A SHORTENED CONSTRUCTION OF THE ROST MOTIVE

NIKITA A. KARPENKO

ABSTRACT. Using Rost's nilpotence theorem for endomorphisms of a motive of a projective quadric, we give a short and direct construction of the motivic decomposition of a norm quadric obtained by Rost and used in Voevodsky's proof of the Milnor conjecture.

This text is a modified version of [4].

Let F be a field of characteristic different from 2, ϕ a quadratic form over F which is similar to a Pfister form (i.e. ϕ is isomorphic to a tensor product of some non-degenerate binary quadratic forms), and let X be the projective hypersurface $\phi \perp \langle c \rangle = 0$ with some $c \in F^*$ ($\phi \perp \langle c \rangle$ stays for the orthogonal sum of ϕ and of the 1-dimensional quadratic form $\langle c \rangle$). The variety X is called a norm quadric in the literature. Its dimension equals a power of 2 minus 1; we write n for the integer such that dim X = 2n + 1.

Let \mathcal{F}/F be a field extension splitting ϕ , \mathfrak{X} the variety $X_{\mathcal{F}}$, and $p \in \mathfrak{X}$ a closed rational point.

Let us consider the Chow group (the group of algebraic cycles modulo rational equivalence, graded by codimension) $\mathrm{CH}^*(\mathfrak{X} \times \mathfrak{X})$. The elements of the group $\mathrm{CH}^{2n+1}(\mathfrak{X} \times \mathfrak{X})$ are also called correspondences on \mathfrak{X} . The classical notion of composition for correspondences (see [1, §16.1]) makes this group into a ring, which we also denote by $\mathrm{End}(X)$ (it is the ring of endomorphisms of \mathfrak{X} viewed as an object of the additive category of correspondences).

The classes $[p \times \mathfrak{X}]$ and $[\mathfrak{X} \times p]$ of the cycles $p \times \mathfrak{X}$ and $\mathfrak{X} \times p$ in the Chow group $CH^{2n+1}(\mathfrak{X} \times \mathfrak{X})$ are easily seen to be orthogonal projectors (that is, orthogonal idempotents in the ring $End(\mathfrak{X})$). In particular, their sum is a projector. The following theorem states that this projector is defined over F:

Theorem (Rost). There exists a projector r on X such that

$$r_{\mathcal{F}} = [p \times \mathfrak{X}] + [\mathfrak{X} \times p]$$
.

Remarks. The motive (X, r), determined by the projector r (one may think of the classical category of Grothendieck's Chow motives [1, Ex. 16.1.12] as well as of a Voevodsky motivic category [8]) is called the Rost motive. The motivic decomposition $X = (X, r) \oplus (X, \operatorname{id} - r)$ given by r is a part of the motivic decomposition of X established in [6, Th. 17]. It is exactly the part needed in Voevodsky's proof of the Milnor conjecture (see [10, Proof of Th. 4.4] and/or [9, Proof of Th. 4.5]).

Date: November, 1998.

The theorem stated above immediately follows from the following two lemmas.

Lemma 1. There exists a cycle $\rho \in CH^{2n+1}(X \times X)$ such that

$$\rho_{\mathcal{F}} = [p \times \mathfrak{X}] + [\mathfrak{X} \times p] .$$

Proof. The facts on the Chow groups of split quadrics used below can be found in $[3, \S 2.1]$ (see also $[6, \S 2.3]$).

