
ON SPIN(2023)-TORSORS

NIKITA A. KARPENKO

Abstract. The torsion index of a spin group Spin(d), describing the splitting behaviour
of generic Spin(d)-torsor E, is a 2-power 2t with the torsion exponent t determined by
B. Totaro in 2005. The critical exponent it is responsible for partial splitting behaviour
of E and takes values inside the doubleton {t − 1, t}. For all d ≤ 16, the value of it
is known to be high. The very first case of the low value, obtained very recently, is
d = 17. In the present work, we develop a new method which allows one to show that
it = t − 1 for most d. In particular, it is shown that it is low for every d = 2r + 1 with
r ≥ 4 as well as for d = 2023, playing the role of a “randomly chosen” high dimension.
For d = 2023, using an extension of the new method (applicable to arbitrary d), several
exponents beyond the critical one are also determined.
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1. Introduction

We use notation and terminology of [5]. Given a generic d-dimensional quadratic form q
(over a field) of trivial discriminant and Clifford invariant, where d = 2n+1 or d = 2n+2
for some n ≥ 1, we write t for the torsion exponent of the algebraic group Spin(d), depend-
ing only on n and determined in [9, Theorem 0.1], and we are interested to determine the
critical exponent it of q, i.e., the integer such that 2it is the index of the tth (orthogonal)
grassmannian of q, where the index of a variety is the g.c.d. of degrees of its closed points.

By definition, the quadratic form q is given by a generic torsor E under the spin group
Spin(d). The integer 2t is the g.c.d. of finite extensions of the base field of E trivializing
E, or, equivalently, splitting q. The integer 2it provides similar information on partial
trivialization of E and partial splitting of q, see [5] for details.
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The possible values of it are t and t − 1. We say that the critical exponent is high if
it = t. Otherwise we say that it is low which means that q acquires Witt index t over a
finite base field extension of degree not divisible by 2t.

The critical exponent is high for any d ≤ 16. It has been shown in [5, Theorem 4.1
and Corollary 4.4] that the critical exponent is low for d = 17 and for d = 18. With the
help of computer calculations, the same has been shown for d = 19 and d = 20 in [6]. No
other cases of low critical exponent were known so far.

As follows from [7, Lemma 2.3], if the critical exponent is low for d = 2n+1, then it is
also low for d = 2n+ 2. For this reason, below we are assuming that d is odd.
As the main result of the present work, we develop in the next section (§2) a new

method which allows one to show that the critical exponent if low for most n, the precise
statement being Theorem 2.10 (with a minor addition given by Proposition 2.11). For
n ≥ 10 which are not covered by these two results, the critical exponent is yet to be
determined.

Proposition 2.11 deals with n = 16 and is added in order to cover all values of n given
by 2-powers. It is proved by the method of [5], where the case of n = 8 is treated. The
2-power higher than 16 are covered by Theorem 2.10 which is proved by entirely different
means.
In the last section (§3), we develop an extension of the new method of §2 which allows

one to determine several exponents beyond the critical one. We illustrate the power of
the extension applying it to a “randomly chosen” high dimension d = 2023.

2. The critical exponent

The following result, based on a joint effort of [2], [6], and [7], reduces the determination
of the critical exponent to an “elementary” computation. Let us write X for the highest
grassmannian of a split d-dimensional quadratic form and let us write Y for the complete
flag variety of the tautological vector bundle T on X. By [4, Example 3.3.5], the CH(X)-
algebra CH(Y ) is generated by the Chern classes x1, . . . , xn of the line bundles given by
the successive quotients of the tautological (rank 1 up to rank n) bundles on Y . Moreover,
the elementary symmetric polynomials in x1, . . . , xn are equal to the Chern classes of T ,
and these are the defining relations of the CH(X)-algebra CH(Y ). By the results of [3,
§86], originally obtained in [10], the ring CH(X) is generated by the elements e1, . . . , en,
satisfying the condition 2ei = (−1)ici(T ) and subject to the relations

e2i − 2ei−1ei+1 + 2ei−2ei+2 − · · ·+ (−1)i−12e1e2i−1 + (−1)ie2i = 0,

where i = 1, . . . , n and where ei := 0 for i > n. The condition on 2ei determines ei
because the additive group of CH(X) is free of torsion.

