
A SHORTENED CONSTRUCTION OF THE ROST MOTIVE

NIKITA A. KARPENKO

Abstract. Using Rost’s nilpotence theorem for endomorphisms of a mo-
tive of a projective quadric, we give a short and direct construction of the
motivic decomposition of a norm quadric obtained by Rost and used in
Voevodsky’s proof of the Milnor conjecture.

This text is a modified version of [4].

Let F be a field of characteristic different from 2, ϕ a quadratic form over
F which is similar to a Pfister form (i.e. ϕ is isomorphic to a tensor product
of some non-degenerate binary quadratic forms), and let X be the projective
hypersurface ϕ⊥⟨c⟩ = 0 with some c ∈ F ∗ (ϕ⊥⟨c⟩ stays for the orthogonal
sum of ϕ and of the 1-dimensional quadratic form ⟨c⟩). The variety X is called
a norm quadric in the literature. Its dimension equals a power of 2 minus 1;
we write n for the integer such that dimX = 2n+ 1.

Let F/F be a field extension splitting ϕ, X the variety XF , and p ∈ X a
closed rational point.

Let us consider the Chow group (the group of algebraic cycles modulo ra-
tional equivalence, graded by codimension) CH∗(X× X). The elements of the
group CH2n+1(X× X) are also called correspondences on X. The classical no-
tion of composition for correspondences (see [1, §16.1]) makes this group into
a ring, which we also denote by End(X) (it is the ring of endomorphisms of X
viewed as an object of the additive category of correspondences).

The classes [p×X] and [X×p] of the cycles p×X and X×p in the Chow group
CH2n+1(X×X) are easily seen to be orthogonal projectors (that is, orthogonal
idempotents in the ring End(X)). In particular, their sum is a projector. The
following theorem states that this projector is defined over F :

Theorem (Rost). There exists a projector r on X such that

rF = [p× X] + [X× p] .

Remarks. The motive (X, r), determined by the projector r (one may think
of the classical category of Grothendieck’s Chow motives [1, Ex. 16.1.12] as
well as of a Voevodsky motivic category [8]) is called the Rost motive. The
motivic decomposition X = (X, r) ⊕ (X, id − r) given by r is a part of the
motivic decomposition of X established in [6, Th. 17]. It is exactly the part
needed in Voevodsky’s proof of the Milnor conjecture (see [10, Proof of Th.
4.4] and/or [9, Proof of Th. 4.5]).
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The theorem stated above immediately follows from the following two lem-
mas.

Lemma 1. There exists a cycle ρ ∈ CH2n+1(X ×X) such that

ρF = [p× X] + [X× p] .

Proof. The facts on the Chow groups of split quadrics used below can be found
in [3, §2.1] (see also [6, §2.3]).

We need a description of CH∗(X× X). Note that X is a (completely!) split
projective quadric of dimension 2n+1 and that the description of CH∗(X) and
CH∗(X × X) given below has nothing to do with the fact that X is a norm
quadric (the same for Y instead of X appearing below). One has

CH∗(X× X) = CH∗(X)⊗ CH∗(X)

(that is, the ring homomorphism CH∗(X) ⊗ CH∗(X) → CH∗(X × X) given
by the pull-backs with respect to the first and second projection is bijective)
and the group CH∗(X) is torsion-free. Write h for the class in CH1(X) of a
hyperplane section of X (more precisely, h is defined as the pull-back of the
hyperplane class with respect to the embedding of the hypersurface X in the
projective space). Note that h is defined over F .

The group CHi(X) is generated by hi if i ≤ n and by 1
2
hi if i ≥ n+ 1. The

generator 1
2
hi coincides with the class of a totally isotropic subspace of the

appropriate (co)dimension. In particular, [p] = 1
2
h2n+1 ∈ CH2n+1(X).

It follows that CH2n+1(X × X) is a free abelian group on the generators
1
2
(hi ⊗ h2n+1−i), i = 0, . . . , 2n + 1. Since these generators are orthogonal

projectors, the diagonal class ∆ (which is the identity of End(X)) is equal to
their sum:

∆ =
1

2

2n+1∑
i=0

hi ⊗ h2n+1−i ∈ CH2n+1(X× X) .

Consequently,

[p× X] + [X× p] =
1

2
(h2n+1 ⊗ 1 + 1⊗ h2n+1) =

= ∆− 1

2
(h⊗ hn+1 + hn+1 ⊗ h) ·

n∑
i=1

hi−1 ⊗ hn−i .

Since ∆ is defined over F , it suffices to show that the cycle

1

2
(h⊗ hn+1 + hn+1 ⊗ h) ∈ CHn+2(X× X)

is defined over F as well.
Let Y be the projective quadric ϕ = 0. Note that Y is a 1-codimensional

closed subvariety of X. More precisely, it is a hyperplane section of X. We
write Y for YF .

