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Abstract. We construct a 6-dimensional anisotropic quadratic fgremd

a 4-dimensional quadratic form over some field® such thatp becomes
isotropic over the function field"(¢)) but every proper subform af is

still anisotropic overr'()). It is an example ohon-standard isotropyvith
respectto some standard conditions of isotropy for 6-dimensional forms over
function fields of quadrics, known previously. Besides of that, we produce
an 8-dimensional quadratic forgh with trivial determinant such that the
index of the Clifford invariant ofp is 4 but¢ can not be represented as a
sum of two 4-dimensional forms with trivial determinants. Using this, we
find a 14-dimensional quadratic form with trivial discriminant and Clifford
invariant, which is not similar to a difference of two 3-fold Pfister forms.
The proofs are based on computations of the topological filtration on the
Grothendieck group of certain projective homogeneous varieties. To do these
computations, we develop several methods, covering a wide class of varieties
and being, to our mind, of independent interest.

Mathematics Subject Classification (1991)E81, 19E08, 19E15

1. Introduction

Let F' be a field of characteristig¢ 2. An important problem in the alge-
braic theory of quadratic formsis to classify the pairs of anisotropic quadratic
forms¢, ¥ over F such thatp () is isotropic, wherd”(v) is the function
field of ¢, i.e. the function field of the projective quadric determined/by

In the caselim ¢ < 5, a complete classification is known (see [11]). The
casedim ¢ = 6 was studied in [12], [31], [32], [34], and [37]. In the case
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wheredim ¢ = 6 anddim vy # 4, a complete classification was obtained.
After that, it was shown in [18] and [19], that the same classification is
valid for 4-dimensional formg, if the case wherdim ¢ = 6, dim vy = 4,
1 # dety ¢ # detL ¢ # 1, ind C()((z)) = 2, andind Co(¢) & Co(’l/J> =2is
excluded. Here (see Sect. 18) we construct in this excepted case an example
of ¢ and with the non-standard (i.e. not matching the old classification)
isotropy of¢ over F'() (see Theorem 18.2). It is possible to explain what
this “non-standard isotropy” does exactly mean without describing the old
classification (Lemma 18.3): isotropy of a fogsover F'(v)) is non-standard
if and only if the form¢ is F'(¢))-minimal, i.e. no proper subform af be-
comes isotropic oveF' (). A stronger version of Theorem 18.2 states that
an example of the non-standard isotropy can be obtained starting from an
arbitrary anisotropic 4-dimensional form (with det i) # 1) over an arbi-
trary field Fy by passing to an appropriate extensionf £y (see Corollary
18.4).

Let I(F') be the ideal of even-dimensional forms in the Witt ring F')
of the quadratic forms ovelf'. Another important problem in the algebraic
theory of quadratic forms is to give a classification of low-dimensional
forms belonging td” (F') for a fixedn > 0. Forn = 2 and forn = 3, this
problem was studied by many authors. In [20] N. Jacobson proved that the
quadratic formsp € I%(F) of dimension< 6 are uniquely determined up
to similarity by the Clifford invariant(¢). There exists a good description
of 8-dimensional formg € I?(F) satisfying the conditiofind C(¢) < 2.
Namely, these quadratic forms can be written as tensor product of a 2-
dimensional subform and a 4-dimensional subform (see e.g. [28, Ex. 9.12]).
The case of 8-dimensional quadratic forghsz 1%(F) with ind C(¢) =
4 is much more complicated. It was an open question if these quadratic
forms can be written as; L m, wherer; andr are 4-dimensional forms
with trivial determinant. In Sect. 16 we construct a counterexample for
this question (Corollary 16.8). Nevertheless we find a “weak version” of
the decompositiom® = 7, L 75. Note that quadratic forms of the type
71 L 79 can be regarded as Scharlau’s transfgr-(7) in the degenerate
caselL = F x F. We show that an arbitrary 8-dimensional fogne 12 (F)
withind C'(¢) = 4 can be represented as Scharlau’s transfgr (), where
L/F is an gtale) quadratic extension ands a 4-dimensionalL-form with
trivial determinant (see Theorem 16.10).

In Sect. 17 we study the quadratic formsc I3(F). The structure of
¢ in the casedim ¢ < 12 was described by Pfister in [40, Satz 14 und
Zusatz] (see also [14]). Our aim is to study the 14-dimensional quadratic
forms in I3(F). In [42] M. Rost proved that an arbitrary 14-dimensional
guadratic form can be represented (up to similarity) as Scharlau’s transfer
sp,r(Vdr'), whereL = F(+/d) andr’ is the pure subform of a 3-fold
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Pfister form. Note that in the degenerate cédse= ' x F we get the
decompositiony = k(r{ L —74), wherer{, 75 are pure subforms of some
3-fold Pfister formsr, » andk € F*. It was an open question if any 14-
dimensional formp € I3(F) can be written in the form = k(7] L —73).

It was remarked by D. Hoffmann (1995, Bielefeld, oral communication) that
this question is equivalent to the discussed above question on 8-dimensional
forms ¢ € I?(F) with ind C(¢) = 4. Using the counterexample for 8-
dimensional forms, we construct (in Sect. 17) a counterexample for 14-
dimensional forms.

Similar counterexamples of 8-dimensional and 14-dimensional forms in
the case of characteristic O are independently constructed in [16] by using
completely different techniques.

Our methods are based on the computation of the topological filtration
on the Grothendieck group for certain projective homogeneous varieties.
There are numerous works di-theory of particular projective homoge-
neous varieties (Quillen [41], Swan [51], Levine-Srinivas-Weyman [35],
Tao [52], and others) and a general work of Panin [39], wheréktttheory
is computed. However none of them does not consider the question about
the topological filtration on thé&'-theory. In Part | we develop a machinery
which makes possible to compute the topological filtratiod@rfor a wide
class of homogeneous varieties (see Corollaries 9.6, 10.6, and 11.4 which
are, in fact, not about the homogeneous varieties only). So, as to the future
applications, we consider Part | as the most interesting part of the article and
Part Il as an example of an application of Part | to two known problems in
the theory of quadratic forms.

2. Plan of works

The paper consists of two Parts. All main results, mentioned in the Introduc-
tion, are obtained in Part Il. However their proofs are based on the results
of Part |: the example of non-standard isotropy is based on Theorem 14.1;
the examples of the 8-dimensional and 14-dimensional quadratic forms are
based on Theorem 13.1. Although these two groups of our main results are
rather far from each other, Theorems 13.1 and 14.1 are quite similar. In fact,
they both are about an upper bound for the codimension (with respect to
the topological filtration) of a certain element (namely, the doubled rational
point class) in the Grothendieck group of certain varieties (see the proof of
Theorem 13.1 and the statement of Lemma 14.3).

Moreover, the varieties are quite similar (we mean the vatigtyin the
proof of Theorem 13.1 and the varieX; x X in Theorem 14.1). They
both are of the formX (%)) with certain F-varieties X andT', where
R(T) is the Weil transfer of thd.-variety 77, with respect to a Galois (in
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fact, quadratic or biquadratic) field extensionF'. Note that the varieties
are not chosen by chance: in certain sense, they are generic models of the
situation we need.

In Sects. 4-11 of Part | we build up a technology for computing the
topological filtration on the Grothendieck grol X 7z (ryy). Now we are
going to explain the purpose of each Section.

The techniques shown in Sect. 5 allows one to move the problem from
the varietyX (g (1)) to the F-variety X x R(T').

Necessary back-grounds on the Weil transfer are given in Sect. 6.

SinceR(T), is just the product of several copies Bf, our current
variety X x R(T') looks much simpler ovek. Clearly, the Galois groug
of the field extensiod, / F' acts onK (X, x R(T') ) and there is an inclusion

K(X x R(T)) ¢ K(X x R(T))¢

respecting the filtrations.Let us consider the filtration on the right-hand
side group as an upper bound for the filtration on the left. It turns out that
this upper bound is good enough for the success. By that reason we forget
aboutK (X x R(T)) and work further withiK (X, x R(T))¢ instead.

In Sect. 7 we obtain some quite obvious general assertion on the Galois
action on the Grothendieck groups.

After that we come to the problem: how the topological filtration for a
variety of the typeX x T can be computed. Note that in our cases a
product of Severi-Brauer varieties aifds a product of generalized Severi-
Brauer varieties. In Sect. 4 we study the structure of sxichT" as schemes
over X. We describe a situation whepe x T' turns out to be isomorphic to
a grassmanian bundle ov&r. We obtain also certain additional information
in this situation: namely, a description of the tautological vector bundle on
the grassmanian bundle as a vector bundi&or T'.

Our next problem looks as follows: given a grassmanian buRdie X
and knowledge of the topological filtration fof, how can we find the
topological filtration forl? To describe the answer, we develop in Sect. 8 the
language ofiltered basesf filtered modules. In Sect. 10 we prove a general
assertion (Proposition 10.3) which answers our question immediately in the
particular case of a projective bundle. In Sect. 11, using the same method,
we give an answer for an arbitrary grassmanian bundle.

The last step we need is a computation of the topological filtration (and
of the Grothendieck group itself) for the variel. For this, we develop in
Sect 9 a method of computation of the topological filtration for products
of varieties in the so calledisjoint case. In fact, our varietX is defined
as the direct product of two quadric surfacés x X5, which are disjoint;

! We consider the filtration o (Xr, x R(T)r)€ induced by the topological filtration
on K(XL X R(T)L)
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using this (and Swan’s computation [51] Af(X;)), one can compute the
topological filtration forX via Sect. 9. However the way chosen in the paper
differs from that one and is even simpler (e.g. because it does not use [51]):
it makes use of the fact that ea&h is a projective line bundle over a conic
Y; and the conicd7, Y, are disjoint. It is also important that this way we
obtain a filtered basis df (X)) in the terms which are more suitable for the
further purposes.

So, after we have shown how everything can be computed, we do some
specific computation in Sect. 12. After that almost all is done to proof the
basic Theorems in Sects. 13 and 14.

In the conclusion, we like to make certain additional remarks on the
contents of some Sections.

In Sect. 5, we prove that the pull-back to the generic fiber of a flat
morphism is surjective. For what kind of groups? Well, our final goal is the
topological filtration, i.e. each term of that (Corollary 5.3). We reach the
goal starting from the Chow groups (Proposition 5.1) and passing after that
to the successive quotients of the topological filtration (Corollary 5.2). The
statement on the Chow groups is not new; it is a formal consequence of the
spectral sequence [27, Th. 3.1]. What we give here is a short direct proof or,
better to say, an explanation of the evidence of this fact (Proposition 5.1).

The Weil transfer (also known as Weil restriction or Weil corestriction
and under several other names) is a common, well-known, frequently used
tool. However, we don’t have any reference for some of its basic properties.
By that reason, Sect. 6 is included. We consider only the situation of a
Galois field extension (since we need only it). This allowdeinethe Weil
transfer via Galois descent. With this definition, the properties we need
become straight-forward.

In Sect. 4, we show that certain products of (generalized) Severi-Brauer
varieties considered as schemes over certain subproducts via the projection
can be naturally identified with grassmanians bundles (Corollary 4.4). Sim-
ilar assertions were already proved in [24, Cor. 6.4] and in [25, Prop. 5.3].
However this time we need more explicit information: namely, we need a
description of the vector bundle on the product of the Severi-Brauer vari-
eties corresponding to the tautological vector bundle on the grassmanian
bundle under that identification; the answer is given in terms of the tauto-
logical vector bundles on the Severi-Brauer varieties. Also notice that the
basic statement of this section (Item 1 of Proposition 4.3) has a more general
form, which clarify the things happening.
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3. Terminology, notation, and backgrounds
3.1. Quadratic forms

By ¢ 1 ¢ and¢ ~ ¢ we denote respectively orthogonal sum of forms and
isometry of forms. Sometimesdenotes also the class ¢in the Witt ring
W (F) of the field F, e.g. in expressions lik¢ + ; we apologize for this
abusing of notation.

The maximal ideal ofiV (F') generated by the classes of the even-
dimensional forms is denoted ByF'). The anisotropic part af is denoted
by ¢an. We denote by(ay, . . ., a,,)) then-fold Pfister form(1, —a;) ®...®
(1, —a,) and by P, (F') the set of alln-fold Pfister forms. The set of all
forms similar to am-fold Pfister form we denote b§ P,,(F'). For any field
extensionL/F', we put¢;, = ¢ @p L.

For a quadratic extensiah/ F' and anL-form ¢, we denote by, (¢)
the Scharlau’s transfer [46, Sect. 5 of Chap. 2] corresponding tb-lireear
homomorphism} Trp,p : L — F.Inthe case wherg = F(v/d), we have
spr((1)) = (L, d) andsp p((Vd ) = (1, -1).

For a quadratic form of dimension> 3, we denote by ; the projective
variety given by the equatiop = 0. We setF'(¢) = F(X,).

3.2. Linked forms

We say that quadrati€-forms¢ andy arelinkedif the following equivalent
conditions hold:

— there exists a 2-dimensional formwhich is similar to a subform o
and to a subform o),

— there exists a field extensiadl/ F' of degree< 2 such thatp;, andv,
are isotropic,

If ¢ andiy are forms of dimensio» 3, then the condition thap and
1 are linked can be reformulated as follows: there exists a closed point of
degree< 2 on the varietyXy x X.

3.3. K-theory and Chow groups

For a smooth algebraif-variety X, its Grothendieck ring is denoted by
K(X). This ring is equipped with the filtration by codimension of support
(which respects the multiplication); itsth term (the term of codimension
n other speaking) is denoted b(X)™.

For a ring (or a group) with filtratiosd, we denote by=* A the adjoint
graded ring (resp., the adjoint graded group). There is a canonical surjective
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homomorphism of the graded Chow ri@#l* (X') ontoG* K (X), its kernel
consists only of torsion elements and is trivial in the 0-th, 1-st, and 2-nd
graded components ([50, Sect. 9]). For a geometrically integral variety of
dimensiond we setCH;(X) = CH* /(X)) andG; K (X) = G 'K (X).

