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Abstract. For n ≥ 3, confirming a weak version of a conjecture of Hoffmann, we show
that every anisotropic quadratic form in In of dimension 2n + 2n−1 splits over a finite
extension of the base field of degree not divisible by 4. The first new case is n = 4, where
we obtain a classification of the corresponding quadratic forms up to odd degree base
field extensions and get this way a strong upper bound on their essential 2-dimension.
As well, we compute the reduced Chow group of the maximal orthogonal grassmannian
of the quadratic form and conclude that its canonical 2-dimension is 2n + 2n−2 − 2.

Let F be a field (of any characteristic) and let I = I(F ) be the Witt group of classes
of even-dimensional non-degenerate quadratic forms over F defined as in [4, §8] (and
denoted Iq(F ) there). For n ≥ 2, we write In = In(F ) for the subgroup in I(F ) generated
by the n-fold Pfister forms. We refer to [4, 9.B] for other equivalent definitions of In(F )
(denoted Inq (F ) there).

Any element of I is represented by an anisotropic quadratic form. By the Arason-Pfister
Hauptsatz, the smallest possible dimension of a nonzero anisotropic quadratic form in In

is 2n (see [4, Theorem 23.7(1)] for the characteristic-free version). The quadratic forms in
In of dimension 2n are classified: as a consequence of the Arason-Pfister Hauptsatz and [4,
Corollary 23.4)], they are exactly the forms similar to n-fold Pfister forms. In particular,
any 2n-dimensional quadratic form in In splits over a finite base field extension of degree
dividing 2.

The smallest possible dimension exceeding 2n of an anisotropic quadratic form in In

is 2n + 2n−1. For n = 3 this has been shown in [12] (characteristic ̸= 2) and in [1]
(arbitrary characteristic); for n = 4 in [6] (characteristic ̸= 2) and in [5, Théorème 4.2.11]
(characteristic 2); for arbitrary n and characteristic ̸= 2 a proof has been given in [15,
Theorem 5.4] and then extended to characteristic 2 in [13, Proposition 11.5].

For n = 2, quadratic forms in In of dimension 2n+2n−1 are the well-understood Albert
forms. For n ≥ 3, by a conjecture of Hoffmann ([6, Conjecture 2] for characteristic ̸= 2
and [5, Conjecture 4.3.1] for characteristic 2), quadratic forms in In of dimension 2n+2n−1

should be classified as products of an Albert bilinear form (i.e., a 6-dimensional symmetric
bilinear form of determinant −1) by a Pfister form (of foldness n− 2). In particular, such
forms should split over a finite base field extension of degree dividing 2 as well.
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However, the two above conjectures are so far proved for n = 3 only: the proof for
characteristic ̸= 2 of [12] is extended to characteristic 2 in [5, Proposition 4.1.2]. The
main result of the present note is

Theorem 1. For any n ≥ 3 and in any characteristic, every quadratic form in In of
dimension 2n + 2n−1 splits over a finite base field extension of degree not divisible by 4.

Proof. Let X be a connected component of the highest orthogonal grassmannian of a
quadratic form q in In(F ) of dimension 2n +2n−1. Theorem 1 means that the index i(X)
of the variety X, defined as the g.c.d. of the degrees of closed points on X, divides 2.
In other terms, taking into account Springer’s Theorem [4, Corollary 18.5], i(X) = 2
provided that q is not split.

We write X̄ for X over an algebraic closure of F and we write C̄H(X) for the ring given
by the image of the change of field homomorphism CH(X) → CH(X̄) of the Chow rings.
Note that the kernel of the change of field homomorphism is the ideal of the elements of
finite order. For this reason, C̄H(X) is sometimes called the reduced Chow group of X.

By [4, Theorem 86.12], the ring CH(X̄) is generated by certain homogeneous elements
e1, . . . , el of codimensions 1, . . . , l := 2n−1 + 2n−2 − 1. It is convenient to define ei := 0
for i > l. For any i ≥ 1, the element ei is characterized by the property that (−1)i2ei is
the ith Chern class of the tautological vector bundle on X̄ (see [4, Proposition 87.13]); in
particular, 2ei ∈ C̄H(X).

