ON SPIN(2023)-TORSORS

NIKITA A. KARPENKO

Abstract

The torsion index of a spin group Spin(d), describing the splitting behaviour of generic $\operatorname{Spin}(d)$-torsor E, is a 2 -power 2^{t} with the torsion exponent t determined by B. Totaro in 2005. The critical exponent i_{t} is responsible for partial splitting behaviour of E and takes values inside the doubleton $\{t-1, t\}$. For all $d \leq 16$, the value of i_{t} is known to be high. The very first case of the low value, obtained very recently, is $d=17$. In the present work, we develop a new method which allows one to show that $i_{t}=t-1$ for most d. In particular, it is shown that i_{t} is low for every $d=2^{r}+1$ with $r \geq 4$ as well as for $d=2023$, playing the role of a "randomly chosen" high dimension. For $d=2023$, using an extension of the new method (applicable to arbitrary d), several exponents beyond the critical one are also determined.

Contents

1. Introduction 1
2. The critical exponent 2
3. Beyond the critical exponent 6

References 10

1. Introduction

We use notation and terminology of [5]. Given a generic d-dimensional quadratic form q (over a field) of trivial discriminant and Clifford invariant, where $d=2 n+1$ or $d=2 n+2$ for some $n \geq 1$, we write t for the torsion exponent of the algebraic group $\operatorname{Spin}(d)$, depending only on n and determined in [9, Theorem 0.1], and we are interested to determine the critical exponent i_{t} of q, i.e., the integer such that $2^{i_{t}}$ is the index of the t th (orthogonal) grassmannian of q, where the index of a variety is the g.c.d. of degrees of its closed points.

By definition, the quadratic form q is given by a generic torsor E under the spin group $\operatorname{Spin}(d)$. The integer 2^{t} is the g.c.d. of finite extensions of the base field of E trivializing E, or, equivalently, splitting q. The integer $2^{i_{t}}$ provides similar information on partial trivialization of E and partial splitting of q, see [5] for details.

[^0]The possible values of i_{t} are t and $t-1$. We say that the critical exponent is high if $i_{t}=t$. Otherwise we say that it is low which means that q acquires Witt index t over a finite base field extension of degree not divisible by 2^{t}.

The critical exponent is high for any $d \leq 16$. It has been shown in [5, Theorem 4.1 and Corollary 4.4] that the critical exponent is low for $d=17$ and for $d=18$. With the help of computer calculations, the same has been shown for $d=19$ and $d=20$ in [6]. No other cases of low critical exponent were known so far.

As follows from [7, Lemma 2.3], if the critical exponent is low for $d=2 n+1$, then it is also low for $d=2 n+2$. For this reason, below we are assuming that d is odd.

As the main result of the present work, we develop in the next section (§2) a new method which allows one to show that the critical exponent if low for most n, the precise statement being Theorem 2.10 (with a minor addition given by Proposition 2.11). For $n \geq 10$ which are not covered by these two results, the critical exponent is yet to be determined.

Proposition 2.11 deals with $n=16$ and is added in order to cover all values of n given by 2 -powers. It is proved by the method of [5], where the case of $n=8$ is treated. The 2-power higher than 16 are covered by Theorem 2.10 which is proved by entirely different means.

In the last section (§3), we develop an extension of the new method of $\S 2$ which allows one to determine several exponents beyond the critical one. We illustrate the power of the extension applying it to a "randomly chosen" high dimension $d=2023$.

2. The critical exponent

The following result, based on a joint effort of [2], [6], and [7], reduces the determination of the critical exponent to an "elementary" computation. Let us write X for the highest grassmannian of a split d-dimensional quadratic form and let us write Y for the complete flag variety of the tautological vector bundle T on X. By [4, Example 3.3.5], the $\mathrm{CH}(X)$ algebra $\mathrm{CH}(Y)$ is generated by the Chern classes x_{1}, \ldots, x_{n} of the line bundles given by the successive quotients of the tautological (rank 1 up to rank n) bundles on Y. Moreover, the elementary symmetric polynomials in x_{1}, \ldots, x_{n} are equal to the Chern classes of T, and these are the defining relations of the $\mathrm{CH}(X)$-algebra $\mathrm{CH}(Y)$. By the results of [3, §86], originally obtained in [10], the ring $\mathrm{CH}(X)$ is generated by the elements e_{1}, \ldots, e_{n}, satisfying the condition $2 e_{i}=(-1)^{i} c_{i}(T)$ and subject to the relations

$$
e_{i}^{2}-2 e_{i-1} e_{i+1}+2 e_{i-2} e_{i+2}-\cdots+(-1)^{i-1} 2 e_{1} e_{2 i-1}+(-1)^{i} e_{2 i}=0,
$$

where $i=1, \ldots, n$ and where $e_{i}:=0$ for $i>n$. The condition on $2 e_{i}$ determines e_{i} because the additive group of $\mathrm{CH}(X)$ is free of torsion.

