QUADRATIC FORMS IN I^{n} OF DIMENSION $2^{n}+2^{n-1}$

CURTIS R. HARVEY AND NIKITA A. KARPENKO

Abstract

For $n \geq 3$, we show that every anisotropic quadratic form in I^{n} of dimension $2^{n}+2^{n-1}$ splits over a finite extension of the base field of degree not divisible by 4 . The first new case is $n=4$, were we obtain a classification of the corresponding quadratic forms up to odd degree base field extensions and get this way a strong upper bound on their essential 2-dimension. As well, we compute the reduced Chow group of the maximal orthogonal grassmannian of the quadratic form and conclude that its canonical 2 -dimension is $2^{n}+2^{n-2}-2$.

Let F be a field (of any characteristic) and let $I=I(F)$ be the Witt group of classes of even-dimensional non-degenerate quadratic forms over F defined as in [4, §8] (and denoted $I_{q}(F)$ there). For $n \geq 2$, we write $I^{n}=I^{n}(F)$ for the subgroup in $I(F)$ generated by the n-fold Pfister forms. We refer to [4, 9.B] for other equivalent definitions of $I^{n}(F)$ (denoted $I_{q}^{n}(F)$ there).

Any element of I is represented by an anisotropic quadratic form. By the Arason-Pfister Hauptsatz, the smallest possible dimension of a nonzero anisotropic quadratic form in I^{n} is 2^{n} (see [4, Theorem 23.7(1)] for the characteristic-free version). The quadratic forms in I^{n} of dimension 2^{n} are classified: as a consequence of the Arason-Pfister Hauptsatz and [4, Corollary 23.4)], they are exactly the forms similar to n-fold Pfister forms. In particular, any 2^{n}-dimensional quadratic form in I^{n} splits over a finite base field extension of degree dividing 2.

By [13, Proposition 11.5], the smallest exceeding 2^{n} possible dimension of an anisotropic quadratic form in I^{n} is $2^{n}+2^{n-1}$. We note that for $n=3$ the original proof is in [12] (characteristic $\neq 2$) and in [1] (arbitrary characteristic); for $n=4$ in [6] (characteristic $\neq 2$) and in $[5$, Théorème 4.2.11] (characteristic 2); for $n \geq 5$ (in characteristic $\neq 2$) the original proof is in [15, Theorem 5.4].

For $n=2$, quadratic forms in I^{n} of dimension $2^{n}+2^{n-1}$ are the well-understood Albert forms. For $n \geq 3$, by [6 , Conjecture 2] (characteristic $\neq 2$) and [5, Conjecture 4.3.1] (characteristic 2), quadratic forms in I^{n} of dimension $2^{n}+2^{n-1}$ should be classified as products of an Albert bilinear form (i.e., a 6 -dimensional symmetric bilinear form of determinant -1) by a Pfister form (of foldness $n-2$). In particular, such forms should split over a finite base field extension of degree dividing 2 as well.

[^0]However, the two above conjectures are so far proved for $n=3$ only: the proof for characteristic $\neq 2$ of [12] is extended to characteristic 2 in [5, Proposition 4.1.2]. The main result of the present note is

Theorem 1. For any $n \geq 3$ and in any characteristic, every quadratic form in I^{n} of dimension $2^{n}+2^{n-1}$ splits over a finite base field extension of degree not divisible by 4.

Proof. Let X be a connected component of the highest orthogonal grassmannian of a quadratic form q in $I^{n}(F)$ of dimension $2^{n}+2^{n-1}$. Theorem 1 means that the index $i(X)$ of the variety X, defined as the g.c.d. of the degrees of closed points on X, divides 2 . In other terms, taking into account Springer's Theorem [4, Corollary 18.5], $i(X)=2$ provided that q is not split.

