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Abstract. We determine the g.c.d. of degrees of all finite base field extensions, per-
forming a prescribed partial splitting of a generic central simple algebra with a quadratic
pair, or, equivalently, of a generic torsor under a split projective orthogonal group. We
also compute this invariant for the generic central simple algebras with quadratic pairs
of trivial discriminant, or, equivalently, for the generic torsors under the split projective
special orthogonal groups.

Contents

1. Introduction 1
2. Index of X1 4
3. Index of Xm 5
4. Index of Xn 8
5. Index of X2 8
6. Relaxed positions 10
7. PGO+ 13
Appendix: Index of a generic torsor 17
References 19

1. Introduction

Given a field F and an integer n ≥ 1, let A be a central simple F -algebra of degree
deg(A) = 2n endowed with a quadratic pair σ (see [25, §5.B]). If the characteristic of
F is different from 2, then σ is an orthogonal involution on A. More precisely, the first
component of the quadratic pair σ is an orthogonal involution and the second component
– a map with certain properties of the set of σ-symmetric elements to F – is determined
by the first one. If charF = 2, then the first component of σ is a symplectic involution
on A whereas the second component constitutes an additional datum.
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The level of splitting of (A, σ) is measured by two parameters: the Schur index i(A)
of A, defined as the minimal reduced dimension of a nonzero right ideal in A, and the
Witt index i(σ) of σ, defined as the maximal reduced dimension of a σ-isotropic right
ideal in A. (We refer to [25, Definition 6.5] for the definition of a σ-isotropic ideal.) The
first parameter i(A) is a 2-power dividing 2n, the second parameter i(σ) is a non-negative
multiple of i(A) non-exceeding n. Algebra A is split, if i(A) = 1; quadratic pair σ is
hyperbolic, if i(σ) = n; the duo (A, σ) is split, if A is split and σ is hyperbolic.
The Witt index of a quadratic pair generalizes the notion of the Witt index of a qua-

dratic form: if A is the algebra of endomorphisms of a 2n-dimensional F -vector space V ,
then i(A) = 1, σ is adjoint to a non-degenerate quadratic form q on V , the involution of
σ is adjoint to the bilinear form associated with q, and i(σ) is the Witt index of q.

For every integer m satisfying 1 ≤ m ≤ n, let Xm be the variety of pairs of σ-isotropic
right ideals I ⊂ J in A of reduced dimensions 1 and m. In particular, X1 is the involution
variety of (A, σ). The variety Xm has a rational point if and only if i(A) = 1 (i.e., A is
split) and i(σ) ≥ m (i.e., σ is m-isotropic). Note that m-isotropic σ is also m′-isotropic
for any non-negative m′ ≤ m divisible by i(A). Besides, let us note that the variety Xm

is smooth and projective. It is also connected except when m = n and the discriminant
of σ is trivial; in the excepted case it consists of two connected components.
We are interested in information on the index i(Xm), where the index of a variety is

defined as the g.c.d. of degrees of its closed points. Note that the varieties Xm are partial
splitting varieties of (A, σ) splitting the algebra A completely. More general varieties of
pairs of embedded ideals, where the smaller ideal is allowed to have reduced dimension any
2-power dividing 2n (and the reduced dimension of the larger ideal), are also interesting
but more difficult to study.
Clearly, every index in the sequence i(A), i(X1), . . . , i(Xn) is a 2-power and divides

the next one. If Xm(K) 6= ∅ for some m = 1, . . . , n − 1 and some extension field K of
F , the quadratic pair σK is adjoint to a quadratic form of Witt index ≥ m; there is a
finite field extension L/K of degree dividing 2 over which the Witt index increases giving
Xm+1(L) 6= ∅; it follows that the quotient i(Xm+1)/i(Xm) divides 2. By a similar reason,
the quotient i(X1)/i(A) also divides 2. In terms of the base two logarithm l(−) of i(−),
we have l(A) ≤ l(X1) ≤ · · · ≤ l(Xn) with every successive difference being 0 or 1.
In the case of l(A) > 0, it turns out (see Corollary 2.3) that the underlying division

algebra of A contains a maximal subfield over which σ is 1-isotropic. In particular,
l(X1) = l(A).
Now we allow the field F to vary among all extensions of a given field k and, for every

m, look for the sharp upper bound l(m) on l(Xm). It can be obtained by the generic
construction described below.

For the split projective (general) orthogonal group G := PGO(2n) over k, the isomor-
phism classes of G-torsors over any extension field F of k are in canonical bijection with
the isomorphism classes of the duos (A, σ) as above (see [25, §29.F]). A generic G-torsor,
defined as the generic fiber of the quotient map GL(N) → GL(N)/G for some embedding
of G into the general linear group GL(N) with some N , yields the isomorphism class
of a central simple F -algebra A with a quadratic pair σ, where F is the function field
k(GL(N)/G) of the quotient variety. We call such duo (A, σ) generic. The Schur index
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i(A) is the 2-primary part of 2n and the Witt index i(σ) is 0 (i.e., σ is anisotropic) –
see Remark 5.4. The value l(Xm) is the sharp upper bound l(m) we are looking for (see
Remark 3.4). Our goal becomes to determine the indexes i(X2), . . . , i(Xn) for generic
(A, σ). (As explained above, the index i(X1) is already determined in a more general
context.)

The last of them i(Xn) is the torsion index of the group PGO(2n) (see §4). An evident
lower bound for it is the torsion index of the orthogonal group O(2n) equal to 2n. The
computation of the torsion index for PGO+(2n) – the connected component of the group
PGO(2n), made in [33, Theorem 7.1], implies that the lower bound is the exact value in
most cases. The precise statement is (see Proposition 4.2):

l(n) =

{
n+ 1, if n is a 2-power ≥ 2;

n, otherwise.

Since we know the values l(1) and l(n), we know the number of i ∈ {2, . . . , n} satisfying
l(i−1) = l(i). We call such i a relaxed position. The number of relaxed positions is l(A)−2
for n a 2-power ≥ 2; otherwise the number of relaxed positions is l(A) − 1. Determine
the entire sequence l(1), . . . , l(n) means to find all relaxed positions. This is done in our
final main result – Theorem 6.6, stating that the relaxed positions are the positions of
the form 2s − 1 for a 2-power divisor 2s ≥ 2 of 2n. It follows that

l(m) = m+ r −min{r, blog2(m+ 1)c}

for any m ∈ {1, . . . , n}, where 2r is the 2-primary part of 2n and where blog2(m + 1)c is
the integral part (floor) of the base 2 logarithm.

The preparatory main result of the present text is Theorem 3.3, which provides basic
information needed to determine l(m) for any given m. Namely, it describes a finite
system of generators for the Chow ring CH(Xm) in the case of a generic (A, σ). Since the
variety Xm is projective, its index is determined by its Chow group of 0-cycles CH0(Xm):
i(Xm) is the positive generator of the image of the degree homomorphism CH0(Xm) → Z.
To get the actual value of l(m), calculations are needed. But at least one sees right away
that the answer does not depend on the field k (and, in particular, on its characteristic)
– see Corollary 3.10.
As a warm up, for n ≥ 2, using the description of CH(X1), given in Theorem 3.3, we

show that l(2) = l(1) + 1 = l(A) + 1 (see Corollary 5.5). In other terms, the position 2 is
not relaxed (as confirmed later by Theorem 6.6).