Very often, we identifyK (X') with a subgroup ofs (X ), whereX is
an F-variety andE/ F' is a field extension such that the restriction homo-
morphismK (X ) — K(Xg) is injective.

Let X3, X, be F-varieties andc; € K (X;) fori = 1,2. In expressions
like z1x2 Or z1 4+ x2 We considet:q, z2 as elements ok (X5 x X5) with the
help of the pull-backs under the projections (so that the expressions become
asense).

3.4. Algebras

Let A be an algebra over a fielfl. For a field extensio®/F’ (or, more
generally, for a unital commutativE-algebraF), we denote byA g the E-
algebrad @ E. For anF-variety X (or, more generally, for af’'-scheme
X), we denote by x the constaniX -sheaf of algebras given by.

In Sect. 4, the category of commutative unifaklgebras is denoted by
F-alg.

Part 1. Basic constructions

4. Products of Severi-Brauer varieties

Let F' be a field and letd be a central simple algebra over

Letn > 0. The generalized Severi-Brauer varié{ydéf SB(n, A) of A
is characterized as follows (cf. [26]): for aiy/e F-alg, the set ofR-points

Y (R) et Morr(Spec R,Y') of the varietyY” consists of the right ideal$
of the Azumayak-algebrad def A®r R having two following properties:
— theinjection ofd g-modules] — Ap splits (in particular/ is projective

as anR-module);
— the R-moduleJ has the constant rank- deg A;

moreover, for any homomorphis® — R’ in the categonyf-alg, the map
Y (R) — Y(R/) is given by the tensor multiplicatiosi — J @z R'.

The (usual) Severi-Brauer variefy3(A) of A is by definition the variety
SB(1, A).

Example 4.1.Let A be a quaternion algebia, b), wherea,b € F* (we
suppose thathar ' # 2inthis Example). The Severi-Brauer variéiig(A)
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is isomorphic to the projective conic determined by the quadratic form
(1, —a,—b).

Example 4.2.Let A be a biquaternion algebt@, b1) ® (ag, b2), where
ay, b1, az, by € F* (we suppose thathar F' # 2 in this Example). The
generalized Severi-Brauer variet}3(2, A) is isomorphic to the projective
quadric determined by the Albert forfa-ay, —b1, a1b1, as, be, —agbs) .

Thetautological(also calledcanonica) vector bundle7 on the gener-
alized Severi-Brauer variefy = SB(n, A) is defined as follows: for any
R € F-alg and anR-point J € Y (R), the fiber of 7 over J is the R-
moduleJ; if R — R’ is a homomorphism iri-alg, then the map of the

fibersJ — .J', where’ & J @p R € Y (R'), is defined by the formula
r—r® 1.

Since every fiber of7 is a right ideal,.7 has a structure of rightly -
module.

Proposition 4.3. Let A be a central simpleF'-algebra. LetX be anF-
scheme endowed with a righty-module M which is a locally freeO x -
module of rankleg A. Then

1. the productX x SB(n, A°P), considered oveK via the first projection,

can be naturally identified (as a scheme o¥€rwith the grassmanian

bundlel’, (M) of n-planes inM;

2. under this identification, the tautological vector bundle on the grass-

manian bundle corresponds to the vector bundle® 4 J on X x

SB(n, A°P), whereJ denotes the tautological vector bundle ®B(n,

A°P).,

Proof. Lety % SB(n, A°P). LetR € F-alg and letr be anR-point of X .

To prove the first statement of the Proposition, it suffices to describe a natural
bijection of the fibers over. The fiber ofX x Y over the point is the set

Y (R). The fiber ofll’},(M) over the point: is the set ofR-submodulesyv of

the R-module M, such that the injectioiV — M, splits andkgr N = n.

For anyN like that, the set/ = {a € Ar | M, -a C N} is a left ideal

of the R-algebraAy, (i.e. a right ideal ofA?)), determining an element of

Y (R). This way, we get the natural bijection required.

To describe an isomorphism of the vector bundles (for the second state-
ment of Proposition), it suffices to give a natural isomorphism of Rhe
modulesM, ®4, J andN. This is given by the rulec ® a — z - a.

O

Now we consider a special situation, where Proposition 4.3 can be ap-
plied. Suppose that

A AS g . AZm,
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whereAy, ..., A,, are some central simplE-algebras and, ..., are
some non-negative integers. L¥t, . . ., X,,, be the Severi-Brauer varieties

of the algebras, ..., A,,. PutX def ¢« X1 x ... x X,,, whereS is
an F-variety. For everyj = 1,...,m, denote byZ; the tautological vector
bundle onX;. Put

MY 0,018 @ @ I8m,

it is a right A x-module which is a locally fre€® x-module of rankdeg A.

Finally, letY e SB(n, A°P) and letJ be the tautological vector bundle on
Y itis a left Ay-module. Applying Proposition 4.3, we get the following

Corollary 4.4. In the notation introduced right above, the produkt x

Y, considered oveX via the first projection, can be naturally identified
(as a scheme oveX) with the grassmanian bundI&;,(M); under this
identification, the tautological vector bundle on the grassmanian bundle
corresponds to the vector bundl ® 4 Jon X x Y. 0O

Since the projective space bundéM) is (by definition) I (M), we
get the following

Corollary 4.5. Let A be a central simplg’-algebra and letS be an F-

variety. SetX g « SB(A) andY def SB(A°P). Denote by’ the tauto-

logical vector bundle 08B(A) and by.J the tautological vector bundle on

Y.SetM ¥ 050 1.

Then the producX’ x Y, considered ovelX via the first projection,
can be naturally identified (as a scheme o¥&xwith the projective space
bundleP(M); under this identification, the tautological vector bundle on
P(M) corresponds to the vector bundle @4 7 onX x Y. O

5. Pull-back to generic fiber

We fix the following notation for this sectior: is a field,Y andT are
irreducibleF-varieties;r: Y — T is a flat morphismg is the generic point

of T, andYy def y, x Spec F(0) is the generic fiber of, i.e. the fiber of
« overf. We are going to consider the pull-backwith respect to the flat
morphism of schemeis Yy — Y.

Note that from the set-theoretical (even topological) point of vigns
really the fiber ofr over the poin® (see [10, Exercise 3.10 after Sect. 3 of
Chap. l]). In particularyy is a subset o .

The groupCH* (Y) is generated by the classg$ of pointsy € Y. The
pull-back homomorphisni* : CH*(Y) — CH*(Yp) is determined by the
following rule: ify & Yy (i.e., if w(y) # 0), theni*([y]) = 0;if y € Yy (i.e.,
if 7(y) = 6), theni*([y]) = [y] € CH*(Yp).
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Proposition 5.1. The pull-back homomorphisth: CH*(Y) — CH*(Yp)
is surjective.

Proof. Take any generatar def [y] of the groupCH*(Y}), wherey € Yj.

If we considery as a point ofY”, we get an element o [y] € CH*(Y)
such that*(5) = . O

Now we pass from the Chow group to the Grothendieck group.

Corollary 5.2. The pull-back homomorphisifi: G*K(Y) — G*K(Yp)
is surjective.

Proof. The diagram

CH*(Y) — CH*(Yp)

3 \J

G*K(Y) - G*K(Yy)
where the vertical arrows are the canonical epimorphisms (see Sect. 3.3), is
commutative. Since the m&* (Y') — CH*(Yjy) is surjective (Proposition
5.1) and the map'H* (Yy) — G* K (Yp) is surjective, the mag™* K (Y') —
G*K (Yp) is surjective as well. O

Corollary 5.3. For anyn > 0, the pull-back homomorphis#i: K (V)™
— K(Y)™ is surjective.

Proof. Follows from Corollary 5.2. O

Example 5.4.We shall apply Corollary 5.3 only to the particular situation,
whereY = X x T (with certainF-varietiesX andl’)andr: Y = X xT —

T is the projection. Thu¥y = Xp (1) andi* will be a homomorphism of
K(X x T) onto K(Xg(r)). Note thati* is a homomorphism of{ (X)-
algebras if we considek (X x T') and K (X (7)) as K (X)-algebras in
the natural way (i.e. via the pull-backs). We shall use the notatifan the
homomorphism* in the situation like described here.

6. Weil transfer via Galois descent

In this section L/ F is a finite Galois field extension with the Galois group
G. All varieties here are assumed to be quasi-projective.

Definition 6.1. Let X be anF'-variety. AnL/F-formof X isanF-varietyY’
suppliedwith an L-isomorphisnmy;, = X .. A morphisnof an L/ F-form Y’
to anothel./ F-form Y’ of the same varietX is a morphism of-varieties
f:Y — Y’ such that the diagram df-morphisms

v, % vy

N
X
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commutes (note that the set of morphisms of foi¥hs—+ Y’ contains at
most 1 element; in particular, an isomorphism of tivoF'-forms of X is
always canonical).

Let X be anF-variety. The (abstract) grouputy (X ) of the auto-
morphisms of thel-variety X; can be supplied with a structure G-

module in the standard way (see [48, Sect. 1.1 de Chap. lll))rferG

and f € Auty(X) one putsr(f) &f (idx ® 7)o fo(idy ® 7-1) where

idx ® 7 is the automorphism of the sche¥g, over F' given byr. Denote
by Z1(L/F,Aut (X)) = ZY(G, Autr (X)) the set of 1-cocycles o
with values inAut; (X1) ([48, Sect. 5.1 de Chap. 1]).

Any L/F-formY of X determines a cocyclec Z'(L/F, Auty(X1))
([48, 1.3 de Chap. Ill]): for any € G, the automorphism, € Auty(Xy)
is the composition

N idy ®7 5 idx®7'71
X;,=Y, —— Y5 X, —— X1 .

Moreover, the rule described above is a 1-1-correspondence between the set
of L/F-forms of X (up to thecanonicalisomorphism) and the set

ZNL/F,Autr(X1))

(see [3, Prop. 2.6)).

Now suppose thaX’ = [, T' (the product of G| copies ofl’ numbered
by the elements af’), whereT is a variety ovef'. We are going to construct
a special 1-cocycle € Z'(L/F, Auty (X)) in this situation.

For anyr € GG, consider the left translation by that is the permutation
o — 7o of the setGG, and denote by, € Auty (X ) the automorphism
of the productX; = [[ Yz given by the corresponding permutation of
factors. The map: G — Aut;(X1), 7 — 2, is a 1-cocycle.

Definition 6.2. The following data are fixed: a finite Galois field extension
L/F and anF-variety T'. The L/F-form (see Definition 6.1) of the va-

riety X & [Io T determined by the cocycle € Z'(L/F, Autr(XL))
constructed above will be denoted B(T") or Ry, (7).

Remark 6.3.The varietyR /- (T') is the same as thé&keil transfer(see [3,
Sect. 2.8] and/or [4, 6.6 de Sect. 1 de Chap. 1] and/or [47, Chap. 4]) of
the L-variety 77, with respect to the extensian/ F'. Usually, working with
varieties over fields, one defines the Weil transfer for any finite separable field
extension./F and a quasi-projective-variety. However, we are interested
here only in the case where the extensioft’ is Galois and thd.-variety
“comes from£™. Definition 6.2 can be regarded as an alternative definition
of the Weil transfer in this particular situation. It is more convenient for our
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purposes: the property @(Y) we need (see Lemma 6.5 below) becomes
evident.

Example 6.4.Let us take ad./F a quadratic extensioh = F(+/d) with
somed € F* and asI’ the Severi-Brauer variety of a quaternifhalgebra
(a,b) (we suppose thathar F' # 2 in this Example). TherR(T) is iso-
morphic to the projective quadric hypersurface, determined by the quadratic
form

(—a,—b,ab,d) .

Lemma 6.5. Let L/F' be a finite Galois field extension with the Galois
groupG. LetT be anF-variety. For anyr € G, the following diagram of
isomorphisms commutes
id®T
R(T)L —_— R(T)L
A 1

(1d®T) 0 zr
H TL S H TL
G G

Proof. It is a direct consequence of Definition 6.20

7. Galois action on Grothendieck group

In this sectionFis an arbitrary field./ F'is a field extension (e.g., a Galois
field extension){ is a group of automorphism df over I’ (e.g., the Galois
group in the case whetk/ F' is a Galois extension), is an F-variety.

The groupG acts on the Grothendieck group(Y7,) of the varietyYy.
We are interested in a condition &hwhich guarantees that the action®f
on K (Y7) is trivial.

Lemma 7.1. Suppose that the groufi (Yz) is torsion-free and that the
cokernel of the restriction mapes; /r : K(Y) — K(Y7) is a torsion
group. Then the action @ on K (Y7,) is trivial.

Proof. Take anyy € K(Y.) and anys € G. SinceCoker(resy, ) is a
torsion group, some multipley of y is in Im(res; /), thereforeo (ny) =
ny. Since the groug( (Yz) is torsion-free, it follows that (y) = y. O

Working with homogeneous varieties, we have the first condition of
Lemma 7.1 for free: the groufy (V') is natural (with respect to extensions
of the base field®') isomorphic toK (A), where A is a separable algebra
(i.e. adirect product of simple algebras with centers separableFQu§s9,
Introduction]). The second condition holds i6rand for all extensiong / F'
if and only if every simple component gf is central ovelr’. We do not need
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here the complete list of such varieties. We only notice that the generalized
Severi-Brauer varieties are includeds well as their direct productsSo
that we have

Corollary 7.2. LetY be a product of generalized Severi-Brauer varieties.
Then the action off on K (Y1) is trivial. O

Corollary 7.3. LetL/F be afinite Galois extensiofk be its Galois group,

and Y be the product of some generalized Severi-Brauer varieties over
F. Let us identifyR(Y"), with [, Y7 (see Definition 6.2). Then, for any

o € G, the automorphism ok (R(Y')1,), given byo, corresponds to the
automorphism of< ([ [ Y7.), given by the automorphism of the product,
induced by the permutationy. of the factors, where, is the left translation
byo.

Proof. By Lemma 6.5, the diagram

KR(Y)) -5 K(R(Y)L)
!