Since for any field extension K/F , the anisotropic part of the quadratic form qK over
the field K is either 0, or 2n, or 2n + 2n−1, it follows by [4, Corollary 88.6] (see also [4,
Corollary 88.7]) that ei ∈ C̄H(X) for all i different from k := 2n−1 − 1 and l. By [4,
(86.15)], for any i ≥ 1, we have

e2i − 2ei−1ei+1 + 2ei−2ei+2 − · · ·+ (−1)i−12e1e2i−1 + (−1)ie2i = 0 ∈ CH(X̄).

In particular,

2ekel = 2ek+1el−1 − 2ek+2el−2 + · · · ± 2em−1em+1 ± e2m ∈ C̄H(X),

where m := (k + l)/2. Therefore 2e ∈ C̄H(X), where e ∈ CH(X̄) is the product e1 . . . el
of all the generators. Since e is the class of a 0-cycle of degree 1 (see [4, Corollary 86.10]),
the variety X (over F ) possesses a 0-cycle of degree 2. �

For n = 4, in view of [6, Proposition 4.1] and [5, Proposition 4.3.2], Theorem 1 provides
a classification of the corresponding quadratic forms “up to odd degree extensions” which
yields a strong upper bound on their essential 2-dimension. We provide details right
below, starting with the classification result:

Theorem 2. For a field F (of any characteristic), let q be a quadratic form in I4(F ) of
dimension 24 = 24+23. Then there exists a finite field extension K/F of odd degree such
that qK is isomorphic to the tensor product of an Albert bilinear form by a Pfister form.

Proof. By Theorem 1, we can find a finite field extension K/F of odd degree and a field
extension L/K of degree dividing 2 such that qL is split. The description of qK then
follows from [6, Proposition 4.1] (for characteristic ̸= 2) and [5, Proposition 4.3.2] (for
characteristic 2). �
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To formulate the result on the essential 2-dimension, let us consider the functor I424,
associating to every extension field K of a fixed field F the set of isomorphism classes of
quadratic forms in I4(K) of dimension 24. The essential 2-dimension of an element in
I424(K) as well as the essential 2-dimension ed2 I

4
24 of the functor I424 are defined as in [3,

§1].

Corollary 3. One has ed2 I
4
24 ≤ 7.

Proof. Writing F for the base field and taking q ∈ I424(K) for a field extension K/F ,
we find by Theorem 2 an odd degree field extension L/K such that qL is isomorphic to
the tensor product of the diagonal Albert bilinear form ⟨a1, a2, a3, a4, a5,−a1a2a3a4a5⟩ by
the Pfister form ⟨⟨b1, b2]] for some nonzero a1, . . . , a5, b1 ∈ L and some b2 ∈ L, where in
characteristic ̸= 2 the element b2 is also nonzero. The subfield F (a1, . . . , a5, b1, b2) ⊂ L,
whose transcendence degree over F is at most 7, is then a field of definition of qL. It
follows that ed2 q = ed2 qL ≤ 7 and so ed2 I

4
24 ≤ 7. �

Recall that the essential 2-dimension is a 2-local version of and constitutes a lower
bound for the essential dimension, measuring, informally speaking, how many indepen-
dent parameters are required to describe an isomorphism class of the corresponding type
of objects; in particular, ed2 I

4
24 ≤ ed I424. For n = 3, since the description of the cor-

responding quadratic forms does not involve odd degree extensions, similar to the proof
of Corollary 3 arguments show that ed2 I

3
12 ≤ ed I312 ≤ 6. In fact, in characteristic ̸= 2,

ed2 I
3
12 = ed I312 = 6 by [3, Theorem 7.1]: the lower bound 6 ≤ ed2 I

3
12 is obtained by

constructing a nontrivial degree 6 cohomological invariant with coefficients in Z/2Z for
I312.

For n ≥ 4, assuming [6, Conjecture 2], one gets

ed2 I
n
2n+2n−1 ≤ ed In2n+2n−1 ≤ n+ 3.

Finally, one has ed2 I
n
2n = ed In2n = n+ 1 for any n. Indeed, as already mentioned, any

q ∈ In2n is isomorphic to b · ⟨⟨b1, b2, . . . , bn]] for some n+1 parameters b, b1, . . . , bn, ensuring
that n + 1 is an upper bound for ed In2n . On the other hand, associating in character-
istic ̸= 2 to q the symbol (b, b1, . . . , bn) in the (n + 1)st Galois cohomology group with
coefficients in Z/2Z, one gets a nontrivial degree n + 1 cohomological invariant showing
that n + 1 is a lower bound for ed2 I

n
2n (see [11, Theorem 3.4]). The non-triviality of the

cohomological invariant is shown in [2, §3]. The characteristic 2 case is treated similarly
using cohomological invariants with values in étale motivic cohomology groups (cf. [14, §3]
and especially [14, Proof of Lemma 3.1]); the non-triviality of the cohomological invariant
follows from [7].

