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Abstract. We work with non-degenerate quadratic forms over fields of characteristic
̸= 2 and write I for the fundamental ideal in the Witt ring of quadratic forms. For given
n ≥ 4 and d ≥ 2n+2n−1, a construction of a generic d-dimensional quadratic form q ∈ In

is not available. To remedy this issue, we introduce a sequence of d-dimensional quadratic
forms in In, approximating q. It allows us to define and study certain invariants of q
including the reduced Chow ring and the indexes of its grassmannians as well as the
J-invariant of q. An extension of the results to characteristic 2 is also provided.
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1. Introduction

We work with non-degenerate quadratic forms over fields of characteristic different from
2 and write I for the fundamental ideal in the Witt ring of quadratic forms. For given
n ≥ 4 and d ≥ 2n+2n−1, a construction of a generic d-dimensional quadratic form q ∈ In

is not available. To remedy this issue, we introduce in §2 a sequence of d-dimensional
quadratic forms in In, approximating q. It allows us to define and study certain invariants
of q including the reduced Chow ring (see §3) and the indexes of its grassmannians as well
as the J-invariant of q (see §4).
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In §5, we formulate Conjecture 5.3 on the exact value of the J-invariant of q, derived
from some expectations concerning the possible value of the J-invariant on arbitrary
quadratic forms. Theorem 6.2 – another of our main highlights – proves this conjecture in
some important initial range. One of the steps in the proof is Proposition 6.3, detecting
the J-invariant of an anisotropic difference of pure parts of two n-fold Pfister forms.

In §7, we perform a brief study of the index of the highest grassmannian of q. The
upper bound on it, provided in Corollary 7.2, generalizes to arbitrary n a classical bound
for n = 3 available since the seventies.

All results extend to characteristic 2 as explained in §8.

2. Generic sequences

Let F0 be a field of characteristic ̸= 2. We work with finite-dimensional non-degenerate
quadratic forms over extension fields of F0. A quadratic form q with some given properties
is generic, if every quadratic form q′ with the same properties is a specialization of q
meaning that there is a smooth geometrically integral F0-variety X and a quadratic form
Q over X such that q is the generic fiber of Q (and thus a quadratic form over the function
field of X) whereas q′ is the fiber of Q over a point of X in the base field of q′.

Our interest in generic objects comes from the observation that they are usually easier
to study and, at the same time, information on them delivers some information on the
arbitrary ones.

Let I be the fundamental ideal in the Witt ring of classes of quadratic forms and let d be
a positive even integer. There are two different ways to construct a generic d-dimensional
quadratic form q whose class belongs to I3. One of them, which works “from inside”,
is based on the fact that the d-dimensional quadratic forms in I3 over a field F ⊃ F0

are classified by torsors under the split spin group Spin(d) over F . Thus a generic q is
delivered by a generic Spin(d)-torsor, which can be obtained as the generic fiber of the
quotient morphism

GL(N) → X := GL(N)/ Spin(d)

for an embedding of Spin(d) into a general linear group GL(N) over F0, see [14, §5.3].
This generic torsor (and therefore the corresponding generic form q) is defined over the
function field F0(X) of the smooth and geometrically integral quotient variety X.

The second way of getting q works “from outside”: we start with a generic d-dimensional
quadratic form in I2, or, more specifically, with the quadratic form

q′ :=
⟨
a1, . . . , ad−1, (−1)d/2a1 · · · ad−1

⟩
over the field F := F0(a1, . . . , ad−1) of rational functions over F0 in variables a1, . . . , ad−1.
The form q is then obtained from q′ by extending the base field of the latter to the function
field F (SB(C(q′))) of the Severi-Brauer variety X := SB(C(q′)) of the Clifford algebra
C(q′) of q′. So, this second way of getting q is based on the fact that X is a generic
splitting variety for the Clifford invariant of q′. The value of this invariant is an element
in the 2nd Galois cohomology group H2(F,Z/2Z). Following [15, Definition 1.8], we say
that a smooth F -variety X is a generic splitting variety of an element α ∈ Hn(F,Z/2Z),
provided that for any field extension K/F , αK = 0 if and only if X(K) ̸= ∅.
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Now let’s fix any n ≥ 4. Since by [19, Theorem 6.4] and the Arason-Pfister Hauptsatz,
for d < 2n+2n−1, any d-dimensional quadratic form in In is Witt-equivalent to a nonzero
scalar multiple of an n-fold Pfister form (such a scalar multiple is traditionally called a
general n-fold Pfister form), it is easy to construct a d-dimensional generic quadratic form
in In for such d. For d = 2n, for example, one can take q = a · ⟨⟨a1, . . . , an⟩⟩ over the field
of rational functions F0(a, a1, . . . , an).
For d ≥ 2n + 2n−1 however, a construction of q is not available. Nevertheless, one can