We need a description of $CH^*(\mathfrak{X} \times \mathfrak{X})$. Note that \mathfrak{X} is a (completely!) split projective quadric of dimension 2n+1 and that the description of $CH^*(\mathfrak{X})$ and $CH^*(\mathfrak{X} \times \mathfrak{X})$ given below has nothing to do with the fact that X is a norm quadric (the same for Y instead of X appearing below). One has

$$\mathrm{CH}^*(\mathfrak{X} \times \mathfrak{X}) = \mathrm{CH}^*(\mathfrak{X}) \otimes \mathrm{CH}^*(\mathfrak{X})$$

(that is, the ring homomorphism $\mathrm{CH}^*(\mathfrak{X}) \otimes \mathrm{CH}^*(\mathfrak{X}) \to \mathrm{CH}^*(\mathfrak{X} \times \mathfrak{X})$ given by the pull-backs with respect to the first and second projection is bijective) and the group $\mathrm{CH}^*(\mathfrak{X})$ is torsion-free. Write h for the class in $\mathrm{CH}^1(\mathfrak{X})$ of a hyperplane section of \mathfrak{X} (more precisely, h is defined as the pull-back of the hyperplane class with respect to the embedding of the hypersurface \mathfrak{X} in the projective space). Note that h is defined over F.

The group $CH^i(\mathfrak{X})$ is generated by h^i if $i \leq n$ and by $\frac{1}{2}h^i$ if $i \geq n+1$. The generator $\frac{1}{2}h^i$ coincides with the class of a totally isotropic subspace of the appropriate (co)dimension. In particular, $[p] = \frac{1}{2}h^{2n+1} \in CH^{2n+1}(\mathfrak{X})$.

It follows that $CH^{2n+1}(\mathfrak{X} \times \mathfrak{X})$ is a free abelian group on the generators $\frac{1}{2}(h^i \otimes h^{2n+1-i})$, $i = 0, \ldots, 2n+1$. Since these generators are orthogonal projectors, the diagonal class Δ (which is the identity of $End(\mathfrak{X})$) is equal to their sum:

$$\Delta = \frac{1}{2} \sum_{i=0}^{2n+1} h^i \otimes h^{2n+1-i} \in \mathrm{CH}^{2n+1}(\mathfrak{X} \times \mathfrak{X}) .$$

Consequently,

$$[p \times \mathfrak{X}] + [\mathfrak{X} \times p] = \frac{1}{2} (h^{2n+1} \otimes 1 + 1 \otimes h^{2n+1}) =$$
$$= \Delta - \frac{1}{2} (h \otimes h^{n+1} + h^{n+1} \otimes h) \cdot \sum_{i=1}^{n} h^{i-1} \otimes h^{n-i}.$$

Since Δ is defined over F, it suffices to show that the cycle

$$\frac{1}{2}(h\otimes h^{n+1}+h^{n+1}\otimes h)\in\mathrm{CH}^{n+2}(\mathfrak{X}\times\mathfrak{X})$$

is defined over F as well.

Let Y be the projective quadric $\phi = 0$. Note that Y is a 1-codimensional closed subvariety of X. More precisely, it is a hyperplane section of X. We write \mathcal{Y} for $Y_{\mathcal{F}}$.

Let $\pi \in \mathrm{CH}^{2n}(\mathcal{Y})$ be the class of a maximal totally isotropic subspace of ϕ . The push-forward in_{*} (π) with respect to the imbedding in: $\mathcal{Y} \hookrightarrow \mathfrak{X}$ equals

then $\frac{1}{2}h^{n+1}$. Therefore, the push-forward $(\text{in} \times \text{in})_*(1 \otimes \pi + \pi \otimes 1)$ with respect to $\text{in} \times \text{in} : \mathcal{Y} \times \mathcal{Y} \hookrightarrow \mathfrak{X} \times \mathfrak{X}$ is our $\frac{1}{2}(h \otimes h^{n+1} + h^{n+1} \otimes h)$. Since the morphism in \times in is defined over F, it suffices now to show that the cycle

$$1 \otimes \pi + \pi \otimes 1 \in \mathrm{CH}^n(\mathcal{Y} \times \mathcal{Y})$$

is defined over F.