In the final §7 we perform the similar study for the split projective special orthogonal
group PGO+(2n) replacing PGO(2n). By Theorem 7.1, the answer for PGO+(2n) is
almost the same as for PGO(2n).
Note that PGO+(2n) is the adjoint split simple group of type Dn. The simply connected

split simple group of type Dn – the group Spin(2n) – has been studied a lot (see [2] and
[24]). After heavy computations of [10] and [12], a complete algorithm to determine the
indexes of the corresponding partial splitting varieties has been obtained in [11, Theorem
2.3 with Remark 2.6]. However, for a general n, a formula for the corresponding indexes
is still unavailable. Such an algorithm (still without the formula) for Spin(2n + 1) – the
simply connected split simple group of type Bn – has been obtained in [20].
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Terminology. A variety is a separated scheme of finite type over field. An (affine)
algebraic group is an affine group scheme of finite type over a field.

Acknowledgements. Many thanks to Alexander Merkurjev for useful advices and
Appendix. This paper is largely inspired by [33, Theorem 7.1] due to Burt Totaro. The
present paper studies PGO-torsors following the approach of [2], written in collaboration
with Alexander Merkurjev and Rostislav Devyatov and devoted to the study Spin-torsors.

2. Index of X1

Proposition 2.1. For a field F , let A be a central division F -algebra endowed with a
quadratic pair σ. Assume that i(A) = deg(A) > 1. Then A contains a maximal subfield
over which σ is 1-isotropic.

Proof. Let X1 be the involution variety of (A, σ). The pull-back homomorphism of the
Chow rings CH(X1 × X1) → CH(X1) with respect to the diagonal embedding X1 ↪→
X1×X1 maps the class of the diagonal to a 0-cycle class. For an arbitrary smooth variety
in place of X1, this class coincides with the top Chern class of the tangent bundle (see [6,
Self-Intersection Formula following Corollary 6.3]). For a smooth projective variety, the
degree of this class is known as the index of self-intersection of the diagonal. We claim
that for X1, this index is equal to deg(A).
Since the index does not change under base field extensions, it is enough to compute it

over an algebraic closure, where the variety X1 becomes a (split) projective quadric Q of
even dimension 2d := deg(A)− 2. The claim follows from [4, Proof of Lemma 78.1].

Let us indicate one more way to prove the claim. Since the Chow motive of the smooth
projective variety Q is split (i.e., isomorphic to a finite direct sum of shifted motives of the
point), the Chow group CH(Q) is free of finite rank equal to the index of self-intersection
of the diagonal (cf. [16, Lemma 2.21]). The motive of Q is split because the variety Q is
cellular (see [4, §66]).
By [6, §12.2] (see also [14, Theorem 2.3 and Remark 2.4]), the diagonal’s self-intersection

class of X1 can be represented by a non-negative 0-cycle. Therefore X1 contains a closed
point x such that deg(A) is the degree of the residue field K of x. Since i(AK) = 1, K is
isomorphic to a maximal subfield of A ([3, Corollary 3 of §9]. �
Remark 2.2 (The quaternion case). If A in Proposition 2.1 is quaternion, the dis-
criminant of σ is non-trivial by [25, Example 7.4]. If σ is isotropic over a maximal subfield
K of A, the discriminant of σK is trivial. Therefore K/F is the quadratic field extension
given by the discriminant of σ.

Corollary 2.3. For a field F , let A be a central simple F -algebra endowed with a quadratic
pair σ. Assume that i(A) > 1. Then the division F -algebra Brauer-equivalent to A
contains a maximal subfield over which σ is isotropic.

Proof. Using [29, Theorem 6.3], one finds a symmetric idempotent e ∈ A such that eAe
is a division algebra Brauer-equivalent to A. The quadratic pair σ on A restricts to a
quadratic pair on eAe. By Proposition 2.1, we can find a maximal subfield K ⊂ eAe and
a nonzero isotropic right ideal in (eAe)K . It generates a nonzero isotropic right ideal in
AK . �
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Remark 2.4. The following will be shown in Corollary 5.5: if degA = 2n with n ≥ 3
and the duo (A, σ) is generic, then for any maximal subfield K of the division algebra
Brauer-equivalent to A the quadratic pair σK is not 2-isotropic.

Corollary 2.5. For a field F , let A be a central simple F -algebra endowed with a quadratic
pair σ and let X1 be the corresponding involution variety. Assume that i(A) > 1. Then
the index i(X1) of the variety X1 is equal to i(A). �

Remark 2.6. Corollary 2.5 in particular applies to a generic (A, σ) with any n ≥ 1
because i(A) is divisible by 2. The resulting equality i(A) = i(X1) can be proved directly
by looking at the diagonal’s self-intersection index of X1.

Remark 2.7. For any m = 1, . . . , n, the diagonal’s self-intersection index of Xm is equal
to 2m ·

(
n
m

)
·m (c.f. [1, Proof of Theorem 3.2]). The 2-primary part of this product is an

upper bound for i(Xm), but (aside from the case of m = 1) we get better bounds by other
means.

3. Index of Xm

For any (not necessarily generic) (A, σ) with deg(A) = 2n and any m ∈ {1, . . . , n}, the
variety Xm, being a variety of 2-flags, has two tautological vector bundles: I of rank 2n
and J of rank 2nm. The fiber of I over a point I ⊂ J of Xm is I and the fiber of J is
J . Both vector bundles are right A-modules. The tensor products I ⊗A I and J ⊗A I,
where the right factor is a left A-module via the involution of σ, are vector bundles on
Xm of rank 1 and m. We write C for the subring in CH(Xm) generated by the Chern
classes of I, I ⊗A I, and J ⊗A I.

Remark 3.1. To make a thriftier definition of C, one can replace the third vector bundle
by (J /I) ⊗A I. To make it closer to [33, Proof of Theorem 7.1], one can use the vector
bundle HomA(I,J /I) instead.

Remark 3.2. If A is the endomorphism algebra End(V ) of a 2n-dimensional vector space
V and σ is adjoint to a quadratic form on V , the variety Xm is the variety of flags of
totally isotropic subspaces U ⊂ W in V of dimensions 1 and m. Such a variety comes
equipped with two tautological vectors bundles U and W of ranks 1 and m. The vector
bundle I is then the direct sum of 2n copies of U . Besides,

I ⊗A I = U ⊗ U , J ⊗A I = W ⊗U , (J /I)⊗A I = (W/U)⊗ U , and

HomA(I,J /I) = Hom(U ,W/U).

Theorem 3.3. For generic (A, σ), the inclusion C ⊂ CH(Xm) is an equality.