Let $C_{Y} \subset \mathrm{CH}(Y)$ be the subring generated by x_{1}, \ldots, x_{n}. Let us consider the element

$$
\begin{equation*}
e:=\prod_{I \subset\{t+1, \ldots, n\}}\left(e_{1}-\sum_{i \in I} x_{i}\right) \in \mathrm{CH}^{2^{n-t}}(Y) . \tag{2.1}
\end{equation*}
$$

By [7, Proposition 4.4], the element $c:=2 e$ is in C_{Y}.
Proposition 2.2. The critical exponent is low if and only if e $\notin C_{Y}$. Equivalently, the critical exponent is low if and only if the class of c in $C_{Y} / 2 C_{Y}$ is nontrivial.

Proof. Let X_{t} be the t th grassmannian of the split d-dimensional quadratic form used in the definition of X and Y. By Lemma 2.3, the pull-back homomorphism $\mathrm{CH}\left(X_{t}\right) \rightarrow$ $\mathrm{CH}(Y)$ with respect to the projection $Y \rightarrow X_{t}$ is injective; we identify $\mathrm{CH}\left(X_{t}\right)$ with its image in $\mathrm{CH}(Y)$.

By [6, Proposition 3.4], the element e belongs to $\mathrm{CH}\left(X_{t}\right)$. By Lemma 3.2, the intersection of $C_{Y} \cap \mathrm{CH}\left(X_{t}\right)$ coincides with the subring $C \subset \mathrm{CH}\left(X_{t}\right)$ generated by the Chern classes of the tautological (rank t) vector bundle on X_{t}. In particular, $c=2 e \in C$.

By [6, Theorem 3.6], the critical exponent satisfies (and is determined by) the formula $\operatorname{deg}(C[e])=2^{i_{t}} \mathbb{Z}$, where $C[e] \subset \mathrm{CH}\left(X_{t}\right)$ is the C-subalgebra generated by e, and where deg is the degree homomorphism $\mathrm{CH}\left(X_{t}\right) \rightarrow \mathbb{Z}$ given by the push-forward with respect to the structure morphism of the projective variety X_{t}. Note that $\operatorname{deg}(C)=2^{t} \mathbb{Z}$ because the index of the t th grassmannian of a generic d-dimensional quadratic form (without restrictions on its discriminant and Clifford invariant), given by a generic torsors under the orthogonal group $\mathrm{O}(d)$, equals 2^{t} (see, e.g., [9, Theorem 3.2]).

In the case where $e \in C_{Y}$, we conclude that $e \in C$. This implies that $\operatorname{deg}(C[e])=$ $\operatorname{deg}(C)=2^{t} \mathbb{Z}$ and therefore $i_{t}=t$.

Now assume that $e \notin C_{Y}$. Equivalently, the element $c=2 e \in C$ is nontrivial modulo $2 C$. By duality in C, explained in [8, Theorem 1.1], there is an element $c^{\prime} \in C$ such that $\operatorname{deg}\left(c \cdot c^{\prime}\right)$ is an odd multiple of 2^{t}. Then $\operatorname{deg}\left(e \cdot c^{\prime}\right)$ is an odd multiple of 2^{t-1} and we conclude that $i_{t}=t-1$.

The following general statement, contained in the case of a Borel subgroup Q in [2, Proof of Lemma 2.2], has been used in the above proof:

Lemma 2.3. Let $Q \subset P \subset G$ be two parabolic subgroups of a split reductive group G over a field F. The pull-back homomorphism $\pi^{*}: \mathrm{CH}(G / P) \rightarrow \mathrm{CH}(G / Q)$ with respect to the projection $\pi: G / Q \rightarrow G / P$ is a split monomorphism.
Proof. By [1, Proposition 20.5], for any extension field K / F, the map $G(K) \rightarrow(G / P)(K)$ of the sets of K-points is surjective. Applying this property to the function field of the variety G / P, one sees that the P-torsor given by the generic fiber of the quotient map $G \rightarrow G / P$ is trivial. In particular, the generic fiber of π has a rational point. The class $x \in \mathrm{CH}(G / Q)$ of its closure in G / Q satisfies $\pi_{*}(x)=1$. By projection formula, for any $y \in \mathrm{CH}(G / P)$ we have $\pi_{*}\left(\pi^{*}(y) \cdot x\right)=y \cdot \pi_{*}(x)=y$. It follows that π^{*} is a split monomorphism.

