ESSENTIAL DIMENSION OF QUADRICS

NIKITA KARPENKO AND ALEXANDER MERKURJEV

To the memory of Oleg Izhboldin

ABSTRACT. Let X be an anisotropic projective quadric over a field F' of
characteristic not 2. The essential dimension dim.s(X) of X, as defined by
Oleg Izhboldin, is

dimes(X) = dim(X) —i(X) + 1,

where i(X) is the first Witt index of X (i.e., the Witt index of X over its
function field).

Let Y be a complete (possibly singular) algebraic variety over F' with
all closed points of even degree and such that Y has a closed point of odd
degree over F'(X). Our main theorem states that dim.s(X) < dim(Y") and
that in the case dim.s(X) = dim(Y") the quadric X is isotropic over F(Y).

Applying the main theorem to a projective quadric Y, we get a proof of
Izhboldin’s conjecture stated as follows: if an anisotropic quadric Y becomes
isotropic over F(X), then dim.s(X) < dim.s(Y’), and the equality holds if
and only if X is isotropic over F(Y'). We also solve Knebusch’s problem by
proving that the smallest transcendence degree of a generic splitting field
of a quadric X is equal to dim.s(X).

Let (V, ) be a non-degenerate quadratic form of dimension at least 2 over
a field F' of characteristic not 2 and let X = @Q(p) be the quadric hypersurface
given by the equation ¢(z) = 0 in the projective space P(V'). We say that the
quadric X is anisotropic if ¢ is an anisotropic quadratic form. By Springer’s
theorem, every closed point of an anisotropic quadric X has even degree. Is it
possible to compress X rationally, i.e., to find a rational morphism X — Y to
a variety Y of smaller dimension with all closed points of even degree?

The quadratic form ¢ is isotropic over the function field F'(X), hence, by
the general theory of quadratic forms, ¢p(x) is isomorphic to ¢ LEH for some
anisotropic quadratic form ¢ over F'(X) and some k > 1, where H stays for
the hyperbolic plane. The number £ is called the first Witt index of ¢ (or X),
and we denote it by i(p) (or i(X)). Let V' C V be a subspace of codimension
i(X)—1. Since V'® F(X) intersects nontrivially a totally isotropic subspace of
V ® F(X), the anisotropic quadric X’ = Q(¢|y+) becomes isotropic over F'(X),
i.e., X compresses to the subvariety X’ of dimension dim(X) —i(X)+ 1. The
latter integer is denoted dim.s(X) and called the essential dimension of X.

We prove in the paper (Corollary 3.4) that an anisotropic quadric X cannot
be compressed to a variety Y of dimension smaller than dim.(X) with all

Date: December 2002.
The second author was supported in part by NSF Grant #0098111.
1



2 N. KARPENKO AND A. MERKURJEV

closed points of even degree. Moreover, if there is a rational morphism X — Y
with dim(Y) = dim.s(X), then there is a rational morphism ¥ — X ie.,
the quadric X is isotropic over F'(Y). Applying this result to a projective
quadric Y, we get a proof of Izhboldin’s conjecture (Theorem 4.1) stated as
follows (cf. [4]): if an anisotropic quadric Y becomes isotropic over F'(X), then
dime,(X) < dim,(Y), and the equality holds if and only if X is isotropic over
F(Y).

We work with correspondences rather than with rational morphisms. The
main result of the paper (Theorem 3.1) is formulated in terms of correspon-
dences that provide a more flexible tool for study of relations between varieties.

A field in the paper is an arbitrary field of characteristic not 2 (the character-
istic restriction is important only there where quadratic forms are involved).
By scheme we mean a separated scheme of finite type over a field, and by
variety an integral scheme. We write CHy(Y") for the Chow group of rational
equivalence classes of dimension d algebraic cycles on a scheme Y.

1. FIRST WITT INDEX OF GENERIC SUBFORMS

Let ¢ be a (non-degenerate) quadratic form over F. Recall that ¢ ~
YanLKH for an anisotropic form ¢,,. The integer k is the Witt index iy (o)
of .