K1Y —% K(IY)
G G

commutes. By Corollary 7.2; over the bottom arrow is the identity.0

8. Filtered rings, modules, and bases

In this section we introduce some terminology concerning filtrations on
abstract rings and modules. This terminology will be then applied (in the
further Sections) to the Grothendieck rings of varieties.

A commutative unital non-zero ring is calledfiltered, if it is supplied
with a finite filtration R (n € Z), satisfying the following conditions:

— R™ . R < R(+m) for all n, m and
- RO =R
(note that the filtration of a filtered ring is automatically descending and
RMW £ R).

Let R be afiltered ring. AmR-moduleM is calledfiltered if itis supplied
with a finite filtration M (™) (n € 7Z), satisfying the following conditions:

— RM . pp(m) = pr(tm) for all n, m and

2 This follows from [41, Th. 4.1 of Sect. 8] in the particular case of usual Severi-Brauer
varieties and [35, Th. 4.4] in the general case of generalized Severi-Brauer varieties.

% It is a consequence of the following assertion:if is the separable algebra for a
homogeneous variel; andAs is the separable algebra for a homogeneous varigtthen
A1 ®F A, is the separable algebra fBr x Y2, see [38, Sect. 1.8].
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- MO =
(note that the filtration of a filtered module is automatically descending).

Example 8.1.Let X — Y be amorphism of smooth varieties. The Gorthen-
dieck ringK (Y") supplied with the topological filtratiof (Y) (" is afiltered
ring. ConsideringK (X)) as aK (Y)-module via the pull-back homomor-
phismK(Y) — K(X), we get an example of a filtered module (where
K (X) is supplied with the topological filtration as well).

Let M be a filtered module over a filtered ring. The codimension
codim z of an element: € M is defined as

codim z = codimy z & sup{n € Z | x € M™Y.

Let R be a filtered ring and lel/ be a (free and finitely generated)
filtered R-module. AnR-basiseq, . . ., e; of M is calledfiltered if for any
n € Z one has
k
M® = 3 R=ni) . ej
j=1

def .
wheren; = codim e;.

Clearly, a filtered module is uniquely determined by its filtered basis and
the codimensions of the basis elements.
SupplyingZ with the trivial filtration

7(n) def [0, if n>0;
T 1 Z,ifn<0,

we get a filtered ring. This way we transfer definitions from above to the
case of abelian groups, obtaining the notions @ftared (abelian) group
and afiltered basif it.

Example 8.2 (cf. Lemmas 9.8 and 9.7 and Corollary 9.6}.Y3, ..., Y,
be projective lines. Denote hy the class of a rational point ori. Then
the elements of the formi* - - - p5», whereey, ..., e, € {0,1}, constitute
a filtered basis of the filtered group(Y; x ... x Y},); besides

codim(pi' ---pi") =e1+ ... +ep .

For a non-zero element of a filtered modulel/, we denote byi the
class ofu in Geedimur « G*M.
The following three assertions are evident:

Lemma 8.3. let R be a filtered ring,M be a filtered?-module, and
ULy ..., U €M

be non-zero elements such tlizt)M is a freeG* R-module with the basis
(t1,...,0k). Then(uy, ..., ux) is afiltered basis of thé&-moduleM. O
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Corollary 8.4. Afinitely generated filtered group possess a filtered basis
if and only if the groupG* A is torsion-free. O

Lemma 8.5. Let R be a filtered ring, letS be a filtered ring which is a

filtered R-module, and letM/ be a filteredS-module. If(ey,...,e,) is a
filtered basis ofS over R and (f1, ..., fm) is a filtered basis of\/ over
S, then the collectiorfe; f;) (wherei = 1,...,nandj =1,...,m)is a

filtered basis of\/ over R andcodimyy (e; f;) = codimg e; + codimpy f; .
O

9. Filtered bases for products of disjoint varieties

Let X4,..., X, be F-varieties. The main purpose of this section is to
find a filtered basis ofX(X; x ... x X,,) (starting from filtered bases
of K(X;),...,K(X,))inthe so calledlisjoint case.

Definition 9.1 (cf. [25, D&f. 3.1]).A collection of F-varieties X, ..., X,
is calleddisjoint, if the homomorphism

K(X)®...0 K(X,) = K(X1 x...x Xp)

(given by the product of the pull-back homomorphisms with respect to the
projections) is bijective.

Example 9.2 (cf. [25, Prop. 3.6]Let @1, ..., @, be arbitrary central sim-
ple F-algebras of exponent 2. The Severi-Brauer varieties

SB(Q1);---,SB(Qn)
are disjoint if and only ifind(@Q1 ®p ... ®p Q) = ind(Q1) - - - ind(Qy,) -

Lemma 9.3. Let K be a finitely generated filtered abelian group. [E&t=
FK > F'K > P°K...andK = I''K D> I''K D I'’K ... be some
other filtrations of the grougs satisfying the following conditions:

- IPAcC FPK c K® forall p > 0;
— the adjoint graded groug* F K is torsion-free;
— the natural homomorphistG*I'K )g — (G*K)q is bijective.

ThenkK® = FPK forall p > 0.

Proof. Since the isomorphisiiG*I'K)g — (G*K)q factors through the
group(G*F K)q, itfollows that the homomorphisi&* F K )g — (G*K)g
is surjective. Obviouslydim(G*FK)g = dimKg = dim(G*K)qg .
Therefore, the homomorphisti* FK)g — (G*K)q is bijective. Since
the groupG* F K is torsion-free, the homomorphistif F K — (G*FK)q
is injective. Therefore, the compositi6h F K — (G*FK)g—(G*K)q s
injective aswell. Thusi7* F K — G* K isaninjection, i.eFPKNK @) =
FPHLK for all p > 0. Finally, induction orp shows thatFP K = K®). 0O
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Lemma 9.4. Let A and B be finitely generated filtered abelian groups such
that G*A and G* B are torsion-free. Let us consider the tensor product
A ® B with the filtration induced by the filtrations oA and B. Then the
homomorphisnéz*(A) ® G*(B) — G*(A ® B) is bijective.

Proof. The homomorphisnt=*A ® G*B — G*(A ® B) is surjective by
the definition of the filtration oMl ® B. The equality of ranks

rk(G*A®G*B) = rk(G*A) -tk(G*B) = rk(A) -tk(B) = 1k(G*(A® B))
shows that it is bijective. O

Proposition 9.5. Let X1, ..., X,, be disjoint varieties such that the groups
K(X;) are finitely generated and the group# K (X;) are torsion-free.
Then the homomorphisit (X1) ® ... ® K(X,) — K(X1 X ... x X))

is an isomorphism of filtered rindsBesidesG* K (X| x ... x X,,) ~
G*K(X1)®...9G*K(X,) (in particular, the groupG* K (X1 x ... x X))

is torsion-free).

Proof. An easy induction reduces the general case to theicase2. Set

X % X, andy & X,. Let us denote byF (K (X x Y)) the filtration on

K (X x Y)induced by the topological filtrations dki(X) and K (Y"). Let
I''K (X xY) stays for the gamma-filtration on the Grothendieck group (see
[36, Def. 8.3] and/or [24, Def. 2.6]). To prove the Proposition, it is sufficient
to verify thatF* (K (X x Y)) = K(X x Y)® for all . For this, it suffices
to check the conditions of Lemma 9.3.

Letus consider the filtration olf (X )@ K (Y") induced by the topological
filtration on K (X) and K (Y'). By Lemma 9.4 we have

G'(K(X)K(Y))~GK(X)2GK(Y).
Since the varietieX andY are disjoint, the homomorphism
G'(K(X)®K(Y)) - G*F(K(X xY))

is bijective. Therefore(*F(K(X xY)) ~ G*K(X) @ G*K(Y). In par-
ticular, the group* F(K (X x Y)) is torsion-free.

Sincel K (X) ¢ K(X)® andI"K(Y) ¢ K(Y)® (see[9, Th. 3.9 of
Chap. V]), and since the gamma-filtration 8i{ X x Y') is induced by the
gamma-filtrations o' (X) and K (Y') (see [25, Prop. 3.2]), one has

INK(X xY)c FK(X xY) foralli> 0.

4 Here we consider the tensor prodiictX;) ® . .. ® K (X,,) with the filtration induced
by the topological filtrations o (X1), ..., K(Xn).
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Finally, by [9, Prop. 5.5 of Chap. VI], we have
G'TK(X xY)g~G'K(X xY)g.

'We have checked that all conditions of Lemma 9.3 hold. Therefore,
FIK(X xY)=K(X x Y)® and the proof is complete.0]

Corollary 9.6. Let X4,..., X, be disjoint varieties. Suppose that every
group K (X;) possess a filtered bas&. Then the product; --- &, is a
filtered basis of K (X; x ... x X,,) andcodim(e; ---e,) = codime; +
...+ codime, foreverye; € &1,...,e, € E,.

Proof. Since everyK (X;) possess a filtered basis, it is finitely generated
and the groug=* K (X;) is torsion-free (Corollary 8.4), i.e. all conditions
of Proposition 9.5 hold. Applying Proposition 9.5, we get the assertion
required. O

Lemma9.7. Let X; def SB(Q;) for i = 1,...,n, where@; are some
central simpleF-algebras of exponent 2 and of index< 4. Suppose that

ind(Q1 RF ... QF Qn) = 1nd(Q1) s md(Qn) .

Then the varietiex(y, . . ., X, satisfy the conditions of Proposition 9.5 and
of Corollary 9.6.

Proof. Since

ind(Q1 ®F ... ®F Qn) = ind(Q1) - - - ind(Qn),

the varietiesX, ..., X,, are disjoint (see Example 9.2). The group&X;)
are finitely generated by [41]. The group$ K (X;) are torsion-free by [23].
The filtered groupd<(X;) possess filtered bases by Corollary 8.41

Lemma 9.8. Let () be a quaternionf-algebra and letY” be its Severi-
Brauer variety. We denote hye K(Y7) the class of a rational point and
identify K (Y') with a subgroup of{ (Y). Then

1. If Q is split, then(1, p) is a filtered basis of{ (Y), herebycodim 1 = 0
andcodimp = 1.

2. If Qis non-split, ther{1, 2p) is a filtered basis of{ (Y"), herebycodim 1
= 0 andcodim 2p = 1.

Proof. Since in the split cask is isomorphic to the projective line, the first
statement is easy (cf. Example 8.2). Let us prove the second.

Since there exists a quadratic extensiof' splitting @, the transfer
argument and Item 1 show thap € K (V). Thus K (V") contains the
subgroup ofK (Yz) generated by and2p. Since there is a natural (with
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respect to extensions of scalars) isomorphisift’) ~ K(F) & K(Q)
([41, Th. 4.1 of Sect. 8]), the index df (Y) in K(Yz) equalsind QQ = 2.
ConsequentlyK (Y') coincides with the subgroup generatedlbgnd2p.
SinceK (Yz)(V is generated by, we see thak (Y )N K (Yz) (D is generated
by 2p. On the other hantlp ¢ K(Y)) ¢ K(Y)n K(Yz)™". Therefore,
K(Y)® coincides with the subgroup generatecpy O

Applying Lemma 9.8, Lemma 9.7, and Corollary 9.6, we get

Corollary 9.9. LetQq,...,Q, be quaterniorF'-algebras such tha, @ ¢

... ®p Q, is a division algebra. SeY; def SB(Q;) and denote by, €

K((Y:)g) the class of a rational point. Then the elements of the form
(2p1)%* -+ - (2pn)°", whereeq, ... e, € {0,1}, constitute a filtered basis
of K(Y7 x ... xY,); besidesodim ((2p1)** - -+ (2pp)*") = €1+ ...+ &n.

0

10. Filtered bases for projective space bundles

For any non-zero homogeneous elemeiwf the Chow groupgCH*(X) of
a variety X, we denote byodim u the homogeneous degreewf

Definition 10.1. Letu € CH*(X) be anon-zero homogeneous element. We
say thatan elemente K(X) corresponds$ou, if codimv = codimu = n
and the image of v under the homomorphisig (X )™ — G"K (X) coin-
cides with the image af under the homomorphis@H" (X) — G"K (X).

Example 10.2.For a varietyY and an integei > 0, we denote by; :
K(Y) — K(Y)® andé; : K(Y) — CH!(Y) thei-th Chern classes (see
[24, Def. 2.1 and 2.11)). I&;(v) # 0 for an element € K(Y), then
ci(v) € K(Y) corresponds té;(v) (see [24, Lemma 2.16)).

Letf: Y — X beasmooth proper morphismBtvarieties with smooth
X. For any smooth proper morphism Bfvarietiespx : X’ — X, let

v Lox
py 4+ dopx ()
v 4 x
be the fiber square. We consideH*(Y’) as aCH*(X’)-module via the
pull-back ring homomorphisrtif’)* : CH*(X’) — CH*(Y”). Besides, we
considerG*K (Y) as aG* K (X)-module.

Proposition 10.3. LetX be a smootl#-variety, letf : Y — X be a smooth
proper morphism of’-varieties, and lety; ¢ CH*(Y) (: = 1,...,k) be
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homogeneous elements such that for any fiber squgr¢he CH*(X')-
module CH*(Y”) is free with the basigp} (u;))% ;. If v; € K(Y) are
elements correspondingtq (: = 1,..., k), then

1. TheG*K(X)-moduleG* K (Y) is free with the basi$v;)¥_; .
2. The elementév;)%_, form a filtered basis of th& (X )-moduleK (Y).