The following approach opens up a way to see that the critical exponent is low for most (in particular, for infinitely many) values of d (see Theorem 2.10). Assume that $n \geq 3$ (assuring that $t \geq 1$) and set $d^{\prime}:=2 t+1$. Let X^{\prime} be the highest grassmannian of a split d^{\prime}-dimensional quadratic form, and let Y^{\prime} be the complete flag variety of the tautological (rank t) vector bundle T^{\prime} on X^{\prime}. We write $C_{Y^{\prime}}$ for the subring in $\mathrm{CH}\left(Y^{\prime}\right)$ generated by the Chern classes of the tautological vector bundles on Y^{\prime}. Note that $C_{Y^{\prime}} \cap \mathrm{CH}\left(X^{\prime}\right)$ is the subring $C_{X^{\prime}} \subset \mathrm{CH}\left(X^{\prime}\right)$, generated by the Chern classes $c_{1}\left(T^{\prime}\right), \ldots, c_{t}\left(T^{\prime}\right)$ of T^{\prime}. We write e_{1}^{\prime} for the element in $\mathrm{CH}\left(X^{\prime}\right)$ satisfying the condition $2 e_{1}^{\prime}=-c_{1}\left(T^{\prime}\right)$. Note once again that this condition determines e_{1}^{\prime} because the group $\mathrm{CH}\left(X^{\prime}\right)$ is free of torsion.
Proposition 2.4. The critical exponent is low for dimension $d=2 n+1$ provided that $\left(e_{1}^{\prime}\right)^{2^{n-t}} \notin C_{X^{\prime}}$, where t is the torsion exponent of $\operatorname{Spin}(d)$.

Proof. By Proposition 2.2, in order to prove Proposition 2.4, it suffices to show that the inclusion $e \in C_{Y}$ implies the inclusion $\left(e_{1}^{\prime}\right)^{2^{n-t}} \in C_{Y^{\prime}}$.

There is a (unique) ring homomorphism $\pi: \mathrm{CH}(Y) \rightarrow \mathrm{CH}\left(Y^{\prime}\right)$, mapping x_{i} to x_{i}^{\prime} and e_{i} to e_{i}^{\prime} for every $i=1, \ldots, t$ and killing both x_{i} and e_{i} for $i=t+1, \ldots, n$. Since the generators x_{t+1}, \ldots, x_{n}, involved in formula (2.1), vanish under π, we have $\pi(e)=$ $\pi\left(e_{1}\right)^{2^{n-t}}$. Since $\pi\left(e_{1}\right)=e_{1}^{\prime}$ and $\pi\left(C_{Y}\right)=C_{Y^{\prime}}$, the result follows.

A control on the condition of Proposition 2.4, required for its applications, is worked out in $[9, \S 5]$. As in $[9, \S 5]$, let us define the degree of a subset in $\{1, \ldots, n\}$ to be the sum of its elements. The following statement is actually proven in [9, §5] but is not explicitly formulated there. It will be generalized in Lemma 3.4 below. We write C_{X} for the subring in $\mathrm{CH}(X)$, generated by the Chern classes of the tautological vector bundle T on X.

Lemma 2.5 ([9, §5]). For any given integer $\alpha \geq 0$, one has $e_{1}^{2^{\alpha}} \notin C_{X}$ if and only if there is a set $I \subset\{1, \ldots, n\}$ of degree 2^{α} that can be written as a disjoint union of subsets of order at most 2 and of degree a power of 2 .

Proof. Note that $2 e_{1}=-c_{1}(T) \in C_{X}$ and the additive group of C_{X} is a free abelian group of finite rank and, in particular, free of torsion. As explained in [9, §4], the element $\left(2 e_{1}\right)^{2^{\alpha}}$ is divisible by $2^{2^{\alpha}-1}$ in C_{X}. In other terms, the element $c:=2 e_{1}^{2^{\alpha}} \in \mathrm{CH}(X)$ belongs to $C_{X} \subset \mathrm{CH}(X)$. We have $e_{1}^{2^{\alpha}} \notin C$ if and only if c is nonzero modulo 2 in C_{X}. Below we view c as an element of $C_{X} / 2 C_{X}$. Note that the quotient $C_{X} / 2 C_{X}$ is the exterior algebra on $c_{i}:=c_{i}(T), i=1, \ldots, n$, i.e., the generators c_{1}, \ldots, c_{n} are subject to the relations $c_{i}^{2}=0$. In particular, the products $c_{I}:=\prod_{i \in I} c_{i}$ with $I \subset\{1, \ldots, n\}$ form a basis of the $\mathbb{Z} / 2 \mathbb{Z}$-vector space $C_{X} / 2 C_{X}$. (The same products viewed in C_{X} also form a basis of the free abelian group C_{X}.)

By [9, Lemma 5.1], for the list

$$
\begin{equation*}
c_{1} ; c_{2} ; c_{4}, c_{1} c_{3} ; c_{8}, c_{1} c_{7}, c_{2} c_{6}, c_{3} c_{5} ; \ldots \tag{2.6}
\end{equation*}
$$

of elements of $C_{X} / 2 C_{X}$ of the form $c_{2 j}$ with $j \geq 0$ or $c_{2^{j}-i} c_{2^{j}+i}$ with $1 \leq i \leq 2^{j}-1$, the element c is equal to the sum over all subsets S of the list with total degree 2^{α} of the product of the elements in S. Any monomial in this sum that involves the same generator c_{i} twice is zero and so can be omitted. Otherwise, the monomial is c_{I} for some set $I \subset\{1, \ldots, n\}$ of degree 2^{α} and the coefficient at this monomial in the decomposition of c equals the number (modulo 2) of ways of writing I as a disjoint union of subsets of order at most 2 and of degree a power of 2 .