For a field extension L/F, ¢ denotes the form ¢ ®p L. If dimy > 3 or
dime = 2 and ¢ is anisotropic, we write F'(¢) for the function field F(X)
of the (integral) quadric X defined by ¢. The first Witt index i(p) of an
anisotropic form ¢ is defined as iy (pre)) > 1.

By a subform of a quadratic form ¢ we mean the restriction of ¢ on a linear
subspace of the vector space of ¢ and by a subquadric of the quadric X defined
by ¢ we mean the closed subscheme of X given by a subform of ¢. For the
reader’s convenience we collect some basic properties of the Witt indices in the
following

Lemma 1.1. Let ¢ be an anisotropic quadratic form over F.

(1) The first Witt index i(p) coincides with the minimal Witt indez of vg,
when E runs over all field extension of F such that the form ¢g is
150tropic.

(2) For any field extension L/ F such that ¢y, is anisotropic, we have i(pyr) >
i(p).

(3) For an r-codimensional subform 1 of ¢ and every field extension E/F,
one has iw (Vg) > iw(pg) — r and therefore i(1p) > i(p) —r.

Proof. The first statement is proven in [7] and the second follows from the
first one. The intersection of a maximal isotropic subspace U (of dimension
iw(¢g)) of the form pg with the space of the subform vy is of codimension
at most r in U, whence the third statement. U

We are going to determine the first Witt index of certain subforms of a given
anisotropic quadratic form. These subforms are generic in a sense (defined over
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certain purely transcendental extensions of the base field), at least their first
Witt indices turn out to be the minimal possible ones. The construction of
these subforms is borrowed from [3, proof of lemma 7.9] (where a different
property of these subforms is studied).

Proposition 1.2. Let ¢ be an anisotropic quadratic F-form, and let n be an
integer such that 0 < n < dim ¢ —2. There exists a purely transcendental field
extension F'/F and an n-codimensional subform 1 of ¢z such that

o Jile) = n, if i(e) >n;
i) = { 1, if i) <n.

Proof. 1t suffices to give a proof for n = 1 in which case dimp > 3. Let ¢
be an indeterminate. We consider the quadratic F'(t)-form n = @pe L (—t)
and let F' be the function field of 5 over F(t) . The field extension F/F is
clearly purely transcendental. Moreover, the anisotropic form ¢z represents ¢,
therefore o ~ 1p L (t) for certain 1-codimensional subform v of @z over F.

We are going to determine the first Witt index of ¢. We set i = i(p). First
of all, by Lemma 1.1(3), we have i(¢)) > i — 1. Let ¢’ be the anisotropic part
of the form yp(,). We write 7 for the form 'L (—t) over F(¢)(t).

There are following isomorphisms of F'(¢)-forms (we omit the subscript F(y)
in the formula):

YIH ~ L (t) L(—t) ~ pl (—t) = ¢'L (—t) LilHl = 7 LiH.

Cancelling one copy of H, we get ¢ ~ 71 (i — 1)H over F(¢). Note that the
form 7z, is anisotropic because the field extension F(p)/F(p)(t) is purely
transcendental (by reason of the isotropy of the form np(,)«)). Therefore the
Witt index of ¢z, is ¢ — 1. If ¢ — 1 is positive, then i() <i—1 by Lemma

1.1(1), and we are done with this case. Otherwise i = 1, 1) ~ 7 over F(p) and
by Lemma 1.1(2),

(1) 1 <i(y) <i(Vpe,)) = iTa)-

The field extension F'(p)(t)(7)/F(y) is clearly purely transcendental. The
form 7 is isotropic over F(¢)(t)(7), hence the field F(o)(t) = F(@)(t)(7)(n)
is purely transcendental over F'(¢)(t)(7) and therefore over F(p). It follows
that the form ¢’ remains anisotropic over F(¢)(r). The form ¢’ is a subform
of 7 of codimension 1 over F'(p)(t), hence by Lemma 1.1(3),

1< iw (Tig ) < iw(@pm) +1=1
and therefore, i(7z ) = 1 and i(¢) = 1 by (1). O

Remark 1.3. In the case i(p) > 1, the first Witt index of every 1-codimensional
subform is known to be i(p) — 1. This result is due to A. Vishik [11, cor. 3]
which we do not use in this paper. It readily follows from Theorem 4.1.
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2. CORRESPONDENCES

Let X and Y be schemes over a field F'. Suppose that X is equidimensional
and set d = dim(X). A correspondence from X to Y, denoted a: X ~~ Y,
is an element v € CHy(X x Y). A correspondence « is called prime if «
is represented by a prime (integral) cycle. Every correspondence is a linear
combination of prime correspondences with integer coefficients.

