2z−(x1+ . . .+xl)
and vanishes in CH(BT ). As a result, we get

Proposition 2.1 ([11, Theorems 2.2 and 3.2]). Let G = Spin(n) with n ≥ 7 and let
S ⊂ Z[z, x1, . . . , xl]

W be the subring of symmetric polynomials in the squares x2
1, . . . , x

2
l .

For n = 2l + 1, the image of Φ: CH(BG) → CH(BT ) is contained in the S-subalgebra
of CH(BT ) generated by f1, . . . , fl−1 and the orbit product z̃ of z (of degree 2l). The
generator z̃ equals z̃21, where z̃1 ∈ CH(BT )W is defined below.
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In the case of n = 2l, the image of Φ is contained in the S-subalgebra generated by
f1, . . . , fl−2, the orbit product ž of z (now of degree 2l−1), and the element e := x1 . . . xl

(called the Euler class). If n is divisible by 4 (i.e., l is even), the generator ž equals ž21,
where ž1 ∈ CH(BT )W is defined below.

Remark 2.2. The subring S ⊂ CH(BT ) is the image of the composition

CH(B O(n)) −−−→ CH(BG)
Φ−−−→ CH(BT ),

where O(n) is the standard split orthogonal group. More precisely, the elementary sym-
metric polynomials in the squares x2

1, . . . , x
2
l are, up to a sign, the images of the even

Chern classes in CH(B O(n)) of the standard representation O(n) ↪→ GL(n). In partic-
ular, S ⊂ ImΦ. By [22] (see also [16]), the Chern classes of the standard representation
generate the ring CH(B O(n)). The odd ones have exponent 2 and vanish in CH(BT ).

Remark 2.3. The group G = Spin(n) is defined (e.g., in [15, §23A]) as a subgroup in
GL1(C0(n)), where C0(n) is the even Clifford algebra of the standard split n-dimensional
quadratic form. For even n, the algebra C0(n) is the product of two copies of a split
central simple algebra C+(n). The two representations G → GL1(C

+(n)), given by the
two projections C0(n) → C+(n), are irreducible and called the half-spin representations
of G. There sum is the spin representation G → GL1(C0(n)). The image in CH(BT ) of
the highest Chern class in CH(BG) of one half-spin representation is equal to ž. (The
other half-spin representation yields

∏
odd I⊂{1, ..., l}(z −

∑
i∈I xi).)

For odd n, C0(n) is a split central simple algebra and G → GL1(C0(n)) is the spin
representation. This representation is irreducible and the image in CH(BT ) of its highest
Chern class is z̃.

The upper bound on ImΦ described in Proposition 2.1 is in general smaller than the
ring CH(BT )W , computed in [1]. For odd n, let us define

z̃1 :=
∏

I⊂{2, ..., l}
(z −

∑
i∈I

xi) ∈ CH(BT ).

Because of the relation 2z = x1 + . . . + xl, which holds in CH(BT ), the element z̃1 is
W -invariant and z̃21 = z̃.

Similarly, for n divisible by 4, let us define

ž1 :=
∏

even I⊂{2, ..., l}
(z −

∑
i∈I

xi) ∈ CH(BT ).

Then ž1 is W -invariant and ž21 = ž.

Proposition 2.4 ([1, Theorem 7.1]). Assume that n ≥ 7. For odd n, the S-algebra
CH(BT )W is generated by f1, . . . , fl−2 and z̃1. For n divisible by 4, the S-algebra CH(BT )W

is generated by e, f1, . . . , fl−3 and ž1. For even n not divisible by 4, the S-algebra CH(BT )W

is generated by e, f1, . . . , fl−2 and ž.

Remark 2.5. Instead of the generators f1, . . . , fl−2, some different generators q1, . . . , ql−2

(homogeneous of degrees 21, . . . , 2l−2 as well) are used in [1]. However, as shown in [11,
Lemma 2.3], both generate the same subring in CH(BT ).
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3. Computation of Ch(BT )W

To decode the statement of Theorem 1.1, we provide a description of W -invariants
Ch(BT )W for the modulo 2 Chow ring. First of all, the ring Ch(BT ) itself is the polyno-
mial ring F[z, x1, . . . , xl] in the l+1 variables modulo the relation x1+ . . .+xl = 0, where
F := F2 := Z/2Z. So, Ch(BT ) is isomorphic to the polynomial ring F[z, x2, . . . , xl] in the
variables other than x1. The elementary symmetric polynomials c1, . . . , cl in x1, . . . , xl

(where c1 = 0 in Ch(BT )) are W -invariant.