With this information in hand, Lemma 2.5 follows from Lemma 2.7 right below.
Lemma 2.7 ([9]). For any subset $I \subset\{1, \ldots, n\}$ (of any degree), the number of ways of decomposing I into a disjoint union of subsets as above is always 0 or 1 (not just modulo 2); that is, if I can be decomposed into such subsets, then the decomposition is unique.

Proof. The statement of Lemma 2.7 and its proof appear inside [9, Proof of Lemma 5.4].

We are ready to apply Proposition 2.4. As a warm up, we prove
Lemma 2.8. The critical exponent is low for $d=2023$.

Proof. For $d=2023$, we have $n=1011, t=993$, and $n-t=18$. By Lemma 2.5, $\left(e_{1}^{\prime}\right)^{2^{18}} \notin C_{X^{\prime}}$ if and only if there is a set $I \subset\{1, \ldots, 993\}$ of degree 2^{18} that can be written as a disjoint union of subsets of order at most 2 and of degree a power of 2 . The union I of the doubletons $\left\{2^{9} \pm i\right\}$ with $i=1, \ldots, 2^{8}$ satisfies the condition.

In fact, the critical exponent is low for all d in a large interval around 2023:
Proposition 2.9. The critical exponent is low for $d=2 n+1$ provided that $786 \leq n \leq$ 1024.

Proof. For every such d, the difference $n-t$ is constantly 18. Therefore it suffices to show that the critical exponent is low in the case of the minimal $n=786$. For this we need to find a set $I \subset\{1, \ldots, t=n-(n-t)=786-18=768\}$ of degree $2^{n-t}=2^{18}$ that can be written as a disjoint union of subsets of order at most 2 and of degree a power of 2 . Since $768=2^{9}+2^{8}$, the union I of the doubletons $\left\{2^{9} \pm i\right\}$ with $i=1, \ldots, 2^{8}$ (used in the proof of Lemma 2.8) still suits.

Here comes the main result of this text, which will be proved similarly. It shows that for N large enough, the proportion of $n<N$ such that the critical exponent is low for $d=2 n+1$ is over 91%. Indeed, for $s \rightarrow \infty$, the proportion of $n \in\left[2^{s}, 2^{s+1}\right]$ for which the critical exponent is low by Theorem 2.10 tends to

$$
1-2^{-s}\left(2^{s}+2^{s-1}-2^{s+\frac{1}{2}}\right)=\sqrt{2}-2^{-1}>0.91
$$

Theorem 2.10. The critical exponent is low for $d=2 n+1$ (and therefore for $d=2 n+2$ as well, see §1) provided that

$$
n \in\left[2^{s}+3 s-3,2^{s+\frac{1}{2}}-2 s-1\right] \cup\left[2^{s}+2^{s-1}+2 s, 2^{s+1}\right]
$$

for some positive integer s.
Proof. Assume first that $n \in\left[2^{s}+3 s-3,2^{s+\frac{1}{2}}-2 s-1\right]$. Applying [9, Theorem 0.1], let us show that $n-t=2 s-1$. If we were in the second case of [9 , Theorem 0.1], then n would have the form $n=2^{s}+b$ with some $0 \leq b \leq s-3$ implying that $n \leq$ $2^{s}+s-3$, a contradiction. Therefore, by [9, Theorem 0.1$], n-t$ is the integral part of $\log _{2}(1+n(n+1) / 2)$ which is equal to $2 s-1$, indeed.

Since the difference $n-t$ is constant for n on the interval $\left[2^{s}+3 s-3,2^{s+\frac{1}{2}}-2 s-1\right]$, it suffices to show that the critical exponent is low in the case of the minimal $n=2^{s}+3 s-3$. For this we need to find a set $I \subset\left\{1, \ldots, 2^{s}+s-2\right\}$ of degree $2^{2 s-1}$ that can be written as a disjoint union of subsets of order at most 2 and of degree a power of 2 . The union I of the singleton $\left\{2^{s}\right\}$ and the doubletons $\left\{2^{s-1} \pm i\right\}$ with $i=1, \ldots, 2^{s-1}-1$ suits.

Now assume that $n \in\left[2^{s}+2^{s-1}+2 s, 2^{s+1}\right]$. Then we are in the first case of $[9$, Theorem $0.1]$ which tells us that $n-t=2 s$. Therefore it suffices to show that the critical exponent is low in the case of the minimal $n=2^{s}+2^{s-1}+2 s$. For this we need to find a set $I \subset\left\{1, \ldots, 2^{s}+2^{s-1}\right\}$ of degree $2^{2 s}$ that can be written as a disjoint union of subsets of order at most 2 and of degree a power of 2 . The union I of the doubletons $\left\{2^{s} \pm i\right\}$ with $i=1, \ldots, 2^{s-1}$ suits.

