NOTES ON SPIN GRASSMANNIANS
NIKITA A. KARPENKO

ABSTRACT. After a series of papers [2] , [7], [11] on the indexes of generic spin grass-
mannians followed by a related series of papers [6], [4], [5] around the classifying spaces
of spin groups, we make some additional remarks.
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1. AN OVERVIEW

In §2, we add more precision to the table of indexes of generic spin grassmannians given
in [11].

In §3, we show that the indexes of generic spin grassmannians in odd dimensions deter-
mine them for even dimensions almost completely. This is useful because in contrast to
the even dimensions, there is an algorithm determinating the indexes in odd dimensions.

In §4 we provide an algorithm determinating several last indexes of generic spin grass-
mannians in even dimensions. In §5, we explain why this algorithm does not extend to
the preceding indexes. An interesting invariant of quadratic forms is studied here on the
occasion.

2. COMPLETING THE TABLE OF [11, Appendix B]

In [11, Appendix B], there is a table of the exponent indexes i(1),...,i(|d/2]) of generic
spin grassmannians for quadratic forms of dimension d < 24. Most of the positions in this
table are filled with the exact values. However, there are 12 positions filled with lower
bounds (which are known to be within 1 from the exact values). For odd d an algorithm
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to determine the exact values is described in [7]. However, in general, this algorithm
requires a lot of (computer) computations which are not completed so far for the values
in question. For even d, in general, there is no such an algorithm (for m > |d/2] —5 there
is one described in §4 below).

It turns out that two more exact values can be added to the table without any major
effort. For arbitrary d and m, it is easy to see that the value i(m) — 1 cannot be higher
than the exponent index number m — 1 for the dimension d — 2. Therefore i(5) = 4 for
d =21 as well as for d = 22.

3. COMPARING EXPONENT INDEXES FOR ODD AND EVEN DIMENSIONS

Since we have an algorithm to determine all exponent indexes in any odd dimension
d = 2n + 1, it is worthy to explain that they determine all exponent indexes in the even
dimension d’ := 2n + 2 with an exception of two or of one, where the exception of just
one actually occurs for most n (see Remark 3.2).

To formulate the precise statement, we first recall that the sequence i(1),...,i(n) of
the exponent indexes for d = 2n + 1 satisfies 0 < i(1) < --- <i(n) and is described by
two parameters. The first one is the value of i(¢ — 1), where ¢ := i(n) is the exponent of
the torsion index 2° of the algebraic group Spin(d), determined by Totaro in [15]; note
that there are only two possible values for i(t —1): t —2 and ¢t — 1. (We may assume that
d > 15 to avoid t — 2 < 0 in this entire section.)

The second parameter is the smallest ¢ with i(7) = ¢; its possible values are ¢,...,n — 2.

The two parameters determine the exponent indexes because i(¢) > ¢ — 1 by [11, The-
orem 3.6] and i(m) = m for m <t — 1 by [11, Corollary A.3] and |2, Theorem 4.2].

Note that 2 is also the torsion index of the group Spin(d’). Besides, t = i(n) = i(n—1) =
iln—2)=1(n+1)=i(n)=V(n—-1) =i(n—2), where 0 <iV(1) <--- <{(n+1) are
the exponent indexes in dimension d’ = 2n + 2.

Proposition 3.1. For anym € {1,...,n+1}\{t — 1,4}, one has i'(m) = i(m). Besides,
t—2<i'(t—1)<i(t—1)<t—1andi'(i) € {t —1,t}.

Proof. For m < t — 1, we have i'(m) = m = i(m) by [11, Corollary A.3] and [2, Theorems
4.2 and 7.2]. We also have i'(t) >t — 1 by [11, Theorem 3.6].

For any m € {1,...,n}, we have i(m — 1) < i'(m) < i(m) < m by [11, Lemma 2.3],
where i(0) := 0. In particular, t — 2 =i(t —2) <i'(t — 1) <i(t — 1) <t — 1. Besides, by
definition of i, we have i'(m) =t —1 for m € [t,i—1],{(m) =t for m € [i+1,n+ 1], and
i'(i) € {t —1,t}. O

Remark 3.2. An overwhelming majority of n satisfies the condition of [11, Proposition
A4]. For such n one has i'(t — 1) =t — 1 by [11, Proposition A.4].