To conclude, let us return to the case of arbitrary n ≥ 2. Let X be the highest orthog-
onal grassmannian of an anisotropic quadratic form q ∈ In. If dim q = 2n, then i(X) = 2
and therefore the ring C̄H(X) contains 2CH(X̄). By [4, Corollary 88.6], C̄H(X) also
contains the elements e1, . . . , e2n−1−2 – the generators of the ring CH(X̄) with exception
of the very last one e2n−1−1. Since i(X) ̸= 1, we conclude that C̄H(X) is exactly the
subring in CH(X̄) generated by 2CH(X̄) and e1, . . . , e2n−1−2 (cf. [4, Example 88.10]).
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Now let us assume that dim q = 2n+2n−1, where n ≥ 3. Since i(X) = 2 by Theorem 1,
we still have the inclusion C̄H(X) ⊃ 2CH(X̄). Besides, it has been shown in the proof of
Theorem 1 that C̄H(X) ∋ ei for all i except i = k := 2n−1−1 and i = l := 2n−1+2n−2−1.

Theorem 4. For any n ≥ 3 and any anisotropic quadratic form q in In of dimension
2n + 2n−1, the ring C̄H(X) of its highest grassmannian X is generated by 2CH(X̄) and
all ei with i ̸∈ {k, l}.

Proof. Since C̄H(X) ⊃ 2CH(X̄), it suffices to show that the ring C̄h(X) is generated by ei
with i ̸∈ {k, l}, where Ch(X) := CH(X)/2CH(X) and C̄h(X) := Im(Ch(X) → Ch(X̄)).
By [4, Theorem 87.7] (originally proved in [16]), it suffices to show that neither ek nor el
is in C̄h(X).

By [4, Corollary 82.3] once again, the anisotropic part of q over the function field of its
quadric Y has dimension 2n. By [4, Corollary 88.7], we conclude that ek ̸∈ C̄h(X).

Finally, let us assume that el ∈ C̄h(X) and seek for a contradiction. By [4, Theorem
90.3] (originally proved in [16]), the canonical 2-dimension of the variety X equals k and
does not change when the base field is extended to the function field of Y . It follows
by [10, Theorem 3.2] that a shift of the upper Chow motive U(X) with coefficients Z/2Z
is a direct summand of the motive of Y . On the other hand, by [4, Lemma 82.4], the
complete motivic decomposition of the quadric Y consists only of shifts of the upper
motive U(Y ). Moreover, since the variety XF (Y ) has no 0-cycle of odd degree, the motives
U(Y ) and U(X) are not isomorphic, see [9, Corollary 2.15]. The contradiction obtained
proves Theorem 4. �

Regarding the motives of the varieties X and Y from the above proof, each of them
decomposes in a finite direct sum of indecomposable motives; moreover, by [9, Corollary
2.6] , such a decomposition is unique in the usual sense. The upper motive U(X) (resp.,
U(Y )) is defined as the summand with nontrivial Ch0 (unique in any decomposition
given). By [9, Corollary 2.15], the motives U(X) and U(Y ) are isomorphic if and only if
each of the two varieties XF (Y ) and YF (X) possesses a 0-cycle of odd degree.

Let us also recall that canonical dimension cd(X) of a smooth projective variety X is
the minimum of dimension of the image of a rational self-map X 99K X, c.f. [8]. See also
[8, Definition 1.3] for a definition using the essential dimension of a certain functor related
to X. Canonical 2-dimension, which appeared in the above proof, is its 2-local version
also providing a lower bound for it.

Corollary 5. For any anisotropic q as in Theorem 4, the canonical 2-dimension cd2(X)
of its highest grassmannian X is equal to k + l = 2n + 2n−2 − 2.

Proof. As in the proof of Theorem 4, ei ∈ C̄h(X) for i ̸∈ {k, l}. Moreover, it follows
from Theorem 4 (and has been shown in its proof explicitly) that neither ek nor el is in
C̄h(X). Thus in terms of the J-invariant in [4, Chapter 88], we have J(q) = {k, l} and so
[4, Theorem 90.3] tells us that cd2(X) = k + l. �
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