Note that Theorem 2.10 in particular states the critical exponent is low for $d=2 n+1$ with n any 2-power starting from 32 . The same has been shown for $d=17$ and $n=8$ in [5]. We use the method of [5] to resolve the missing case of $d=33$ and $n=16$:

Proposition 2.11. The critical exponent is low for $d=2 n+1$ with $n=16$.
Proof. We use notation from the paragraph before Proposition 2.4. Note that $t=10$ for $d=2 n+1$ with $n=16$.

The modulo 2 Chow group $\mathrm{Ch}(Y):=\mathrm{CH}(Y) / 2 \mathrm{CH}(Y)$ has a $\mathbb{Z} / 2 \mathbb{Z}$-basis given by the products

$$
\begin{equation*}
x_{1}^{a_{1}} \ldots x_{16}^{a_{16}} e_{I} \text { with } a_{i}<i \text { and } I \subset\{1, \ldots, 8\}, \tag{2.12}
\end{equation*}
$$

where $e_{I}:=\prod_{i \in I} e_{i}$. The $\mathbb{Z} / 2 \mathbb{Z}$-subspace $C_{Y} \subset \operatorname{Ch}(Y)$ is generated by the part of the basis without e_{I} (i.e., with $I=\emptyset$).

By [5, Remark 3.4], e, as a polynomial in e_{1} over the ring

$$
R:=(\mathbb{Z} / 2 \mathbb{Z})\left[x_{11}, \ldots, x_{16}\right],
$$

contains monomials of 2-power degrees only. For e_{1} viewed in $\operatorname{Ch}(Y)$ one has $e_{1}^{2^{i}}=e_{2^{i}}$ for any $i \geq 0$, where we set $e_{i}:=0$ for $i>n$. Every element of R, viewed in $C_{Y} \subset \operatorname{Ch}(Y)$, can be written (uniquely) as a sum of $x_{1}^{a_{1}} \ldots x_{16}^{a_{16}}$ with $a_{i}<i$. The element $e \in \operatorname{Ch}(Y)$ is a unique linear combination of $e_{1}, e_{2}, e_{4}, e_{8}, e_{16}$ with coefficients in C_{Y}. We prove $e \notin C_{Y}$ by showing that the coefficient at e_{16} is nonzero.

By [5, Remark 3.4], the coefficient at e_{1}^{16} in the polynomial e is a sum of some monomials

$$
\begin{equation*}
x_{11}^{a_{11}} \ldots x_{16}^{a_{16}} \tag{2.13}
\end{equation*}
$$

with 2-powers a_{11}, \ldots, a_{16} satisfying $a_{11}+\cdots+a_{16}=64-16=48$. Since

$$
x_{16}^{16}=c_{1}(T) x_{16}^{15}+c_{2}(T) x_{16}^{14}+\cdots+c_{15}(T) x_{16}+c_{16}(T) \in C_{Y} \subset \operatorname{Ch}(Y)
$$

and $c_{i}(T)=0 \in \operatorname{Ch}(X) \subset \mathrm{Ch}(Y)$ for $i>0$, the power x_{16}^{16} vanishes in C. By symmetry of the relations on x_{1}, \ldots, x_{16} in C_{Y}, for every $i=1, \ldots, 15$, the power x_{i}^{16} also vanishes in C_{Y}. It follows that among monomials (2.13) only the one with $a_{11}=\cdots=a_{16}=8$ remains nonzero in C. This monomial actually appears (with coefficient 1 modulo 2) and belongs to basis (2.12). Consequently e $\notin C_{Y}$, and [5, Proposition 3.2] terminates the proof.

3. Beyond the critical exponent

Returning to $d=2023$, we would also like to determine several exponents i_{t+1}, i_{t+2}, \ldots following the critical one i_{t}. Recall that for arbitrary d the sequence of all exponents i_{0}, \ldots, i_{n} is non-strictly increasing with $i_{m}=m$ for $m \leq t-2$ and $i_{n-2}=i_{n-1}=i_{n}=t$. For every $m=0, \ldots, n$, the integer i_{m} is defined to be such that $2^{i_{m}}$ is the index (i.e., the g.c.d. of degrees of closed points) of the m th grassmannian of a generic d-dimensional quadratic form of trivial discriminant and Clifford invariant.

Proposition 3.1 below is a generalization of Proposition 2.2 which is still based on a joint effort of [2], [6], and [7]. For an arbitrary dimension $d=2 n+1$ and the corresponding
torsion exponent t, it reduces the computation of i_{m} for arbitrary $m \geq t-1$ to an "elementary" computation. For any $m=t-1, t, t+1, \ldots, n$, let us define

$$
e:=\prod_{I \subset\{m+1, \ldots, n\}}\left(e_{1}-\sum_{i \in I} x_{i}\right) \in \mathrm{CH}^{2^{n-t}}(Y) .
$$

(For $m=t$, this formula coincides with (2.1). For $m<t-1$ the formula makes sense as well, but by [7, Corollary A.3] the result is always 0 .) By [7, Corollary 4.6], for any integer $\alpha \geq 0$, the element $2 e^{2^{\alpha}}$ is in C_{Y}. As a consequence, $c:=2^{m-t+1} e^{2^{m-t+1}-1} \in C_{Y}$.

