
ARTIN SHAPES

NIKITA KARPENKO AND GUANGZHAO ZHU

Abstract. We introduce and study on examples a notion of the Artin shape for a motive
related to a projective homogenous variety. We apply it to the problem of finding the
complete motivic decomposition of the variety. Our examples cover unitary involution
varieties as well as some varieties given by a quadratic Weil transfer. Some of the
decompositions obtained dispel prior expectations on how motivic decompositions of
projective homogeneous varieties can look like.
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0. The scope

We consider Grothendieck’s Chow motives (defined as in [6, §64]) over a field with
coefficients in F := Z/pZ, where p is a prime number. Following a tradition, we also
write F for the motive of the spectrum of the base field and call a Tate motive its (Tate)
shift F{i} with any i ∈ Z. Another important type of objects are direct summand in the
spectra of étale algebras, called Artin motives.
Let M be a direct summand in the motive of a projective homogeneous variety under

a reductive group G over a field F and let B be the variety of Borel subgroups in G. By
[2, Theorem 7.5], over the function field F (B), M becomes a direct sum of (Tate) shifts
of indecomposable Artin motives which we call the Artin shape (or simply the shape) of
M . As shown in [3] (see also [11, Corollary 2.6]), the decomposition we use to define the
Artin shape is unique. Besides, the motive M itself decomposes in a finite direct sum of
indecomposables and such a decomposition, called complete, is also unique.

The shape of the entire motive M(X) of a projective G-homogeneous variety X, which
we also call the motivic shape of X, contains the Artin motive given by the Tate motive
F := Spec(F ) with no shift (i.e., with the shift 0), whereas all remaining Artin motives
in the shape have positive shifts. It follows that the complete motivic decomposition of
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X contains precisely one summand U(X), called the upper motive of X, whose shape
satisfies the same property.
By [11, Corollary 2.15], the upper motives of projective homogeneous varieties satisfy

a very efficient isomorphism criterion: U(X) ≃ U(X ′) if and only if each of the varieties
XF (X′) and X ′

F (X) possesses a closed point of prime to p degree.

A description of summands that can appear in the complete decomposition of M(X),
already previously available in a different situation (cf. [8, Theorem 1.1]), has been recently
provided in [5] for p′-inner G, i.e., for G that acquires inner type over a finite Galois field
extension E/F of prime to p degree and whose higher Tits p-indexes, defined in [4], are
stable under the action of the Galois group of E/F on the Dynkin diagram of G:

Theorem 0.1 ([5, Theorem 7.1 and Remark 6.9]). Every summand in the complete mo-
tivic decomposition of a projective homogeneous variety X under a p′-inner group G is a
shift of the tensor product U(Y )⊗A, where Y is a projective G-homogeneous variety with
X(F (Y )) ̸= ∅ and A is an Artin motive isomorphic to an indecomposable summand in
the motive of the spectrum of the F -algebra L given by an intermediate field L in E/F .

In this note we work out several new applications for that result.
Assume that p is odd and fix a quadratic Galois field extension L/F . The motive

of the spectrum of the F -algebra L splits off the Tate motive F; we write A for the
complementary summand. This A is an indecomposable Artin motive non-isomorphic to
F over F but becoming isomorphic to F over L.

For some n ≥ 1, we let D be a degree pn central division L-algebra, write X for its
Severi-Brauer L-variety, and consider the F -variety R(X) given by the Weil transfer of X.
The variety R(X) is projective homogeneous under the reductive group G = R(Aut(D))
given by the Weil transfer of the automorphism group of D. This G acquires inner type
over L. Since p is odd, the degree of the field extension L/F is prime to p. However, G is
not necessarily p′-inner: it is p′-inner if and only if the algebra D is balanced in the sense of
[12, §4] meaning that the algebra Ď conjugate to D is Brauer-equivalent to a tensor power
of D. Note that if this is the rth tensor power, then r2 ≡ 1 mod pn implying that r ≡ ±1
mod pn. It follows that Ď is isomorphic either to D or to its opposite algebra. (And the
two conditions are mutually exclusive.) Considering the norm algebra of D, defined in
[13, §3B], one translates the first condition as D ≃ D′

L for a degree pn central division
F -algebra D′. The second condition means that the norm algebra is Brauer-trivial and
translates by [13, Theorem 3.1(2)] as “D admits a unitary F -involution”.