Remark 3.4. Theorem 3.3 shows that the Chow ring of Xm is smallest possible in the
generic case. This is why the index of Xm is maximal, i.e., i(Xm) = 2l(m) for Xm given
by a generic (A, σ). Accurately speaking, in the above argument, we compare Chow rings
of two varieties defined over possibly different extension fields F and F ′ of k, by looking
at their images under the change of field homomorphisms to a common splitting field
containing F and F ′.
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Remark 3.5. Providing generators for CH(Xm), Theorem 3.3 does not describe relations
between them. So, unlike [18, Theorem 6.1], it does not provide a complete description
of the Chow ring.

Proof of Theorem 3.3. By definition (see, e.g., [25, §28.B]), the group G := PGO(2n) is
the group of the automorphisms of the duo (A, σ), where A is the degree 2n standard split
central simple F -algebra and σ is the quadratic pair adjoint to the dimension 2n standard
split quadratic form. The group G acts transitively on the corresponding variety Xm,
described in Remark 3.2. The stabilizer of a rational point is a parabolic subgroup P ⊂ G
with the quotient G/P variety isomorphic to Xm.

Now let E be a generic G-torsor giving a generic algebra with quadratic pair (A, σ).
The variety Xm corresponding to this new (A, σ) is identified with the quotient E/P . By
[17, Proof of Lemma 2.1], the natural ring homomorphism

CH(BP ) → CH(E/P ) = CH(Xm)

is surjective. The Chow ring CH(BH) of the classifying space of an affine algebraic group
H (covariant in H), appearing here for H = P , is defined in [35, §2.2]. For any H-torsor
over a smooth variety X, a homomorphism of graded rings CH(BH) → CH(X), showing
up here for H = P , X = Xm, and the P -torsor E → Xm, is defined in [35, Theorem 2.8].

The algebraic group P is a semi-direct product of its unipotent radical and an algebraic
group P ′ defined below. For m < n,

P ′ := (Gm ×GL(m− 1)×O(2n− 2m))/µ2,

where µ2 is embedded diagonally into the product Gm ×Gm ×µ2 of the centers of the
factors Gm, GL(m− 1), and O(2n− 2m). For m = n,

P ′ := (Gm ×GL(n− 1))/µ2,

where µ2 is embedded diagonally into the product Gm ×Gm of the centers of the two
factors. By [19, Proof of Proposition 6.1] (see also [22, Proposition 5.9]), for any m, the
ring homomorphism CH(BP ′) → CH(BP ), induced by the quotient group homomorphism
P → P ′, is an isomorphism.
Let us finish the case of m = n first. The automorphism (a, b) 7→ (a, ab) of the product

Gm ×GL(n− 1) induces an isomorphism

P ′ ' (Gm /µ2)×GL(n− 1)

and the homomorphism Gm → Gm, a 7→ a2 yields an isomorphism Gm /µ2 ' Gm. In
particular, the group P ′ is special, in the sense that every P ′-torsor over an extension
of the base field is trivial. Combining the above surjections and isomorphisms, we get a
surjective homomorphism of graded rings

(3.6) CH(B Gm)⊗ CH(B GL(n− 1)) →→ CH(Xn).

Recall that CH(B GL(n−1)) is the polynomial ring over the integers in the Chern classes
c1, . . . , cn−1. Surjection (3.6) maps to the first Chern class of I ⊗A I the generator of the
first factor CH(B Gm) = CH(B GL(1)) = Z[c1]. The generators of the second factor are
mapped to the corresponding Chern classes of (J /I) ⊗A I. In the next paragraph it is
explained why the images of the generators are as just claimed.
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Since the generators are the Chern classes of certain elements in the representation ring

(3.7) R(Gm ×GL(n− 1)) ' R(P ′)

in the sense of [23, §4] (namely, of the classes u and v of the tautological representations
of Gm and of GL(n− 1)), there images under (3.6) are Chern classes of the corresponding
elements in the Grothendieck group K0(Xn). Since by [28] any extension of the base field
yields an injection on the Grothendieck group, it suffices to determine the elements in
question over an algebraic closure of the base field, i.e., in K0(X̄n). Recall that the group
P ′ is initially defined as the quotient (Gm ×GL(n− 1))/µ2. The quotient homomorphism
Gm ×GL(n− 1) → P ′ induces an embedding

(3.8) R(P ′) ↪→ R(Gm ×GL(n− 1)),

and the homomorphism R(P ′) → K0(X̄n) is a restriction of the natural homomorphism

f : R(Gm ×GL(n− 1)) → K0(X̄n)

(cf. [18, §7]). The images of u and v under f are the classes of the vector bundles U
and W/U from Remark 3.2. Finally, the composition of the isomorphism (3.7) with the
embedding (3.8) maps u and v to u2 and vu.
We finished the proof of the casem = n. Moreover, we showed that the list of generators

of C can be shorten by removing the Chern classes of I in this case.
From now on we assume that m < n. The group P ′ embeds into the special algebraic

group

S := (Gm ×GL(m− 1)×GL(2n− 2m))/µ2.

The quotient variety S/P ′ = GL(2n − 2m)/O(2n − 2m) is the open subvariety of non-
degenerate quadratic forms on an (2n − 2m)-dimensional vector space V in the affine
space of all quadratic forms on V (see [18, §3]). It follows by [35, Theorem 5.1] (see also
[18, Proposition 5.1]) that the ring homomorphism CH(BS) → CH(BP ′), induced by the
embedding P ′ ↪→ S, is surjective.
The automorphism (a, b, c) 7→ (a, ab, ac) of the product

Gm ×GL(m− 1)×GL(2n− 2m)

induces an isomorphism S ' (Gm /µ2)×GL(m− 1)×GL(2n− 2m). The factor Gm /µ2

is isomorphic to Gm. As a result, we get a surjective ring homomorphism

(3.9) CH(B Gm)⊗ CH(B GL(m− 1))⊗ CH(B GL(2n− 2m)) →→ CH(Xm),

which maps to the first Chern class of I ⊗A I the generator of the first factor. The
generators of the second factor are mapped to the corresponding Chern classes of the
vector bundle (J /I)⊗A I as one shows similarly to the case of m = n considered above.
Finally, the addition to the image of (3.9) made by the third factor coincides with the
addition of the Chern classes of I. �
Corollary 3.10. The sequence l(1), . . . , l(n) does not depend on the initial field k.