Proposition 3.1. For a given $m \geq t$, one has $i_{m}=t-1$ is and only if the element c is nontrivial modulo $2 C_{Y}$; otherwise $i_{m}=t$. For $m=t-1$, one has has $i_{m}=m-1=t-2$ is and only if e $\notin C_{Y}$; otherwise $i_{m}=m=t-1$.

Proof. We modify the lines of the proof of Proposition 2.2. Let X_{m} be the $m t$ th grassmannian of the split d-dimensional quadratic form used in the definition of X and Y. By Lemma 2.3, the pull-back homomorphism $\mathrm{CH}\left(X_{m}\right) \rightarrow \mathrm{CH}(Y)$ with respect to the projection $Y \rightarrow X_{m}$ is injective; we identify $\mathrm{CH}\left(X_{m}\right)$ with its image in $\mathrm{CH}(Y)$.

By [6, Proposition 3.4], the element e belongs to $\mathrm{CH}\left(X_{m}\right)$. We will proceed with the proof of Proposition 3.1 after the following

Lemma 3.2. The intersection of $C_{Y} \cap \mathrm{CH}\left(X_{m}\right)$ coincides with the subring $C \subset \mathrm{CH}\left(X_{m}\right)$ generated by the Chern classes of the tautological (rank m) vector bundle on X_{m}.

Proof. Since $C \subset C_{Y}$, the inclusion $C \subset C_{Y} \cap \mathrm{CH}\left(X_{m}\right)$ holds trivially. To prove the opposite inclusion, we proceed as follows.

The rings C and C_{Y} are identified with the Chow rings of the following two varieties: the variety of m-dimensional totally isotropic subspaces and the variety of complete flags of totally isotropic subspaces of a ($2 n$)-dimensional non-degenerate alternating bilinear form (see [6, Remark 3.3]). Under this identification, the embedding $C \hookrightarrow C_{Y}$ becomes the pull-nack homomorphism of Lemma 2.3 with G being the split symplectic group $\operatorname{Sp}(2 n)$. It follows by Lemma 2.3 that the embedding is a split monomorphism. Therefore the quotient C_{Y} / C is free of torsion.

Let us take any $a \in C_{Y} \cap \mathrm{CH}\left(X_{m}\right)$. Since $a \in \mathrm{CH}\left(X_{m}\right)$, by [11, Propositions 2.11 and 2.1] there exists a nonzero integer r such that $r a \in C$. Since $a \in C_{Y}$ and C_{Y} / C is free of torsion, we conclude that $a \in C$.

Returning to the proof of Proposition 3.1, since $2 e \in C_{Y}$, we conclude by Lemma 3.2 that $2 e \in C$.

By [6, Theorem 3.6], the exponent i_{m} satisfies (and is determined by) the formula $\operatorname{deg}(C[e])=2^{i_{m}} \mathbb{Z}$, where $C[e] \subset \mathrm{CH}\left(X_{m}\right)$ is the C-subalgebra generated by e, and where deg is the degree homomorphism $\mathrm{CH}\left(X_{m}\right) \rightarrow \mathbb{Z}$ given by the push-forward with respect to the structure morphism of the projective variety X_{m}. Note that $\operatorname{deg}(C)=2^{m} \mathbb{Z}$ because the index of the m th grassmannian of a generic d-dimensional quadratic form (without restrictions on its discriminant and Clifford invariant), given by a generic torsors under the orthogonal group $\mathrm{O}(d)$, equals 2^{m} (see, e.g., [9, Theorem 3.2]).

Let us first treat the case of $m=t-1$. If $e \in C_{Y}$, we conclude that $e \in C, \operatorname{deg}(C[e])=$ $\operatorname{deg}(C)=2^{m} \mathbb{Z}$, and $i_{m}=m=t-1$. Otherwise, the element $2 e$ of C is nontrivial modulo $2 C$ and by duality in C, explained in [8], there is an element $c^{\prime} \in C$ such that $\operatorname{deg}\left(c \cdot c^{\prime}\right)$ is
an odd multiple of 2^{m}. Then $\operatorname{deg}\left(e \cdot c^{\prime}\right)$ is an odd multiple of 2^{m-1} and we conclude that $i_{m}=m-1=t-2$.

Now we treat the case of $m \geq t$, starting with the assumption that $c \notin 2 C_{Y}$, which is equivalent to the assumption that $c \notin 2 C$. Then again we can find an element $c^{\prime} \in C$ such that $\operatorname{deg}\left(c \cdot c^{\prime}\right)$ is an odd multiple of 2^{m}. It follows that $\operatorname{deg}\left(e^{2^{m-t+1}-1} \cdot c^{\prime}\right)$ is an odd multiple of 2^{t-1} and we conclude that $i_{m}=t-1$.