Let π ∈ CH2n(Y) be the class of a maximal totally isotropic subspace of
ϕ. The push-forward in∗(π) with respect to the imbedding in : Y ↪→ X equals
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then 1
2
hn+1. Therefore, the push-forward (in× in)∗(1⊗π+π⊗ 1) with respect

to in× in : Y ×Y ↪→ X×X is our 1
2
(h⊗ hn+1 + hn+1 ⊗ h). Since the morphism

in× in is defined over F , it suffices now to show that the cycle

1⊗ π + π ⊗ 1 ∈ CHn(Y × Y)

is defined over F .
We need a description of CH∗(Y × Y). One has

CH∗(Y × Y) = CH∗(Y)⊗ CH∗(Y)

and the group CH∗(Y) is torsion-free. We write now h for the class in CH1(Y)
of a hyperplane section of Y .

The group CHi(Y) is generated by hi if i < n and by 1
2
hi if i > n. The

“middle” component CHn(Y) has (unlike to the others) two free generators:
hn and π.

It follows that CHn(Y×Y) is a free abelian group on hi⊗hn−i (i = 0, . . . , n),
π⊗ 1, and 1⊗π (note that all but two last generators are already defined over
F , so the situation is now easier to control).

Consider the commutative diagram

CHn(Y × Y)
(idY×f)∗−−−−−→ CHn(YF(Y))

resF/F

x xresF(Y)/F (Y )

CHn(Y × Y )
(idY ×f)∗−−−−−→ CHn(YF (Y ))

where the horizontal arrows are the pull-backs with respect to the flat mor-
phisms idY × f : YF (Y ) → Y × Y and idY × f : YF(Y) → Y × Y and where f
(resp. f) is the generic point morphism of Y (resp. Y).

Since the Pfister form ϕ is isotropic over F (Y ), it is hyperbolic over this
function field ([5, Cor. 1.6 of Chapter Ten]). Thereby πF(Y) is defined over
F (Y ). Since (idY × f)∗ is evidently surjective (see for example [2, Prop. 5.1]),
it follows that there exists a defined over F cycle α ∈ CHn(Y × Y) such that
(idY × f)∗(α) = πF(Y).

It is easy to see how (idY×f)∗ acts on the generators of the group CHn(Y×Y):

(idY × f)∗(hi ⊗ hn−i) = 0 for i = 0, . . . , n− 1,

(idY × f)∗(hn ⊗ 1) = hn
F(Y) , and

(idY × f)∗(π ⊗ 1) = πF(Y) .

Since (idY × f)∗(α) = πF(Y), it follows that

α = π ⊗ 1 + a · (1⊗ π) +
n∑

i=0

ai · (hi ⊗ hn−i)

with some integers ai and a (one also has an = 0 but we don’t care for this).
Since the generators hi ⊗ hn−i are defined over F and since 2(1⊗ π) is defined
over F (because 2π is defined over F by the transfer argument), it follows
that either π ⊗ 1 + 1 ⊗ π or π ⊗ 1 is defined over F . If we are in the first
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case, we are done. Since the sum of π⊗ 1 and its transposition gives the cycle
π ⊗ 1 + 1⊗ π, it is defined over F also in the second case (in fact the second
case is not possible if the quadratic form ϕ is anisotropic).

Lemma 2 (see also [7, Lemma 3.12]). Let X/F be a quadric (not necessarily
a norm one) and let ρ be a cycle on X × X. If ρE is a projector on XE for
some field extension E/F , then some power of ρ (taken in the ring End(X) of
correspondences on X) is a projector as well.

Proof. By Rost’s nilpotence theorem [6, Prop. 9] (see also [7, Lemma 3.10]),
any element of the kernel of the ring homomorphism

resE/F : End(X) → End(XE)

is nilpotent. By the transfer argument, any element of this kernel is of the
exponent 2dimX (in the case of a norm quadric it even has the exponent 2).

Since ρE is a projector, the difference α
def
= ρ2 − ρ lies in the above kernel

(powers of cycles are being taken in End(X) here). Therefore, α2N = 0 and

2Nα = 0 for certain positive integer N . We claim that ρ4
N
is a projector.

To see it, take the 4N -th power of the equality ρ2 = α+ρ. Since α commutes

with ρ, we get the sum of
(
4N

i

)
αiρ4

N−i on the right. Each summand is however

zero, because αi = 0 if i is divisible by 2N , and
(
4N

i

)
is divisible by 2N otherwise.

Thus (ρ4
N
)2 = ρ4

N
.
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