We need a description of $CH^*(\mathcal{Y} \times \mathcal{Y})$. One has

$$\mathrm{CH}^*(\mathcal{Y} \times \mathcal{Y}) = \mathrm{CH}^*(\mathcal{Y}) \otimes \mathrm{CH}^*(\mathcal{Y})$$

and the group $CH^*(\mathcal{Y})$ is torsion-free. We write now h for the class in $CH^1(\mathcal{Y})$ of a hyperplane section of Y.

The group $CH^i(\mathcal{Y})$ is generated by h^i if i < n and by $\frac{1}{2}h^i$ if i > n. The "middle" component $CH^n(\mathcal{Y})$ has (unlike to the others) two free generators: h^n and π .

It follows that $CH^n(\mathcal{Y} \times \mathcal{Y})$ is a free abelian group on $h^i \otimes h^{n-i}$ (i = 0, ..., n), $\pi \otimes 1$, and $1 \otimes \pi$ (note that all but two last generators are already defined over F, so the situation is now easier to control).

Consider the commutative diagram

$$\begin{array}{ccc}
\operatorname{CH}^{n}(\mathcal{Y} \times \mathcal{Y}) & \xrightarrow{(\operatorname{id}_{\mathcal{Y}} \times \mathfrak{f})^{*}} & \operatorname{CH}^{n}(\mathcal{Y}_{\mathcal{F}(\mathcal{Y})}) \\
& & & & \uparrow^{\operatorname{res}_{\mathcal{F}(\mathcal{Y})/F(Y)}} \\
\operatorname{CH}^{n}(Y \times Y) & \xrightarrow{(\operatorname{id}_{Y} \times f)^{*}} & \operatorname{CH}^{n}(Y_{F(Y)})
\end{array}$$

where the horizontal arrows are the pull-backs with respect to the flat morphisms $id_Y \times f: Y_{F(Y)} \to Y \times Y$ and $id_{\mathcal{Y}} \times \mathfrak{f}: \mathcal{Y}_{\mathcal{F}(\mathcal{Y})} \to \mathcal{Y} \times \mathcal{Y}$ and where f (resp. \mathfrak{f}) is the generic point morphism of Y (resp. \mathcal{Y}).

Since the Pfister form ϕ is isotropic over F(Y), it is hyperbolic over this function field ([5, Cor. 1.6 of Chapter Ten]). Thereby $\pi_{\mathcal{F}(\mathcal{Y})}$ is defined over F(Y). Since $(\mathrm{id}_Y \times f)^*$ is evidently surjective (see for example [2, Prop. 5.1]), it follows that there exists a defined over F cycle $\alpha \in \mathrm{CH}^n(\mathcal{Y} \times \mathcal{Y})$ such that $(\mathrm{id}_{\mathcal{Y}} \times \mathfrak{f})^*(\alpha) = \pi_{\mathcal{F}(\mathcal{Y})}$.

It is easy to see how $(id_{\mathcal{V}} \times \mathfrak{f})^*$ acts on the generators of the group $CH^n(\mathcal{Y} \times \mathcal{Y})$:

$$(\mathrm{id}_{\mathcal{Y}} \times \mathfrak{f})^* (h^i \otimes h^{n-i}) = 0$$
 for $i = 0, \dots, n-1$,
 $(\mathrm{id}_{\mathcal{Y}} \times \mathfrak{f})^* (h^n \otimes 1) = h^n_{\mathcal{F}(\mathcal{Y})}$, and
 $(\mathrm{id}_{\mathcal{Y}} \times \mathfrak{f})^* (\pi \otimes 1) = \pi_{\mathcal{F}(\mathcal{Y})}$.