We are going to investigate the shape of the upper motive U(R(X)) as well as the
complete motivic decompositions of the variety R(X) and of another related variety in
these two cases. Our main results are Theorems 1.3, 3.5, and 3.3.

1. The first case

Assume that we are in the first case, i.e., D ≃ D′
L, and let X ′ be the Severi-Brauer

F -variety of D′. Then U(R(X)) ≃ U(X ′) by the isomorphism criterion mentioned in §0.
By [11, Corollary 2.22] (see also [7, Theorem 2.2.1]), the motive M(X ′) is indecomposable.
Therefore U(X ′) = M(X ′). The variety X ′ is projective homogeneous under the group
G′ := Aut(D′). Over the function of field of the corresponding variety of Borel subgroups
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X ′ becomes isomorphic to a (pn− 1)-dimensional projective space P whose motivic shape
is

F⊕ F{1} ⊕ · · · ⊕ F{pn − 1}.
So, this is also the shape of the upper motive U(R(X)) we started with. It can be
represented “graphically” as

{0} {1} . . . {pn − 1}
F F . . . F or simply F F . . . F.

The graphical shape of M(R(X)) is

(1.1)

F F . . . F
A A . . . A

F F . . . F
A A . . . A

. . . . . .
F F . . . F

(with pn variously shifted lines, each of length pn). Indeed, this shape is given by the
complete motivic decomposition of the Weil transfer R(P). The decomposition is deter-
mined by the action of the Galois group Gal(L/F ) on the Chow group of the product
R(P)L = P× P, performing via the factors exchange.

By Theorem 0.1, the complete decomposition of M(R(X)) consists of shifts of U(R(X))
and of U(R(X))⊗A. If follows that the complete decomposition of M(R(X)) (over F ) is

(1.2) M(R(X)) ≃ U(R(X)) ⊕
(
U(R(X))⊗A

)
{1} ⊕

U(R(X)){2} ⊕
(
U(R(X))⊗A

)
{3} ⊕ · · · ⊕ U(R(X)){pn − 1} =(

(pn−1)/2⊕
i=0

U(R(X)){2i}

)
⊕

(
(pn−1)/2⊕

i=1

(
U(R(X))⊗A

)
{2i− 1}

)
.

We put together the main result of this section dispelling some prior expectation on
how motivic decompositions of projective homogeneous varieties can look like:

Theorem 1.3. Let p be an odd prime, n a positive integer, X ′ the Severi-Brauer variety of
a degree pn central division algebra over a field F . For a quadratic Galois field extension
L/F , formula (1.2) provides the complete motivic decomposition for the Weil transfer
R(X) of the L-variety X := X ′

L. The decomposition holds in the category of Chow
motives with coefficients in Z/pZ.

2. The second case

Now let us assume that D admits a unitary F -involution. First of all, let us note that
the shape of M(R(X)) is still given by (1.2): the proof remains unchanged. What we
want to figure out is the shape of U(R(X)) and the complete decomposition of M(R(X)).
Concerning the latter, by Theorem 0.1 once again we still know a priori that M(R(X))
is a direct sum of shifts of U(R(X)) and of U(R(X))⊗A.

By [5, Lemma 6.4], the motive U(R(X)) remains indecomposable over L so that
U(R(X))L ≃ U(R(X)L). Since U(R(X)L) ≃ U(X) = M(X) has the shape F F . . . F,
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we conclude that the shape of U(R(X)) looks as F ∗ ∗ · · · ∗, where each of ∗ is either F
or A. We will be able to precisely determine the shape in the next section based on the
following preliminary result:

Lemma 2.1. The shape of U(R(X)) is either F F . . . F (as in §1) or F A F A . . . F A F
((pn + 1)/2 exemplars of F alternated with (pn − 1)/2 exemplars of A). The complete
decomposition of M(R(X)) in the first case is (1.2); in the second case it is given by

(2.2) M(R(X)) ≃

U(R(X)) ⊕ U(R(X)){1} ⊕ . . . ⊕ U(R(X)){pn − 1} =
pn−1⊕
i=0

U(R(X)){i}.