Let CY ⊂ CH(Y ) be the subring generated by x1, . . . , xn. Let us consider the element

(2.1) e :=
∏

I⊂{t+1,...,n}
(e1 −

∑
i∈I

xi) ∈ CH2n−t

(Y ).

By [7, Proposition 4.4], the element c := 2e is in CY .

Proposition 2.2. The critical exponent is low if and only if e ̸∈ CY . Equivalently, the
critical exponent is low if and only if the class of c in CY /2CY is nontrivial.
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Proof. Let Xt be the tth grassmannian of the split d-dimensional quadratic form used
in the definition of X and Y . By Lemma 2.3, the pull-back homomorphism CH(Xt) →
CH(Y ) with respect to the projection Y → Xt is injective; we identify CH(Xt) with its
image in CH(Y ).

By [6, Proposition 3.4], the element e belongs to CH(Xt). By Lemma 3.2, the inter-
section of CY ∩ CH(Xt) coincides with the subring C ⊂ CH(Xt) generated by the Chern
classes of the tautological (rank t) vector bundle on Xt. In particular, c = 2e ∈ C.
By [6, Theorem 3.6], the critical exponent satisfies (and is determined by) the formula

deg(C[e]) = 2itZ, where C[e] ⊂ CH(Xt) is the C-subalgebra generated by e, and where
deg is the degree homomorphism CH(Xt) → Z given by the push-forward with respect
to the structure morphism of the projective variety Xt. Note that deg(C) = 2tZ because
the index of the tth grassmannian of a generic d-dimensional quadratic form (without
restrictions on its discriminant and Clifford invariant), given by a generic torsors under
the orthogonal group O(d), equals 2t (see, e.g., [9, Theorem 3.2]).
In the case where e ∈ CY , we conclude that e ∈ C. This implies that deg(C[e]) =

deg(C) = 2tZ and therefore it = t.
Now assume that e ̸∈ CY . Equivalently, the element c = 2e ∈ C is nontrivial modulo

2C. By duality in C, explained in [8, Theorem 1.1], there is an element c′ ∈ C such that
deg(c · c′) is an odd multiple of 2t. Then deg(e · c′) is an odd multiple of 2t−1 and we
conclude that it = t− 1. □
The following general statement, contained in the case of a Borel subgroup Q in [2,

Proof of Lemma 2.2], has been used in the above proof:

Lemma 2.3. Let Q ⊂ P ⊂ G be two parabolic subgroups of a split reductive group G over
a field F . The pull-back homomorphism π∗ : CH(G/P ) → CH(G/Q) with respect to the
projection π : G/Q → G/P is a split monomorphism.

Proof. By [1, Proposition 20.5], for any extension field K/F , the map G(K) → (G/P )(K)
of the sets of K-points is surjective. Applying this property to the function field of the
variety G/P , one sees that the P -torsor given by the generic fiber of the quotient map
G → G/P is trivial. In particular, the generic fiber of π has a rational point. The
class x ∈ CH(G/Q) of its closure in G/Q satisfies π∗(x) = 1. By projection formula, for
any y ∈ CH(G/P ) we have π∗(π

∗(y) · x) = y · π∗(x) = y. It follows that π∗ is a split
monomorphism. □
The following approach opens up a way to see that the critical exponent is low for most

(in particular, for infinitely many) values of d (see Theorem 2.10). Assume that n ≥ 3
(assuring that t ≥ 1) and set d′ := 2t+ 1. Let X ′ be the highest grassmannian of a split
d′-dimensional quadratic form, and let Y ′ be the complete flag variety of the tautological
(rank t) vector bundle T ′ on X ′. We write CY ′ for the subring in CH(Y ′) generated by
the Chern classes of the tautological vector bundles on Y ′. Note that CY ′ ∩CH(X ′) is the
subring CX′ ⊂ CH(X ′), generated by the Chern classes c1(T

′), . . . , ct(T
′) of T ′. We write

e′1 for the element in CH(X ′) satisfying the condition 2e′1 = −c1(T
′). Note once again

that this condition determines e′1 because the group CH(X ′) is free of torsion.