We write \bar{X} for X over an algebraic closure of F and we write $\overline{\mathrm{CH}}(X)$ for the ring given by the image of the change of field homomorphism $\mathrm{CH}(X) \rightarrow \mathrm{CH}(\bar{X})$ of the Chow rings. Note that the kernel of the change of field homomorphism is the ideal of the elements of finite order. For this reason, $\overline{\mathrm{CH}}(X)$ is sometimes called the reduced Chow group of X.

By [4, Theorem 86.12], the ring $\mathrm{CH}(\bar{X})$ is generated by certain homogeneous elements e_{1}, \ldots, e_{l} of codimensions $1, \ldots, l:=2^{n-1}+2^{n-2}-1$. It is convenient to define $e_{i}:=0$ for $i>l$. For any $i \geq 1$, the element e_{i} is characterized by the property that $(-1)^{i} 2 e_{i}$ is the i th Chern class of the tautological vector bundle on \bar{X} (see [4, Proposition 87.13]); in particular, $2 e_{i} \in \overline{\mathrm{CH}}(X)$.

Since for any field extension K / F, the anisotropic part of the quadratic form q_{K} over the field K is either 0 , or 2^{n}, or $2^{n}+2^{n-1}$, it follows by [4, Corollary 88.6] (see also [4, Corollary 88.7]) that $e_{i} \in \overline{\mathrm{CH}}(X)$ for all i different from $k:=2^{n-1}-1$ and l. By [4, (86.15)], for any $i \geq 1$, we have

$$
e_{i}^{2}-2 e_{i-1} e_{i+1}+2 e_{i-2} e_{i+2}-\cdots+(-1)^{i-1} 2 e_{1} e_{2 i-1}+(-1)^{i} e_{2 i}=0 \in \mathrm{CH}(\bar{X})
$$

In particular,

$$
2 e_{k} e_{l}=2 e_{k+1} e_{l-1}-2 e_{k+2} e_{l-2}+\cdots \pm 2 e_{m-1} e_{m+1} \pm e_{m}^{2} \in \overline{\mathrm{CH}}(X)
$$

where $m:=(k+l) / 2$. Therefore $2 e \in \overline{\mathrm{CH}}(X)$, where $e \in \mathrm{CH}(\bar{X})$ is the product $e_{1} \ldots e_{l}$ of all the generators. Since e is the class of a 0 -cycle of degree 1 (see [4, Corollary 86.10]), the variety X (over F) possesses a 0 -cycle of degree 2 .

For $n=4$, in view of [6, Proposition 4.1] and [5, Proposition 4.3.2], Theorem 1 provides a classification of the corresponding quadratic forms "up to odd degree extensions" which yields a strong upper bound on their essential 2-dimension. We provide details right below, starting with the classification result:

Theorem 2. For a field F (of any characteristic), let q be a quadratic form in $I^{4}(F)$ of dimension $24=2^{4}+2^{3}$. Then there exists a finite field extension K / F of odd degree such that q_{K} is isomorphic to the tensor product of an Albert bilinear form by a Pfister form.

Proof. By Theorem 1, we can find a finite field extension K / F of odd degree and a field extension L / K of degree dividing 2 such that q_{L} is split. The description of q_{K} then follows from [6, Proposition 4.1] (for characteristic $\neq 2$) and [5, Proposition 4.3.2] (for characteristic 2).

To formulate the result on the essential 2-dimension, let us consider the functor I_{24}^{4}, associating to every extension field K of a fixed field F the set of isomorphism classes of quadratic forms in $I^{4}(K)$ of dimension 24. The essential 2-dimension of an element in $I_{24}^{4}(K)$ as well as the essential 2-dimension $\operatorname{ed}_{2} I_{24}^{4}$ of the functor I_{24}^{4} are defined as in [3, §1].