Proof. Consider the fiber square

Y xxV 22 Y
P 1r
y x

It is a square of the typex) (with X’ =Y andpyx = f). Therefore, by our
assumption, the homomorphism

k k
D CH'(Y) = CH (Y xxY),  (wi,...,wi) = > pi(ui) - po(wi)
i=1 i=1

is bijective. In particular, it is surjective and consequently
k /
> pi(ui) - pa(u;) = 0y € CH'(Y xx Y)
i=1

for someu), ..., u;, € CH*(Y'), wheredy is the diagonal class i6H* (Y
Xx Y)
Consider the homomorphisms

a: é CH*(X) - CH*"(Y), a:(wi,...,wg)— i w; - f*(w;),
i=1 i=1

B = (Bi)F, : CH*(Y) Bi:w v fo(w-ul).
k
_>

(2

CH*(X),
1

We claim, that the compositiam. 3 is an identity, i.e. foranw € CH*(Y")

o(Bw) 3 s f(fulw- ) = w

=1

To prove this, let us first compute a summand of the sum:

wi - f*(felw - ui)) = i - po (P (w - 45)) = pa.(p3(ws) - pi(w) - pi(u5)).
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Here the first equality holds sinc€ o f. = pa, opj ([8, Prop. 1.7]); the
second equality holds by the projection formulaggrnd since is a ring
homomorphism. Consequently

a(B(w)) = p2, (pi(w) § P(w) - pi(uh)) = pa.(pi(w) - Oy) = w,

where the last equality is well-known in the ca$e= Spec F (see [8, Prop.
16.1.2.(c)]) and is proved in exactly the same way in the general case (cf.
[5, Prop. 1.2.1)).

Thus, we have proved thato 3 = id. Since« is an isomorphism (by
the assumption of the Proposition), it follows thiat o = id as well.

Let us now consider the homomorphisms

k k
@@G*K(X)%G*K(Y), @:(wl,...,wk)»—>Z@i-f*(wi),
i=1 '
_ _ k
B=(B)r,:G*K(Y) Bi:w— fo(w-0),— @IG*K(X),
wheredl,..., 0, € G*K(Y) are the images of),...,u;, € CH*(Y)

underCH*(Y') —— G*K(Y).
The diagrams

@ CH*(X) & CH*(Y) cH*(Y) & @ o (x)
=1 i=1

{ { and { ) I
D GKX) S FKY) GKY) S @ e KX
i=1 i=1

are obviously commutative. Since the vertical arrows in these diagrams are
surjective,a - 8 = id, andfB o« = id, one hasvo 5 = id andfFoa = id.

In particular,a is an isomorphism. This completes the proof of the first
assertion of the Proposition. The second assertion (on the filtered basis of
K(Y)) follows from the first one (see Lemma 8.3)0

Remark 10.4.In fact, Proposition 10.3 is of “motivic nature”: it follows
from the assumptions made that the motivé’ois a direct sum of several
copies of the motive oK in an appropriate motivic category, namely in the
category of correspondences, whose objects are smooth and gchpeares
over X (this category is constructed in [5, Sect. 1]). Since the functor of
taking the adjoint graded Grothendieck group factors through that category
(cf.[26, Sect. 5]), the motivic decomposition mentioned implies the assertion
required.

The proof of Proposition 10.3 given above is in fact almost a “decoding”
of the motivic proof.
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One possible application of Proposition 10.3, which comes to the mind
immediately, is the construction of a filtered basis for a projective space
bundle, using the following well-known result:

Proposition 10.5. Let X be a smoothF-variety, M be a rankd vector
bundle overX, and7 be the tautological vector bundle on the projectie

bundleP(M). Seth & — & ([T]) € CH!(P(M)) (it is the “hyperplane”
class). Then the&CH*(X')-module CH"(P(M)) is free and the elements

1,h,h2,..., h¢ ! form its basis.

Proof. By [8, Th. 3.3], a basis o€H*(P(M)) over CH*(X) is given by
the powers of; ([Op( ) (1)]). Since

T = Opmy(—1) and & ([Opagy(1)]) = — e ([Opany (—1)])
we are doné. O

Corollary 10.6. In the notation of the Proposition, sét L [T] €
K(P(M)) (it is the “hyperplane” class). Therfl,h,h?,... A% 1) is a
filtered basis of the{ (X )-moduleK (P(M)) andcodimh' = ¢ (for i =
1,...,d—1).

Proof. According to Proposition 10.5, the assumption of Proposition 10.3

holds fory % P(M) andu; & Al € CHY(P(M)) = CH(Y) (for

i=0,...,d—1). Since the vector bundlg is of rank 1, one hag, ([T]) =
[T]—1 € K(P(M)). Thereforehi = (—¢;([T]))" and hence the elements
h € K(P(M)) correspond to the elemerit§ defined ag — & ([7]))" (cf.
Example 10.2). Proposition 10.3 says thath, h2, ..., h4~1) is a filtered
basis of theK (X )-moduleK (P(M)) andcodim h? =i (fori = 1,...,d—
1). O

Proposition 10.7. Let X © 5 x SB(A) andY o SB(A°P), where A

is a central simpleF-algebra of degreel and S is a homogeneous$'-
variety. LetZ and 7 be the tautological vector bundles &B(A) and

SB(A°P). Consider the vector bundig def 0Os®I®4J0nX xY and

seth 1 [7] € K(X x Y). Then

1. The elements, h, k%, ..., h%"! form afiltered basis of th& (X )-mod-
ule K(X x Y); codim h? = i.

5 In fact, T is by definition a vector bundle whil®(—1) is an O-module. However,
we follow here the functor of points ideology where the notions of a vector bundle and a
locally free @-module coincide (cf. [26, Sect. 8]). In the standard geometric point of view,
there is a correspondence between vector bundles and local@freedules; the equality
T = O(—1) should then be understood in the appropriate way.
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2. Inthe groupK (X x Y3), the element is equal to}AL h— }A-JL where
he K(SB(A)p) ~ K(PL) andhe K(SB(AP)z) ~ K(PL!) are
the hyperplane classés.

Proof. 1.SetM % Os®Z.ByCorollary 4.5, the product xY considered
over X is identified withP(M). Besides, the tautological vector bundle on
P(M) corresponds to\ ® 4 J = Os ® T ®4 J = T. To complete the
proof, apply Corollary 10.6.

2. We may assume that = Spec F'. First, note that?[T] = [Z] - [7],
becauselimpr A = d?. For the rest of the proof we may replaEeby F'; in
particular,A is split now. Then the varietiefB(A) andSB(AOP) areisomor-

phic to projective spaces. Lét: [(’)SB( y(=1)] and§ [Osp(a0p) (—1)].
We have[Z ] d 2 and [J ] d 5 (see [41, Sect. 8.4]). The hyper-

plane classll is defined ash— 1- 5 Analogously,h— 1- g So, we

get the formulad?[T] = d(1— ﬁ) ~d(1—- h). Since the Grothendieck
group we are working in is torsion-free, one can divide &%y Hence

R [Tl =1- (- A= h)=h+h—hh. O

Corollary 10.8. Let Q be a quaternionf-algebra and Ietf, % be two
copies ofSB(Q). Letp and}v? be the classes of rational points Q}lp and

%F. Let S be a homogeneouk-variety. Thenk (.S x Y x 1}) is a free
K(Sx f)—module with the filtered bas(i,f? +p— %); besides:odim(f)
+p—pp) = 1.

Proof. SinceQ is aquaternion algebra, it has a canonical anti-automorphism

QR-Q°P. We identify}; with SB(Q°P) via this anti-automorphism and apply
Proposition 10.7. O

Remark 10.9.t probably deserves to be mentioned that the element
N Vv AV A \
P+DP—pre K(Y XY)
in the notation of Corollary 10.8 coincides with the class of the diagonal.

11. Filtered bases for grassmanian bundles

Definition 11.1. Let m,n be some integers. A(m,n)-partition X is a
sequence of mteger(s\l, ...y Am) Of lengthm satlsfymg the condition

5 we considefl and}v1 as elements oK (X x Y5) via the pull-back.
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n>M\N >...> A\, > 0. The weight/\| of \ is by definition the sum
AMF o+ A

Let A be an(m, n)-partition and lets o (s1,...,8,) be a sequence
of variables. For ali < 0 and alli > n, we puts; = 0, besides we put
so = 1. TheSchur polynomialA, (s) of A is by definition the determinant
of the matrix(sx,+;-i);—; - Itis @ homogeneous polynomial of weight,
if every s; is taken with the weight.

Example 11.2.0ne has exactly six2, 2)-partitions: (2, 2), (2,1), (2,0),
(1,1), (1,0), and(0, 0). Applying the formula

Sh1 SAi+1
Aix, ) (8) = det ! ! = 53,5\ — SA14+1Sh0—1
(A1, 2)( ) Shg—1 S 192 1+15X2

(take in attention that_; = s3 = 0 andsy = 1), one computes their
Schur polynomialsA; 2)(s) = 3, Aig1y(s) = s2s1, Apg)(s) = s2,
A(lul)(s) = S% — S9, A(I,O)(S) = 81, andA(Ovo)(s) =1.

We fix the following notation for the rest of this sectidnis an arbitrary

field, X is a smoothF-variety,r > n > 0 are integersM is a rankr vector

bundle overX, andI" % I',(M) — X is the grassmanian bundle of

n-planes in the vector bundl®f. We denote by the tautological vector
bundle onI" (also calleduniversal vector subbundlsee [8, Sect. 14.6]).
Note that the rank of equalsn.

def

For an(m, n)-partition, we putA o Ax(s)withs; = (1) ¢;([T])

e K(IN, i = 1,...,n. Besides, we putd, % A,(3) with 5 %

(=1 &([T]) € CHYI"),i = 1,...,n. SinceAy(s) is a homogeneous
polynomial of degreé\|, one hasA, € K (I')M) and A, € CHR(I).
Obviously, Ay corresponds tal, in the sense of Definition 10.1 (see Ex-
ample 10.2).

We consideCH*(I") as aCH* (X )-module via the pull-back homomor-
phismCH*(X) — CH*(I").

Proposition 11.3. The CH* (X')-moduleCH*(I") is free and the elements
Ay, where runs over the set of all- — n, n)-partitions, form its basis.

Proof. By [8, Prop. 14.6.5], the elemertgy % Ay (s), si 2 &(—[T]),
where)\’ runs over the set of alh,  —n)-partitions, form a basis ¢ H*(I")
over CH*(X). By [8, Lemma 14.5.1], one hagy = A, where) is the
(r—mn,n)-partitiondualto \’ (see [8, Sect. 14.5] for the definition of the dual
partition). Therefore, the collectiofV /)y coincides with the collection
(Ay)x up to a permutation. O

Now we conside¥s (I") as akK (X )-module via the pull-back homomor-
phismK (X) — K(I).
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Corollary 11.4. The K(X)-module K (I") is free and the elementd,,
where) runs over the set of allr — n, n)-partitions, form its filtered basis;
besidesodim Ay = |A|.

Proof. Follows from Propositions 11.3 and 10.30

We are especially interested in the case of the grassmanian of 2-dimen-
sional subspaces in a rank 4 vector bundle:

Corollary 11.5. LetI" — X be the grassmanian bundle ®planes in a
rank 4 vector bundle over a smootffi-variety X. Putn = —¢;([7]) and
w = c2([T]), whereT is the tautological vector bundle ofi. ThenK (I")

is a free K (X )-module with the filtered basis

™ 1P)ap0.048<2 = (1,1, 1o 0?, mps, 1),
The codimension of any basis elemght ;° is equal toa + 2.

Proof. By Corollary 11.4 (see also Example 11.2), the elemehts,) =
12, Ay = iy Aoy = s Ay = 1% — 11 Aoy = 1, andA g g) = 1
form afiltered basis oK (1") over K (X). To finish the proof, we just replace
Aqy by Aqgy +Apey =77 O

Here is the situation Corollary 11.5 will be applied to:

Let Q; and (Q; be quaternionF'-algebras and) def Q1 ® Q9. Let Iy

andZ, be the tautological vector bundles 6B(Q;) andSB(Q3). Let S

be an arbitrary smooth’-variety andX g« SB(Q1) x SB(Q2). Set

M def Os ® 71 ®I,. Clearly, M has a structure of a rigli) x -module. We

denote byT" the generalized Severi-Brauer variéi(2, Q) and by 7 the
tautological vector bundle dfi (whichis arightQy-module). The canonical
anti-automorphisms af); and@- determine an anti-automorphism @f
using this, we considef as aleft Qr-module and define a vector bundle
7 onX x T as the tensor produc¥! ®g, ., J. Applying Corollary 4.4
one sees that

— the productX x T'= S x SB(Q1) x SB(Q2) x SB(2,Q; ® Q)2) con-
sidered overX = S x SB(Q1) x SB(Q2) via fist projection can be
naturally identified (as a scheme ouE) with the grassmanian bundle
(M),

— under this identification, the tautological vector bundle on the grassma-

nian bundle corresponds to the vector bur@lés’ M ®Qxxr J ON
X xT.

Now we set def c1([T]) andp aef ca([T]). Sincerk M = 4, Corol-

lary 11.5 gives rise to the following
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Lemma 11.6. In the notation introduced right abové (X x T') is a free
K (X)-module with the filtered basis

(na : Hﬁ)aﬁzo,aﬁ-ﬁﬁ? = (]-a n, K, 772) ny, /'62)
The codimension of any basis elemght ;.° is equal too + 23. O

Lemma 11.7. In the notation of Lemma 11.6, let us consider the homo-
morphismf : K(X x T) — K(Xp(r)) defined as in Example 5.4. Then
f(n) = 2(p1 + p2 — p1p2) and f () = 2p1p2 Wherep; denotes the class of

a rational point inK (SB(Q;) ) = K(SB(Q:) p(1)) (i = 1,2).

Proof. It suffices to check the statement under the assumptiorfthatr'.
In particular,SB(Q1) andSB(Q2) are isomorphic to the projective lines.
SinceT = M ®qgy,, J anddim@ = dim@; ® Q2 = 16, we have
16[T] = M] - [TJ] = [T1] - [Z2] - [T])- Applying the pull-back to the right-
hand side, we g€fZ;] - [Z] - 8 because the rank of the vector bundies

equal to2deg @ = 8. SinceSB(Q;) is isomorphic to the projective line

fori = 1,2, we have|Z;] = 2¢;, whereg; e [Osp(q,)(—1)]. Therefore,

f(T]) = 2&1&,. Since the Chern classes are compatible with the pull-back,

it follows that f(n) = — c1(261€2) and f (1) = c2(26:€2).
Let us compute the total Chern clagsf 2£;&s:

(266) = (c(&1&))° = 1+ (G& — 1t)* .