Proposition 2.4. The critical exponent is low for dimension d = 2n + 1 provided that
(e′1)

2n−t ̸∈ CX′, where t is the torsion exponent of Spin(d).
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Proof. By Proposition 2.2, in order to prove Proposition 2.4, it suffices to show that the
inclusion e ∈ CY implies the inclusion (e′1)

2n−t ∈ CY ′ .
There is a (unique) ring homomorphism π : CH(Y ) → CH(Y ′), mapping xi to x′

i and
ei to e′i for every i = 1, . . . , t and killing both xi and ei for i = t + 1, . . . , n. Since
the generators xt+1, . . . , xn, involved in formula (2.1), vanish under π, we have π(e) =
π(e1)

2n−t
. Since π(e1) = e′1 and π(CY ) = CY ′ , the result follows. □

A control on the condition of Proposition 2.4, required for its applications, is worked
out in [9, §5]. As in [9, §5], let us define the degree of a subset in {1, . . . , n} to be the sum
of its elements. The following statement is actually proven in [9, §5] but is not explicitly
formulated there. It will be generalized in Lemma 3.4 below. We write CX for the subring
in CH(X), generated by the Chern classes of the tautological vector bundle T on X.

Lemma 2.5 ([9, §5]). For any given integer α ≥ 0, one has e2
α

1 ̸∈ CX if and only if there
is a set I ⊂ {1, . . . , n} of degree 2α that can be written as a disjoint union of subsets of
order at most 2 and of degree a power of 2.

Proof. Note that 2e1 = −c1(T ) ∈ CX and the additive group of CX is a free abelian group
of finite rank and, in particular, free of torsion. As explained in [9, §4], the element (2e1)

2α

is divisible by 22
α−1 in CX . In other terms, the element c := 2e2

α

1 ∈ CH(X) belongs to
CX ⊂ CH(X). We have e2

α

1 ̸∈ C if and only if c is nonzero modulo 2 in CX . Below we
view c as an element of CX/2CX . Note that the quotient CX/2CX is the exterior algebra
on ci := ci(T ), i = 1, . . . , n, i.e., the generators c1, . . . , cn are subject to the relations
c2i = 0. In particular, the products cI :=

∏
i∈I ci with I ⊂ {1, . . . , n} form a basis of the

Z/2Z-vector space CX/2CX . (The same products viewed in CX also form a basis of the
free abelian group CX .)

By [9, Lemma 5.1], for the list

(2.6) c1; c2; c4, c1c3; c8, c1c7, c2c6, c3c5; . . .

of elements of CX/2CX of the form c2j with j ≥ 0 or c2j−ic2j+i with 1 ≤ i ≤ 2j − 1,
the element c is equal to the sum over all subsets S of the list with total degree 2α of
the product of the elements in S. Any monomial in this sum that involves the same
generator ci twice is zero and so can be omitted. Otherwise, the monomial is cI for some
set I ⊂ {1, . . . , n} of degree 2α and the coefficient at this monomial in the decomposition
of c equals the number (modulo 2) of ways of writing I as a disjoint union of subsets of
order at most 2 and of degree a power of 2.

With this information in hand, Lemma 2.5 follows from Lemma 2.7 right below. □
Lemma 2.7 ([9]). For any subset I ⊂ {1, . . . , n} (of any degree), the number of ways of
decomposing I into a disjoint union of subsets as above is always 0 or 1 (not just modulo
2); that is, if I can be decomposed into such subsets, then the decomposition is unique.

Proof. The statement of Lemma 2.7 and its proof appear inside [9, Proof of Lemma
5.4]. □

We are ready to apply Proposition 2.4. As a warm up, we prove

Lemma 2.8. The critical exponent is low for d = 2023.
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Proof. For d = 2023, we have n = 1011, t = 993, and n − t = 18. By Lemma 2.5,
(e′1)

218 ̸∈ CX′ if and only if there is a set I ⊂ {1, . . . , 993} of degree 218 that can be
written as a disjoint union of subsets of order at most 2 and of degree a power of 2. The
union I of the doubletons {29 ± i} with i = 1, . . . , 28 satisfies the condition. □

In fact, the critical exponent is low for all d in a large interval around 2023:

Proposition 2.9. The critical exponent is low for d = 2n + 1 provided that 786 ≤ n ≤
1024.