Corollary 3. One has ed ${ }_{2} I_{24}^{4} \leq 7$.
Proof. Writing F for the base field and taking $q \in I_{24}^{4}(K)$ for a field extension K / F, we find by Theorem 2 an odd degree field extension L / K such that q_{L} is isomorphic to the tensor product of the diagonal Albert bilinear form $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5},-a_{1} a_{2} a_{3} a_{4} a_{5}\right\rangle$ by the Pfister form $\left\langle\left\langle b_{1}, b_{2}\right]\right]$ for some nonzero $a_{1}, \ldots, a_{5}, b_{1} \in L$ and some $b_{2} \in L$, where in characteristic $\neq 2$ the element b_{2} is also nonzero. The subfield $F\left(a_{1}, \ldots, a_{5}, b_{1}, b_{2}\right) \subset L$, whose transcendence degree over F is at most 7 , is then a field of definition of q_{L}. It follows that $\mathrm{ed}_{2} q=\mathrm{ed}_{2} q_{L} \leq 7$ and so $\mathrm{ed}_{2} I_{24}^{4} \leq 7$.

Recall that the essential 2-dimension is a 2-local version of and constitutes a lower bound for the essential dimension, measuring, informally speaking, how many independent parameters are required to describe an isomorphism class of the corresponding type of objects; in particular, $\operatorname{ed}_{2} I_{24}^{4} \leq$ ed I_{24}^{4}. For $n=3$, since the description of the corresponding quadratic forms does not involve odd degree extensions, similar to the proof of Corollary 3 arguments show that $\operatorname{ed}_{2} I_{12}^{3} \leq$ ed $I_{12}^{3} \leq 6$. In fact, in characteristic $\neq 2$, $\operatorname{ed}_{2} I_{12}^{3}=\operatorname{ed} I_{12}^{3}=6$ by [3, Theorem 7.1]: the lower bound $6 \leq \operatorname{ed}_{2} I_{12}^{3}$ is obtained by constructing a nontrivial degree 6 cohomological invariant with coefficients in $\mathbb{Z} / 2 \mathbb{Z}$ for I_{12}^{3}.

For $n \geq 4$, assuming [6 , Conjecture 2], one gets

$$
\operatorname{ed}_{2} I_{2^{n}+2^{n-1}}^{n} \leq \operatorname{ed} I_{2^{n}+2^{n-1}}^{n} \leq n+3
$$

Finally, one has ed $I_{2^{n}}^{n}=\operatorname{ed} I_{2^{n}}^{n}=n+1$ for any n. Indeed, as already mentioned, any $q \in I_{2^{n}}^{n}$ is isomorphic to $b \cdot\left\langle\left\langle b_{1}, b_{2}, \ldots, b_{n}\right]\right]$ for some $n+1$ parameters b, b_{1}, \ldots, b_{n}, ensuring that $n+1$ is an upper bound for ed $I_{2^{n}}^{n}$. On the other hand, associating in characteristic $\neq 2$ to q the symbol $\left(b, b_{1}, \ldots, b_{n}\right)$ in the $(n+1)$ st Galois cohomology group with coefficients in $\mathbb{Z} / 2 \mathbb{Z}$, one gets a nontrivial degree $n+1$ cohomological invariant showing that $n+1$ is a lower bound for $\mathrm{ed}_{2} I_{2^{n}}^{n}$ (see [11, Theorem 3.4]). The non-triviality of the cohomological invariant is shown in [2, §3]. The characteristic 2 case is treated similarly using cohomological invariants with values in étale motivic cohomology groups (cf. [14, §3] and especially [14, Proof of Lemma 3.1]); the non-triviality of the cohomological invariant follows from [7].