Let a: X ~» Y be a correspondence. Assume that X is a variety and Y is
complete. The projection morphism p: X x Y — X is proper and hence the
push-forward homomorphism

pet CHg(X x V) = CHy(X) = Z - [X]

is defined [2, § 1.4]. The number mult(«) € Z such that p,(«) = mult(a) - [X]
is called the multiplicity of .. Clearly, mult(a + 8) = mult(a) + mult(3) for
any two correspondences a, 3: X ~ Y.

A correspondence «: Spec F' — Y is represented by a 0-cycle z on Y. We set
deg(z) = mult(a). This coincides with the usual notion of degree for O-cycles
as defined in [2, def. 1.4].

The image of a correspondence a: X ~» Y under the pull-back homomor-
phism

CHd(X X Y) — CH()(YF(X))
with respect to the flat morphism Yp(x) — X X Y is represented by a 0O-cycle
on Yr(x). The degree of this cycle is equal to mult(c) (see [6, lemma 1.4]).

Lemma 2.1. Let F/F be a purely transcendental field extension. Then
deg CHo(Y) = deg CHo(Y%) -

Proof. Tt suffices to consider the case where F is the function field of the affine
line A!. The statement follows from the fact that the restriction homomor-
phism CH,(Y) = CH,(Yp(a1)) is surjective (cf. [5, proof of prop. 3.12]) as the
composite of the surjections

CH.(Y) = CH.1(Y x A') and CH, (Y x A") = CH,(Yp@n)
(for the surjectivity of the first map see [2, prop. 1.9]). O

Let X and Y be varieties over F' and dim(X) = d. The generic point of a
multiplicity » > 0 prime d-dimensional cycle Z C X x Y defines a degree r
closed point of the generic fiber Yp(x) of the projection X x Y — X and vise
versa. Hence the following two sets are naturally bijective for every r > 0:

1) multiplicity r prime d-dimensional cycles on X x Y;
2) closed points of Yp(x) of degree r.

A rational morphism X — Y defines a multiplicity 1 prime correspondence
X ~~ Y as the closure of its graph. Conversely, a multiplicity 1 prime cycle
Z C X x Y is birational to X and therefore the projection to Y defines a
rational map X ~ Z — Y. Hence there are natural bijections between the
sets of:
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0) rational morphisms X — Y/
1) multiplicity 1 prime d-dimensional cycles on X x Y
2) rational points of Yr(x).

A multiplicity r prime correspondence X ~» Y can be viewed as a “generi-
cally r-valued map” between X and Y.

Let g: Y — Y’ be a morphism of complete schemes. The image [ of a
correspondence a: X ~~ Y under the push-forward homomorphism

(ldX X g)* CHd(X X Y) — CHd(X X Y/)

is a correspondence from X to Y’. The following statement is a consequence
of functoriality of the push-forward homomorphisms:

Lemma 2.2. mult(f) = mult(«). O

Let X’ C X be a closed subvariety such that the embedding i: X' — X is
regular of codimension r [2, B.7.1]. Then for every scheme Y, the embedding
i Xidy: X' XY — X xY is also regular of codimension r, hence the pull-back
homomorphism

(Z X ldy)* CHd(X X Y) — CHd,T<X/ X Y)
is defined [2, § 6]. The pull-back v of a correspondence o : X ~» Y is a
correspondence from X’ to Y.