Proof. For every such d, the difference n− t is constantly 18. Therefore it suffices to show
that the critical exponent is low in the case of the minimal n = 786. For this we need to
find a set I ⊂ {1, . . . , t = n− (n− t) = 786− 18 = 768} of degree 2n−t = 218 that can be
written as a disjoint union of subsets of order at most 2 and of degree a power of 2. Since
768 = 29+28, the union I of the doubletons {29± i} with i = 1, . . . , 28 (used in the proof
of Lemma 2.8) still suits. □

Here comes the main result of this text, which will be proved similarly. It shows that
for N large enough, the proportion of n < N such that the critical exponent is low for
d = 2n+1 is over 91%. Indeed, for s → ∞, the proportion of n ∈ [2s, 2s+1] for which the
critical exponent is low by Theorem 2.10 tends to

1− 2−s(2s + 2s−1 − 2s+
1
2 ) =

√
2− 2−1 > 0.91.

Theorem 2.10. The critical exponent is low for d = 2n+1 (and therefore for d = 2n+2
as well, see §1) provided that

n ∈ [2s + 3s− 3, 2s+
1
2 − 2s− 1] ∪ [2s + 2s−1 + 2s, 2s+1]

for some positive integer s.

Proof. Assume first that n ∈ [2s + 3s − 3, 2s+
1
2 − 2s − 1]. Applying [9, Theorem 0.1],

let us show that n − t = 2s − 1. If we were in the second case of [9, Theorem 0.1],
then n would have the form n = 2s + b with some 0 ≤ b ≤ s − 3 implying that n ≤
2s + s − 3, a contradiction. Therefore, by [9, Theorem 0.1], n − t is the integral part of
log2(1 + n(n+ 1)/2) which is equal to 2s− 1, indeed.

Since the difference n− t is constant for n on the interval [2s+3s− 3, 2s+
1
2 − 2s− 1], it

suffices to show that the critical exponent is low in the case of the minimal n = 2s+3s−3.
For this we need to find a set I ⊂ {1, . . . , 2s + s− 2} of degree 22s−1 that can be written
as a disjoint union of subsets of order at most 2 and of degree a power of 2. The union I
of the singleton {2s} and the doubletons {2s−1 ± i} with i = 1, . . . , 2s−1 − 1 suits.
Now assume that n ∈ [2s+2s−1+2s, 2s+1]. Then we are in the first case of [9, Theorem

0.1] which tells us that n− t = 2s. Therefore it suffices to show that the critical exponent
is low in the case of the minimal n = 2s + 2s−1 + 2s. For this we need to find a set
I ⊂ {1, . . . , 2s + 2s−1} of degree 22s that can be written as a disjoint union of subsets of
order at most 2 and of degree a power of 2. The union I of the doubletons {2s ± i} with
i = 1, . . . , 2s−1 suits. □
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Note that Theorem 2.10 in particular states the critical exponent is low for d = 2n+ 1
with n any 2-power starting from 32. The same has been shown for d = 17 and n = 8 in
[5]. We use the method of [5] to resolve the missing case of d = 33 and n = 16:

Proposition 2.11. The critical exponent is low for d = 2n+ 1 with n = 16.

Proof. We use notation from the paragraph before Proposition 2.4. Note that t = 10 for
d = 2n+ 1 with n = 16.

The modulo 2 Chow group Ch(Y ) := CH(Y )/2CH(Y ) has a Z/2Z-basis given by the
products

(2.12) xa1
1 . . . xa16

16 eI with ai < i and I ⊂ {1, . . . , 8},

where eI :=
∏

i∈I ei. The Z/2Z-subspace CY ⊂ Ch(Y ) is generated by the part of the
basis without eI (i.e., with I = ∅).
By [5, Remark 3.4], e, as a polynomial in e1 over the ring

R := (Z/2Z)[x11, . . . , x16],

contains monomials of 2-power degrees only. For e1 viewed in Ch(Y ) one has e2
i

1 = e2i for
any i ≥ 0, where we set ei := 0 for i > n. Every element of R, viewed in CY ⊂ Ch(Y ),
can be written (uniquely) as a sum of xa1