To conclude, let us return to the case of arbitrary $n \geq 2$. Let X be the highest orthogonal grassmannian of an anisotropic quadratic form $q \in I^{n}$. If $\operatorname{dim} q=2^{n}$, then $i(X)=2$ and therefore the ring $\overline{\mathrm{CH}}(X)$ contains $2 \mathrm{CH}(\bar{X})$. By [4, Corollary 88.6], $\overline{\mathrm{CH}}(X)$ also contains the elements $e_{1}, \ldots, e_{2^{n-1}-2}$ - the generators of the ring $\mathrm{CH}(\bar{X})$ with exception of the very last one $e_{2^{n-1}-1}$. Since $i(X) \neq 1$, we conclude that $\overline{\mathrm{CH}}(X)$ is exactly the subring in $\mathrm{CH}(\bar{X})$ generated by $2 \mathrm{CH}(\bar{X})$ and $e_{1}, \ldots, e_{2^{n-1}-2}$ (cf. [4, Example 88.10]).

Now let us assume that $\operatorname{dim} q=2^{n}+2^{n-1}$, where $n \geq 3$. Then $\overline{\mathrm{CH}}(X) \supset 2 \mathrm{CH}(\bar{X})$ by Theorem 1. Besides, it has been shown in the proof of Theorem 1 that $\mathrm{CH}(X) \ni e_{i}$ for all i except $i=k:=2^{n-1}-1$ and $i=l:=2^{n-1}+2^{n-2}-1$.

Theorem 4. For any $n \geq 3$ and any anisotropic quadratic form q in I^{n} of dimension $2^{n}+2^{n-1}$, the ring $\overline{\mathrm{CH}}(X)$ of its highest grassmannian X is generated by $2 \mathrm{CH}(\bar{X})$ and all e_{i} with $i \notin\{k, l\}$.
Proof. Since $\overline{\mathrm{CH}}(X) \supset 2 \mathrm{CH}(\bar{X})$, it suffices to show that the ring $\overline{\mathrm{Ch}}(X)$ is generated by e_{i} with $i \notin\{k, l\}$, where $\operatorname{Ch}(X):=\mathrm{CH}(X) / 2 \mathrm{CH}(X)$ and $\overline{\operatorname{Ch}}(X):=\operatorname{Im}(\operatorname{Ch}(X) \rightarrow \operatorname{Ch}(\bar{X}))$. By [4, Theorem 87.7] (originally proved in [16]), it suffices to show that nor e_{k} neither e_{l} is in $\operatorname{Ch}(X)$.

By [4, Corollary 82.3] once again, the anisotropic part of q over the function field of its quadric Y has dimension 2^{n}. By [4, Corollary 88.7], we conclude that $e_{k} \notin \overline{\mathrm{Ch}}(X)$.

Finally, let us assume that $e_{l} \in \overline{\operatorname{Ch}}(X)$ and seek for a contradiction. By [4, Theorem 90.3] (originally proved in [16]), the canonical 2 -dimension of the variety X equals k and does not change when the base field is extended to the function field of Y. It follows by [10, Theorem 3.2] that a shift of the upper Chow motive $U(X)$ with coefficients $\mathbb{Z} / 2 \mathbb{Z}$ is a direct summand of the motive of Y. On the other hand, by [4, Lemma 82.4], the complete motivic decomposition of the quadric Y consists only of shifts of the upper motive $U(Y)$. Moreover, since the variety $X_{F(Y)}$ has no 0-cycle of odd degree, the motives $U(Y)$ and $U(X)$ are not isomorphic, see [9, Corollary 2.15]. The contradiction obtained proves Theorem 4.

Regarding the motives of the varieties X and Y from the above proof, each of them decomposes in a finite direct sum of indecomposable motives; moreover, by [9, Corollary 2.6], such a decomposition is unique in the usual sense. The upper motive $U(X)$ (resp., $U(Y)$) is defined as the summand with nontrivial Ch^{0} (unique in any decomposition given). By [9, Corollary 2.15], the motives $U(X)$ and $U(Y)$ are isomorphic if and only if each of the two varieties $X_{F(Y)}$ and $Y_{F(X)}$ possesses a 0-cycle of odd degree.