Proof. Assuming that the shape of U := U(R(X)) is F F∗∗ · · · ∗, i.e., that the component
with shift {1} is given by the Tate motive, we prove by induction on i ≥ 3 and looking
at (1.1) that the component with shift {i} is also F. At the same time, we prove the
claim on the complete decomposition of M(R(X)). As the initial step, we see that the
complete decomposition starts with U ⊕ (U ⊗A){1} implying that U has the shape
F F F ∗ ∗ · · · ∗. Knowing this, we get that the next term of the complete decomposition is
U{2} and therefore the shape of U has F in position {3}. And so on.
Similarly, assuming now the shape of U starts with F A, we prove by induction that

the shape has to be F A F A . . . F and the complete motivic decomposition of R(X) is
given by (2.2). �

At this point, we do not know yet if decomposition (2.2) actually occurs, but, as already
mentioned, we will prove that it does in the next section. Let us illustrate this result by
noticing that decompositions (1.2) and (2.2) correspond to the following two different
graphical representation of the motivic shape of R(X):

F F . . . F
A A . . . A

F F . . . F
A A . . . A

. . . . . .
F F . . . F

=

F A F A . . . F
F A F A . . . F

. . . . . .
F A F A . . . F

Let us also note that the ratio

(2.3)
number of F
number of A

in the second possible shape of U(R(X)) equals (pn + 1)/(pn − 1) and is the same as in
the shape of M(R(X)). Note that the similar ratio for U(Y )⊗A equals (pn − 1)/(pn + 1)
which is lower. This gives another proof of (2.2) in the second case of Lemma 2.1: we
already know that M(R(X)) is a direct sum of shifts of U(R(X)) and of U(R(X))⊗A,
but due to the ratio considerations, the tensor product with A cannot appear.

3. The unitary involution variety

In the situation of §2, let us fix a unitary F -involution τ on the L-algebra D. The reduc-
tive F -group G := AutL(D, τ) (called the projective unitary group of (D, τ)) is p′-inner
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and acquires inner type over L. Let us determine the complete motivic decomposition
of the corresponding involution variety Y – the variety of rank 1 (over L) right isotropic
ideals in D. We start with some information on its motivic shape:

Proposition 3.1. Given any i = 1, 2, . . . , (pn − 1)/2, the motivic shape of the variety Yi

of rank i (over L) right isotropic ideals in the algebra D contains (bi + ai)/2 shifts of the
Tate motive F and of (bi − ai)/2 shifts of the Artin motive A, where

ai = 2i ·
(
(pn − 1)/2

i

)
and bi =

(
pn

i

)
·
(
pn − i

i

)
.

Proof. Here is the meaning of the integers ai and bi appearing in the statement of Propo-
sition 3.1. The integer bi is the rank of M(Yi), i.e., the total number of motives in its
shape. To get the formula for bi, note that over a separable closure of the base field, Yi

becomes the variety of flags in a pn-dimensional vector space, where the flags are given
by an i-plane contained in a (pn − i)-plane.

To explain the meaning of ai, we first note that over F (B) the motive M(Yi) is also a
direct sum of shifts of the Tate motive F and of the motive of spectrum of the F (B)-algebra
L(B); the integer ai is the number of shifts of F. It follows from [10, Lemma 7.1] for unitary
grassmannians and the similar formula [9, Formula 2.6] for orthogonal grassmannians that
ai coincides with the rank of the motive of an orthogonal grassmannian of totally isotropic
i-planes in a pn-dimensional non-degenerate quadratic form, indicated, e.g., in [1, Proof
of Theorem 2.2] (see also [1, Proof of Theorem 1.2]). �
Corollary 3.2. The number of F in the shape is (pn + 1)(pn − 1) whereas the number
of A is (pn − 1)2. In particular, ratio (2.3) for the motivic shape of Y = Y1 is equal to
(pn + 1)/(pn − 1). �
Note that U(Y ) is isomorphic to the upper motive U(R(X)). Therefore, the two possible

shapes of U(Y ) are listed in Lemma 2.1.