1 . . . xa16
16 with ai < i. The element e ∈ Ch(Y ) is

a unique linear combination of e1, e2, e4, e8, e16 with coefficients in CY . We prove e ̸∈ CY

by showing that the coefficient at e16 is nonzero.
By [5, Remark 3.4], the coefficient at e161 in the polynomial e is a sum of some monomials

(2.13) xa11
11 . . . xa16

16

with 2-powers a11, . . . , a16 satisfying a11 + · · ·+ a16 = 64− 16 = 48. Since

x16
16 = c1(T )x15

16 + c2(T )x14
16 + · · ·+ c15(T )x16 + c16(T ) ∈ CY ⊂ Ch(Y )

and ci(T ) = 0 ∈ Ch(X) ⊂ Ch(Y ) for i > 0, the power x16
16 vanishes in C. By symmetry

of the relations on x1, . . . , x16 in CY , for every i = 1, . . . , 15, the power x16
i also vanishes

in CY . It follows that among monomials (2.13) only the one with a11 = · · · = a16 = 8
remains nonzero in C. This monomial actually appears (with coefficient 1 modulo 2) and
belongs to basis (2.12). Consequently e ̸∈ CY , and [5, Proposition 3.2] terminates the
proof. □

3. Beyond the critical exponent

Returning to d = 2023, we would also like to determine several exponents it+1, it+2, . . .
following the critical one it. Recall that for arbitrary d the sequence of all exponents
i0, . . . , in is non-strictly increasing with im = m for m ≤ t − 2 and in−2 = in−1 = in = t.
For every m = 0, . . . , n, the integer im is defined to be such that 2im is the index (i.e.,
the g.c.d. of degrees of closed points) of the mth grassmannian of a generic d-dimensional
quadratic form of trivial discriminant and Clifford invariant.
Proposition 3.1 below is a generalization of Proposition 2.2 which is still based on a joint

effort of [2], [6], and [7]. For an arbitrary dimension d = 2n + 1 and the corresponding
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torsion exponent t, it reduces the computation of im for arbitrary m ≥ t − 1 to an
“elementary” computation. For any m = t− 1, t, t+ 1, . . . , n, let us define

e :=
∏

I⊂{m+1,...,n}
(e1 −

∑
i∈I

xi) ∈ CH2n−t

(Y ).

(For m = t, this formula coincides with (2.1). For m < t − 1 the formula makes sense
as well, but by [7, Corollary A.3] the result is always 0.) By [7, Corollary 4.6], for any

integer α ≥ 0, the element 2e2
α
is in CY . As a consequence, c := 2m−t+1e2

m−t+1−1 ∈ CY .

Proposition 3.1. For a given m ≥ t, one has im = t− 1 is and only if the element c is
nontrivial modulo 2CY ; otherwise im = t. For m = t− 1, one has has im = m− 1 = t− 2
is and only if e ̸∈ CY ; otherwise im = m = t− 1.

Proof. We modify the lines of the proof of Proposition 2.2. Let Xm be the mtth grass-
mannian of the split d-dimensional quadratic form used in the definition of X and Y .
By Lemma 2.3, the pull-back homomorphism CH(Xm) → CH(Y ) with respect to the
projection Y → Xm is injective; we identify CH(Xm) with its image in CH(Y ).
By [6, Proposition 3.4], the element e belongs to CH(Xm). We will proceed with the

proof of Proposition 3.1 after the following

Lemma 3.2. The intersection of CY ∩CH(Xm) coincides with the subring C ⊂ CH(Xm)
generated by the Chern classes of the tautological (rank m) vector bundle on Xm.