Lemma 2.3. mult(y) = mult(a). O
Proof. The statement follows from the commutativity of the diagram [2, th. 6.2]:

(iXidy)*

CHy(X x Y) CHy_ (X' x Y)

D= l J,p;
CHu(X) ——  CHy.(X"),
where p and p’ are the projections. O

Let a: X ~» Y be a correspondence between varieties of dimension d. We
write o for the element in CHy(Y x X)) corresponding to o under the exchange
isomorphism X x Y ~ Y x X. The correspondence a': Y ~ X is called the
transpose of a.

3. MAIN THEOREM

In this section X is an anisotropic projective quadric over a field F. We
recall that the essential dimension dim.s(X) of X is defined as the integer
dim(X) —i(X) + 1.

Theorem 3.1. Let X be an anisotropic projective F-quadric and let Y be
a complete F-variety with all closed points of even degree. Suppose Y has a
closed point of odd degree over F(X). Then

(1) dimes(X) < dim(Y);
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(2) if, moreover, dim.,(X) = dim(Y), then X is isotropic over F(Y').

Proof. A closed point of Y over F(X) of odd degree gives rise to a prime
correspondence «: X ~» Y of odd multiplicity. By Springer’s theorem [8, ch.
VII, th. 2.3], to prove the statement (2) it is sufficient to find a closed point of
XFp(y) of odd degree or equivalently, to find an odd multiplicity correspondence
Y ~ X.

Assume first that ¢(X) = 1, so that dim.s(X) = dim(X) . We prove both
statements simultaneously by induction on n = dim(X) + dim(Y").

If n =0, ie., X and Y are of dimension zero, we have X = Spec K and
Y = Spec L, where K and L are field extensions of F' with [K : F] = 2 and
[L : F] even. Taking the push-forward to Spec F' of the correspondence a we
get the formula

[K : F]-mult(a) = [L: F] - mult(a).
Since mult(«) is odd, a': Y ~» X is a correspondence of odd multiplicity.

Assume that n > 0 and let d be the dimension of X. We are going to prove
(2), so that we have dim(Y) = d > 0. It is sufficient to show that mult(a?)
is odd. Assume that the multiplicity of o' is even. Let x € X be a closed
point of degree 2. Since the multiplicity of the correspondence Y x z: Y ~» X
is 2 and the multiplicity of z x Y : X ~» Y is zero, we can modify « by an
appropriate multiple of x X Y and therefore assume that mult(a) is odd and
mult(a') = 0. Hence the degree of the pull-back of a* on Xp(yy is zero. By [5,
prop. 2.6] or [10], the degree homomorphism

deg: CH()(XF(y)) — 7

is injective. Therefore there is a nonempty open subset U C Y such that the
restriction of @ on X x U is trivial. Write Y’ for the reduced scheme Y \ U,
i X XY XxYand j: X xU — X xY for the closed and open embeddings
respectively. The sequence

CHy(X x Y') 2 CHy(X x V) L5 CHy(X x U)

is exact [2, prop. 1.8]. Hence there exists o/ € CHy(X x Y”) such that i, (o) =
a. We can view o' as a correspondence X ~» Y’. By Lemma 2.2, mult(a/) =
mult(a), hence mult(a’) is odd. Since o/ is an integral linear combination of
prime correspondences, we can find a prime correspondence 3: X ~» Y’ of odd
multiplicity, i.e., Y’ has a closed point of odd degree over F(X). The class 3
is represented by a prime cycle, hence we may assume that Y’ is irreducible.
Since dim(Y”’) < dim(Y') = dim(X) = dim.s(X), by induction hypothesis, we
get a contradiction with the statement (1).