Finally, assume that $c \in 2 C$. Note that for any integer $l \geq 1,2^{b} e^{l} \in C$, where b is the sum of base- 2 digits of l. Since $b \leq m-t$ for $l<2^{m-t+1}-1$, we conclude that $2^{m-t} C[e] \subset C$. Therefore $i_{m} \geq m-(m-t)=t$ meaning that $i_{m}=t$.

Since, as we already know, $i_{t}=t-1=992$ for $d=2023$, the possible values of the exponents beyond i_{t} for this dimension are $t-1=992$ and $t=993$. We are not able to determine the largest m with $i_{m}=t-1$. The upper bound on such m for general d, resulting from Proposition 3.1 by the reason of dimension of the variety X_{m}, is not exact as demonstrates the following example:

Example 3.3. The upper bound, resulting from [7, Theorem 3.2], is given by the maximal m such that

$$
\operatorname{dim} X_{m}=\frac{m(m-1)}{2}+m(d-2 m) \geq 2^{n-t+1}-2^{n-m} .
$$

For $d=31$ and $n=15$ (for which $t=9$), this upper bound on the largest m with $i_{m}=t-1$ is 14 . However, since we always have $t=i_{n}=i_{n-1}=i_{n-2}$, the actual value of m is at most $n-3=12$.

For $d=2023$, the upper bound on the largest m with $i_{m}=t-1$, resulting from Proposition 3.1, is 1000 . Therefore $i_{m}=t$ for all $m \geq 1001$. We are going to generalize the technique used in the proof of Lemma 2.8 to show that $i_{m}=t-1$ for m in the closed interval $[t=993,996]$. (The value of i_{m} with m from 997 to 1000 remains undetermined.)

We first extend Lemma 2.5 on the power $e_{1}^{2^{\alpha}}$ to an arbitrary power e_{1}^{l} of e_{1}. Let us write a given integer $l \geq 1$ as a sum $2^{\alpha_{1}}+\cdots+2^{\alpha_{b}}$ of b distinct 2-powers for some appropriate $b \geq 1$ (equal to the sum of the base- 2 digits of l). Then, clearly, $c:=2^{b} e_{1}^{l} \in C_{X}$, where, as in the proof of Lemma 2.5, C_{X} stands for the subring in $\mathrm{CH}(X)$, generated by Chern classes of the tautological vector bundle T. The following lemma, generalizing Lemma 2.5 as well as [9, Lemma 5.4], controls vanishing of c in $C_{X} / 2 C_{X}$:

Lemma 3.4. For $c \in C_{X}$ as right above, one has $c \notin 2 C_{X}$ if and only if there is a set $I \subset\{1, \ldots, n\}$ of degree l that can be written as a disjoint union of subsets of order at most 2 and of degree a power of 2 .
Proof. We rephrase the proof of [9, Lemma 5.3] in order to show that the the class of c in the quotient $C_{X} / 2 C_{X}$ is equal to the sum over all subsets S of list (2.6) with total degree l of the product of the elements in S. This follows from [9, Lemma 5.1] once we show that for each subset S of list (2.6) with total degree l, the number of ways of partitioning S into subsets with total degrees $2^{\alpha_{1}}, \ldots, 2^{\alpha_{b}}$ is odd. Clearly, this question depends only on the degrees of the elements of S, which are all powers of 2 ; that is, it suffices to show that for any nonnegative integers a_{1}, \ldots, a_{r} such that $2^{a_{1}}+\cdots+2^{a_{r}}=l$, the number of partitions of the set $S=\{1, \ldots, r\}$ into subsets $S=\coprod_{j=1}^{b} S_{j}$ such that $\sum_{i \in S_{j}} 2^{a_{i}}=2^{\alpha_{j}}$ for $j=1, \ldots, b$ is odd.

By [9, Lemma 5.2], the number of subsets S_{b} such that $\sum_{i \in S_{b}} 2^{a_{i}}=2^{\alpha_{b}}$ is congruent modulo 2 to $\binom{l}{2^{\alpha}{ }_{b}}$ and thus to 1 (see [3, Lemma 78.6]). The total number of partitions as above is the product of this odd number of subsets S_{b} with the analogous number of partitions of $S \backslash S_{b}$ (for any choice of S_{b}), a set with total degree $l-2^{\alpha_{b}}$ rather than l. By induction on b, the latter number of partitions is odd. Therefore the number of partitions we consider is also odd.

By Lemma 2.7, for any subset $I \subset\{1, \ldots, n\}$ (of any degree), the number of ways of decomposing I into a disjoint union of subsets as above is always 0 or 1 . This proves Lemma 3.4.

We now get an extension of Lemma 2.8:
Proposition 3.5. For $d=2023$ (where $n=1011$ and $t=993$) we have $i_{m}=t-1$ for $m=994,995,996$.