Proof. Since C ⊂ CY , the inclusion C ⊂ CY ∩ CH(Xm) holds trivially. To prove the
opposite inclusion, we proceed as follows.
The rings C and CY are identified with the Chow rings of the following two varieties: the

variety of m-dimensional totally isotropic subspaces and the variety of complete flags of
totally isotropic subspaces of a (2n)-dimensional non-degenerate alternating bilinear form
(see [6, Remark 3.3]). Under this identification, the embedding C ↪→ CY becomes the
pull-nack homomorphism of Lemma 2.3 with G being the split symplectic group Sp(2n).
It follows by Lemma 2.3 that the embedding is a split monomorphism. Therefore the
quotient CY /C is free of torsion.
Let us take any a ∈ CY ∩ CH(Xm). Since a ∈ CH(Xm), by [11, Propositions 2.11 and

2.1] there exists a nonzero integer r such that ra ∈ C. Since a ∈ CY and CY /C is free of
torsion, we conclude that a ∈ C. □
Returning to the proof of Proposition 3.1, since 2e ∈ CY , we conclude by Lemma 3.2

that 2e ∈ C.
By [6, Theorem 3.6], the exponent im satisfies (and is determined by) the formula

deg(C[e]) = 2imZ, where C[e] ⊂ CH(Xm) is the C-subalgebra generated by e, and where
deg is the degree homomorphism CH(Xm) → Z given by the push-forward with respect to
the structure morphism of the projective variety Xm. Note that deg(C) = 2mZ because
the index of the mth grassmannian of a generic d-dimensional quadratic form (without
restrictions on its discriminant and Clifford invariant), given by a generic torsors under
the orthogonal group O(d), equals 2m (see, e.g., [9, Theorem 3.2]).
Let us first treat the case of m = t− 1. If e ∈ CY , we conclude that e ∈ C, deg(C[e]) =

deg(C) = 2mZ, and im = m = t− 1. Otherwise, the element 2e of C is nontrivial modulo
2C and by duality in C, explained in [8], there is an element c′ ∈ C such that deg(c · c′) is
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an odd multiple of 2m. Then deg(e · c′) is an odd multiple of 2m−1 and we conclude that
im = m− 1 = t− 2.

Now we treat the case of m ≥ t, starting with the assumption that c ̸∈ 2CY , which is
equivalent to the assumption that c ̸∈ 2C. Then again we can find an element c′ ∈ C
such that deg(c · c′) is an odd multiple of 2m. It follows that deg(e2

m−t+1−1 · c′) is an odd
multiple of 2t−1 and we conclude that im = t− 1.

Finally, assume that c ∈ 2C. Note that for any integer l ≥ 1, 2bel ∈ C, where b is
the sum of base-2 digits of l. Since b ≤ m − t for l < 2m−t+1 − 1, we conclude that
2m−tC[e] ⊂ C. Therefore im ≥ m− (m− t) = t meaning that im = t. □

Since, as we already know, it = t − 1 = 992 for d = 2023, the possible values of the
exponents beyond it for this dimension are t − 1 = 992 and t = 993. We are not able
to determine the largest m with im = t − 1. The upper bound on such m for general d,
resulting from Proposition 3.1 by the reason of dimension of the variety Xm, is not exact
as demonstrates the following example:

Example 3.3. The upper bound, resulting from [7, Theorem 3.2], is given by the maximal
m such that

dimXm =
m(m− 1)

2
+m(d− 2m) ≥ 2n−t+1 − 2n−m.

For d = 31 and n = 15 (for which t = 9), this upper bound on the largest m with
im = t− 1 is 14. However, since we always have t = in = in−1 = in−2, the actual value of
m is at most n− 3 = 12.

For d = 2023, the upper bound on the largest m with im = t − 1, resulting from
Proposition 3.1, is 1000. Therefore im = t for all m ≥ 1001. We are going to generalize
the technique used in the proof of Lemma 2.8 to show that im = t− 1 for m in the closed
interval [t = 993, 996]. (The value of im with m from 997 to 1000 remains undetermined.)

We first extend Lemma 2.5 on the power e2
α

1 to an arbitrary power el1 of e1. Let us write
a given integer l ≥ 1 as a sum 2α1 + · · ·+ 2αb of b distinct 2-powers for some appropriate
b ≥ 1 (equal to the sum of the base-2 digits of l). Then, clearly, c := 2bel1 ∈ CX , where,
as in the proof of Lemma 2.5, CX stands for the subring in CH(X), generated by Chern
classes of the tautological vector bundle T . The following lemma, generalizing Lemma
2.5 as well as [9, Lemma 5.4], controls vanishing of c in CX/2CX :

Lemma 3.4. For c ∈ CX as right above, one has c ̸∈ 2CX if and only if there is a set
I ⊂ {1, . . . , n} of degree l that can be written as a disjoint union of subsets of order at
most 2 and of degree a power of 2.