4. AN ALGORITHM FOR i(> n — 5) IN DIMENSION 2n

In this section, given any even d = 2n, we provide an algorithm for determination of
the two highest unknown exponent indexes i(n — 4) and i(n — 5). We can assume that
n > 0.

In general, for any m = 1,...,n, we would get an algorithm to determine i(m) once
we computed the reduced Chow ring CH(X,,) of the orthogonal grassmannian X,, of
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a generic 2n-dimensional nondegenerate quadratic form ¢ with trivial discriminant and
Clifford invariant. The reduced Chow ring is the Chow ring modulo torsion which we
identify with the image of the change of field homomorphism CH(X,,) — CH(X,,) given
by an algebraic closure of the base field.

The following approach to determination of CH(X,,,) has been developed in [2], followed
by [11]. We assume that m < n below. Let P be the standard parabolic subgroup of
the standard split spin group G := Spin(d) with G/P = X,,. There is a surjective ring
homomorphism

CH(BP) —» CH(X,,)

out of the Chow ring of the classifying space of P, which yields a surjective ring homo-
morphism

CH(BP) — CH(X,,).

We identify CH(BP) with the image of CH(BP) — CH(BT), where T' C P is the standard
split maximal torus. We have an inclusion CH(BP) C CH(BT)" into the subring of the
elements invariant under the action of the Weyl group W of P. We also have a ring
homomorphism

@: CH(BT)" — CH(X,,),

extending CH(BP) — CH(X,,), and we conclude that CH(X,,) is contained in the image
of ¢.
It turns out that CH(X,,) is very close to the image of ¢ and even coincides with it in

some cases. One uses a computation of CH(BT)" to see it.
To describe CH(BT)W, we identify CH(BT') with the ring

Z[Zaxla"'7xm7y17"'7yl]7

where [ :=n — m and the generators are subject to the unique relation
2z=x1+ - -F+xm+yi+--+uy.

This is an identification of graded rings, where the degree of every generator of the latter
ring is 1. The semisimple part of P is Spin(2[) so that the Weyl group W of P is the Weyl
group of Spin(2l). It acts on CH(BT') by arbitrary permutations of x1,. .., z,,, arbitrary
permutations of yq,...,y;, and the sign changes of any even number of the latter. The
ring of W-invariants is generated by the following elements: the elementary symmetric
polynomials in 1, ..., z,,; the elementary symmetric polynomials in y7,. .., y?; the Euler
class e := vy, . ..y;; certain homogeneous elements fy, f1,. .., fi_s of degrees 20,21, ..., 20=2
and certain degree 2/~! homogeneous element 2. With the exception of the Euler class,
the images under ¢ of all the generators turn out to be polynomials in Chern classes of
some vector bundles on X, and by this reason lie in CH(X,,). (With the exception of 2,
they are polynomials in the Chern classes of the tautological vector bundle on X,,.) So,
we have the equality CH(X,,) = Im ¢ if and only if we have the inclusion ¢(e) € CH(X,,).
We are going to show that for m > n — 5 we do have the inclusion (and therefore the
desired algorithm).

Proposition 4.1. For m > n — 5, one has p(e) € CH(X,,).
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Proof. Let us first consider the case of m = 1 (with arbitrary n). The variety X,, = X
is the projective quadric of q. There are exactly two distinct rational equivalence classes

A#£ N e CHY (X))

of n-dimensional totally isotropic subspaces in g. And ¢(e) is their difference. Their sum
N + X is a power of the hyperplane section of X, which lies in CH(X}). Note that the
degree of # is 2!, the degree of the Euler class is [ and 2!=! > [ provided that [ > 3.
Besides, the image under ¢ of any of the remaining generators of CH(BT)W is a power of
the hyperplane section.

Now let us assume that n < 6 meaning that dimg < 12. In this case there exists
a finite base field extension of degree dividing 2 such that ¢ is hyperbolic over it. (In
dimension 12 this is the famous Pfister theorem.) By the transfer argument, it follows
that 2\ € CH(X,). Consequently,

ple) =N — A= (N +)\) —2x e CH(X)).