Example 3.1. The quotient ring R := Z[x1, . . . , xl]/(x1 + . . .+ xl) can be viewed as the
symmetric Z-algebra of the character group of the standard split maximal torus in the
special linear group SL(l). The Weyl group of SL(l) is the symmetric group Sl acting
on R by permutations of x1, . . . , xl. By [13, Lemma 8.1] we have RSl = Z[c2, . . . , cn]. It
follows by [4, Théorème] that (R⊗ F)Sl = RSl ⊗ F = F[c2, . . . , cn].
Proposition 3.2. The F[c2, . . . , cl]-algebra Ch(BT )W is generated by the following single
element: z̃1 for odd n, ž1 for n divisible by 4, ž for even n not divisible by 4.

Proof. Since the group (Z/2Z)×l acts on Ch(BT ) trivially, the invariants under its in-
tersection with W contain the F[x1, . . . , xl]-subalgebra of Ch(BT ) generated by the orbit
product of z ∈ Ch(BT ) which is equal – depending on n (mod 4) – to z̃1, ž1, or ž.
Since the linear factors of each orbit product are distinct primes of the polynomial ring
F[z, x2, . . . , xl], the inclusion is actually an equality (cf. [5, Proof of Lemma 3.2]). Taking
additionally into account the action of Sl ⊂ W (trivial on the above orbit products) and
Example 3.1, we come to the announced answer. □
Remark 3.3. Under the reduction modulo 2 homomorphism

Z[z, x1, . . . , xl] → F[z, x1, . . . , xl]

of the polynomial rings, the images of the generators f0, f1, . . . are determined as follows:
the image of f0 is c1 = x1 + . . . + xl and for every i ≥ 0 the image of fi+1 is the sum of
pairwise products of distinct monomials in the image of fi. In particular, these images
are symmetric polynomials in x1, . . . , xl (the variable z does not intervene). The element
f0 vanishes in Ch(BT ), whereas f1 and f2 map respectively to c2 and c4, where ci := 0
for i > l. The formulas for fi with i ≥ 3 are more complicated.

We can already prove the easy inclusion of Theorem 1.1:

Proposition 3.4. For any n, the image of ϕ contains (Ch(BT )W )2.

Proof. For odd n, z̃21 = z̃ ∈ CH(BT ) is the image under Φ of the highest Chern class of
the spin representation of G (see Remark 2.3). For even n, ž ∈ CH(BT ) is the image
under Φ of highest Chern class of a half-spin representation of G and ž21 = ž for n divisible
by 4 (see Remark 2.3). Finally, the squares c21, . . . , c

2
n ∈ Ch(BT ) are the images under ϕ

of the even Chern classes of the orthogonal representation of G (see Remark 2.2). □
Thus, Theorem 1.1 yields

Corollary 3.5. We set t := z̃ for odd n and we set t := ž for even n. Let S ′ ⊂ CH(BT )
be the subring generated by t, S, and 2CH(BT )W . Then ImΦ = S ′ for n = 7, 8, 9, 11, 12
and ImΦ ⊂ S ′ for n = 13.
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Proof. For any n as in Theorem 1.1, any element of ImΦ is a sum of an element of S ′ with
an element α ∈ 2CH(BT ). It follows that α ∈ 2CH(BT ) ∩ CH(BT )W = 2CH(BT )W . If
n ≤ 12, the torsion index of G is 2 so that 2CH(BT )W ⊂ ImΦ. □

4. Restrictions on Imϕ

In this section, we discuss restrictions on the image of ϕ : Ch(BG) → Ch(BT ), where
G = Spin(n) with arbitrary n ≥ 7. First of all, an upper bound on Imϕ is given by the
image of the subring described in Proposition 2.1. Another restriction, already considered
in [10] and pushed further below, is given by the action of the modulo 2 Steenrod algebra.
Combining the two restrictions will be our ultimate strategy.
We have a commutative square