Proof. By Theorem 3.3, for any m ∈ {1, . . . , n}, the index of the variety Xm, given by
generic (A, σ), is the positive generator of the image of C ⊂ CH(Xm) under the degree
homomorphism CH(Xm) → Z. This image is not changed under base field extensions.
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Therefore we may assume that the duo (A, σ) is split in which case the Chow ring CH(Xm)
and its subring C do not depend on the base field. �

4. Index of Xn

The torsion index of an arbitrary affine algebraic group G over a field k is the least
common multiple of the indexes i(E), where E is a G-torsor over an extension field of k.
The index of a G-torsor here is just the index of the underlying variety.
By Theorem A.2, the torsion index of G is the index of any generic G-torsor, defined

as the generic fiber of the morphism

(4.1) GL(N) → GL(N)/G

given by an embedding of G into GL(N) for some N . The proof of Theorem A.2 is
based on the so-called versal property of (4.1) obtained in Theorem A.1 and considered
previously for smooth G in [30, §5]. For a split reductive G (including G = PGO+(2n)
considered below), Theorem A.2 is a slight extension of [7, Théorème 2], proven in [34,
Theorem 1.1] (see also [21, Theorem 6.4]).
For G being the affine algebraic group PGO(2n) of automorphisms of the standard

split degree 2n central simple algebra A0 with the standard hyperbolic quadratic pair
σ0, a degree 2n algebra with quadratic pair (A, σ) corresponds to the G-torsor E of
isomorphisms between (A, σ) and (A0, σ0). In particular, the torsor E is trivial if and only
if the corresponding variety Xn has a rational point. It follows that 2l(n) is the torsion
index of G – the affine algebraic group of automorphisms of the standard split degree 2n
central simple algebra with the standard hyperbolic quadratic pair. We determine this
torsion index using its closed relation with the torsion index of the connected component
G+ of G, computed in [33]. Note that for n = 1 the group G+ = Gm, being special, has
the torsion index 1.

Proposition 4.2. One has l(n) = n if n is 1 or not a 2-power; if n is a 2-power ≥ 2 then
l(n) = n+ 1. In other terms, the torsion index of G is twice the torsion index of G+.

Proof. Let (A, σ) be the generic algebra with quadratic pair given by the generic G-torsor
E over the function field F = k(GL(N)/G) obtained (F and E) from an embedding
G ↪→ GL(N). The embedding given by the composition

G+ ↪→ G ↪→ GL(N)

yields a generic G+-torsor over the separable quadratic extension field K of F given by
the discriminant of σ. The corresponding K-algebra with quadratic pair is (AK , σK) so
that i((Xn)K) is the torsion index of the group G+. Since the residue field of any point
on Xn contains K, the index of Xn is twice the index of (Xn)K . �

5. Index of X2

Given an integer n ≥ 2 and an initial field k, let F be the function field F =
k(GL(N)/G) for an embedding G = PGO(2n) ↪→ GL(N), and let (A, σ) be the cor-
responding generic degree 2n central simple F -algebra with a quadratic pair. In order to
determine i(X2) we use the information on CH(X1) provided in Theorem 3.3. We fix a
splitting extension field F̄ /F of (A, σ) (e.g., an algebraic closure of F ), write X̄1 for (X1)F̄
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and write C̄H(X1) for the image of the change of field homomorphism CH(X1) → CH(X̄1).
Recall that X̄1 is a split projective quadric of dimension 2n− 2. Let t ∈ CH1(X̄1) be the
class of a hyperplane section.

Proposition 5.1. The ring C̄H(X1) is generated by 2t and
(
2n
i

)
ti, i ≥ 0.

Proof. In view of Theorem 3.3 and since J = I for X1, the ring CH(X1) is generated by
the Chern classes of I and I ⊗A I alone. As one can see from Remark 3.2, under the
change of field homomorphism CH(X1) → CH(X̄1), the element 2t is the image of the
first Chern class of I ⊗A I whereas

(
2n
i

)
ti (for any i ≥ 0) is the image of the ith Chern

class of I. �

Lemma 5.2. Given an integer d ≥ 1, let B be the subring in the polynomial ring Z[h]
generated by

(
d
i

)
hi, i ≥ 0. Then for any i ≥ 0, the ith graded component of B is generated

by d
(i,d)

hi, where (i, d) is the g.c.d. of i and d.

Proof. Since hd ∈ B, is suffices to prove the statement with B ⊂ Z[h] replaced by
B/(hd) ⊂ Z[h]/(hd). Let Y be the Severi-Brauer variety of a generic central simple
algebra of degree d – the algebra, given by a generic PGL(d)-torsor, where

PGL(d) = GL(d)/Gm = SL(d)/µd

is the projective general linear group. We identify CH(Ȳ ) with Z[h]/(hd), by letting h
correspond to the hyperplane class in CH1(Ȳ ) of the projective space Ȳ . By [21, §8.1],
B ⊂ Z[h]/(hd) is then identified with tjhe image C̄H(Y ) of CH(Y ) in CH(Ȳ ). (By [17,
Theorem 3.1], one knows that C̄H(Y ) = CH(Y ) but this is not needed here.) Finally, by

[13, Theorem 1], for any i ≥ 0, the group C̄H
i
(Y ) is generated by d

(i,d)
hi. �

Corollary 5.3. For any i ≥ 0, the group C̄H
i
(X1) is generated by ait

i, where the integer
ai is the g.c.d. of 2i and 2n

(i,2n)
. �

Remark 5.4. Corollary 5.3 in particular affirms that C̄H(X1) is contained in the subring
of CH(X̄1) generated by h. This implies that i(σ) = 0, i.e, the quadratic pair σ of a
generic duo (A, σ) is anisotropic. Besides, since the integer 2n

(i,2n)
is even for every i ≥ 1

which is not divisible by the 2-primary part of 2n, C̄H
i
(X1) is contained in the subgroup

of CHi(X̄1) generated by 2hi for such i. This implies that i(A) is the 2-primary part of
2n.

Corollary 5.5. For any n ≥ 2, one has

l(2) = l(1) + 1.

In other terms, position 2 is not relaxed.

Proof. The case of n = 2 is already covered (by Proposition 4.2 and §2). For n ≥ 3, the
element t2n−3 ∈ CH(X̄1) equals twice the class of a line.

The only alternate to the claimed equality i(X2) = 2i(A) is i(X2) = i(A) in which case

(5.6) (i(A)/2) · t2n−3 ∈ C̄H(X1).
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Recall that i(A) is the 2-primary part of 2n. However 2n − 3 is odd and 22n−3 ≥ 2n for
n ≥ 3. Therefore the integer a2n−3 is divisible by i(A) so that (5.6) fails according to
Corollary 5.3. �

6. Relaxed positions

In this section, for any given n ≥ 2, we locate all relaxed positions – see Theorem 6.6.
Therefore, as explained in §1, we determine the entire sequence l(1), . . . , l(n).

We start by collecting information on CH(X) with X := X̄m for general n ≥ 1 and
m ∈ {1, . . . , n}. As before, the bar over Xm means that we consider it over an extension
of the base field splitting the duo (A, σ) defining Xm.
Recall (see Remark 3.2) that X is the variety of 2-flags of totally isotropic subspaces

U ⊂ W of dimensions 1 and m of a (split) quadratic form on a 2n-dimensional vector
space V . We write t ∈ CH1(X) for the first Chern class of the tautological line bundle
U and we write fi ∈ CHi(X), i ≥ 1 for the Chern classes of the rank 2n − m vector
bundle V/W , where V is the rank 2n trivial vector bundle on X, given by V , whereas W
is the tautological rank m vector bundle on X. The notation t, fi, and introduced below
notation ui correspond (vaguely) to [33, Proof of Theorem 7.1], where a component of
X̄n was treated. Some of the facts established below generalize results from [33, Proof of
Theorem 7.1]. Some of them are proved similarly, some others – differently.