In order to prove (1) assume that dim(Y) < dim(X). Let Z C X xY
be a prime cycle representing a. Since mult(a) is odd, the field extension
F(X) — F(Z) is of odd degree. The restriction of the projection X x Y — Y
gives a proper morphism Z — Y. Replacing Y by the image of this morphism,
we come to the situation where Z — Y is a surjection and so, the function
field F'(Z) is a field extension of F(Y).
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In view of Proposition 1.2, extending the scalars to a purely transcendental
extension F of F, we can find a subquadric X’ of X of the same dimension
as Y having i(X’) = 1. We note that according to Lemma 2.1, the hypothesis
on X and Y is still satisfied over F. By Lemma 2.3, the pull-back of o with
respect to the regular embedding X’ x Y < X x Y produces an odd multi-
plicity correspondence X’ ~» Y. Since dim(X’) < dim(X), by the induction
hypothesis, the statement (2) holds for X’ and Y, that is, there exists an odd
multiplicity correspondence S: Y ~» X'. We compose  with the embedding
X" < X to produce an odd multiplicity (in fact, of the same multiplicity as
B) correspondence v: Y ~» X (Lemma 2.2). We may assume that v is prime.
Let T'C Y x X be a prime cycle representing . Since the multiplicity of ~ is
odd, the projection T" — Y is surjective, so that F(T') is a field extension of
F(Y) of odd degree.

Using the odd multiplicity prime correspondences av: X ~» Y and v: Y ~»
X, we are going to construct an odd multiplicity correspondence 6: X ~» X
with even mult(6") getting this way a contradiction with

Theorem 3.2 ([6, th. 6.4]). Let X be an anisotropic quadric with i(X) =
1. Then for every correspondence § : X ~» X, one has mult(d) = mult(5)
(mod 2).

Note that in the case where Y is smooth we can simply take for o the
composite of the correspondences v and 7 (cf. [6, proof of prop. 7.1]).

Lemma 3.3. Let F'— L and F — FE be two field extensions with odd degree
[L: F]. Then there is a field K and field extensions L — K and E — K such
that [K : E] is odd.

Proof. We may assume that L is generated over F' by one element, say 6. Let
f € F[t] be the minimal polynomial of § (of odd degree). Choose an odd
degree irreducible polynomial g € E[t] dividing f and set K = E[t]/gE[t]. O

By Lemma 3.3 applied to the field extensions F(T') and F(Z) of F(Y'), we
can find a field extension K of F/(T) and F(Z) such that [K : F(Z)] is odd. Let
S be a projective variety over F' which is a model of the field extension K/F.
Replacing S by the closure of the graph of the rational morphism S — Z x T,
we come to the situation where the rational morphisms S — Z and S — T
are regular. Let f be the composite of S — Z with Z — X and g be the
composite of S — T and T"— X. We write ¢ for the correspondence X ~» X
given by the image of the morphism (f,g): S — X x X. The multiplicity

mult(d) = [F(S) : F(X)] =[F(S): F(Z)]-[F(Z) : F(X)]
is odd and the multiplicity of the transpose of § is zero since g is not surjective
as dim7T = dimY < dim X, a contradiction.

We have proven Theorem 3.1 in the case i(X) = 1. Consider now the general
case (the first Witt index of X is arbitrary). Let X’ be a subquadric of X with
dim(X’) = dimes(X’) = dim.s(X) which we may find after extending the
scalars to a purely transcendental extension according to Proposition 1.2. By
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Lemma 2.3, the pull-back 5: X’ ~» Y of o with respect to the embedding of
X' xY into X x Y is an odd multiplicity correspondence. Therefore dim X’ <
dim Y by the first part of the proof. If dim X’ = dim Y, then again by the first
part of the proof, X’ and hence X have rational points over F(Y). O

As the first corollary of the main theorem we get that an anisotropic quadric
X cannot be compressed to a variety Y of dimension smaller than dim,4(X)
with all closed points of even degree:

Corollary 3.4. Let X be an anisotropic projective F-quadric and let' Y be
a complete F-variety with all closed points of even degree. If dim.s(X) >
dim(Y), then there are no rational morphisms X — Y. O

Remark 3.5. For X and Y as in part (2) of Theorem 3.1, assume additionally
that dim(X) = dim.s(X), i.e., i(X) = 1. In the proof of Theorem 3.1, it is
shown that mult(a') is odd for every odd multiplicity correspondence a:: X ~»
Y.

We have also the following more precise version of Theorem 3.1:

Corollary 3.6. Let X andY be as in Theorem 3.1. Then there exists a closed
subvariety Y' C'Y such that
(i) dim(Y") = dim.4(X);
(ii) Y}Q(X) possesses a closed point of odd degree;
(ili) Xp(yry is isotropic.