(4.1)

Ch(BG)
φ−−−→ Ch(BT )ySt

ySt

Ch(BG)
φ−−−→ Ch(BT )

where St is the total cohomological Steenrod operation, constructed for smooth algebraic
varieties in characteristic 6= 2 in [3] and in characteristic 2 in [17]. It is also defined
for classifying spaces of affine algebraic groups via their approximations by algebraic
varieties introduced in [22]. The operation St is a (nonhomogeneous) ring homomorphism,
determined in the case of Ch(BT ) = F[z, x1, . . . , xl] by the rule Ch1(BT ) 3 a 7→ a+ a2.

It follows from (4.1) that Imϕ is stable under St. Moreover, being graded, the image
of ϕ is stable for every i ≥ 0 under the ith graded component Sti of St, rasing the degree
by i. (The negative graded components of St are trivial.)

The image of ϕ is contained in the subring F[z, c2, . . . , cl] ⊂ F[z, x1, . . . , xl] = Ch(BT )
which is also stable under St. The subring F[c2, . . . , cl] is stable under St as well. For any
i, j ≥ 0, a formula for Sti(cj) (where c0 := 1) is provided in [2, Théorème 7.1] and applied
here below. Note that Sti(cj) vanishes for i > j, equals c2j for i = j, and is equal to

Sti(cj) =
i∑

k=0

(
i− j

k

)
ci−kcj+k

otherwise. The binomial coefficient in this simplified formula (borrowed from [20, Prop-
position 3.1.12]) is taken modulo 2 and has a negative upper entry.

We remind that c1 is trivial in our setting.
Note that the additive map St1 : F[c2, . . . , cl] → F[c2, . . . , cl] vanishes on F[c22, . . . , c2l ] and

therefore is a homomorphism of F[c22, . . . , c2l ]-modules. The F[c22, . . . , c2l ]-module F[c2, . . . , cl]
is free with the basis consisting of cI :=

∏
i∈I ci with I ⊂ {2, . . . , l}.

Here is the key observation of the section:

Lemma 4.2. The kernel of St1 : F[c2, . . . , cl] → F[c2, . . . , cl] is the F[c22, . . . , c2l ]-module
generated by 1, cl and all St1(cI).

Proof. We have St1(ci) = ci+1 for even i (with the agreement cl+1 := 0) and St1(ci) = 0
for odd i. Since St1(ab) = St1(a)b+ a St1(b), the above rules determine the additive map
St1 : F[c2, . . . , cl] → F[c2, . . . , cl]. Note that St1 ◦ St1 = 0 so that the kernel of St1 contains
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its image. The kernel is a ring, containing the squares F[c22, . . . , c2l ] and cl. The image is
an ideal in this ring. The quotient is known to be the ring generated by the squares for
odd l; for even l, it is generated by cl and the squares (see, e.g., [1, §9] dealing with the
topological Sq1 in place of St1). □

Proposition 4.3. Assume that n ≥ 7 is odd or divisible by 4. If l is odd, then the
image of ϕ is contained in the (Ch(BT )W )2-submodule of Ch(BT )W generated by 1 and
all St1(cI) with cI of odd degree. If l is even, then the image of ϕ is contained in the
(Ch(BT )W )2-submodule of Ch(BT )W generated by 1, cl, and all St1(cI) with cI of odd
degree.

Proof. By Proposition 2.4, the assumption on n ensures that the graded ring Imϕ is
concentrated in even degrees. It follows that Imϕ vanishes under the first Steenrod
operation St1 : Ch(BT ) → Ch(BT ).

By Proposition 2.1 and Remark 3.3, any element in Im ϕ is a polynomial in t2 with
coefficients in F[c2, . . . , cl], where t := z̃1 for odd n and t := ž1 for n divisible by 4. Note
that t is divisible by z in F[z, c2, . . . , cl].

Let a ∈ F[t2, c2, . . . , cl] be any polynomial in t2 with coefficients in F[c2, . . . , cl] satisfying
St1(a) = 0. To prove Proposition 4.3 for odd l, it suffices to show that the coefficients of a
are linear combinations with coefficients in F[c22, . . . , c2l ] of 1 and all St1(cI) with cI of odd
degrees. For even l, is suffices to show that the coefficients of a are linear combinations
with coefficients in F[c22, . . . , c2l of 1, cl, and all St1(cI) with cI of odd degrees. We prove
that the coefficients of a have the required form by induction on degree of a.