Since $(id_{\mathcal{Y}} \times \mathfrak{f})^*(\alpha) = \pi_{\mathcal{F}(\mathcal{Y})}$, it follows that

$$\alpha = \pi \otimes 1 + a \cdot (1 \otimes \pi) + \sum_{i=0}^{n} a_i \cdot (h^i \otimes h^{n-i})$$

with some integers a_i and a (one also has $a_n = 0$ but we don't care for this). Since the generators $h^i \otimes h^{n-i}$ are defined over F and since $2(1 \otimes \pi)$ is defined over F (because 2π is defined over F by the transfer argument), it follows that either $\pi \otimes 1 + 1 \otimes \pi$ or $\pi \otimes 1$ is defined over F. If we are in the first

case, we are done. Since the sum of $\pi \otimes 1$ and its transposition gives the cycle $\pi \otimes 1 + 1 \otimes \pi$, it is defined over F also in the second case (in fact the second case is not possible if the quadratic form ϕ is anisotropic).

Lemma 2 (see also [7, Lemma 3.12]). Let X/F be a quadric (not necessarily a norm one) and let ρ be a cycle on $X \times X$. If ρ_E is a projector on X_E for some field extension E/F, then some power of ρ (taken in the ring $\operatorname{End}(X)$ of correspondences on X) is a projector as well.

Proof. By Rost's nilpotence theorem [6, Prop. 9] (see also [7, Lemma 3.10]), any element of the kernel of the ring homomorphism

$$\operatorname{res}_{E/F} \colon \operatorname{End}(X) \to \operatorname{End}(X_E)$$

is nilpotent. By the transfer argument, any element of this kernel is of the exponent $2^{\dim X}$ (in the case of a norm quadric it even has the exponent 2).

Since ρ_E is a projector, the difference $\alpha \stackrel{\text{def}}{=} \rho^2 - \rho$ lies in the above kernel (powers of cycles are being taken in End(X) here). Therefore, $\alpha^{2^N} = 0$ and $2^N \alpha = 0$ for certain positive integer N. We claim that ρ^{4^N} is a projector.

To see it, take the 4^N -th power of the equality $\rho^2 = \alpha + \rho$. Since α commutes with ρ , we get the sum of $\binom{4^N}{i} \alpha^i \rho^{4^N - i}$ on the right. Each summand is however zero, because $\alpha^i = 0$ if i is divisible by 2^N , and $\binom{4^N}{i}$ is divisible by 2^N otherwise. Thus $(\rho^{4^N})^2 = \rho^{4^N}$.

References

- [1] W. Fulton. Intersection Theory. Springer, New York, 1984.
- [2] O. Izhboldin and N. Karpenko. Some new examples in the theory of quadratic forms. Universität Münster, Preprintreihe SFB 478 Geometrische Strukturen in der Mathematik (http://www.uni-muenster.de/math/inst/sfb/about/publ/index.html), 1998.
- [3] N. Karpenko. Algebro-geometric invariants of quadratic forms. Algebra i Analiz 2 (1991), no. 1, 141–162 (in Russian). Engl. transl.: Leningrad (St. Petersburg) Math. J. 2 (1991), no. 1, 119–138.
- [4] N. Karpenko. A direct construction of the Rost motive. K-Theory Preprint Archives (http://www.math.uiuc.edu/K-theory/) 282, 1998.
- [5] T. Y. Lam. *The Algebraic Theory of Quadratic Forms*. Benjamin, Reading, Massachusetts, 1973.
- [6] M. Rost. The motive of a Pfister form. Preprint, 1998 (see http://www.physik.uni-regensburg.de/~rom03516).
- [7] A. Vishik. *Integral motives of quadrics*. Preprint of MPI, 1998 (see http://www.mpim-bonn.mpg.de).
- [8] V. Voevodsky. Triangulated categories of motives over a field. Preprint, 1995.
- [9] V. Voevodsky. Bloch-Kato conjecture for $\mathbb{Z}/2$ -coefficients and algebraic Morava K-theories. Preprint, 1995.
- [10] V. Voevodsky. The Milnor conjecture. Preprint, 1996.

WESTFÄLISCHE WILHELMS-UNIVERSITÄT, MATHEMATISCHES INSTITUT, EINSTEINSTR. 62, D-48149 MÜNSTER, GERMANY

E-mail address: karpenk@math.uni-muenster.de