Therefore, the first Chern class equals; &2 — 1) and the second Chern
class equal$¢; &, — 1)2. Substitutingt; = 1 — p; we get the statement on
n andp required. O

Remark 11.8 As noticed by the referee, replacindy n — 2p1 — 2ps + p,
one may get another filtered basis of ti¢.X )-module K (X x T') having
the additional nice property thagt(n) = 0. This may simplify a bit the
computations of Sect. 12.

12. Preliminary calculations

In order to formulate the basic theorem, i.e. Theorem 12.1, more comfort-
ably, we need certain formalisms.

We denote by? the two element setr, v}. Let G be the groupAut {2
of permutations off? (G consists of two elements: the identity and the
transposition of. with v).

We denote byG;; the direct producty; x G- of two copies ofG and
we denote byG; the diagonal subgroup dF;;. We identify G; with a
subgroup ofG;; via the homomorphisnfid, 1); we identify Gy with a
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subgroup ofG;; via the homomorphisnil, id). The nontrivial element of
G; (for i = 1,2) will be denoted bys;; the nontrivial element o7 will
be denoted by ThUSG[ = {1,8}, Grr = {1,81,82, S}, s = 8189 € Gy,
Gy~ Z/Q, Gy~ Z/2 @Z/Q

Let £2; and (2, be two copies of the sé?. We denote by?;; the direct
product(2; x £25. Taking the product of the action 6f; on{2; with the action
of Gy on(2,, we getan action aff;; = G1 x Go onthe sef2;; = 21 X (5.

The trivial action ofG; on §2; for ¢ # j and the (nontrivial) action of
G, on {2; gives rise to an action aff;; on the set-theoretical direct sum
2] $2.

As a subgroup o+, the groupG as well acts on the se&?; [ [ (2.
The groupG; naturally acts on the diagonal 6f;;, which we denote by
2.

We apply these formalisms to the following situation.

Let@: and@- be quaternio’-algebras such th&}; ® (05 is a division
algebra. Let us denote By the Severi-Brauer variety @; and byX the
product

x Y <HY1) X (HY2> 2391 X §>1 X }//\2 X %27
@ 2

whereﬁ» and }ﬁl are two copies ol;. The action of the group&; and
Gy onthe set?; [ ] {2, determines their action on the variety(by means
of the permutations of the factors). In particular, the elemgiaicts onX

interchanging}% with };Z (the other two factors are left untouched).
Letus denote by the generalized Severi-Brauer varisiy(2, Q1®0Q)2).
We set

def N\ W def M \%Y N VA
Tr =]]T=TxT and T = [[T=TXTxXTXT .
2 Q1
The action of the groug?;; on the sef2;; = {m, w, Av, w} determines
an action of7;; onT7; by means of the permutations of the factors. Besides,

the action ofG; on 2; = {m, w} determines an action @f; onT7.

Now, we setX; dof ¥« Ty and X dof ¥« Trr. The action

of G;; on X and onT;; determines an action ¢f;; on X;;. Hence we get
an action ofG;; on K (X;r). Analogously, we get an action 6f; on X;
and onK (Xj).

We consider the homomorphisms

fr: K(Xp) = K(X xTr) — K(Xpr))

and
frr: K(%[}) = K(X X TII) — K(XF(TU))
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as in Example 5.4. We identifit (X z(r,)) with a subgroup of< (X 77,))
and we identifyK (X (7, ,)) with a subgroup irK(XF(TH)). Note that in
fact

FCF(Tr) c F(Trr) and K(Xp) = K(Xpr,)) = K(Xf1,,)) -
We denote by the class of arational point i (X 7 (1,)) = K(Xp(p,,))-
Theorem 12.1. In the notation introduced above, one has

2p ¢ fr((K(Xn)™W)9T) and 2p ¢ frr((K(Xm))5m) .

Two applications of the Theorem are in Sect. 13 and Sect. 14. In the rest
of this section we prove this Theorem.

We start with an investigation df (X).

Let ZA?Z- and zv% denote the classes of rational points @?y)p and on
(ﬁ-)p. SinceX ~ P! x P! x P! x P!, afiltered basis of (X ) consists
of the elementsﬁl)‘51 . (Zv?l)”-(}A?g)@-(Iv?g)f‘*o,whereel,sg,sg,m €{0,1}.
Clearly, the action ofz; andG;; on the ringK (X z) is determined by the
following rules:

N N \4 N
— s(p;) =p; ands(D;) =p;,

N \ \ N
— si(P;) =p; ands;(p;) =p;,

A A v v i i
— 5i(P;) =p; ands;(p;) =p; for i # j;
that isGy acts on the se{}gl,}v?l,zgg,}v?z} in the same way as on the set
21 [ §2, (if we identify these two sets in the natural way).

Let us consider the groufi (X') as a subgroup ok (X 7).

Lemma 12.2. Afiltered basis of{ (X') consists of the elements of the form

def . A A A v ANV A v AV
Cerereses = (2D1)7 - (2D9)72 - (D) + Py — P1D1)% - (Dy + Dy — DoPy)™

wheresq,e9,e3,e4 € {0, 1}. Besidescodim g, cpeqe, = €1+ €2+ €3 +€4.

Proof. SetR; def K(}?l X 1?2), Ry def K(}Ql X }92 X }xl), and 3 def

K(}Ql X }92 X 1%1 X %2). By Corollary 9.9, a filtered basis @i, consists
of

(2p1)° - (2P9)%2
whereeq, g9 € {0,1}. By Corollary 10.8, a filtered basis of th& -module
R, consists of(}Aﬂl + 1v91 — 1311%1)53, wheres; € {0, 1}, and a filtered basis

of the Ry-module R3 consists of(f?g + ]v72 — 221%2)54, wheree, € {0,1}.
Lemma 8.5 completes the proofO
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Below, we use the following notatiorii; déff?l + ]v91 - f?llvh and
ho déff)g + ]v92 — ZA?Q;IVDQ (cf. Item 2 of Proposition 10.7).
Corollary 12.3. One hask (X)® ¢ 4K (Xz) andK(X)®) C 4K (X5)
+ H, where H is the subgroup of{ (X ) generated by f?ﬂv?l hs and
2 292}/)2 hi.

Proof. The groupK( ) is generated by the element; € 4- K(X5).
The groupK (X)) is generated by the following five elements:

e, eiol, e € 4- K(Xp) and eqoi1, €o11-

Using an evident formuIéle?Z-)2 = 0, one getp1; = 2 ]A91 hihy =2 ]Amv?l
ho € H andegi1; = 2 ]AQQ hihg =2 ]AQQ}/)Q hi€e H. 0O
Definition 12.4. We denote by¢ the filtered basis of(X') described in

Lemma 12.2. We set

Cotd e € |ed 2K(Xp)} andEeven 2 {e € € | e € 2K(Xp)} .

For anyd > 0, we set€@ % ¢ n k(X)) gld), & ¢, . N K(X)@,
) def

ande) < g 40 N K(X)@,
The following Lemma is obvious.
Lemma 12.5. The set, qq consists ofl, h1, ho, andhihs. Moreover
1. The seE‘(d)d is empty ford > 3.
2. The sett?éd)d consists of one elemerit; h,.
3. The set‘:éé)d consists of three elements;, ho, andhihy. O

Corollary 12.6. For anye € £,qq, One hass(e) = si(e) = sa(e) = e, i.€.
the setf,qq consists of7;;-invariant elements. O

Now we are going to study the structurefé{X;) and K (X;;).
The elements, u € K(SB(Q1)xSB(Q2)xSB(2,Q1®Q2)) ofLemma
11.6 give rise to the elements

M M A A M\ W W \% \ W

N e K(Y1 xYexT), N,MeK(Y1XYaxT),

N A \% N VA VA \% A VA

npre K(Y1 XY xT), N HeEK(Y1XYa2XT).
Using the pull-back homomorphisms (with respect to the projections), one
can considelArlA, A/?, ¥7v, ﬂ as elements of{ (X). Analogously, one can con-

sider

NN N

M MN W WA N
R R B N A
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as elements oK (X;;).
The following Lemma is obvious.

Lemma 12.7. |.The groupG; acts on the subseﬁl?A?A, ¥7v, ﬁ, ﬁ} of the group
K (X;) in the same way as it acts dpy.

M W AN VA M W AN VA
[l. The groupG; acts on the subsefsr, n, 1, n}and{x, i, i, 1} of the
group K (¥77) in the same way as it acts d@y;. O

Proposition 12.8. 1. A filtered basis of thé{ (X )-moduleK (X) consists

of the eIement(sﬁ??)a1 . (%v)a2 . (A/?)ﬁl . (Vlj)ﬂ?, wherea, ag, (1, B2 run over

the set of all non-negative integers such that- 51, as + G2 < 2. Besides,

the codimension of any basis elementis equal to the sum of the codimensions
of its factors:

M \%%

codim((??A)o‘1 . (¥7v)a2 ()P (1)) = g + ag + 2(B1 + Ba).

II. Afiltered basis of thé& (X )-moduleK (Xr) consists of the elemer(tg
)al . (\ﬁv)az . (%v)a3 . (%V)CM . (2{2)61 _(ﬁ)@ . (\'[/2)63 . (ﬁ)m’ whereo, . .., a4, B,
.., Barun over the set of all non-negative integers suchthat 51, . . ., ay

+ (4 < 2. Besides, the codimension of any basis element is equal to the sum
of the codimensions of its factors:

I\ VA WA

Codim((%\)al ) (}%az . (77)013 . (/7\3/)044 . (Aﬁ)ﬁl . (\ﬁ)ﬁz . (/1,)53 . (u)ﬁz;)
=a1+ag+az+as+2(01 + P2+ B3+ Ba) .

Proof. I. It suffices to apply Lemma 11.6 two times (taking Lemma 8.5 in

account).
II. ltsufficesto apply Lemma 11.6 four times (taking Lemma 8.5 in account).
0
Applying Lemma 11.7, we get
Lemma 12.9. |, Il. For the homomorphisnf; : K(X;) — K(Xp(r,)) as
well as for the homomorphisfy; : K(X;1) — K(Xg(r,,)), One has
M A A A A M AN
N+ 2(P1 + P2 — p1P2) ; Ho— 2 piPy
% \ vV v Vv W v Vv
N+ 2(P1 + P2 — p1P2) ; M= 2 piPo .

Il. For the homomorphisnfi; : K(X;;) — K(Xp(r,,)), one has
N A Vv AV N AV
1+ 2(P1 + P2 — p1P2) ; I 2 piDy ;
WA vV A v A VA v A
N+ 2(P1 + P2 — p1P2) ; M 2 p1Py
additionally. O
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Corollary 12.10. I.The elemenﬁ)ﬁr(hlhg(ﬁA + ﬁ)) belongstal K (X s (r,))-
Il. The elements;;(hi(i + [ + 1 + 1)), frr(ha(li + it + 10 + j1)),
M WA N wW M W\ A\ W
fri(hiho(K + 1t + o+ 1)), and frr(hiho(n + 1 + 1 + 1)) belong to
4K(XF'(T]I))
Proof. Itis just a direct calculation using Lemma 12.90
Our main tool for study off; (K (%7)*)C1) is the following

Lemma 12.11. Suppose that a subgrougd ofK(XF(TI)) and an integer
d satisfy the following conditions:
— AK(Xp(p,)) C M;
- fi(K(X)) c M;
— foranye € 853;1) one hasfr(e(

(d—2)
— foranye € £, 4

Thenf; (K (%) )¢ ¢ M.

one hasf7(e(

Proof. Let us divide the elements of the filtered bagif the K (X)-
module K (X;), given in Proposition 12.8, into four groupgy = {1},
¢ = {%A, ¥7v}, ¢y = {A/Q, Vﬁ}, and¢; = {all other generatojsLet us denote
by V; ¢ K(X) (fori = 0,1, 2, 3) the K(X)-submodule generated I#;.
Clearly, K(X;) = Vo & Vi @ Vo ® Vs. Now, we set/\) = V; n K (%)@,
Since the basi¢ of K (X;) is filtered, one has

@)D =vP v e v ev® .

Moreover, the set§; areGG-invariant; consequently, the submodulésire
Gr-invariant as well. Therefore,

(K(%[)(d))GI — (Vb(d)>G[ @ (Vl(d))GI o) (VQ(d))G’J oy (Vg(d))GI.

Thus, itis sufficient to verify thafl((l/i(d))s) C Mforalli=0,1,2,3 (we
recall thats is defined as the only nontrivial element of the graup.
Fori =0, we havely = K(X)-1 = K(X) and hencq‘l((%(d))s) C
fr(K (X)) c M by the assumption of the Lemma.
Fori = 3, it follows from Lemma 12.9 thaf;(€3) C 4K (Xp 1))
Since f; is a homomorphism ofK’(X)-modules, one hag;(V;3) C

4K (Xp(r,))- Consequentlyff((lg(d))s) C f1(Vs) CAK(Xpr,y) C M.
Now, consider = 1. We haveV¥ = K(X)(@D. 7 ¢K(X)@d-V.

(here we use once again the fact that the bdsis filtered). Therefore

(VNG = {4 0 +s(r)- 1 |r € K(X)WD}. Thus it is sufficient to
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verify that f;(r- 1 +s(r)- 1) € M for all r € K(X)@=1. Clearly, it
suffices to consider the case whereelongs to a basis df (X)(?~1; e.g.
we may assume that= e ¢ gld=1 |f ¢ ¢ Se(il;}), thene € 2K (Xj)
ands(e) € 2K (Xp). Sinceff(??A), f1(77v) € 2K(Xp(r,)), one hasfr(e- n
+s(r)- %v) € 4K(Xp(r,)) C Minthis case. It € Eéfl)d, then by Corollary

12.6 we haves(e) = e. Therefore,f;(e- n +s(e)- ﬁ) = j}(e(%A + 0
)) € M by the third assumption of the Lemma. This completes the proof
fori = 1.