For [ = 3,4,5, we conclude that CH(BP) contains an element of the form ae + a, where
« is a polynomial in the remaining (i.e., distinct from e) generators of CH(BT)" and a
is an odd integer. This is actually a result about the reductive part P,.q of P because
CH(BP) = CH(BPh,ea), see [10, Proof of Proposition 6.1], which is the standard split even
Clifford group I'*(2l). Note that this even Clifford group is a spit reductive group with
the semisimple part Spin(2[). For [ < 3, the torsion index of I'*(2]) (which coincides with
the torsion index of its semisimple part) is 1 so that CH(BT'(2()) = CH(BT)". For
| = 4,5, the torsion index is 2 so that 2e € CH(BT'*(2[)) and we can replace the appeared
above odd integer a by 1. We proved

Lemma 4.2. For | < 5, the ring CH(BIT'*(2l)) contains a sum e + o of the Euler class
and a polynomial in the remaining generators of the ring of Weyl invariants in the Chow
ring of the classifying space of the split maximal torus. O

(We show in Proposition 5.2 that the statement of Lemma 4.2 fails for every [ > 6.)

We now turn attention to arbitrary m,n with m > n — 5. Since the reductive part
of Pis T'*(2]) and | = n —m < 5, we know by Lemma 4.2 that CH(BP) contains a
sum e + a. It follows that ¢(e + o) € CH(X,,). Since p(a) € CH(X,,), we get that
v(e) € CH(X,,). O

5. AN INVARIANT OF QUADRATIC FORMS

Let ¢ be a nondegenerate quadratic form of even dimension 2n and of trivial discrim-
inant. For now, we don’t assume that ¢ has trivial Clifford invariant, neither we assume
that it is generic in any sense.

Let X, be the projective quadric of ¢ and let A € CH" (X)) be the class of a maximal
totally isotropic subspace in g, where the bar indicates the base field change to an algebraic
closure. Since ¢ becomes hyperbolic over a field extension of the base field of degree
dividing 2", we have 2"~*\ € CH(X;) by the transfer argument, where, as previously,
CH(X,) is the image of the change of field homomorphism CH(X;) — CH(X}). Triviality
of the discriminant of ¢ ensures that the cokernel of the change of field homomorphism is
finite which is needed for the transfer argument to work.
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Let s > 0 be the smallest integer such that 2°A € CH" ' (X;). The integer s = s(q)
seems to be an interesting invariant of ¢. It is responsible for appearance of some torsion
in CH(X}), see [8, Theorem 3.10(2)].

The value of this invariant on ¢ coincides with its value on the anisotropic part of q.
Also it is easy to check that s(¢) = 0 if and only if ¢ is hyperbolic (see [3, Corollary
72.6]). So, s(q) is at least 1 for anisotropic ¢. Another lower bound follows from the
computation [14] (see also [12]) of the Grothendieck group Ky(X7), involving the Clifford
algebra C'(q): 2°@ is divisible by the index of C(q). In particular, s(q) = 2"~ for a generic
d-dimensional quadratic form ¢ of trivial discriminant. This is the maximal possible value
of s(¢q) on 2n-dimensional g.

However, looking at even-dimensional nondegenerate quadratic forms ¢ of trivial dis-
criminant and trivial Clifford invariant, it seems much more difficult to prove that the
invariant s(q) ever takes values higher than 1. An upper bound (probably sharp) for such
forms is given by the torsion index 2° of Spin(2n): any such g becomes hyperbolic over
a finite field extension of the base field with the 2-primary component of the degree a
divisor of 2°. In particular, s(q) < 1 in dimension up to 12.

In dimension 14, the torsion index of Spin(14), giving an upper bound on s(q), is
22, Moreover, if 14-dimensional ¢ (with whatever Clifford invariant) is anisotropic, it
cannot become hyperbolic over a field extension of the base field of degree dividing 2:
otherwise ¢ is isomorphic to the product of a 7-dimensional form by a binary form and
the discriminant of the binary form has to coincide with the discriminant of ¢ implying
hyperbolicity of the both. This suggests that s(¢) might be 2 for any anisotropic 14-
dimensional q. And indeed, over a base field of characteristic 0, using the symmetric
operations [16] in algebraic cobordism (involving resolution of singularities), Alexander
Vishik showed that s(q) = 2 for any anisotropic 14-dimensional g.

Using just the Steenrod operations on the modulo 2 Chow groups (available in arbitrary
characteristic including 2 — see [13]), we prove

Proposition 5.1. For even d > 14, let q be a generic d-dimensional quadratic form of
trivial discriminant and Clifford invariant. Then s(q) > 2.