Proof. Let X’ C X be a subquadric with dim(X’) = dims(X). Then, by
Theorem 4.1, dim.,(X’) = dim(X’). An odd degree closed point on Yp(x)
gives an odd multiplicity correspondence X ~» Y which in turn gives an
odd multiplicity correspondence X’ ~» Y. We may assume that the latter
correspondence is prime and take a prime cycle Z C X’ x Y representing
it. We define Y’ as the image of the proper morphism Z — Y. Clearly,
dim(Y’) < dim(Z) = dim(X’) = dim.s(X). On the other hand, Z gives an
odd multiplicity correspondence X’ ~~ Y’  therefore dim(Y”) > dim(X’) by
Theorem 3.1, and the condition (i) of Corollary 3.6 is satisfied. Moreover,
YA(X,) has a closed point of odd degree. Since the field F(X x X') is purely
transcendental over F'(X”') as well as over F'(X), Lemma 2.1 shows that there
is an odd degree closed point on Y}(X), that is, the condition (ii) of Corol-
lary 3.6 is satisfied. Finally the quadric X },(Y,) is isotropic by Theorem 3.1;
therefore Xp(yy is isotropic. O

4. APPLICATION TO THE ALGEBRAIC THEORY OF QUADRATIC FORMS

Now we apply Theorem 3.1 to a special (but may be the most interesting)
case where the variety Y is also a projective quadric:

Theorem 4.1. Let X and Y be anisotropic quadrics over F and suppose that
Y is isotropic over F(X). Then
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(1) dimes(X) < dim,(Y);
(2) moreover, the equality dim.s(X) = dims(Y) holds if and only if X is
isotropic over F(Y).

Proof. Let us choose a subquadric Y C Y with dim(Y”’) = dim(Y") (we can
do it over a purely transcendental extension of the base field by Proposition
1.2). Since Y’ becomes isotropic over F(Y) and Y is isotropic over F(X),
Y’ is isotropic over F'(X). According to Theorem 3.1, dim.s(X) < dim(Y”).
Moreover, in the case of equality, X is isotropic over F(Y’) and hence over
F(Y). Conversely, if X is isotropic over F(Y'), interchanging the roles of X
and Y, we get as above the inequality dim.(Y") < dim,s(X), hence the equality
holds. U

We have the following upper bound for the Witt index of Y over F/(X).

Corollary 4.2. Let X andY be anisotropic quadrics over F and suppose that
Y is isotropic over F(X). Then

ZW(YF(X)) - Z(Y) < dimes(y) - dimes(X) :

Proof. 1f dim.s(X) = 0, the statement is trivial. Otherwise, let Y’ be a
subquadric of Y of dimension dim.s(X) — 1. Since dim.(Y’) < dim(Y’) <
dim.s(X), the quadric Y’ remains anisotropic over F(X) by the first part
of Theorem 4.1. Therefore, by Lemma 1.1(3), iw(Yrx)) < codimy (Y') =
dim(Y") — dims(X) + 1, whence the inequality. O

Let ¢ be an anisotropic quadratic form over F' of dimension at least 2 and
let X be the quadric given by . A field extension K/F is called a generic
splitting field of X (and of ¢) if X is isotropic over K and for every field
extension L/F with X isotropic, there is an F-place from K to L. In [7,
§4] M. Knebusch raised the problem to determine the smallest transcendence
degree of a generic splitting field of a given quadric X (we thank J. Arason for
pointing out this question).

Theorem 4.3. The smallest transcendence degree of a generic splitting field
of a quadric X is equal to dim.q(X).

Proof. Let X' be a subquadric of X of dimension dim.,(X). Since X’ has a
point over every field extension L/F with X isotropic, the field F(X') is a
generic splitting field of X of transcendence degree dim. (X).

Let K/F be a generic splitting field of the quadric X. We will show that

(2) tr. deg(K/F) > dim.s(X).