If a is constant (i.e., a ∈ F[c2, . . . , cl]), the statement follows by Lemma 4.2. Otherwise,
we have a = a′t2+ b, where a′ is a polynomial in t2 of smaller degree and b is the constant
term of a. We have 0 = St1(a) = St1(a′)t2 + St1(b) implying that St1(a′) = 0 = St1(b). It
follows that b and the coefficients of a′ have the required form. □

5. Proof of Theorem 1.1

This section is the proof of Theorem 1.1. More precisely, since we already proved
Proposition 3.4, we prove here that Imϕ ⊂ (Ch(BT )W )2 for the values of n listed in the
statement of Theorem 1.1. We do this by employing the upper bound on Im ϕ given in
Proposition 4.3. Besides, we continue to employ the fact that Im ϕ is stable under the
Steenrod operations Sti on Ch(BT ). (To get Proposition 4.3, we only used St1.) Note
that the subring Ch(BT )W ⊂ Ch(BT ) is stable under the Steenrod operations because
W acts on Ch(BT ) through automorphisms of approximations of BT .

Continuing the analogy between the operation St1 on Ch(BT ) and the Bockstein op-
eration Sq1 in the motivic cohomology, let us note that every odd operation St2i+1 on
Ch(BT ) is the composition St1 ◦ St2i. (See [24, Lemma 9.6] for the corresponding prop-
erty of Sq1.) Since we already exhausted (in Proposition 4.3) stability of Im ϕ under
St1, the additional restrictions on Imϕ will come from the action of the even Steenrod
operations. More exactly, we will be using St2 and St4 only.

Recall that the image of ϕ is a subring of the ring B := Ch(BT )W = F[t, c2, . . . , cl],
where t := z̃1 for odd n and t := ž1 for n divisible by 4. (We do not consider the values of
n congruent to 2 modulo 4 because they do not appear in Theorem 1.1.) The generators
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t, c2, . . . , cl of B are algebraically independent. By Proposition 2.1, Im ϕ is actually inside
the smaller ring A := F[t2, c2, . . . , cl]. Note that A is stable under the Steenrod operations
on B: for any i ≥ 0, St2i+1(t2) vanishes and St2i(t2) = Sti(t)2 ∈ F[t2, c22, . . . , c2l ]. By
Proposition 3.4, Imϕ contains the subring B2 of squares in B, which is also stable under
the Steenrod operations. As an B2-module, A is free with the basis given by the 2l−1

products cI =
∏

i∈I ci, where I runs over the subsets in {2, . . . , l}.
n = 7. Here we have l = 3 and we apply Proposition 4.3. There are only two elements cI
of odd degree: c3 and c2c3. They satisfy St1(c3) = 0 ∈ B2 and St1(c2c3) = c23 ∈ B2. The
statement under proof follows.

n = 8,9. We have Ch(BT )W = F[t, c2, c3, c4] = B and A = F[t2, c2, c3, c4]. By Proposition
4.3, Imϕ is contained in the B2-submodule of A generated by 1, c4, and the elements

St1(c3) = 0 ∈ B2,

St1(c3c2) = c23 ∈ B2,

St1(c3c4) = 0 ∈ B2,

St1(c3c2c4) = c23 · c4 ∈ B2 · c4.

Therefore any element α of Imϕ has the form α = a2 + b2 · c4 with a, b ∈ B. We have

B2[c4] 3 St2(α) = (St1(a))2 + (St1(b))2 · c4 + b2 · c2c4
because St2(c4) = c2c4. It follows that b

2 · c2c4 ∈ B2[c4] and therefore b = 0 meaning that
α ∈ B2.

n = 11. We have Ch(BT )W = F[t, c2, c3, c4, c5] = B and A = F[t2, c2, c3, c4, c5]. By
Proposition 4.3, Imϕ is contained in the B2-module generated by

St1(c3c2) = c23 ∈ B2,

St1(c3c4) = c3c5,

St1(c3c2c4) = c23 · c4 + c2c3c5,

St1(c5c2) = c3c5,

St1(c5c4) = c25 ∈ B2,

St1(c5c2c4) = c25 · c2 + c3c4c5.