Fori = 2, we haveV¥ = K (X)W@=2). i @K (X)@=2). [i. Therefore
(VD) = {r 1 +s(r)- i |r € K(X)(@}. The rest of the proof is the
same as thatfar=1. O
Lemma 12.12. f1<(K(3€1)(4))G1> C 4K (Xpry)-

Proof. By Lemma 12.11 it suffices to verify the following assertions:

(@) K(X)¥W C 4K(Xp),

(b) foranye € Séi)d one ha@"[(e(??A + ¥7v)) € 4K (Xp(r,))s

(c) foranye € 5(5(21)(1 one hasfl(e(A/2 + V/I)) € AK(Xpiry))-

Assertion (a) is a part of Corollary 12.3. Assertion (b) is obvious because

Eéf’i)d is empty (Item 1 of Lemma 12.5). Assertion (c) is an obvious conse-
guence of Lemma 12.5 (Item 2) and Corollary 12.1Q1

Corollary 12.13. 2 p1P1DaPa¢ f1((K(X)D)G1). O

Our main tool for study of (K (%;;)®)C1r) is

Lemma 12.14. Suppose that a subgroug of K (X1, ,)) and an integer
d satisfy the following conditions:

— 4K (Xper,,y) € M;

— fr(K(X)W) C M;

— foranye € Eéflgl), one hanH(e(/;?A F N4+ 77v)) € M,
— foranye € ggﬁf), one hasfrr(e(i + L + /i + [1)) € M.
Thenf((K(%77) D)%) ¢ M.

Proof. Similar to that of Lemma 12.11.0
Lemma 12.15. fH<(K(3€U)(3))G”> C 4K(Xp(r,,)) + H, whereH is

the subgroup OK(XF(TH)) generated by 1A?11V71 (1A72 + 1V72 — 132132) and
2 ]A72]v72 (fﬁ + ]v71 — IA71IV71).
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Proof. By Lemma 12.14, it suffices to verify the following three conditions:
(@) K(X)® c 4K(Xp) + H;
(b) foranye € Eéi)d, one hasf;;(e(n + 1 + 1 + 1)) € AK (X p,);
M\ VA Y wW
(c) for anye € €%, one hasfy(e(l + it + 1t + i1)) € 4K (X, ).

Assertion (a) is a part of Corollary 12.3. To verify conditions (b) and (c)
apply Lemma 12.5 and Corollary 12.100

Corollary 12.16. 2?)1;)1f92]v92¢ frr(K(X)@HGmy, o

Corollaries 12.13 and 12.16 complete the proof of Theorem 12.1, because

ANV ANV

p =P1P1P2P; in the groupsk (Fp(p,)) and K (Fp(p, ))-

13. First basic construction

Let k& be a field of characteristic different from 2, containing elements

CLl,b]_,CLQ,bQ,d € k*
such that the quadratic extensioh k(+/d) is a field and the biquaternion
l-algebra((ai, b1) ®y (a2, b2)), is a skewfield.
Let T be the generalized Severi-Brauer variety (see Sect. 4) of rank 2
right ideals in the biquaterniokralgebra(a;, b1) ® (a2, by). Denote byK
the function field of thes-varietyR(T') = R,/ (T') (see Definition 6.2).

putL K (V/d); it is the function field of thé-variety R(T);. Since

R(T); = T; x T} (see Sect. 6), one has
ind ((al, bl) & (CLQ, bg))L =2

by the index reduction formula [2, Th. 3].
Fori = 1,2, letg; be the quadratic forn—a;, —b;, a;b;, d) over K.

Theorem 13.1. For any odd field extensiok” /K, the quadratic forms
(q1)x and(q2) - are non-linked (see Sect. 3.2 for the definitiofirdéed).
In particular, the formsy; and g, themselves are non-linked.

Proof. Letus remember that the quadratic forgandg, are in fact defined
overk and denote byX; and X the projective quadrics ovérdetermined

by ¢; andgs. SetX def X1 x Xo. We have to show that the degree of any
closed point on the variety i is divisible by 4.

Consider the Grothendieck group(X ) of the variety X x supplied
with the topological filtration. Lep € K (X ) denote the class of a rational
point. To show that degree of every closed pointXrs divisible by 4, it
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sufficestoshowthap ¢ K (X)), whereK (Xk) (o) is the 0-dimensional
term of the topological filtration o (X x ). Sincedim X = 4, we have
K(Xx) @) = K(Xx)™.

The pull-back homomorphistis (X xR (T))* — K(Xx)®, givenby
the flat morphism of schemésx — X x R(T'), is surjective by Corollary
5.3 (see also Example 5.4). Therefore it suffices to show2ghistnot in the
image of this homomorphism.

Denote by the non-trivial automorphism éoverk. The groupk (X x
R(T))™W is contained in the-invariant part of the grouf’ (X; x R(T);).
Thus it suffices to show that

2p & Im (K (X; x R(T)))M7 = K(X1)) .

For this, we apply Theorem 12.1.

In order to meet the conditions of Theorem 12.1, note that ferl, 2,
one hasX; ~ R(Y;), whereR = R, andY; is the Severi-Brauer variety
of the quaterniork-algebra(a;, b;) (see Example 6.4).

Thus we haveX x R(T') ~ R(Y; x Y3 x T'). Therefore, we can identify
X x R(T'); with the product

def A A v v A v
Xr=Y1xXYoexY1 XYoexTXxT

whereﬁ-, % are two copies ofY;); ande“, % are two copies of;. More-
over, by Corollary 7.3, the automorphism&f X; x R(T");) induced by
corresponds to the automorphismfX;) induced by the permutation of
the factors interchangingAi with ﬁ andf with jv“

We have met the conditions of Theorem 12.1. Applying it, we get the
affirmation required. O

Corollary 13.2. For any fieldkq with char ky # 2 there exist a field exten-
sionK /kpand elements,, as, b1, b2, d € K* with the following properties:

— ind((a1,b1) ® (asg, bQ))K(\/E) = 2;
— for any odd field extensioR’/ K, the quadratic forms

def def
@1 = (—a1,—b1,a1b1,d) and ga = (—ag, —ba, azbs, d)

are not linked overk”.

Proof. Putk % ko(a1,b1,az,ba,d) whereay, by, as, be, d are indetermi-

nates. Then & k(+/d) is a field and the biquaternidralgebra((a;, b;) ®
(a2,b2)), is a skewfield. For the fiel& > k as in Theorem 13.1, all affir-
mations of the Corollary hold. O
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14. Second basic construction

Let k be a field of characteristic different from 2, containing elements

a17b17a27b25d17d2 € E*

such that the biquadratic extensibris k(v/dy,+/dz) is a field and the
biquaternion-algebra((a1, b1) ®y, (a2, b2)), is a skewfield.

Let 7" be the generalized Severi-Brauer variety (see Sect. 4) of rank 2
right ideals in the biquaterniokralgebra(a;,b1) ® (a2, b2). Denote byK
the function field of the:-varietyR(T') = R, (T") (see Definition 6.2).

putL & K(V/dy,/ds); it is the function field of thd-variety R(T),.

SinceR(T'); ~ TlX4 (see Sect. 6), one has
ind ((al, bl) X (CLQ7 bg))L =2

by the index reduction formula [2, Th. 3].
Fori = 1,2, letg; be the quadratic forn—a;, —b;, a;b;, d;) overK.

Theorem 14.1. Denote byX; and X5 the projective quadric ovek de-
termined byy; andg. The Chow grouH?(X; x X5) has a torsion.
Proof. PutX % X, x X and consider the Grothendieck groi X ) of
the varietyX . There is anisomorphis@H? (X ) ~ G2 K (X) (see Sect. 3.3).
We are going to show th&#? K (X) contains a torsion.

Denote byp € K(Xj) the class of a rational point. As we did all
the time, we identifyK (X)) with a subgroup of< (X ;) via the restriction
homomorphism.

Lemma 14.2. 2p € K(X).

Proof. Fori = 1,2, denote byi4; Swan’s vector bundle oX; ([51]). It

has a structure of rightQ;) x,-module, whereR); def (ai, b;) k. For the

class[i/;(2)] € K(X;) of the 2 & dim X;) times twisted Swan'’s vector
bundle, there is a formula (see [22, Lemma 3.8))(2)] = 4 + 2h; + h?,
whereh; is the class of a general hyperplane sectioX pfLifting to X, we
consider the tensor produdt ® Us. Itis a vector bundle ovek’, having a
structure of right; ®x Q2-module. Therefore, sinageg Q1 R Q2 = 4
andind Q1 ®x Q2 = 2, the clasgi/; (2) @ Uz(2)] = (4 + 2h1 + h2)(4 +
2hs + h32) is divisible by 2 inK(X). Consequently, the produtgh3 is
divisible by 2 as well. Sincé?h3 = 4p, we are done. O

Since one can find a field extensionigfof degree 4 such that the forms
g1 and g, become isotropic over this extension, one Hasc K(X)(4).
Therefore, if we manage to show tiat ¢ K(X)(3), we get an element of
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order 2 in the quotienk (X) /K (X)®), namely the class dfp. Since the
groupsK (X)(/D andK (X)(1/?) are torsion-free (see [44, Lemme 6.3, (i)]
for the statement ok (X)(%/V) ~ CH!(X)), it will be a nontrivial torsion
element ink (X)/3),

So, the last step in the proof of the Theorem is the following

Lemma 14.3.2p ¢ K(X)®),

Proof. Letus remember that the quadratic forandg, are in fact defined
overk. Let us change the notation and from now on denot&hynd X5

the projective quadrics ovérdetermined by, andg,. SetX def X1 x Xo.
We have to show thatp ¢ K (Xx)®).

The pull-back homomorphisti (X x R(T))®) — K (Xx)®), given by
the flat morphism of schemégx — X x R(T), is surjective by Corollary
5.3 (see also Example 5.4). Therefore it suffices to show2ghtnot in the
image of this homomorphism.

Let us denote by~ the Galois group of the biquadratic field extension
1/k. The groupK (X x R(T'))® is contained in th&-invariant part of the
group K (X; x R(T);)®. Thus it suffices to show that

2p & Tm (K(X; x R(T)))P¢ — K(X1)) .

For this, we apply Theorem 12.1.
def

In order to meet the conditions of Theorem 12.1,ifef 1, 2, putl; =
k(v/d;) and denote by; the nontrivial automorphism dfoveri;_;. The
groupG consists ofl, o1, 02, 0109 and is generated by, os.

LetY; be the Severi-Brauer variety of the quaterniealgebra(a;, b;).
OnehasX; ~ R, ,(Y;) (see Example 6.4). Therefore, we can identity),

with ﬁ X )xi,whereﬁ- and}xi are two copies of the variety;);; moreover,
by Lemma 6.5, the automorphism @X;); given byo; corresponds to the

automorphism 0191- X %Z given byo; composed with the interchanging of
the factors. The automorphism @X;); given byos_; corresponds to the
automorphism oﬁ X ﬁz given byos_;.

We also can identifyz (7"); with [ [ . 7;. Choosing the following corre-
spondence between the signasw, A/, v and the elements «f:

me 1.1 =1
W <> 0109
N 109 = 09
W op-l= oq
N\ W N VA M W AN WA
we identify R(T"); with T x T x T x T whereT, T, T, T are copies
of 7;. The automorphism oRR(T"); given by o; corresponds under this
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identification to the automorphism ﬁfA X % X % X ’f given by oq
composed with the interchanging%i/vith % and ofVTv with % Analogously,
the automorphism oR(7"); given byo, corresponds to the automorphism
of %A X % X % X % given byos composed with the interchanging %AT

with 7° and of 7" with 7"
Summarizing and passing to the Grothendieck group of the varieties, we
get the following commutative diagram (foe= 1, 2):

K (R, (Y1) X Ry (Yo )i K(Ryy 1 (Y1)1 X Ry 1 (Ya)i
XR(T)[) g XR(T)[)
\ !
K(Xr1) =3 K(X11)

whereX;; ands; are as in Theorem 12.1. By Corollary 72, over the
bottom arrow is the identity.

We have met the conditions of Theorem 12.1. Applying it, we get the
affirmation required. O

The Theorem is proved.O

Corollary 14.4. Letk be a field of characteristiez 2 anda, b, u, v, d, €
k*. Suppose that, §,ds ¢ k*? and ((a,b) ® (4, ) (v, v5) IS @ division
algebra. Putp = (—a, —b, ab, d), v = (—u, —v,uv, d). Then there exists a
field extensionk’/k such thatd, §,ds ¢ K*2, Tors CH*(X,, x Xy ) ~
7./27, andind Cy(pr) @ Co () = 2.

Proof. To come to the situation considered in the beginning of the Section,

we simply puta; % @, by 2 b, 4y ¥ w, by o, dy & g, anddy, .

Let K be the field extension of constructed in the beginning of this
section. Sincek is algebraically closed i<, we haved,d,ds ¢ K*2.
Further we have, = px andgs = Yk, so, by Theorem 14.1, the group
Tors CH? (X, x Xy, ) isnontrivial. On the other hand, by [19, Th. 5.7], the
order of this group is atmost 2. Therefdrers CH?(X . X Xy ) =~ Z/2Z.

Finally, let us note thaf’y(p) ~ (a, b)k(ﬁ) andCy(¢) ~ (u,v)k(\/g).
Consequentlynd Cy(px) ® Co(¢k) = ind ((a,b) ® (u,v)), =2. O

Part 2. Quadratic forms

15. Quadratic forms over complete fields

Inthis section we need some results concerning the Witt ring over a complete
discrete valuation field. We fix the following notation:
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— (L,v) is a complete discrete valuation field.

- We setO, = {z € L*|v(z) > 0}, M = {z € L|v(xz) > 0}, and
Uy =90 —Mp ={x € L|v(z) =0}

— The residue field is defined as /MM,

— For anya € 9, we denote by: the class ofiin L = O, /9.