Replace K by a finitely generated subextension of K/F that splits X. Let Y’
be a projective variety over F' which is a model of the field extension K/F.
Since X is isotropic over K, there is a rational morphism Y’ — X. Let Y be
the closure of the graph of this morphism. Then Y is also a projective model
of K/F and every closed point of Y has even degree since there is a morphism
Y — X. Since X is isotropic over F'(X), there is a place from K to F(X) over
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F'. The valuation ring of this place has a center y € Y and therefore, the place
gives a morphism Spec F'(X) — Y with the image {y}. In particular, Y has a
rational point over F(X). By Theorem 3.1, dim(Y") > dim.s(X), whence the
inequality (2). O

We write W (F') for the Witt ring of a field F' and [ for the fundamental
ideal of W(F'), i.e., for the ideal of classes of even dimensional forms. For
every n > 1 the ideal I" is additively generated by the classes of n-fold Pfister
forms. If ¢ is a nonzero anisotropic form such that ¢ € I"™ then by the Arason-
Pfister theorem [9, th. 5.6], dim(y) > 2". The following theorem was proved
by A. Vishik. We give a simpler proof of this statement due to D. Hoffmann.

Theorem 4.4. Let ¢ be an anisotropic quadratic form such that ¢ € I"™ and
dim(¢) > 2". Then dim(p) > 2" + 2"~

Proof. We can write the class of ¢ in W (F') in the form ¢ = @1 +pa+- -+ o,
where each ¢; is similar to an anisotropic n-fold Pfister form. Assume that
the statement is not true (in particular, n > 2) and choose a counterexample
¢ of the smallest dimension with the smallest number m of the ¢;’s (over all
fields).

Since the anisotropic part ¢ of the form ¢p(,) has dimension smaller than
¢, we must have dim(y’) < 2". Then for the quadric Y given by ¢ we have

i(Y) > (dim(p) —2")/2 = (dim(Y) — 2")/2 + 1
and therefore,
(3)  dim(Y) =dim(Y) —i(Y)+1 <dim(Y)/2+2" < 2" 272 1

since by assumption dim(p) < 2" + 2771,

We are going to prove that all the ¢; are pairwise similar. Assume that
there are two non-similar forms ¢; and ¢;. Consider the anisotropic part ¢ of
the form ¢; Ly;. Note that 1 is not similar to an n-fold Pfister form by the
choice of m.

We claim that dim(z)) > 2" +2"~1. By a theorem of Elman-Lam [1, th. 4.5],
the Witt index of the form ¢; 1, is either 0 of 2°, where s is the linkage
number of ¢; and ¢;. We have s # n since the forms ¢; and ¢; are non-similar
and s # n — 1 since 1 is not similar to an n-fold Pfister form. Thus, s <n —2
and therefore, dim(¢)) > 2" + 2"~1. The claim is proved.

It follows from [1, th. 3.2] that ¢ is not similar to an (n+1)-fold Pfister form.
Therefore, by [9, th. 5.4], ¥ is not hyperbolic over F(¢)). The Arason-Pfister
theorem implies that dimension of the anisotropic part of 1) is at least 2".
Hence i(¢)) < (dim(y) —2™)/2 and therefore, for the quadric X given by ¥ we
have

(4) dime(X) = dim(¢) —i(¢) = 1 > dim(¢)/2 + 2" =1 > 2" 42772 — 1.

It follows from Theorem 4.1, (3), and (4) that ¢ is anisotropic over F'(¢),
so that ¢ over F(¢) is also a minimal counterexample. But dimension of
the anisotropic part of ¢ (i.e., of p; Ly;) over F(¢) is smaller than dim(¢)).
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[terating the construction we come to the situation when dimension of the
anisotropic part of ¢; Ly; becomes smaller than 2™ 4+ 2"~ a contradiction to
the claim.

We have proved that all the ¢; are similar to some n-fold Pfister form p,
so that the class of ¢ in the Witt ring is divisible by p and therefore dim(¢p)
is divisible by 2™ [9, th. 5.4(iv)] since ¢ is anisotropic. This contradicts the
inequality 2" < dim ¢ < 2" + 2771, 0
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