(5.1)

So, any element of Imϕ has the form

(5.2) a2 + b2 · c3c5 + c2 · (c23 · c4 + c2c3c5) + d2 · (c25 · c2 + c3c4c5)

with a, b, c, d ∈ B. The value of St2 at α ∈ Imϕ should also have such a form. In
particular, the value St2(α) ∈ A should vanish in the quotient A/A′, where A′ ⊂ A is the
B2-submodule with the basis consisting of all cI showing up in (5.2): 1, c3c5, c4, c2c3c5,
c2, c3c4c5. (One can take the smaller A′, generated by 1, c3c5, c4 + c2c3c5, c2 + c3c4c5, but
this will only bring unnecessary complications.)

Recall that A is a free B2-module with the basis {cI}I⊂{2,3,4,5}. Therefore A/A′ is free
with the basis consisting of all cI not included in the basis of A′. Let us compute the
image of St2(α) ∈ A in the quotient A/A′. For the computation, recall that St1 vanishes
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on B2 ⊂ A as well as on every summand of (5.2). Concerning St2, the formulas we need
are

St2(c3c5) = c25 ∈ B2,

St2(c23 · c4 + c2c3c5) = c22 · c3c5 + c23 · c2c4 + c25 · c2,
St2(c25 · c2 + c3c4c5) = (c2c5)

2 + c2c3c4c5 + c25 · c4.

Note that unlike St1, the additive map St2 : A → A is not a homomorphism of B2-
modules: St2(b2 · a) is the sum of b2 · St2(a) with the additional term St1(b)2 · a. However
the value of St2 at (5.2), considered in the quotient A/A′, is just

a2 + b2 · St2(c3c5) + c2 · St2(c23 · c4 + c2c3c5) + d2 · St2(c25 · c2 + c3c4c5).

It follows that

St2(α) mod A′ = (cc3)
2 · c2c4 + d2 · c2c3c4c5

for α ∈ Imϕ written in the form (5.2). The coefficients (cc3)
2 and d2 have to vanish and

therefore c = 0 = d.
So, any element α of Imϕ actually has the simpler form α = a2+ b2 · c3c5 with a, b ∈ B.

Since St4(α) also has such a form, we get that b2 St4(c3c5) is in B2[c3c5]. If follows by the
formula

St4(c3c5) = St2(c3) · St2(c5) + c3 · St4(c5) =
(c2c3 + c5) · (c2c5) + c3 · (c4c5) = c22 · c3c5 + c25 · c2 + c3c4c5

that b = 0. Therefore α ∈ B2.

n = 12,13. Here we have

Ch(BT )W = F[t, c2, c3, c4, c5, c6] = B and A = F[t2, c2, c3, c4, c5, c6].

By Proposition 4.3, Imϕ is contained in the B2-module generated by 1, c6 along with the
elements outside B2 from (5.1) and their products with c6. So, any element of Imϕ has
the form

(5.3) a2 + b2 · c3c5 + c2 · (c23 · c4 + c2c3c5) + d2 · (c25 · c2 + c3c4c5)+(
a2∗ + b2∗ · c3c5 + c2∗ · (c23 · c4 + c2c3c5) + d2∗ · (c25 · c2 + c3c4c5)

)
c6

with a, b, c, d, a∗, b∗, c∗, d∗ ∈ B. The value of St2 at α ∈ Imϕ should also have such a
form. In particular, St2(α) ∈ A should vanish in the quotient A/A′, where A′ ⊂ A is the
B2-submodule with the basis consisting of all cI showing up in (5.2): 1, c3c5, c4, c2c3c5,
c2, c3c4c5, and their products with c6.