The projection to the second component of 2-flags makes X a rankm−1 projective bun-
dle over the variety of totally isotropic m-planes in V . From this viewpoint, one sees that
the 0-dimensional component of the subring R ⊂ CH(X), generated by t, f1, . . . , f2n−m,
is spanned by the product tm−1f2n−m−1 . . . f2n−2m ∈ CH0(X). The degree of this 0-cycle
class is 2m. Note that f2n−m = 0 (see [18, Theorem 2.1]).
Let ui ∈ CHi(X), i ≥ 1 be the Chern classes of the rank 2n − m vector bundle

(V/W)⊗U . Clearly, the subring generated by t and all ui coincides with R. The benefit
of the generators ui is as follows: by Theorem 3.3, the subring in CH(X), we need to
compute the index l(m), is the subring R′ ⊂ R generated by all ui along with 2t and all(
2n
i

)
ti. More precisely,

Lemma 6.1. The product 2l(m)−m · tm−1f2n−m−1 . . . f2n−2m generates the 0-dimensional
component of R′. �

We write Rt for the subring in R generated by t. We write R′
t for the subring in R′

generated by 2t and all
(
2n
i

)
ti, i ≥ 0. By Lemma 5.2, for any i ≥ 0, the codimension i

graded component of R′
t is spanned by ait

i, where ai is the g.c.d. of 2i and 2n/(i, 2n).

Lemma 6.2. In R one has t2n−1 = 0 and

(−t)u2n−m−1 + (−t)2u2n−m−2 + · · ·+ (−t)2n−m−1u1 + (−t)2n−m = 0.

In R′/2R′, for i > n − m, the square u2
i is a (homogeneous) linear combinations of u2

j ,

j ≤ n−m, with coefficients in R′
t; in particular, u2

i is divisible by t2i−2n+2m in R/2R. The
ring R as an Rt-module as well as the ring R′ as an R′

t-module is generated by products
of at most m− 1 of ui. Finally, u2n−m = 0 in R′ ⊂ R.
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Proof. Projection to the first component of 2-flags maps X to the quadric Q of dimension
2n− 2. The element t is in the image of the pull-back from the quadric. This shows that
t2n−1 = 0.

Since (V/W)⊗U , tensored by the dual U∗ of U , turns back to V/W , we get the second
relation of Lemma 6.2 rewriting the relation f2n−m = 0 in terms of −t = c1(U∗) and
ui = ci((V/W)⊗ U).

The isomorphism V/W⊥ = W∗, where the vector bundle W⊥ is obtained from W by
taking the orthogonal complement, implies the equality

[V/W ] + [(V/W)∗] = [W⊥/W ] + [V ]

of classes [−] in the Grothendieck group. Tensoring with U , we get

(6.3) [(V/W)⊗ U ] + [(V/W)∗ ⊗ U ] = [(W⊥/W)⊗ U ] + [V ⊗ U ].

Note that the quotient W⊥/W and the tensor product (W⊥/W)⊗ U are vector bundles
of rank 2n − 2m and therefore the Chern classes of the latter with numbers higher than
2n − 2m vanish. Since the modulo 2 Chern classes of U and of U∗ coincide, the Chern
classes modulo 2 of the left side in (6.3) coincide with the Chern classes of

[(V/W)⊗ U ] + [((V/W)⊗ U)∗].

The even Chern class with number 2i here is equal to u2
i and the odd Chern classes vanish.

The ith Chern class of V ⊗ U equals
(
2n
i

)
ti; for odd i it vanishes modulo 2. This proves

the statement on u2
i with i > n−m of Lemma 6.2.

The next statement of Lemma 6.2 follows from the following general result on the Chow
ring of the grassmannian Γ of d-planes in a vector bundle E over a smooth variety Y (see
[6, §14.6]): the Chow ring CH(Γ) as a module over the ring CH(Y ) is generated by the
products of at most d Chern classes of E/T , where T is the tautological rank d vector
bundle on Γ. In our case, Y is the quadric Q, E is the vector bundle (U⊥/U) ⊗ U over
Q, and d = m − 1. As a Q-scheme, X is a closed subscheme in Γ. The restriction to
X of the tautological vector bundle T is then (W/U) ⊗ U so that the restriction of the
quotient E/T becomes (U⊥/W)⊗ U . Recall that ui were defined as the Chern classes of
(V/W)⊗ U . Since the line bundle

(V/W)⊗ U
(U⊥/W)⊗ U

= (V/U⊥)⊗ U = U∗ ⊗ U

is trivial, they coincide with the pull-backs of the Chern classes of the vector bundle E/T .
Since the rank of this vector bundle is 2n−m−1, we get on the way the relation u2n−m = 0
– the final statement of Lemma 6.2.
At this point we proved that the ring R as an Rt-module is generated by products of

at most m− 1 of ui. To prove the similar statement on the ring R′ as an R′
t-module, one

takes into account that R′
t is the image of the change of field homomorphism

CH(X1) → CH(X̄1) = CH(Q)

and R′ is the image of the change of field homomorphism

CH(Xm) → CH(X̄m) = CH(X)
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provided that the varieties X1 and Xm are given by a generic duo (A, σ). The variety
Xm, considered as an X1-scheme via the projection Xm → X1, is a closed X1-subscheme
in the grassmannian of (m− 1)-planes of the rank 2n− 2 vector bundle (I⊥/I)⊗A I over
X1, where, as in §3, I is the tautological (rank 2n) vector bundle on X1. The orthogonal
complement I⊥ is defined as in [25, Definition 6.1]. It follows that the ring CH(Xm),
viewed as a CH(X1)-module, is generated by the products of at most m− 1 Chern classes
of the vector bundle (I⊥/J ) ⊗A I. Therefore the ring C̄H(Xm) = R′ is generated as a
module over the ring C̄H(X1) = R′

t by the products of at most m− 1 of ui. �

Corollary 6.4. The product

(6.5) t2n−2u2n−m−2 . . . u2n−2m

generates the 0-dimensional component of R/2R.

Proof. As follows from Lemma 6.2, the quotient R/2R is additively generated by two
groups of generators, taken together. The first group consists of products of a power of t
non-exceeding 2n−2 by a product of at most m−1 elements ui with various i ≤ 2n−m−2,
in which no ui with i > n − m is repeated. The second group consists of product of at
most m − 1 elements ui with various i ≤ 2n − m − 1, in which no ui with i > n − m
is repeated. (The element t does not show up in the second group.) The product (6.5)
is the unique generator from this list of highest possible codimension. Since it happens
to have dimension 0, it is ought to be the unique nonzero element of the 0-dimensional
component of R/2R. �

Theorem 6.6. For a given n ≥ 2, let 2r be the 2-primary part of 2n. An integer m ∈
{2, . . . , n} constitutes a relaxed position if and only if m = 2s − 1 for some s ≤ r.