Theorem 3.3. Let p be an odd prime, n a positive integer, L/F a quadratic Galois field
extension, D a degree pn central division L-algebra endowed with a unitary F -involution
τ , and Y the corresponding involution variety (over F ). Then the shape of U(Y ) is as in
the second case of Lemma 2.1 whereas the complete motivic decomposition of Y is

(3.4) M(Y ) ≃
pn−2⊕
i=0

U(Y ){i}.

In contrast to (2.2), i in (3.4) ranges up to pn − 2 only.

Proof of Theorem 3.3. By Theorem 0.1, every summand in the complete motivic decom-
position of Y is a shift of U(Y ) or of U(Y )⊗A. Therefore, if U(Y ) has the first shape of
Lemma 2.1, the number of F in the shape of M(Y ) is divisible by pn. On the other hand,
it is not by Corollary 3.2. This contradiction proves the statement of Theorem 3.3 on the
shape of U(Y ).
Now, by the same argument as in §2, we get that the complete decomposition of M(Y )

consists of shifts of U(Y ) only. Over L, the variety Y becomes a rank pn − 2 projective
bundle over the Severi-Brauer variety X and so the motive of Y decomposes over L as in
(3.4). It follows that the same decomposition holds already over F . �
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For the illustrating purpose, let us draw the shape of the motive of Y the way reflecting
its complete decomposition:

F A F A . . . F
F A F A . . . F

. . . . . .
F A F A . . . F

(pn − 1 variously shifted lines, each of length pn).
With Theorem 3.3, we also proved our last main result:

Theorem 3.5. In the situation of Theorem 3.3, let X be the Severi-Brauer variety of D
and let R(X) be its Weil transfer to F . Then its upper motive U(R(X)) has the second
shape of Lemma 2.1 whereas its total motive M(R(X)) has the complete decomposition
(2.2). �

Decompositions of Theorem 3.5 and 3.3 put together yield

M(R(X)) ≃ M(Y )⊕ U(Y ){pn − 1}.
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[5] De Clercq, C., Karpenko, N., and Quéguiner-Mathieu, A. A-upper motives of reductive
groups. Preprint (1 Nov 2024, 23 pages). Available on the 2nd author’s webpage.

[6] Elman, R., Karpenko, N., and Merkurjev, A. The algebraic and geometric theory of quadratic
forms, vol. 56 of American Mathematical Society Colloquium Publications. American Mathematical
Society, Providence, RI, 2008.

[7] Karpenko, N. A. Grothendieck Chow motives of Severi-Brauer varieties. St. Petersburg Math. J.
7, 4 (1996), 649–661.

[8] Karpenko, N. A. Upper motives of outer algebraic groups. In Quadratic forms, linear algebraic
groups, and cohomology, vol. 18 of Dev. Math. Springer, New York, 2010, pp. 249–258.

[9] Karpenko, N. A. Sufficiently generic orthogonal Grassmannians. J. Algebra 372 (2012), 365–375.
[10] Karpenko, N. A. Unitary Grassmannians. J. Pure Appl. Algebra 216, 12 (2012), 2586–2600.
[11] Karpenko, N. A. Upper motives of algebraic groups and incompressibility of Severi-Brauer vari-

eties. J. Reine Angew. Math. 677 (2013), 179–198.
[12] Karpenko, N. A., and Reichstein, Z. A numerical invariant for linear representations of finite

groups. Comment. Math. Helv. 90, 3 (2015), 667–701. With an appendix by Julia Pevtsova and
Reichstein.

[13] Knus, M.-A., Merkurjev, A., Rost, M., and Tignol, J.-P. The book of involutions, vol. 44
of American Mathematical Society Colloquium Publications. American Mathematical Society, Prov-
idence, RI, 1998. With a preface in French by J. Tits.



ARTIN SHAPES 7

Mathematical & Statistical Sciences, University of Alberta, Edmonton, CANADA
Email address : karpenko@ualberta.ca
URL: www.ualberta.ca/~karpenko

Mathematical & Statistical Sciences, University of Alberta, Edmonton, CANADA
Email address : guangzha@ualberta.ca