Let us also recall that canonical dimension of a smooth projective variety X is the minimum of dimension of the image of a rational self-map $X \rightarrow X$, c.f. [8]. Canonical 2-dimension, which appeared in the above proof, is its 2-local version also providing a lower bound for it. By [4, Theorem 90.3], Theorem 4 implies
Corollary 5. For any anisotropic q as in Theorem 4, the canonical 2-dimension of its highest grassmannian is equal to $k+l=2^{n}+2^{n-2}-2$.

Acknowledgements. We thank Detlev Hoffmann for providing reference [5]. We also thank Alexander Merkurjev and Alexander Vishik for useful comments.

References

[1] BaEzA, R. Quadratic forms over semilocal rings. Lecture Notes in Mathematics, Vol. 655. SpringerVerlag, Berlin-New York, 1978.
[2] Berhuy, G., and Favi, G. Essential dimension: a functorial point of view (after A. Merkurjev). Doc. Math. 8 (2003), 279-330 (electronic).
[3] Chernousov, V., and Merkurjev, A. Essential dimension of spinor and Clifford groups. Algebra Number Theory 8, 2 (2014), 457-472.
[4] Elman, R., Karpenko, N., and Merkurjev, A. The algebraic and geometric theory of quadratic forms, vol. 56 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2008.
[5] Faivre, F. Liaison des formes de Pfister et corps de fonctions de quadriques en caractéristique 2. Ph.D. thesis, Université de Franche-Compte, Besançon (2006).
[6] Hoffmann, D. W. On the dimensions of anisotropic quadratic forms in I^{4}. Invent. Math. 131, 1 (1998), 185-198.
[7] Izhboldin, O. T. On the cohomology groups of the field of rational functions. In Mathematics in St. Petersburg, vol. 174 of Amer. Math. Soc. Transl. Ser. 2. Amer. Math. Soc., Providence, RI, 1996, pp. 21-44.
[8] Karpenko, N. A. Canonical dimension. In Proceedings of the International Congress of Mathematicians. Volume II (New Delhi, 2010), Hindustan Book Agency, pp. 146-161.
[9] Karpenko, N. A. Upper motives of algebraic groups and incompressibility of Severi-Brauer varieties. J. Reine Angew. Math. 677 (2013), 179-198.
[10] Karpenko, N. A. Minimal canonical dimensions of quadratic forms. Doc. Math. (2015), 367-385.
[11] Merkurjev, A. S. Essential dimension: a survey. Transform. Groups 18, 2 (2013), 415-481.
[12] Pfister, A. Quadratische Formen in beliebigen Körpern. Invent. Math. 1 (1966), 116-132.
[13] Primozic, E. Motivic Steenrod operations in characteristic p. Forum Math. Sigma 8 (2020), Paper No. e52, 25.
[14] Totaro, B. Essential dimension of the spin groups in characteristic 2. Comment. Math. Helv. 94, 1 (2019), 1-20.
[15] Vishik, A. Motives of quadrics with applications to the theory of quadratic forms. In Geometric methods in the algebraic theory of quadratic forms, vol. 1835 of Lecture Notes in Math. Springer, Berlin, 2004, pp. 25-101.
[16] Vishik, A. On the Chow groups of quadratic Grassmannians. Doc. Math. 10 (2005), 111-130 (electronic).

Mathematical \& Statistical Sciences, University of Alberta, Edmonton, CANADA
Email address: rcharvey@ualberta.ca
Mathematical \& Statistical Sciences, University of Alberta, Edmonton, CANADA
Email address: karpenko@ualberta.ca
$U R L$: www. ualberta.ca/~ $k a r p e n k o$

[^0]: Date: 10 Mar 2024.
 Key words and phrases. Quadratic forms over fields; projective homogeneous varieties; Chow rings. Mathematical Subject Classification (2020): 11E04; 14C25.

 This work has been supported by a Discovery Grant from the National Science and Engineering Research Council of Canada and completed when the second author was a visitor at the Université de Lorraine.