produce a sequence of forms in In “approximating q”. Again, this can be done “from
inside” as well as “from outside” of In.

The “from inside” way works as follows. One employs that any d-dimensional quadratic
form in In is Witt-equivalent to an orthogonal sum of several general n-fold Pfister forms.
Unlike the case with I3, we do not know if there exists some N such that N general Pfister
forms always suffice. So, instead of just one generic form, we are constructing a sequence
of forms, none of which being actually generic, but each next of which becoming “more
and more generic” in a sense. Namely, for any i ≥ 1, we take the orthogonal sum q′i of, say,
d+i generic general n-fold Pfister forms (defined as above, using disjoint sets of variables).
To obtain a d-dimensional form out of q′i, we partially split the latter in a generic way.
More precisely, we let the ith form qi in our final sequence to be a d-dimensional form
Witt equivalent to q′i viewed over the function field of its grassmannian of totally isotropic
((2n(d+ i)− d)/2)-planes.
The sequence q1, q2, . . . of quadratic forms in In, we obtained, has the following prop-

erty: every d-dimensional quadratic form in In is a specialization of the form qi for some
(sufficiently large) i. Moreover, for any i, the form qi is a specialization of qi+1.

The “from outside” way to get a sequence with the same properties is based on [2,
Theorem 0.1], providing a generic splitting ind-variety for any element in the Galois
cohomology of a field with coefficients in Z/2Z. More precisely, for any n ≥ 3, any
F ⊃ F0, and any element α ∈ Hn(F,Z/2Z), there is a sequence of smooth geometrically
integral closed F -subvarieties X1 ⊂ X2 ⊂ . . . such that for any field extension K/F , the
element αK vanishes if and only if Xi(K) ̸= ∅ for some (sufficiently large) i.
For simplicity, let’s take n = 4. In order to get our sequence q1, q2, . . . , we start

with a generic d-dimensional quadratic form q′ ∈ I3, consider a splitting ind-variety
X1 ⊂ X2 ⊂ . . . of the element α ∈ H3(F,Z/2Z) given by the 3d cohomological invariant
of q′, and we set qi := q′F (Xi)

.
This second construction, being very different from the first one, may have advantages

for some future applications; but we rely on the first construction in the sequel here.

3. The reduced Chow ring

Let G be the standard split special orthogonal group SO(d) over the field F0 and let
P ⊂ G be a standard parabolic subgroup in G. Any d-dimensional quadratic form q ∈ I2

over a field F ⊃ F0 yields a G-torsor Eq over F and the F -variety Xq := Eq/P . There is a
canonical homomorphism of Chow rings CH(Xq) → CH(X) with X := G/P , defined, e.g.,
in [7, §4]. (Since in contrast to [7, §4], the group G here is split, not just quasisplit, the
regularity assumption on F/F0, made in [7, §4], can be omitted.) We define the reduced
Chow ring C̄H(Xq) of Xq as the image of CH(Xq) in CH(X); it is isomorphic to the ring
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CH(Xq) modulo its ideal of elements of finite order, but the embedding C̄H(Xq) ↪→ CH(X)
is also of importance for us. Note that the additive group of CH(X) is finitely generated;
besides, 2d/2−1 CH(X) ⊂ C̄H(Xq) by the transfer argument and because q splits over a
finite base field extension of degree dividing this 2-power. It follows that only finitely
many subrings in CH(X) can be of the form C̄H(Xq) for some q.
By [7, Lemma 4.3], if q′ is a specialization of q, then C̄H(Xq) ⊂ C̄H(Xq′). It follows for

a generic sequence q1, q2, . . . of d-dimensional quadratic forms in In, constructed in §2,
that the sequence of the corresponding reduced Chow rings stabilizes, i.e.,