Proof. By the arguments of §4, the statement of Proposition 5.1 for every d > 14 is
equivalent to the statement of Proposition 5.2 for d — 2. Besides, since for every d > 14, a
generic 14-dimensional quadratic form of trivial discriminant and Clifford invariant is the
anisotropic part of a specialization of a generic d-dimensional quadratic form of trivial
discriminant and Clifford invariant, the statement of Proposition 5.1 for d > 14 is a
consequence of the statement for d = 14. O

Proposition 5.2 (cf. Lemma 4.2). For any |l > 6, any element of C_HZ(BFJF(QZ)) is a
polynomial in 2e and the remaining (after removing e) standard generators of the ring of
Weyl invariants in the Chow ring of the classifying space of the split maximal torus.

Proof. As explained in the proof of Proposition 5.1, we only need to treat [ = 6. We are
going to work with the spin group G := Spin(12). Since G is a normal subgroup of I'*(12)
with the quotient I'*(12) /G isomorphic to Gy, the ring CH(BG) is computed in terms of
CH(BI'*(12)), see [9, Proposition 4.1]. In particular, the reduced Chow ring CH(BG) is
the quotient of CH(BT*(12)) by the ideal generated by z; in the notation of §4.
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Writing T for the standard split maximal torus of G, we have the ring CH(BG) embed-
ded as a subring into CH(BT') = Z[z, 41, . . ., ys|, where 22 = y; + - - - +yg. More precisely,
CH(BQ@) is contained in the subring generated by: the elementary symmetric polynomials
in y?,...,y2; the Fuler class e := 1, ... ys; certain homogeneous elements fy, f1, ..., fi of
degrees 2°,2% ..., 2% and certain degree 2° homogeneous element #. Using Steenrod op-
erations in the spirit of what we do below, one can actually show that e can be replaced
by 2e in the above statement (this gives the positive answer to [6, Question 9])'. But here
we are only interested in degree 6 for which the arguments are simpler.

We are going to show that the image of CH(BG) in

Ch(BT) := CH(BT)/2CH(BT) =F[z,y1, - - -, Ys),

where F := Fy is the field of 2 elements, does not contain any (degree 6) homogeneous
element of the form e + .... Note that the unique relation on z,y1,...,ys we have reads
now as Y1+ - - +ys = 0. We write ¢1,...,¢6 € Flyy, ..., ys] for the elementary symmetric
polynomials in y,...,ys. We have ¢; = 0 and cs,...,cg are algebraically independent.
The elementary symmetric polynomials in the squares of yy, ...,y are now the squares
cd =0,c%,...,ck Since our aim statement is on degree 6, we only need to care about
degrees up to 6. The degree 2° of % is too high. The images of fo, f1, fo are 0, ¢, and cy.

Therefore any element « in the image of CfHG(BG) is a linear combination of
(5.3) e,ca, ¢y, and cocy.

The restriction on « that will lead to the success, is the fact (observed in [6]) that for
any i > 0, the value St’(a) € Ch®*"(BT) of the ith cohomological Steenrod operation at
a has also to be in the image of CH(BG). In particular, St’(a) has to vanish for any odd
i because the image of CH(BG) is generated by elements of even degrees.

It turns out to be enough to apply the above restriction with + = 1 and + = 3. First we
compute St' at the elements (5.3):

(5.4) St'(e) = 0, St'(c3) =0, St'(c3) = c5c3, St'(cacy) = c3c4 + Cocs.

To get formulas (5.4), one can use the general formulas for the Steenrod operation on the
Chern classes (which are just formulas on symmetric polynomials with coefficients in F)
obtained by Wu (announced in [17] and proved in [18]). Another proof is given by Borel
in [1, Théoreme 7.1]. In particular, St*(c;) = (i +1)c;;; for any i > 1 (recall that ¢; := 0).
The formulas for the last Chern class are easy to get directly. In our setting, where the
last Chern class is cg = e, one has St’(e) = ¢;e for any i, where ¢; := 0 for i > 6.

By (5.4), the condition St'(a) = 0 implies that « is a linear combination of e and c?
only. Since St*(e) = cze = c3c6 and St*(c2) = 0 (odd Steenrod operations vanish on
squares), the coefficient at e has to vanish. U

lUnfortunately, the positive answer to [6, Question 9] is insufficient for an algorithm of computation
for the exponent indexes of spin grassmannians in all (even) dimensions: one needs the positive answer
to the modification of [6, Question 9] obtained by replacing the spin group with the corresponding even
Clifford group.
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