Recall that A is a free B2-module with the basis {cI}I⊂{2,...,6}. Therefore A/A′ is free
with the basis consisting of all cI not included in the basis of A′. Let us compute the
image of St2(α) ∈ A in the quotient A/A′. For the computation, recall that St1 vanishes
on B2 ⊂ A as well as on every summand of (5.3). Concerning St2, here are the formulas
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we need:

St2(c3c5) = c25 ≡ 0,

St2(c23 · c4 + c2c3c5) = c22 · c3c5 + c23 · c2c4 + c25 · c2 + c23 · c6 ≡ c23 · c2c4,
St2(c25 · c2 + c3c4c5) = (c2c5)

2 + c2c3c4c5 + c25 · c4 + c3c5c6 ≡ c2c3c4c5,

St2(c6) = c2c6 ≡ 0, St2(c3c5c6) = c2c3c5c6 + c25 · c6 ≡ 0,

St2(c23 · c4c6 + c2c3c5c6) = c25 · c2c6 + (c3c6)
2 ≡ 0,

St2(c25 · c2c6 + c3c4c5c6) = c26 · c3c5 + c25 · c4c6 ≡ 0

with the congruences modulo A′. It follows that

St2(α) mod A′ = (cc3)
2 · c2c4 + d2 · c2c3c4c5

for any α ∈ Imϕ written in the form (5.3). We conclude that c = 0 = d. This means that
any element of Imϕ has the form (5.3) with c = 0 = d.

Now we modify the submodule A′ by removing from its basis the elements c4, c2c3c5,
c2, and c3c4c5. (Their products with c6 are kept.) Note that for any α of the form (5.3)
with c = 0 = d, we have St2(α) ∈ A′. So, we are going to exploit the next condition that
St4(α) has to be in A′ as well provided that α ∈ Imϕ. The formula for computing St4(α)
mod A′ is just like if St4 were a homomorphism of B2-modules:

b2 · St4(c3c5) + a2∗ · St4(c6) + b2∗ · St4(c3c5c6)+
c2∗ · St4(c23 · c4c6 + c2c3c5c6) + d2∗ · St4(c25 · c2c6 + c3c4c5c6).

We have

St4(c3c5) = c22 · c3c5 + c25 · c2 + c3c4c5 + c23 · c6 ≡ c25 · c2 + c3c4c5,

St4(c6) = c4c6 ≡ 0,

St4(c3c5c6) = c22 · c3c5c6 + (c3c6)
2 ≡ 0,

St4(c23 · c4c6 + c2c3c5c6) = (c2c5)
2 · c6 + c25 · c4c6 ≡ 0,

St4(c25 · c2c6 + c3c4c5c6) = c26 · c2c3c5 + (c3c6)
2 · c4 + c24 · c3c5c6 + (c5c6)

2 ≡
c26 · c2c3c5 + (c3c6)

2 · c4,

where the congruences are modulo A′. Therefore the image of St4(α) in A/A′ looks as
follows:

(bc5)
2 · c2 + b2 · c3c4c5 + (d∗c6)

2 · c2c3c5 + (d∗c3c6)
2 · c4.

We conclude that b and d∗ vanish.
What remains of (5.3) is just the sum of the four terms

(5.4) a2 + a2∗ · c6 + b2∗ · c3c5c6 + c2∗ · (c23 · c4c6 + c2c3c5c6),

and this what we now know about how every element of Im ϕ looks like.
As the next step, we take any α ∈ Imϕ, now written in the form (5.4), and we look

at St2(α) in the quotient A/A′′, where the B2-submodule A′′ ⊂ A′ is generated by 1, c6,
c3c5c6, and c23 · c4c6+ c2c3c5c6. This quotient is a free B2-module with the basis consisting
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of all cI other than 1, c6, c3c5c6, and c2c3c5c6. Note that c2c3c5c6 = c23 · c4c6 in A/A′′.
What we see is

a2∗ · (c2c6) + (b∗c3)
2 · c4c6 + (c∗c5)

2 · (c2c6).
Therefore b∗ = 0 and a∗ = c∗c5 in (5.4) which becomes

(5.5) a2 + c2∗ · (c25 · c6 + c23 · c4c6 + c2c3c5c6).

It turns out that for any positive i < 8, any element of the form (5.5) is mapped by Sti

to B2. So, we have to proceed with a higher Steenrod operation. And St8 makes it:

St8(c25 · c6 + c23 · c4c6 + c2c3c5c6) = (c22 + c4)
2 · c2c3c5c6 + ((c22 + c4)c3)

2 · c4c6+
((c22 + c4)c5)

2 · c6 + (c2c6)
2 · c3c5 + (c3c5)

2 · c2c6 + (c23c6)
2 + c23 · c3c4c5c6 + c25 · c3c5c6.