Proof. As already discussed in §1, the total number of relaxed position is r − 2 or r −
1 depending on whether n is a 2-power or not. So, the number of relaxed positions,
announced in Theorem 6.6, is the right one: s runs over the set {2, . . . , r− 1} if n = 2r−1,
otherwise s runs over the set {2, . . . , r}. Consequently, we only need to check that the
positions 2s − 1 are relaxed.

We pick up some m = 2s − 1 < n with 2 ≤ s ≤ r. In order to show that m is relaxed,
it suffices to check that l(m− 1) ≥ l(m). We check separately the two inequalities

(6.7) l(m) ≤ m+ r − s and l(m− 1) ≥ m+ r − s,

starting with the first one.
By Lemma 5.2, the ring R′ contains the product 2r−st2n−m−1 because the 2-primary

part of

2n

(2n−m− 1, 2n)
=

2n

2s

is 2r−s and 2n−m− 1 ≥ r − s. We rewrite the product

R′ 3 2r−st2n−m−1u2n−m−1 . . . u2n−2m+1
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in R/2r−s+1R, eliminating u2n−m−1 with the help of the second relation of Lemma 6.2:

2r−st2n−m−1u2n−m−1 . . . u2n−2m+1 =

2r−st2n−m−2u2n−m−2 . . . u2n−2m+1 · (tu2n−m−1) =

2r−st2n−m−2u2n−m−2 . . . u2n−2m+1 · (t2u2n−m−2 + · · ·+ tmu2n−2m + . . . ) =

2r−s · (6.5) ∈ R/2r−s+1R,

where (6.5) is the generator from Corollary 6.4. To explain the last equality in the chain,
let us mention that all summands except one, we have on the left of the equality, reduce to
zero as being divisible by t2n−1 = 0. (Remember that u2

i is divisible in R/2R by t2i−2n+2m

for i > n−m.)
It follows by Lemma 6.1 that l(m)−m ≤ r− s which is the first inequality of (6.7). To

prove the second one, we set m := 2s − 2. The second inequality in (6.7) then reads:

l(m)−m ≥ r − s+ 1.

We prove it by checking that every element in the 0-dimensional component of the ring
R′ vanishes in R/2r−s+1R.

The ring R′/2R′ as an R′
t-module is generated by product of at most m − 1 elements

ui with various i ≤ 2n−m− 1, in which no ui with i > n−m is repeated. The product
u2n−m−1 . . . u2n−2m+1 has the highest possible codimension and its dimension is equal to
2n−m− 1. Therefore any element in the 0-dimensional component of R′/2R′ is divisible
by ait

i for some i ≥ 2n−m− 1. Replacing i by 2n− i, we get the divisor a2n−it
2n−i for

some i ≤ m+1 = 2s−1. Since a2n−i is the g.c.d. of 2
2n−i and 2n/(2n−i, 2n) = 2n/(i, 2n),

we see that the integer a2n−i is divisible by 2r−s+1. It follows that every element in the
0-dimensional component of the ring R′ vanishes in R/2r−s+1R. �

7. PGO+

In this section we shift our attention from the group G = PGO(2n) to its connected
component – the projective special orthogonal group G+ = PGO+(2n), which showed up
already in §4. For n ≥ 3, G+ is the adjoint split simple group of Dynkin type Dn (see [25,
Theorem 25.12]).
Via the embedding G+ ↪→ G, a G+-torsor yields a G-torsor and a central simple algebra

A with a quadratic pair σ of trivial discriminant disc(σ). Every duo (A, σ) of degree 2n
with trivial disc(σ) comes from a G+-torsor this way.

Fixing an initial field k, for m ∈ {1, . . . , n}, we define the integer l+(m) by letting 2l
+(m)

be the maximum of i(Xm) when F runs over all extension fields of k and (A, σ) runs over
all F -duos of degree 2n with trivial disc(σ). By [34, Theorem 1.1] (see also [21, Theorem
6.4]), extending [7, Théorème 2], 2l

+(m) is the index of the variety Xm given by a generic
G+-torsor. Our goal is to determine the sequence l+(1), . . . , l+(n).
Clearly, this sequence is (non-strictly) increasing: l+(1) ≤ · · · ≤ l+(n). Moreover, every

successive difference is 0 or 1.
By [26, §4.4], the Schur index i(A) of A is the 2-primary part 2r of 2n. By §2, 2l

+(1) =
i(A). It follows that l+(1) = r = l(1).



14 NIKITA A. KARPENKO WITH AN APPENDIX BY ALEXANDER S. MERKURJEV

Since the discriminant of any quadratic pair vanishes in an at most quadratic extension
of the base field, for every m the integer l+(m) equals l(m) or l(m)− 1.

Finally, l+(n) is the torsion index of the group G+. Due to [33], where it is computed,
we know that l+(n) = l(n)− 1. It is also clear that l+(n− 1) = l+(n) and so l+(n− 1) =
l(n)− 1 = l(n− 1).

The main result here is

Theorem 7.1. One has l+(m) = l(m) for every m ∈ {1, . . . , n− 1}.

To prove Theorem 7.1, we compare the Chow ring CH(Xm) of the variety Xm, given
by a generic G-torsor, with the Chow ring CH(X+

m) of the similar variety, given by a
generic G+-torsor obtained via the composition G+ ↪→ G ↪→ GL(N). Then X+

m is simply
Xm, considered over the quadratic discriminant extension field of the base of Xm. In
particular, CH(X+

m) is a CH(Xm)-algebra via the change of field ring homomorphism. A
finite system of generators for the ring CH(Xm) is provided in Theorem 3.3.

We write X for the variety X+
m over an algebraic closure F of its base field. As per

Remark 3.2, the variety X can be viewed as the variety of totally isotropic subspaces
U ⊂ W of dimensions 1 and m of a 2n-dimensional split quadratic form. In particular,
X is endowed with tautological vector bundles U and W of ranks 1 and m.

Let τ be the involution of the Chow ring CH(X), induced by any element of G(F ) \
G+(F ). Note that by [15, Corollary 4.2], the action of G+(F ) on CH(X) is trivial.

Proposition 7.2. For m < n, the Chow ring CH(X+
m), viewed as a CH(Xm)-module, is

generated by 1 and an element e whose image in CH(X) equals 2n−m−1tn−m + t′, where t
is the first Chern class of the line bundle U and t′ ∈ CH(X) satisfies τ(t′) = −t′.

Proof. We prove Proposition 7.2 going along the lines of the proof of Theorem 3.3 and
performing suitable modifications.

For a second, let us consider the standard split duo (A, σ), where A is the degree
2n standard split central simple F -algebra and σ is the quadratic pair adjoint to the
dimension 2n standard split quadratic form. For m < n, the connected component G+

of the group G of automorphisms of (A, σ) acts transitively on the corresponding variety
Xm. The stabilizer of a rational point is a parabolic subgroup P ⊂ G+ with the quotient
G+/P isomorphic to Xm. For m ≤ n− 2, P is a parabolic subgroup whose Dynkin type
is given by the 1st and mth vertices of the Dynkin diagram. For m = n − 1, Dynkin
type of P is given by the vertices with the numbers 1, n − 1, and n; the two connected
components of the variety Xn yield two parabolic subgroups: one of the type {1, n− 1},
the other of the type {1, n}.