C̄H(Xqi) = C̄H(Xqi+1
) = . . .

for some i. The subring R ⊂ CH(X) thus obtained is called the reduced Chow ring of
a generic d-dimensional quadratic form in In. It is characterized by the two following
properties:

(1) R ⊂ CH(Xq) for any d-dimensional quadratic form q ∈ In over any extension field
of F0;

(2) R = CH(Xq) for some d-dimensional quadratic form q ∈ In over some extension
field of F0.

Moreover, given the generic sequence q1, q2, . . . of d-dimensional quadratic forms in In

from §2, property (2) holds for q = qi with some (sufficiently large) i.

4. Invariants derived from the reduced Chow ring

A lot of interesting invariants of a quadratic form q are determined by the reduced
Chow ring(s) CH(Xq). Below we recall definitions for two of them.

The index i(Y ) of a variety Y is the g.c.d. of degrees of its closed points. The index of
Xq is a 2-power which coincides with the index of the subgroup of reduced 0-cycle classes

C̄H0(Xq) ⊂ CH0(X) = Z.

The value given by the ring R from §3 is the maximum of i(Xq) when q runs over d-
dimensional quadratic forms in In over extension fields of F0. In the case of n = 3, this
maximal value has been extensively studied for arbitrary P in [3], [8], and [6]; for P being
the Borel subgroup, the integer i(Xq) coincides with the torsion index of the spin group
Spin(d) and has been computed in [17].
Now let us take a standard parabolic subgroup P ⊂ G such that X = G/P is a

component of the highest grassmannian of the standard split d-dimensional quadratic
form over F0, and let us consider the standard generators e1, . . . , el of the ring CH(X),
defined in [4, §86], where l := d/2−1. The J-invariant of a d-dimensional quadratic form
q is originally defined in [20] as the set of those i for which the class of ei is in the image
C̄h(Xq) of the composition

CH(Xq) → CH(X) →→ Ch(X) := CH(X)/2CH(X).

(For the sake of convenience, the complement in {1, . . . , l} of this set is considered instead
in [4].) Note that by [20] (see also [4]), the J-invariant of q determines the entire reduced
(modulo 2) Chow ring C̄h(Xq).
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Example 4.1. Let us fix some n ≥ 2 and let q ∈ I2 be a quadratic form of dimension
≥ 2n. One has q ∈ In if and only if the J-invariant of q contains all positive integers
< 2n−1 − 1. Indeed, the split form q satisfies the condition on the J-invariant. If q ∈ In

is non-split, the leading form of q (see [4, §25]) is a general Pfister form of foldness
m ≥ n. The complement of the J-invariant of a general m-fold Pfister form is the
singleton {2m−1 − 1}, see, e.g., [4, Example 88.10]. It follows by [4, Corollary 88.6] that
J(q) ⊃ {1, . . . , 2m−1−2} ⊃ {1, . . . , 2n−1−2}. Conversely, if q ̸∈ In, then by the J-filtration
conjecture, proved in [11, Theorem 4.3] (see also [4, Theorem 40.10]), the leading form of
q is a general Pfister form of foldness m < n and so 2m−1 − 1 ̸∈ J(q).

The value of the J-invariant given by R is the smallest (in the sense of inclusions) value
of the J-invariant of a d-dimensional quadratic form in In over an extension field of F0.
We call it the J-invariant of a generic d-dimensional quadratic form in In and use the
notation Jn

d for it.

5. The J-invariant of a generic quadratic form in In

It follows by [4, Corollary 88.6] that Jn
d = Jn

d+2 ∩ {1, . . . , l} with, as in §4, 2l + 2 = d.
Therefore Jn

d is just the ≤ l part of the union Jn :=
∪

d J
n
d which we call the J-invariant of

(an infinite-dimensional) generic quadratic form in In. Note that the inclusion In ⊃ In+1

yields the inclusion Jn ⊂ Jn+1.
It is known (see, e.g., [17]) that the set J3 consists of the 2-powers:

J3 = {1, 2, 4, 8, . . . }.
It would be interesting to determine Jn for n ≥ 4.