If a € 4y, we obviously haver € L*. Let 7 be an element of such that
v(r) is odd. Sincel*/L*? = s, /3% x {1, 7}, an arbitrary quadratic form
¢ overL can be written inthe formd = (ay,...,ax) L 7 (b1,...,b;) where
ai,...,ag, by,...,b € 4. We define quadrati€-formsdy (¢) andd2 (¢)
as follows:

d}r((ﬁ) = <dl, R ,@k>an, di(d)) = <61, R ’Bl>an

Remark 15.1.1) Springer’s theorem asserts that a quadratic foramd an
elementr € L* determine quadratic formé&. (¢) andd? (¢) uniquely up to
isomorphisnY. The maps

dL, d? : {isometry classes df-forms} — {isometry classes df-forms}

give rise to group homomorphism& (L) — W (L), which are calledhe
firstand the second residue classesl denoted b§; andd, (see [33, Sect. 1
of Chap. 6] or [46, Def. 2.5 of Chap. 6]).

2) In the case where is anisotropic, quadratic formg, ... ,a,) and
(b1,...,b;) are anisotropic as well. Thus, in this case

dr(¢) = (@, ...,ar),  d2(¢)=(bi,...,b;).

Lemma 15.2. Let ¢ and 7 be anisotropic quadratic forms over a complete
discrete valuation fieldL, v). Letw be an element of such thatv(r) is
odd. Suppose that C ¢. Thendl(7) C dL(¢) andd2(7) C d2(®).

Proof. Let v be such that L ~ = ¢. It follows from Remark 15.1 that
dp(r) L dp(7) = dp(¢) anddi(r) L di(y) = di(¢). Thusdy(r) C
di () andd? (1) C d2(¢). O

Lemma 15.3. Let ¢; and ¢ be anisotropic quadratié-forms. LetK =
k((t)), and letp = ¢1 L tpo be a quadratic form oveK. Let L /K be an
odd extension. Suppose that there exists GP,(L) such thatr C ¢r.
Then there exists an odd extensigh of degree< [L : K] such that at least
one of the following conditions holds:

— there existg € GP,(l) such thatp C (¢1);.

" In the original version of Springer’s theoremjs an uniformizing element af. How-
ever, we can suppose thats an arbitrary element such thir) is odd because there exists
a prime element, € L such thatr = 7z in L*/L*2.
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— there existg € G P (1) such thatp C (¢2);.
— quadratic formg¢;); and(¢2); are linked.

Moreover, we can take= L.

Proof. SinceL /K is a finite field extension. is a complete discrete val-
uation field. Letv be a valuation ori,, and letl = L be the residue field
of L. We have[l : k] = [L : K| < [L : K]. SinceL/K is odd,[l : k]
is odd too. Besides, the ramification indef./ K) = v(t) is odd. Thus,
d} andd? are well defined. Sincdim 7 = 4 anddet T = 1, it follows
thatdim d} (7) anddim d?(7) are evendim d} (1) + dim d?(7) = 4, and
det d} (7) det d?(7) = 1. Thus one of the following conditions holds:

1) d} (1) € GPy(L) andd?(7) = 0,

2) d?(1) € GPy(L) andd}(7) = 0,

3) dimd}(7) = dimd?(7) = 2 andd} (7) is similar tod? (7).

Clearly,d} (¢) = (¢1); andd?(¢) = (¢2);. It follows from Lemma 15.2
thatdl(7) C di(¢) = (¢1); andd2(r) C d2(¢) = (¢2);. Thus, we are
done. O

16. 8-dimensional quadratic forms inI2(F)

It is an important problem to find a good classification of 8-dimensional
quadratic formsp € I?(F). One of important invariants af is the Schur
index of the Clifford algebr&’(¢). Clearly,ind C(¢) is equal to one of the
integers: 1, 2, 4, or 8.

If ¢ is a“generic” 8-dimensional form witthet ¢ = 1, thenind C'(¢) =
8. This shows that we cannot say anything “specific” in the tad€’(¢) =
8. In the casénd C'(¢) = 1 we have plenty information on the structure of
¢. Indeed, in this casg$) = 0, and hence € I3(F). Finally, the Arason-
Pfister Hauptsatz implies thate GPs(F). The casénd C(¢) = 2 is well
known too (see e.g. [28, Ex. 9.12]). Namely, for a quadratic foran I (F')
the following two conditions are equivalent: a} C(¢) < 2; b) ¢ can be
written in the form¢ = ((a)) ¢, wheredim ¢ = 4.

Thus, the only open caseiigl C'(¢) = 4. Itis very easy to give examples
of quadratic formsp with ind C'(¢) < 4. If ¢ = m; L m whereny, mo €
GP,y(F),thenc(¢) = ¢(m)+c(me),and hencénd C(¢) < 4. Thisexample
gives rise to the following natural

Question 16.1.Suppose thaty € I?(F) is an 8-dimensional quadratic
formwithind C'(¢) < 4. Dothere necessarily exist quadratic forms mo €
GPy(F) suchthatp = m L my ?

In this section we construct a counterexample for this question. We start
from the following
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Definition 16.2 (cf. [22, Sect. 7])Let ¢ be a quadratic form over.

1) By S(F) we denote the set of quadratic forms ovérsatisfying the
following condition: there exists € GP,(F') such thap C ¢.

2) By S,qda(F) we denote the set of quadratic forms o¥ésatisfying the
following condition: there exist an odd extensibpiF andp € GP»(L)
such thap C ¢r. In other words,

Sodd(F') = {¢ | there exists an odd extensian F
such thatp, € S(L)}.

Clearly,S(F) C Soqa(F). We do not know if there exists a field such
that S(F) # Seqq(F).2 Our interest in the sef,qq(F) is motivated by the
following

Theorem 16.3 (see [22, Th. 7.3]Let ¢ be a quadratic form of dimension
> 3. The groupTors G1 K (X) is zero or equal tdZ/27Z; it is nontrivial if
and only if¢ is anisotropicdim ¢ > 5, and¢ € Syqq(F). O

Proposition 16.4. Let ¢ € I?(K) be an anisotropic 8-dimensional qua-
dratic form such thaind C(¢) = 4. Then the following conditions are
equivalent:

1) ¢ € S(K), i.e., there existp € GP,(K) such thatp C ¢,
2) there exispi, p2 € GP(K) such thatp = p; L po,
3) ¢andqgarelinked, wherg is an Albertform corresponding to the algebra

().

Proof. 1)=-2). Let o’ be a complement of in ¢. We haveyp = p L p'.
Clearlydet p’ = 1 anddim p’ = 4. Thereforey’ € GP(K).

2)=3). One can writepy, p2 as follows:p; = ki ((a1,b1)) andpy =
ko {(az,be)). Thene(q) = ¢(¢) = (a1,b1) + (a2, b2). Thereforeg is sim-
ilar to the form(—ay, —b1, a1b1, az, by, —asbs). Obviously,gbK(\/@ and
K (/ar) are isotropic. Hence andq are linked.

3)=-1). Suppose thap and q are linked. Then there exists ¢ K*
such thatg . 5) andgg (/) are isotropic. We claim thabv(qSK(\/g_)) >
2. Suppose at the moment thiat (¢ (./5)) = 1. Then (¢ /) )an IS @n
anisotropic Albert form. Theind C(¢(, /5)) = 4. Sincec(q) = c(¢), we
see thaind C(gq(,5)) = 4. Hence the Albert forny,( ) is anisotropic,
a contradiction. Thusy (¢ /5)) > 2. Hence there exists a 2-dimensional
form p such thatu (s)) C ¢. To complete the proof it is sufficient to set

p=p{s). O

8 In[22, Rem. 7.2], itis remarked that a fiefland a 7-dimensional form € Soad (F)\
S(F) can be constructed. However, recently the first named author showed that thg form
the second named author had in mind is in fac$ ({i").
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In this section we construct some new examples of quadratic fgrms
such thatp ¢ S,qq(K) (and hencep ¢ S(K)) (see Theorem 16.7). The
main tool for our construction is the following

Lemma 16.5. 1.Let¢; and ¢, be anisotropidk-forms such that;, oo ¢
Soad (k). Denote byy the quadratic formp, L t¢o overk((t)). Suppose
thaty € S,qda(k((t))). Then there exists a finite odd extensiphsuch that
(¢1); and (¢2); are linked.

2. Let ¢1 and ¢» be anisotropick-forms such that;, 9o ¢ S(k). Let
¢ = ¢1 L teo be aquadratic form ovek((t)). Suppose that € S(k((t))).
Theng, and ¢, are linked.

Proof. Itis an obvious consequence of Lemma 15.81

Corollary 16.6. Letg; andgs be 4-dimensional-forms such thab;, ¢2 ¢
G P,(k). Suppose thalp,); and(¢2); are not linked for any odd extension
[/k. Then the quadratic formp; L t¢p, over k((t)) does not belong to

Soaa(k((2))). O

Theorem 16.7. There exist a field( and an 8-dimensional quadratic form
¢ € I?(K) such thatind C(¢) = 4 but¢ ¢ S,qq(K).

Proof. Let field k, elementsiy, as, b1, b2, d € k*, and 4-dimensional qua-
dratic formsgy, ¢ be as in Corollary 13.2. We sé&f = k((t)) and

d=q Ltg = (—ar,—bi,aib,d) L t(—az,—bz,azbs,d).

Clearly,dim¢ = 4+ 4 = 8 anddetL ¢ = 1. In W(K) we havep =

((a1,01)) = () — t({az,b2)) — (d))) = (a1, b1)) —t {az, ba)) + (d; 1)).
Thereforec(¢) = (a1,b1) + (a2, b2) + (d, t). Applying Tignol’s theorem
[53, Prop. 2.4], we see thatd C(¢) = ind((a1, b1) @ (az,b2) @ (d,t)) =
2ind((a1,b1) @ (as, bg))K(\/a) = 2.2 = 4. It follows from Corollary 16.6

thatp ¢ Soqq(K). O
Corollary 16.8. The answer to Question 16.1 is negativel

Corollary 16.9. There exist a field and an 8-dimensional quadratic form
¢ € I?(K) such thatTors G'K (X ) = 0 for i # 4 andTors G*K (X,,) =
7)27.

Proof. Itis an obvious consequence of Theorem 16.7 and [22, Th.8].

Theorem 16.10.Let ¢ be an 8-dimensional quadratic form over Then
the following conditions are equivalent:

1) ¢ € I?(k) andind C(¢) < 4;
2) atleast one of the following conditions holds:
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(a) there existry, my € GPy(k) such thatp = m; L 7o,
(b) there exist a field extensidiik of degree 2 and a quadratic form
7 € GP(l) such thatp = s, (7).

Proof. 1)=2). If ¢ is isotropic, we can writé as a sump = ¢ L (1, —1),
wheregq is an Albert form. Writingg in the formq = s(—a, —b, ab, u, v,
—uv, ), we havep = s (a,b)) L —s {(u,v)). Settingm; = s {(a, b)) andms
= —s ((u,v)), we are done. Thus we can suppose thist anisotropic.

Sinceind C(¢) < 4, there exists an Albert form such thate(q) =
c(¢). If g is isotropic, thenind C(¢) < 2, and hencep can be written
in the fOI’m¢ = ((a)) X <b1,bg,b3,b4>. Settingm = <<a)> & <bl,b2> and
Ty = <<a>> &® <b3,b4>, we haV&b =m L mo and7T1,7T2 S GPQ(/{) Thus in
the case where is isotropic, the proof is complete.

Now, we can suppose thatandq are anisotropic. Let = ¢ | tq be a
quadratic form overds = k((t)). Obviously,dim p = 14 andp € I3(K).
It follows from [42] that there exist € K andr € P3(K(v/d)) such that
p=¢ L tqis similar tOsK(\/a)/K(\/gﬂ’). LetL = K(V/d).

SinceK*/K*? = k*/k*? x {1,t}, itis sufficient to consider the follow-
ing two cases:

—d=ack",
— d has the formut with a € £*.
First, consider the casé = a € k*. In this case we havé = [((t))

with [ = k(y/a). Then an arbitrary.-form v can be written in the form
o1 L tpo, wherep, andgo, arel-forms. We have

sy (V) = spyr (91 L tge) = sym(o1) L tsyn(g2).

Applying this formula to the case = v/dr’, we see thap L tq is similar
to s;/(¢1) L tsyi(p2). Hence, one of thé-forms s 1, (¢1), s/x(42) is
similar tog and the other is similar tg. Leti be such that; ,(¢;) ~ ¢, and
let j be such that;,(¢;) ~ ¢. Thendim ¢; = 4 anddim ¢; = 3. Since
s1/k(¢i) ~ ¢, thereexists € k* suchthat = r-s;/,(¢;) = s1/5,(r¢;). Now
itis sufficientto prove thatg; € GPs(l).Letd; = ¢; L (det(e;) det(¢;)).
Obviously,¢; L t¢; € I*(L). Clearly,¢; L tey is similar tog; L t¢;.
Thereforen’ is similar tog; L t¢;, and hencer is similar tog; L t¢~>j.
Sincer € I3(1((t))), it follows thate;, ¢; € I?(1). Sincedim ¢; = 4, we
haveg; € GP»(l). Thus in the casé € k* we are done.

Now, consider the casé = at, a € k*. In this casel. = k((t))(v/at)
is a complete discrete valuation field with residue fieland uniformizing
elementy/at. Then an arbitrary.-form v can be written in the forrp, L
Vatps, wherep, and¢, arek-forms. We have

sp(7) = spyk (1 L Vatgs)
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= s k(1) @1 L sp({ Vat ) ® ¢s
= <17at> ®or L <1v _1> ® P2
=(¢1 L (1, -1)®¢2) L t-agr.

Applying this formula to the case = v/dn’, we see thap L tq is similar
to (¢ L (1,—1)®¢2) L t-a¢i. Therefore one of the forms ¢ is similar
to ¢; L (1,—1) ® ¢2 and the other is similar ta¢;. Since¢ andq are
anisotropic, we see thdtm ¢, = 0. Thereforedim(¢; L (1, —1) ® ¢o) =
dim a¢;. Hencedim ¢ = dim ¢, a contradiction.

2)=1). In the case wher¢ = 7; 1 my andr;, ™ € GP2(k), we have
¢ € I*(k) andind C(¢) < ind C(m1) - ind O(ms) < 2-2 = 4.