Appendix A. Erratum to [10]

It is claimed in [10, Proof of Theorem 3] that for any even n = 2l ≥ 8, the modulo 2
Euler class cl is outside the image of Ch(BG) → Ch(BT ), where T is the standard split
maximal torus in G := Spin(n). But the proof of this claim, given there, is only valid for
n divisible by 4. Lemma A.1 shows that the claim actually fails for n = 10. For all n 6= 10
however, the claim holds. To see it, assume that n = 2l > 10 with odd l. In particular,
l ≥ 7. By Proposition 2.4, any odd degree homogeneous element in CH(BT )W is divisible
by e in CH(BT )W . Assume that cl ∈ Imϕ. Then St6(cl) = c6cl ∈ Imϕ and it follows
that c6 is in the image of CH(BT )W → Ch(BT ). However, in degree up to 6, this image
is generated by c2, c4, and c23 (see Remark 3.3). Therefore cl 6∈ Imϕ.

Lemma A.1. For G = Spin(10), the image of the homomorphism

Φ: CH(BG) → CH(BT ) = Z[z, x1, . . . , x5]/(2z − x1 − · · · − x5)

contains the Euler class e = x1x2x3x4x5 ∈ CH(BT )W .

Proof. Let P be the standard parabolic subgroup in G′ := Spin(12) such that the quotient
variety G′/P is the projective quadric X given by the standard split quadratic form q
of dimension 12. The group P contains the standard split maximal torus T ′ of G′. The
group G is the semisimple part of (the reductive part of) P . It contains T ′ and has the
same as P Weyl group W acting on the polynomial ring CH(BT ′) = Z[z, x1, . . . , x5] in the
6 (independent) variables the way described in §2. As already mentioned in §2, generators
of the ring of W -invariants CH(BT ′)W are constructed in [12, Proposition 2.4] and [14,
Proposition 5.1] (see also [5]). One of them is the Euler class e′ := x1 . . . x5 ∈ CH(BT ′)W .
One other – the orbit product ž of z.
In view of the commutative square

CH(BP )
Φ′

−−−→ CH(BT ′)Wy y
CH(BG) −−−→ CH(BT )W

we prove Lemma A.1 by finding in the image of Φ′ an element mapped e. Note that e′ is
mapped to e.
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A homomorphism of graded rings Ψ: CH(BT ′)W → CH(X) is constructed in [5, Lemma
2.2]. It is uniquely determined by the property that the composition Ψ◦Φ′ is (a particular
case of) the homomorphism CH(BP ) → CH(G/P ) considered in [13, §6]. It is shown in
[14, Propositions 5.3 and 5.4] that all the generators of CH(BT ′)W other than e and ž
are mapped to the subring in CH(X) generated by the class h ∈ CH1(X) of a hyperplane
section of the quadric. The image of f0 = 2z − (x1 + . . . + x6) ∈ ImΦ′ under Ψ equals
h so that the subring generated by h is inside the image of the composition Ψ ◦ Φ′. By
[13, Theorem 6.4], the cokernel of Ψ ◦ Φ′ is killed by the torsion index of G′ equaling 2.
Therefore the image of Ψ◦Φ′ contains 2CH(X). The cokernel of Φ′ is killed by the torsion
index of P , which is also equal to 2, and so, ImΦ′ ⊃ 2CH(BT ′)W .
Since the degree 24 of ž is higher that the degree 5 of the Euler class, we do not care

about ž. The image in CH5(X) of the Euler class e ∈ CH5(BT ′) is the difference λ − λ′

of two distinct classes of maximal totally isotropic subspaces of q. Since h5 = λ+ λ′ (see,
e.g., [9, §2.1]), we have λ− λ′ = 2λ− h5 ∈ Im(Ψ ◦ Φ′). It follows that ImΦ′ contains an
element of the form e + a, where a ∈ CH5(BT ′)W is a polynomial in the generators of
CH(BT ′)W of degree < 5. Since f0 is the only generator of odd degree < 5, a is divisible
by f0 and therefore vanishes in CH(BT )W . □
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