Proof. We rephrase the proof of [9, Lemma 5.3] in order to show that the the class of c in
the quotient CX/2CX is equal to the sum over all subsets S of list (2.6) with total degree
l of the product of the elements in S. This follows from [9, Lemma 5.1] once we show
that for each subset S of list (2.6) with total degree l, the number of ways of partitioning
S into subsets with total degrees 2α1 , . . . , 2αb is odd. Clearly, this question depends only
on the degrees of the elements of S, which are all powers of 2; that is, it suffices to show
that for any nonnegative integers a1, . . . , ar such that 2a1 + · · · + 2ar = l, the number of
partitions of the set S = {1, . . . , r} into subsets S =

⨿b
j=1 Sj such that

∑
i∈Sj

2ai = 2αj

for j = 1, . . . , b is odd.
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By [9, Lemma 5.2], the number of subsets Sb such that
∑

i∈Sb
2ai = 2αb is congruent

modulo 2 to
(

l
2αb

)
and thus to 1 (see [3, Lemma 78.6]). The total number of partitions

as above is the product of this odd number of subsets Sb with the analogous number of
partitions of S \Sb (for any choice of Sb), a set with total degree l− 2αb rather than l. By
induction on b, the latter number of partitions is odd. Therefore the number of partitions
we consider is also odd.

By Lemma 2.7, for any subset I ⊂ {1, . . . , n} (of any degree), the number of ways of
decomposing I into a disjoint union of subsets as above is always 0 or 1. This proves
Lemma 3.4. □

We now get an extension of Lemma 2.8:

Proposition 3.5. For d = 2023 (where n = 1011 and t = 993) we have im = t − 1 for
m = 994, 995, 996.

Proof. We start with a general conclusion concerning an arbitrary d = 2n + 1 and the
corresponding torsion exponent t, generalizing Proposition 2.4. By Proposition 3.1, for a
given m ≥ t one has im = t− 1 is and only if the element

c := 2m−t+1e2
m−t+1−1 ∈ CY ⊂ CH(Y )

is nontrivial modulo 2CY . Setting to 0 the generators xm+1, . . . , xn as well as em+1, . . . , en
(like in the proof of Proposition 2.4) of the ring CH(Y ) (and “keeping unchanged” the
remaining generators), we transform e to (e′1)

2n−m
and therefore c to

c′ := 2m−t+1(e′1)
2n−t+1−2n−m ∈ CX′ ⊂ CH(X ′),

where the variety X ′ is the highest grassmannian of a split quadratic form of dimension
d′ := 2m+1. We conclude that im = t−1 provided that c′ ̸∈ 2CX′ . The condition we came
to is controlled by Lemma 3.4 and is satisfied if and only if there is a set I ⊂ {1, . . . ,m}
of degree

l := 2n−t+1 − 2n−m = 2n−t + 2n−t−1 + · · ·+ 2n−m

that can be written as a disjoint union of subsets of order at most 2 and of degree a power
of 2.

Returning to d = 2023, to prove Proposition 3.5, it suffices to show that i996 = 992. So,
we set m = 996. Recall that t = 993 for this d. Note that the sum

29 + 28 + 27 + 26 + 25 = 992

does not exceed m. The union I of the doubletons {29 ± i} with i running from 1 to
28 + 27 + 26 + 25 satisfies the above condition. □
Remark 3.6. For any d and the corresponding t, the method of the proof of Proposition
3.5 does not allow one to determine the avant-critical exponent it−1 because (e1)

2n−t+1

(and therefore (e′1)
2n−t+1

) turns out to vanish. However, as already mentioned in [7, §3],
it−1 = t− 1 for, asymptotically, 100% of dimensions d. This follows from Proposition 3.1
by the reason that dim(Xt−1) < 2n−t+1 for the majority of d, see [7, Proposition A.4].
By a fatal coincidence, d = 2023 falls into the 0% and the avant-critical exponent for

it remains undetermined.
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