Now, switching to the variety X+
m, given by a generic G+-torsor E, we identify X+

m with
the quotient E/P . By [17, Proof of Lemma 2.1], the natural graded ring homomorphism
CH(BP ) → CH(E/P ) = CH(X+

m) is surjective.
The algebraic group P is a semi-direct product of its unipotent radical and the reductive

group

P ′ = (Gm ×GL(m− 1)× SO(2n− 2m))/µ2,

where µ2 is embedded diagonally into the product of the centers Gm ×Gm ×µ2 of the
factors Gm, GL(m− 1), and SO(2n− 2m). By [19, Proof of Proposition 6.1] (see also [22,
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Proposition 5.9]), the ring homomorphism CH(BP ′) → CH(BP ), induced by the quotient
group homomorphism P → P ′, is an isomorphism.

The difference with the proof of Theorem 3.3, that just showed up, is the special
orthogonal group SO(2n − 2m) in the definition of P ′ here, replacing the orthogonal
group O(2n − 2m) we had in the definition of P ′ there. This difference results in the
appearance of the additional – compared to CH(Xm) – generator e of CH(X+

m).
Via the standard representation SO(2n − 2m) ↪→ GL(2n − 2m), the group P ′ embeds

into the special algebraic group

S := (Gm ×GL(m− 1)×GL(2n− 2m))/µ2.

By [5] (see [8, Corollary 5.4] for generalization to an arbitrary base field), the Chow
ring of the quotient variety S/P ′ = GL(2n− 2m)/ SO(2n− 2m) is generated by a single
element of codimension n−m and of square 0. By [32, §14] (see also [35, Theorem 5.1]),
the natural graded ring homomorphism CH(BP ′) → CH(S/P ′) is surjective and, as a
CH(BS)-module, the ring CH(BP ′) is generated by 1 and any lift of the generator of
the ring CH(S/P ′). The image e of such a lift in CH(X+

m) generates together with 1 the
CH(Xm)-module CH(X+

m) as follows from the commutative square

CH(BP ′)
onto−−−→ CH(X+

m)x x
CH(BS)

onto−−−→ CH(Xm).

To finish the proof of Proposition 7.2, it remains to check the statement on the image
of e in CH(X). To make it true, a specific choice of the lift in the construction of e needs
to be made.

The automorphism (a, b, c) 7→ (a, ab, c) of the product Gm ×GL(m− 1)×SO(2n− 2m)
yields an isomorphism P ′ = GL(m − 1) × Q, where Q := (Gm × SO(2n − 2m))/µ2. It
follows by [35, §6] that

CH(BP ′) = CH(B GL(m− 1))⊗ CH(BQ).

As follows from the commutative square

CH(BP ′) −−−→ CH(S/P ′)xinjection

∥∥∥
CH(BQ) −−−→ CH(GL(2n− 2m)/ SO(2n− 2m)),

we can (and do) choose a lift to CH(BP ′) of the generator of CH(S/P ′) inside the subring
CH(BQ) ⊂ CH(BP ′).
The variety X is identified with the quotient G+/P whose Chow ring does not depend

on the base field. The composition CH(BP ′) = CH(BP ) → CH(X+
m) → CH(X), we need

to consider, is given by the natural homomorphism CH(BP ) → CH(G+/P ), which factors
(see [2, Lemma 2.2]) as

CH(BP ) → CH(BT )W → CH(G+/P ),

where T is the standard split maximal torus of G+ (contained in P ′ ⊂ P ) and W is the
corresponding Weyl group. The torus T , sitting inside the product P ′ = GL(m− 1)×Q,
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decomposes in the direct product TGL × TQ of the standard maximal split tori of the
factors GL(m− 1) and Q. The product WGL ×WQ of the corresponding Weyl groups is
the Weyl group W . The composition CH(BQ) ↪→ CH(BP ′) → CH(BT )W factors through

(7.3) CH(BQ) → CH(BTQ)
WQ .

The ring on the right in (7.3) has been studied in [9, Lemma 4.3 and its proof]. It has
been shown that as a module over CH(B(Gm ×GL(2n − 2m))/µ2) it is generated by 1
and the element

(7.4) E := 2n−m−1yn−m + 2n−m−1y1 . . . yn−m.

Here we view the torus TQ as the quotient by µ2 of the standard split maximal torus
of the product Gm × SO(2n − 2m). The Chow ring of the classifying space of the latter
torus is identified with the polynomial ring Z[y, y1, . . . , yn−m] so that CH(BTQ) becomes
the subring in the polynomial ring generated by the polynomials 2y, y1+y, . . . , yn−m+y.
Note that

E =
1

2

(
(2y)n−m +

n−m∏
i=1

(
2(yi + y)− 2y

))
is indeed in CH(BTQ).

We may choose a lift to CH(BQ) of the generator of CH(S/P ′) the way that it maps
to E under (7.3). The image in CH(X) of the first summand in the definition (7.4) of E
equals 2n−m−1tn−m. The image t′ of the second summand satisfies τ(t′) = −t′. �
Proof of Theorem 7.1. In order to prove Theorem 7.1, it suffices to show that l+(m) ≥
l(m) for every m ∈ {1, . . . , n − 1} of the form m = 2s − 2 with s ∈ {2, . . . , r}. Below in
the proof we assume that m is of such form; in particular, n ≥ 3.

As in §6, let R′ ⊂ CH(X) be the image of the change of field homomorphism

CH(Xm) → CH(X+
m) → CH(X).

Abusing notation, we denote the image of e ∈ CH(X+
m) in CH(X) by the same symbol.

Let deg : CH(X) → Z be the degree homomorphism (vanishing on the Chow ring’s homo-
geneous components of positive dimensions). By Proposition 7.2, the image of CH(X+

m)
in CH(X) equals R′ +R′ · e. Therefore

deg(R′ +R′ · e) = 2l
+(m)Z.

Since deg(R′) = 2l(m)Z, to prove Theorem 7.1 it suffices to check that

(7.5) deg(R′ · e) ⊂ 2l(m)Z.
Recall that e = 2n−m−1tn−m + t′, where τ(t′) = −t′. For any x ∈ R′, one has τ(x) = x

and therefore τ(xt′) = −xt′. Since deg(y) = deg(τ(y)) for any y ∈ CH(X), it follows that
deg(xt′) = 0. Therefore

(7.6) deg(R′ · e) = 2n−m−1 deg(R′ · tn−m).

Recall that X is the variety of totally isotropic subspaces U ⊂ W of dimensions 1 and
m of a 2n-dimensional split quadratic form. In particular, X is endowed with tautological
vector bundles U and W of ranks 1 and m. As in §6, we write R ⊂ CH(X) for the subring
generated by their Chern classes.