Now, suppose that there exist a field extendioh of degree 2 and a
quadratic formr € G Py(l) such thatp = s;,(7). First of all, we have
dim¢ = [l : k] - dim 7 = 8. Sincer € I*(1), it follows that¢ = s;/,(7) €
I*(k) ([46, Cor. 14.9 of Chap. 2] or [1, Satz 3.3]).

Finally, by [1, Satz 4.18], we hav&(¢) = c(s;/,(7)) = Nyp(c(7)),
whereN, ;. : Br(l) — Br(k) is the norm map (also called transfer, or trace,
or corestriction map).

For any finite separable extensibtk the normn; . ([A]) of the Brauer
class[A] of a central simple I-algebrd is represented by the corestriction
Ny, (A) of the algebraA (see [6, Sect. 8] or [43, Sect. 7.2] for the assertion
in the general case of a finite separable extension; for a simpler treatment
in the special case of a quadratic extension see [29, Sect. 3.B]). Note that
Ny/x(A) is a central simplé-algebra of degredeg(A) [+,

Therefore, coming back to the quadratic extensjdgnwe havend C(¢)
= ind Ny, (C(7)). Sinceind C(7) < 2, it follows thatind N, (C(7)) <
2-[1:k=4. O

Remark 16.111) Settingl = k x k, one can consider Condition 2(a) of
Theorem 16.10 as a degenerate case of Condition 2(b).

2) Actually, Theorem 16.10 is an easy consequence of the deep Rost's
theorem [42]. Rost’s proof uses numerous results on the algebraic groups. It
would be interesting to find a direct proof of Theorem 16.10 in the framework
of theory of quadratic forms.

17. 14-dimensional quadratic forms inI3(F)

In this section we discuss the problem of classification of anisotropic forms
¢ € I?(K). For anisotropic quadratic forms € I*(K), the following
results are known: iflim ¢ < 8, theng is hyperbolic; ifdim ¢ = 8, theng

is similar to a 3-fold Pfister form; there are no anisotropic 10-dimensional
forms belonging ta?(K); if dim ¢ = 12, then there exist a 2-dimensional
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guadratic formu and a 6-dimensional Albert formsuch thaip = ¢ ® q.
Analyzing these results, one can see that:

— all anisotropic quadratic formg € I3(K) of dimension< 12 belong to
S(K),

— any quadratic formp € I3(K) of dimension< 12 can be represented
as asunp ¥ p; with p; € GP3(K) andk < 2.

Here we consider the cagém ¢ = 14. It is not difficult to construct a
form of dimension 14 belonging t&*(K ). Let 7| and} be pure subforms
of 3-fold Pfister formsr andr,. Then for anyk € K* the quadratic form
¢ = k(r] L —75) has dimension 14 and belongst&(K ). This example
gives rise to the following

Question 17.1.Suppose that € I*(K) is a 14-dimensional quadratic
form. Do there necessarily exist quadratic formsm, € P3(K) andk €
K* such thatp = k(r] L —75) ?

We have the following

Proposition 17.2. Let¢ € I*(K) be an anisotropic 14-dimensional form.
The following conditions are equivalent:

1) ¢ € S(K), i.e., there existp € GP,(K) such that C ¢,

2) There exispy, p2 € GP3(K) such thatp = p; + po in W(K),

3) There exist, 72 € P3(K) andk € K* such thatp = k(r] L —73).
Here r{ and 7} denote pure subforms of Pfister forms 7o,

4) There exist;, 7 € P3(K) suchthaty =7 + 7o (mod I*(K)),

5) e3(¢) is a sum of two symbols, i.e., there existbicy, as, ba, co € K*
such thate3(¢) = (a1,b1,c1) + (ag,ba, c2).

Proof. 1)=-2). Lets € K™ be such thapp 5 is isotropic. Sincep €
GP(K),itfollows thatiw (¢ (, 5)) > 2. Thereforelim (¢ /5))an < 10,
and hence Pfister's theorem [40] implies tdat (¢ /5))an < 8. Thus,
iw(9x(/5) = 3. Hence there exists a 3-dimensional fopmsuch that
wi(s) C ¢. We setp; = (u L (det ) (s)). Clearly,p; € GP5(K). Let
p2 = (¢ L —p1)an.- We havep = p1 + po in W(K). Itis sufficient to prove
thatpy € GP3(K). Sincedim¢ = 14 > 8 = dimp; and¢ = p; + p2,
it follows that po # 0. Sincee, p; € I3(K), it follows thatps € I3(K).
Therefore dim p, > 8. Sincep; and¢ contain a common 6-dimensional
form u ((s)), we havedim ps = dim(¢ L —p1)an < 14 +8 —2-6 = 10.
Since ps is anisotropic anch, € I3(K), Pfister's theorem implies that
dim py = 8. Thereforeps € GP5(K).

2)=-3). Itis a particular case of [13, Lemma 3.2] (see also [7, Thm. 4.5])

3)=4). Sincek(r{ L —75) =71+ (mod I*(K)), we are done.
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4)=-1). LetL = K (,/s) be afield extension such thagk), is isotropic.
We havep,,) = (p1+ p2)r(p) =0 (mod I*(L(p1))). Sincedim ¢ =
14 < 16, the Arason-Pfister Hauptsatz implies thiaf, ) is hyperbolic.
Hence there exists ah-form ~ such that(¢r)en = (p1)r - 7. Hence,
dim(¢r,)an is divisible by 8. Sincelim ¢ = 14, it follows thatiy (¢r,) >
(14 — 8)/2 = 3. SinceL = K(4/s), there exists a 2-dimensional form
such that(s)) u C ¢. Now it is sufficient to sep = ((s)) p.

4)<=>b). Itis an easy consequence of bijectivitydf. 13(K)/I1*(K) —
H3(K). O

Theorem 17.3. There exist a fieldZ and a 14-dimensional quadratic form
7 € I3(E) such thatr ¢ Syqq(F).

Proof. Let K and¢ € I*(K) be as in Theorem 16.7. Sinoel C(¢) = 4
there exists an Albert form such that(¢) = ¢(q). Let E = K((t)), and
letT = ¢ L tq be a quadratic form ovef. Clearly,dim ¢ = 14. We have
c(1) = c(¢) + c(q) = 0. Thereforer € I3(E). To complete the proof, it
suffices to verify that ¢ S,qq(E)

Suppose at the moment thate S,qq4(F). By Theorem 16.7, we have
¢ ¢ Soad(K). Sinceq is an anisotropic Albert form, it follows that ¢
Sodd (K). Now, it follows from Lemma 16.5 that there exists an odd ex-
tensionL /K such that;, andgq;, are linked. Proposition 16.4 implies that
¢r € S(L). SinceL/K is an odd extension, we have € S,q4q(K), a
contradiction. O

Corollary 17.4. The answer to Question 17.1 is negativel

Corollary 17.5. There exist a fieldK and a 14-dimensional formp €
I3(K) such thate?(¢) cannot be represented as a sum of two symbols.
0

Remark 17.6.It was proved by D. W. Hoffmann (see for instance [16]) and
the first author (independently) that an arbitrary 14-dimensional quadratic
form ¢ € I3(K) can be written in the formy; + 7 + 73 in W(K) where
1,72, 73 € GP3(K). In particular,e3(¢) can be represented as a sum of 3
symbols.

Remark 17.7 Letn be an even integer such that> 14. Itis not difficult to
construct a fieldZ and a quadratic form € I3 (E) of dimensiom such that

¢ ¢ Soada(F). The following example shows how to construct a quadratic
form ¢ € I3(E) of dimensiorén (n > 4) so thatp ¢ S,qq(E).

Example 17.8Letn > 4, and letky be an arbitrary field of characteristic
# 2. Letk = ko(X1,..., Xn, Y1,..., Y, Ur,..., Uy, V1,...,V,). Forany
i=1,...,nwesetd; = (X1,Y1) ® (U, V;) andg; = (—X;, —Y;, X;Y;,
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Ui, Vi, =U;V;). Let A = A; ®p ... A, and K = E(SB(A)). Let1 <

i < j < n. By the index reduction formula [49], we haved(A; ®j
Aj)K = mm(lnd(AZ@)kAJ),1nd(AZ®kAj ®kA)) = min(42,4”*2) = 16.
Therefore, for any odd extensidry K we havend(A; ®; A;)r, = 16. Then
(gi)r, and (g;)r, are not linked. Now we sek = K ((t1))...((t,)) and
¢ = tl(QI)E ... L tn(Qn)E- We have:(qﬁ) = [(AI)E] +...+ [(An>E] =
[AE] = [(AxsB(a))) ] = 0. Hencep € I3(E). Applying Lemma 16.5, one
can show thad ¢ S,qq(F).

18. Nonstandard isotropy

Let ¢ andy be anisotropic quadratic forms ovEer An important problem
in the algebraic theory of quadratic forms is to find condition®@mdz) so
that¢ () is isotropic. In the case whedém ¢ < 6 the problem was studied
by many authors: the casém ¢ < 4 was studied by Schapiro in [45]; the
casedim ¢ = 5 was studied by D. W. Hoffmann in [11]; for 6-dimensional
forms ¢ the problem was studied by D. W. Hoffmann ([12]), A. Laghribi
([31], [32]), D. Leep ([34]), A. S. Merkurjev ([37]), and the authors ([18],
[19)).

In these papers the authors show that under certain conditioharah)
the isotropy ofp over F'(1)) is standard in a sense. Let us recall the definition
of “standard isotropy” given in [19F

Definition 18.1. Let¢ andy be anisotropic quadratic forms such that )
is isotropic. We say that the isotropy ©f:(,) is standard if at least one of
the following conditions holds:

— 1) is similar to a subform ir;

— there exists a subforiy C ¢ with the following two properties:
— the formgy is a Pfister neighbor,
— the form(eo) r(y) is isotropic.

Otherwise, we say that the isotropynisn-standard

The main theorem of [19] asserts that in the céise¢p < 6, the isotropy
dr(y) Is standard except (possibly) the following casen ¢ = 6, dim ) =
4,1 # dety ¢ # dety ¢ # 1, andind Cy(¢) = 2 = ind Cy(¢) @ Co(¥).

In this section we show that there exisé-@imensional quadratic form
¢ and a 4-dimensional quadratic forgrsuch that) (.. is isotropic, but the
isotropy is not standard. More precisely, we prove the following

° If dim ¢ < 6, this definition coincides with the definitions given in [17] and [21]. In
this section we consider only the calien ¢ < 6.
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Theorem 18.2. Letk be afield of characteristig 2,andleta, b, u, v,d, d €

k*. Suppose that, 5, dd ¢ k** and((a, b) @ (u, v))1(va,v5) IS adivision al-

gebra. Then there exist a field extensiopk andc € K* with the following

properties:

1) Quadratic formsp = ((a,b) L —c{(d)) andy) = (—u, —v,uv,d) are
anisotropic, andp () is isotropic,

2) the isotropyp k) is not standard.

Proof. Let p = (—a, —b, ab, d). It follows from Corollary 14.4 that there
exists a field extensiof/k such thatl, 6, ds ¢ K*2, Tors CH?((Xy)k X
(X,)K) = Z/2Z, andind Cy (¢ i) ® Co(pr) = 2. To complete the proof,
it is sufficient to apply [19, Th. 9.1] O

Let ¢ be anF-form and E/F be a field extension. We recall that a
quadratic formy is called E-minimal[15, Def. 1.1] if the following condi-
tions hold:

— ¢ is anisotropic,
— ¢ is isotropic,
— (¢o) g is anisotropic for any fornp, C ¢ with dim ¢y < dim ¢.

The following statement (in a slightly different form) has been noticed
by D. Hoffmann (see [12, Sect. 4a])).

Lemma 18.3. Let ¢ be a 6-dimensional ang a 4-dimensional quadratic
forms overF'. Suppose thap is anisotropic ands (., is isotropic. Then
the following conditions are equivalent:

1) the isotropypr(y, is not standard,
2) ¢ is aF(i)-minimal form.

Proof. 1)=2). Suppose at the moment thais not F'(¢))-minimal. Then
there existspy C ¢ with dim ¢y < dim ¢ such that(¢o) r(,,) is isotropic.
The isotropy(¢o) () is standard because the dimensiowefs < 5. The
definition of standard isotropy shows that the isotrgpy,, is standard too,
a contradiction.

2)=1). Suppose that isotropyy () is standard. Then at least one of
the cases of Definition 18.1 holds. First suppose the similar to a sub-
form of ¢. Let ¢y C ¢ be such that) ~ ¢g. Clearly, (¢o) p(y) IS isotropic
anddim ¢g = 4 < 6 = dim ¢. Thereforegp is not F'(¢))-minimal, a con-
tradiction. Now, consider the second case in Definition 18.1, i.e., suppose
that there exists a subforgy C ¢ which is a Pfister neighbor such that
(¢0) p(y) is isotropic. Ifdim ¢y < dim ¢, then¢ is not aF'(»)-minimal,
and we have a contradiction. Now, l&in ¢g = dim ¢ = 6. Theng = ¢q
is a 6-dimension Pfister neighbor. Singg,, is isotropic, it follows that
an arbitrary 5-dimensional subform ofis isotropic overF'(y)). Hencep
is not F'(¢»)-minimal, a contradiction O
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Corollary 18.4. Let ¢ be an anisotropic 4-dimensional quadratic form
over k with det+ ¢» # 1. Then there exist a field extensidf/k and a
6-dimensional formy over K such thatp is a K (1)-minimal form.

Proof. Replacingy by a similar form, we can suppose thatas the form
(—u, —v,uv,d). Replacingk by the field of rational function&(a, b, d),
we can suppose that there exisb,d € k* such thatd, d,ds ¢ k* and
((a,b) ® (u, U))k(\/&,\/g) is a division algebra. LeK/k andc € K* be as
in Theorem 18.2. Let) = ((a,b)) L —c{(d)). Theorem 18.2 implies that
Pk (y) 1S isotropic, but isotropy is not standard. Lemma 18.3 showsghat
is aK (1)-minimal form. O
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