Proof. We start with a general conclusion concerning an arbitrary $d=2 n+1$ and the corresponding torsion exponent t, generalizing Proposition 2.4. By Proposition 3.1, for a given $m \geq t$ one has $i_{m}=t-1$ is and only if the element

$$
c:=2^{m-t+1} e^{2^{m-t+1}-1} \in C_{Y} \subset \mathrm{CH}(Y)
$$

is nontrivial modulo $2 C_{Y}$. Setting to 0 the generators x_{m+1}, \ldots, x_{n} as well as e_{m+1}, \ldots, e_{n} (like in the proof of Proposition 2.4) of the ring $\mathrm{CH}(Y)$ (and "keeping unchanged" the remaining generators), we transform e to $\left(e_{1}^{\prime}\right)^{2 n-m}$ and therefore c to

$$
c^{\prime}:=2^{m-t+1}\left(e_{1}^{\prime}\right)^{2^{n-t+1}-2^{n-m}} \in C_{X^{\prime}} \subset \mathrm{CH}\left(X^{\prime}\right)
$$

where the variety X^{\prime} is the highest grassmannian of a split quadratic form of dimension $d^{\prime}:=2 m+1$. We conclude that $i_{m}=t-1$ provided that $c^{\prime} \notin 2 C_{X^{\prime}}$. The condition we came to is controlled by Lemma 3.4 and is satisfied if and only if there is a set $I \subset\{1, \ldots, m\}$ of degree

$$
l:=2^{n-t+1}-2^{n-m}=2^{n-t}+2^{n-t-1}+\cdots+2^{n-m}
$$

that can be written as a disjoint union of subsets of order at most 2 and of degree a power of 2 .

Returning to $d=2023$, to prove Proposition 3.5, it suffices to show that $i_{996}=992$. So, we set $m=996$. Recall that $t=993$ for this d. Note that the sum

$$
2^{9}+2^{8}+2^{7}+2^{6}+2^{5}=992
$$

does not exceed m. The union I of the doubletons $\left\{2^{9} \pm i\right\}$ with i running from 1 to $2^{8}+2^{7}+2^{6}+2^{5}$ satisfies the above condition.

Remark 3.6. For any d and the corresponding t, the method of the proof of Proposition 3.5 does not allow one to determine the avant-critical exponent i_{t-1} because $\left(e_{1}\right)^{2^{n-t+1}}$ (and therefore $\left(e_{1}^{\prime}\right)^{2^{n-t+1}}$) turns out to vanish. However, as already mentioned in [7, §3], $i_{t-1}=t-1$ for, asymptotically, 100% of dimensions d. This follows from Proposition 3.1 by the reason that $\operatorname{dim}\left(X_{t-1}\right)<2^{n-t+1}$ for the majority of d, see [7, Proposition A.4].

By a fatal coincidence, $d=2023$ falls into the 0% and the avant-critical exponent for it remains undetermined.

References

[1] Borel, A. Linear algebraic groups, second ed., vol. 126 of Graduate Texts in Mathematics. SpringerVerlag, New York, 1991.
[2] Devyatov, R. A., Karpenko, N. A., and Merkurjev, A. S. Maximal indexes of flag varieties for spin groups. Forum Math. Sigma 9 (2021), Paper No. e34, 12.
[3] Elman, R., Karpenko, N., and Merkurjev, A. The algebraic and geometric theory of quadratic forms, vol. 56 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2008.
[4] Fulton, W. Intersection theory, second ed., vol. 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 1998.
[5] Karpenko, N. A. On isotropy fields of Spin(18)-torsors. Preprint (28 Aug 2023, 7 pages). Available on author's webpage. To appear in St. Petersburg Math. J.
[6] Karpenko, N. A. On generic flag varieties for odd spin groups. Publ. Mat. 67, 2 (2023), 743-756.
[7] Karpenko, N. A., and Merkurjev, A. S. Indexes of generic Grassmannians for spin groups. Proc. Lond. Math. Soc. (3) 125, 4 (2022), 825-840.
[8] Karpenko, N. A., and Merkurjev, A. S. Poincaré duality for tautological Chern subrings of orthogonal grassmannians. Math. Scand. 128, 2 (2022), 221-228.
[9] Totaro, B. The torsion index of the spin groups. Duke Math. J. 129, 2 (2005), 249-290.
[10] Vishik, A. On the Chow groups of quadratic Grassmannians. Doc. Math. 10 (2005), 111-130 (electronic).
[11] Vishik, A. Fields of u-invariant $2^{r}+1$. In Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, vol. 270 of Progr. Math. Birkhäuser Boston Inc., Boston, MA, 2009, pp. 661-685.

Mathematical \& Statistical Sciences, University of Alberta, Edmonton, CANADA
Email address: karpenko@ualberta.ca
URL: www.ualberta.ca/~karpenko

[^0]: Date: 25 Sep 2023. Revised: 28 Feb 2024.
 Key words and phrases. Quadratic forms over fields; Affine algebraic groups; spin groups; projective homogeneous varieties; Chow rings. Mathematical Subject Classification (2020): 20G15; 14C25.

 The author's work has been supported by a Discovery Grant from the National Science and Engineering Research Council of Canada.