The set Jn satisfies the restriction given by the action of the modulo 2 (reduced)
Steenrod algebra on Ch(X). Namely, by [20, Proposition 5.12] (see also [4, 89.1]), if
i ∈ Jn and the binomial coefficient

(
i
j

)
is odd for some j ≥ 1, then i + j ∈ Jn as well.

In particular, according to Example 4.1, Jn contains the set Sn Steenrod-generated by all
2m − 1 with m ≤ n− 2.
The set Sn has the following nice description:

Lemma 5.1. The set Sn of integers Steenrod-generated by all 2m− 1 with 1 ≤ m ≤ n− 2
consists of the positive integers with at most n− 2 units in their 2-expansion.

Proof. By [4, Lemma 78.6], a binomial coefficient
(
i
j

)
is odd if and only if the set of

positions of units in the 2-expansion of j is contained in the similar set for i. In particular,
the inclusion 2m − 1 ∈ Sn yields 2m, . . . , 2m+1 − 2 ∈ Sn and so all integers < 2n−1 − 1 are
in Sn.

Let T n be the set of positive integers with at most n−2 units in the 2-expansion. If
(
i
j

)
is odd, then the number of units in the 2-expansion of i+ j is at most the similar number
for i. It follows that Sn ⊂ T n.
Conversely, for j ∈ T n, we prove that j ∈ Sn by induction on the number of all digits

in the 2-expansion of j. If this number is at most n− 2, then j < 2n−1 − 1 and so j ∈ Sn.
If this number is at least n − 1, the 2-expansion of i contains at least one zero. Erasing
the most left zero, we get an integer i < j which is in Sn by the induction hypothesis.
Since the binomial coefficient

(
i

j−i

)
is odd, we conclude that j = (j − i) + i ∈ Sn. �
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Remark 5.2. Let q be a quadratic form in In. For i ∈ J(q) with i < 2n + 2n−2 − 2, one

can show by induction that ei ∈ C̄H
i
(Xq). Indeed, a priori ei ∈ C̄H

i
(Xq)+2CHi(X). But

since the two smallest positive integers outside of Sn are 2n−1 − 1 and 2n−1 + 2n−2 − 1,
any product f ∈ CHi(X) of distinct generators e1, e2, . . . contains at most one ej with
j ̸∈ Sn. Since 2ej ∈ C̄H(Xq), it follows by the induction hypothesis that 2f ∈ C̄H(Xq).

The positive answer to [20, Question 5.13] implies1

Conjecture 5.3. The set Jn coincides with the set Sn Steenrod-generated by all 2m − 1
with m ≤ n− 2.

Conjecture 5.3 holds for n = 2: J2 = ∅ = S2, the first equality follows, e.g., from [17,
Theorem 3.2]. Since S3 is the set of 2-powers, Conjecture 5.3 holds for n = 3 as well. It
is however open for every n ≥ 4.

Remark 5.4. A priori, the set Jn depends on the initial field F0. If F0 ⊂ K0, then Jn

based on F0 is contained in Jn based on K0. One can show that Jn is the same for all F0

containing a given algebraically closed field; in particular, it suffices to prove Conjecture
5.3 for algebraic closures of prime fields. This follows from the observation made in [18,
Page 211] that, as a particular case of [16, Corollary 2.3.3], for any smooth scheme X over
an algebraically closed field F and any algebraically closed field K ⊃ F , Chow groups of
X with finite coefficients map isomorphically onto the Chow groups of XK .

6. Conjecture 5.3 in the range < 2n − 1

In the range < 2n − 1, Conjecture 5.3 translates as

(6.1) Jn ̸∋ 2n − 2i − 1 for i = n− 1, . . . , 1, 0.

Indeed, all positive integers in this range have at most n − 1 units in their 2-expansion
and the integers of (6.1) are exactly the ones with n− 1 units.

It follows from [5, Theorem 4] that Jn ̸∋ 2n−2i−1 for the two initial values i = n−1, n−2
of i in (6.1).