PARTIALLY SPLITTING PGO-TORSORS 17

The inclusion R′ · tn−m ⊂ R implies that deg(R′ · tn−m−1) ⊂ deg(R). Besides, deg(R) =
2mZ as explained in §6. It follows from (7.6) that

deg(R′ · e) ⊂ 2n−1Z.
If n is not a 2-power, then n− 1 = l(n− 1) ≥ l(m), giving (7.5).
If n is a 2-power, i.e., n = 2r−1, and m 6= n − 2, then n − 1 = l(n − 3) ≥ l(m), giving

(7.5) once again.
We finish by considering the remaining case: n = 2r−1 and m = n − 2. Here we have

l(m) = n and the desired inclusion (7.5) reads as 2 deg(R′ · t2) ⊂ 2nZ, or, after cancelling
by 2, as

deg(R′ · t2) ⊂ 2n−1Z.
Acting like in the end of the proof of Theorem 6.6, one checks that every element in

the 2-dimensional component of R′ vanishes in R/2R. Therefore every element in the
0-dimensional component of R′ · t2 vanishes in R/2R as well, giving the inclusion

deg(R′ · t2) ⊂ 2 deg(R) = 2 · 2mZ = 2n−1Z. �

Appendix: Index of a generic torsor

by Alexander S. Merkurjev

Let F be a field and G be an affine group scheme over F of finite type. Choose an
embedding G ↪→ GL(N) for some N and consider the quotient variety X := GL(N)/G
(existing by [27, Theorem 7.18]). The quotient morphism f : GL(N) → X is a G-torsor
(see [27, Corollary 5.27]).

Theorem A.1. The G-torsor f : GL(N) → X is versal, i.e., for every G-torsor h : E →
SpecK over a field extension K/F with K an infinite field and every nonempty open
subset U ⊂ X, there is a point x ∈ U(K) such that h is isomorphic to the pullback x∗(f)
of f with respect to the morphism x : SpecK → X.

Proof. Note that the morphism GL(N)× E → SpecK is a (GL(N)× G)-torsor over K,
where the action of GL(N)×G on GL(N)× E is defined by the formula

(a, g)(b, e) = (gba−1, ge).

It follows that there exists a G-torsor GL(N) × E → (GL(N) × E)/G (with respect to
the diagonal G-action) and (GL(N)× E)/G → SpecK is a GL(N)-torsor.
Consider the following diagram with the two pullback squares and the upper horizontal

maps given by projections:

GL(N)

f

��

GL(N)× Eoo

g

��

// E

h

��
X (GL(N)× E)/G

uoo s // SpecK

Since every GL(N)-torsor over a field is trivial, the variety (GL(N)×E)/G is isomorphic
to GL(N) over K. Since K is an infinite field, the K-points in GL(N) are dense, so that
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there is a point t : SpecK → (GL(N) × E)/G with the image in u−1(U) such that the
composition s ◦ t is the identity of SpecK. It follows that

h = (s ◦ t)∗(h) = t∗(s∗(h)) = t∗(g) = t∗u∗(f) = (u ◦ t)∗(f)

and we can take x = u ◦ t. �

Let I := GL(N) and let f : I → X be the versal G-torsor of Theorem A.1. Set
L = F (X). The generic fiber Egen → Spec(L) of f is a generic G-torsor.

Theorem A.2. Let h : E → SpecK be a G-torsor over a field extension K/F . Then the
index i(E) of E divides i(Egen).

Proof. Suppose first that F is an infinite field. Let z ∈ Egen be a closed point of degree

d. It sufficed to show that i(E) divides d. The residue field L̃ := L(z) is a field extension
of L of degree d.

Write r : X̃ → X for the normalization of X in L̃, so F (X̃) = L̃. The composition

z = Spec L̃ ↪→ Egen → I

yields a rational morphism s : X̃ 99K I such that the composition X̃ 99K I
f−→ X coincides

with r.

Lemma A.3. Let Ũ ⊂ X̃ be a nonempty open subset. Then there is a nonempty open

subset U ⊂ X such that r−1(U) ⊂ Ũ .

Proof. We may assume that X = SpecA and X̃ = Spec Ã are affine schemes and Ũ =

DX̃(ã) for a nonzero ã ∈ Ã is a principal open set. Since Ã is integral over A, ã divides a

nonzero element a ∈ A. It follows that r−1(DX(a)) = DX̃(a) ⊂ DX̃(ã) = Ũ . �

Let Ũ ⊂ X̃ be the open set of definition of the rational morphism s. By Lemma

A.3, shrinking X (together with X̃ and I) we may assume that s is regular (everywhere
defined). Moreover, shrinking X further, we may also assume that the finite morphism

r : X̃ → X is flat (see [31, Proposition 29.27.1]).
Recall that h : E → SpecK is a G-torsor over a field extension K/F . By Theorem A.1,

there is a morphism x : SpecK → X over F such that the pullback of f : I → X with

respect to x is isomorphic to h. Write W → SpecK for the pullback of r : X̃ → X with
respect to x. We have the following diagram:

E

h

��

// I

f

��

W

k{{ww
ww
ww
ww
w

t

ccGGGGGGGGGG
// X̃

s

__@@@@@@@@

r
����
��
��
��

SpecK
x // X

Since r is flat and finite of degree d, W is finite of degree d over K. In other words, the
class [W ] of W in the group of 0-cycles Z0(W ) on W has degree d (over K). It follows
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that the image of [W ] under the push-forward homomorphism t∗ : Z0(W ) → Z0(E) is a
0-cycle of degree d, therefore, i(E) divides d = deg(z).

Now suppose that F is a finite field. Given a prime number p, let F ′/F be an infinite
algebraic field extension such that the degree of every subextension in F ′/F finite over F
is prime to p. Set X ′ := XF ′ := X ×F SpecF ′.

Lemma A.4. The ratio i(X)/i(X ′) is an integer prime to p.

Proof. Let w : X ′ → X be the first projection. The composition

Z0(X)
w∗
−→ Z0(X

′)
degX′−−−→ Z,

where degX′ is the degree map of X ′, coincides with the degree map degX of X. Therefore,
i(X)/i(X ′) is an integer.
Let c ∈ Z0(X

′) be a 0-cycle on X ′. There is a finite subextension F ′′/F of F ′/F such
that c comes from Z0(XF ′′). The composition

Z0(XF ′′)
w∗−→ Z0(X)

degX−−−→ Z
coincides with [F ′′ : F ] ·degX , hence i(X) divides [F ′′ : F ] ·deg(c) and hence i(X) divides
[F ′′ : F ] · i(X ′). Since [F ′′ : F ] is prime to p, the integer i(X)/i(X ′) is prime to p. �
By Lemma A.4,

vp(i(E)) = vp(i(E
′)) and vp(i(Egen)) = vp(i(E

′
gen)),

where vp is the p-adic valuation, E ′ := E ×F SpecF ′, and E ′
gen := Egen ×F SpecF ′. Note

that E ′
gen is a generic torsor for the group scheme G′ := G ×F SpecF ′ over the field F ′.

Since F ′ is an infinite field, by the first part of the proof, i(E ′) divides i(E ′
gen). It follows

that vp(i(E)) ≤ vp(i(Egen)) for every p, hence i(E) divides i(Egen). �
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