Theorem 6.2. For any n, Conjecture 5.3 holds in the range < 2n − 1.

Note that through the inclusions Jn ⊂ Jn+1 ⊂ . . . , Theorem 6.2 excludes more values
from Jn than just the values listed in (6.1).

Proof of Theorem 6.2. By [4, Lemma 82.6], the difference

⟨⟨a1, . . . , an⟩⟩′ ⊥− ⟨⟨b1, . . . , bn⟩⟩′

of pure parts of two generic n-fold Pfister forms over the field of rational functions

F0(a1, . . . , an, b1, . . . , bn)

is anisotropic. Therefore, Theorem 6.2 follows from Proposition 6.3 below, computing
the J-invariant of an arbitrary anisotropic difference of pure parts of two n-fold Pfister
forms. �

1An example with the negative answer for a generalization of [20, Question 5.13] has been obtained in
[13, §6]. However, no example with the negative answer for the original question is available so far.
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Proposition 6.3. Let q be the difference of pure parts of two n-fold Pfister forms over
some field F . If q is anisotropic, then the complement of its J-invariant consists of the
integers 2n − 2i − 1, i = n− 1, . . . , 1, 0.

Proof. We only need to show that J(q) ̸∋ 2n − 2i − 1 for i ∈ {0, 1, . . . , n − 1}. Applying
the Steenrod operation of the appropriate degree to the element e2n−2i−1 ∈ CH(X), we
get the element e2n−2 ∈ CH(X). Therefore it is enough to prove that J(q) ̸∋ 2n − 2.

Assume the contrary: J(q) ∋ 2n − 2. Let Yq be the projective quadric of q. By Lemma
6.4 below, the subring C̄H(Xq)F (Yq) ⊂ CH(X) is generated by C̄H(Xq) ⊂ CH(X) and
e2n−2 ∈ CH(X). Since 2n − 2 ∈ J(q), we have e2n−2 ∈ C̄H(Xq) (see Remark 5.2) and
therefore

C̄H(Xq)F (Yq) = C̄H(Xq).

In particular, the varieties (Xq)F (Yq) and Xq have the same index. The two n-fold Pfister
forms giving q, considered over the field F (Yq), are 1-linked (see [4, §24]) and therefore
i(Xq)F (Yq) = 2. So, i(Xq) = 2 implying that there is an odd degree field extension K/F
such that qK splits over a quadratic field extension of K. On the other hand, the form qK
is still anisotropic (see [4, Corollary 18.5]), of dimension congruent to 2 modulo 4, and of
trivial discriminant; therefore, by [4, Corollary 22.12], it does not split over a quadratic
extension. �

The following lemma is an enhanced version of [4, Corollary 88.6]:

Lemma 6.4. Let q be a quadratic form in I2 of dimension d = 2l+2 ≥ 4 over some field
F . Let Xq be a component of the highest grassmannian of q and let Yq be the projective
quadric of q. Then the C̄H(Xq)-algebra C̄H(Xq)F (Yq) is generated by el.

Proof. We apply [21, Statement 2.13] to the projection Xq×Yq → Xq andB ⊂ CH(Xq×Yq)
defined as follows. The variety (Yq)F (Xq) is a split quadric so that the ring CH(Yq)F (Xq) is
generated by the codimension 1 class of a hyperplane section and a codimension l class
of a linear subspace ([4, Proposition 68.1]). We let B be the subring generated by certain
lifts of these two generators with respect to the surjective pull-back ring homomorphism

CH(Xq × Yq) → CH(Yq)F (Xq)

obtained from the morphism of schemes (Yq)F (Xq) → Xq × Yq given by the generic point
of Xq. Namely, we take an arbitrary homogeneous lift of the hyperplane section and we
take the Chow class ε of the incident subvariety in Xq × Yq (c.f. [4, §86]) for the second
lift.
As the result of the application of [21, Statement 2.13], we obtain that the CH(Xq)-

algebra CH(Xq×Yq) is generated by an element of codimension 1 and the element ε. The
pull-back with respect to the morphism (Xq)F (Yq) → Xq × Yq, given by the generic point
of Yq, yields a surjective homomorphism of CH(Xq)-algebras

CH(Xq × Yq) → CH(Xq)F (Yq)

showing that the CH(Xq)-algebra CH(Xq)F (Yq) is generated by certain element of codi-
mension 1 and the image of ε. By [4, Corollary 88.6], the change of field homomorphism
CH1(Xq) → CH1(Xq)F (Yq) is surjective for l ≥ 2 so that the codimension 1 generator can
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be skipped. Passing to the reduced Chow rings, we get the desired statement because the
image of ε in CH(X) is equal to el. �

7. Bounding the index of a generic quadratic form in In

LetXq be a component of the highest grassmannian of a d-dimensional generic quadratic
form q ∈ In. Like in [4, Proposition 88.11], the index i(Xq) has an upper bound in terms
of the complement J̄n

d of Jn
d ⊂ {1, . . . , d/2− 1}:

Proposition 7.1. The index i(Xq) divides 2|J̄
n
d |.

Proof. By definition of the J-invariant, for every i ∈ Jn
d , we have ei + 2xi ∈ CHi(Xq) for

some xi ∈ CHi(X). By [4, Proposition 86.13], for every j ∈ {1, . . . , d/2 − 1}, we have
2ej ∈ CHj(Xq). The product ∏

i∈Jn
d , j∈J̄n

d

(ei + 2xi)2ej

is a reduced 0-cycle class on Xq of degree congruent to 2|J̄
n
d | modulo 2|J̄

n
d |+1. The product∏

j∈{1,...,d/2−1} 2ej is a reduced 0-cycle class on Xq of degree a 2-power. It follows that

i(Xq) is a 2-power dividing 2|J̄
n
d |. �

Since the J-invariant Jn
d contains the < d/2 part Sn

d of the set Sn from Lemma 5.1,
we get a (weaker but computable) upper bound in terms of the complement S̄n

d ⊃ J̄n
d of

Sn
d ⊂ {1, . . . , d/2− 1}:

Corollary 7.2. log2 i(Xq) ≤ |S̄n
d |. �

Remark 7.3. For n = 3, the bound of Proposition 7.1 coincides with the bound of
Corollary 7.2 and is the bound of [17, Lemma 3.4], originally obtained in [10].

8. Characteristic 2

All above results extend to the characteristic 2. We briefly discuss the particularities
showing up in this extension.

In [4], all the basics for the characteristic 2 case are provided with the exception of the
Steenrod operations on the modulo 2 Chow groups, for which our reference is [12].

Instead of the Witt ring of quadratic forms we referred to in characteristic ̸= 2, in arbi-
trary characteristic we only have the additive group I of even-dimensional non-degenerate
quadratic forms, called the quadratic Witt group, which is a module over the Witt ring of
non-degenerate symmetric bilinear forms. For n ≥ 2, the subgroup In ⊂ I is defined as
the product of I by the (n− 1)st power of the fundamental ideal of the Witt ring, see [4,
§8.B].

The “from inside” way of constructing a generic q ∈ I3, described in §2, works in
characteristic 2 as well. We can skip discussion of the “from outside” way, which requires
a modified construction of a generic quadratic form in I2.

With the correct definition of (general) quadratic n-fold Pfister forms, as in [4, §9.B],
their classes still generate In. As a result, the “from inside” way of constructing a sequence
of forms approximating a generic form in In for n ≥ 4, described in §2, is also valid in
arbitrary characteristic. The same is true for the observations on the reduced Chow ring,
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indexes of grassmannians, and the J-invariant made in §3 and §4. Note that the proof of
[4, Theorem 40.10], used in Example 4.1, is based in characteristic 2 on [9] instead of [22]
and [11].

After the explanations already made, §6 and §7 go through without any further change
everywhere with only one exception: the end of the proof of Proposition 6.3, where we
use the fact that an anisotropic quadratic form of dimension congruent to 2 modulo 4 and
of trivial discriminant does not split over a quadratic field extension. In characteristic 2,
this fact still holds. However the reference [4, Corollary 22.12] used for characteristic ̸= 2
case covers the case of a separable quadratic field extension only. The reference for the
inseparable one is [1].
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