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Abstract. We construct a 6-dimensional anisotropic quadratic formφ and
a 4-dimensional quadratic formψ over some fieldF such thatφ becomes
isotropic over the function fieldF (ψ) but every proper subform ofφ is
still anisotropic overF (ψ). It is an example ofnon-standard isotropywith
respect to somestandard conditionsof isotropy for 6-dimensional formsover
function fields of quadrics, known previously. Besides of that, we produce
an 8-dimensional quadratic formφ with trivial determinant such that the
index of the Clifford invariant ofφ is 4 butφ can not be represented as a
sum of two 4-dimensional forms with trivial determinants. Using this, we
find a 14-dimensional quadratic form with trivial discriminant and Clifford
invariant, which is not similar to a difference of two 3-fold Pfister forms.
The proofs are based on computations of the topological filtration on the
Grothendieckgroupof certainprojectivehomogeneousvarieties.Todo these
computations,wedevelopseveralmethods, coveringawideclassof varieties
and being, to our mind, of independent interest.

Mathematics Subject Classification (1991):11E81, 19E08, 19E15

1. Introduction

Let F be a field of characteristic�= 2. An important problem in the alge-
braic theoryof quadratic forms is to classify thepairsof anisotropicquadratic
formsφ, ψ overF such thatφF (ψ) is isotropic, whereF (ψ) is the function
field of ψ, i.e. the function field of the projective quadric determined byψ.
In the casedimφ ≤ 5, a complete classification is known (see [11]). The
casedimφ = 6 was studied in [12], [31], [32], [34], and [37]. In the case
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wheredimφ = 6 anddimψ �= 4, a complete classification was obtained.
After that, it was shown in [18] and [19], that the same classification is
valid for 4-dimensional formsψ, if the case wheredimφ = 6, dimψ = 4,
1 �= det± φ �= det± ψ �= 1, indC0(φ) = 2, andindC0(φ)⊗C0(ψ) = 2 is
excluded. Here (see Sect. 18) we construct in this excepted case an example
of φ andψ with the non-standard (i.e. not matching the old classification)
isotropy ofφ overF (ψ) (see Theorem 18.2). It is possible to explain what
this “non-standard isotropy” does exactly mean without describing the old
classification (Lemma18.3): isotropy of a formφ overF (ψ) is non-standard
if and only if the formφ is F (ψ)-minimal, i.e. no proper subform ofφ be-
comes isotropic overF (ψ). A stronger version of Theorem 18.2 states that
an example of the non-standard isotropy can be obtained starting from an
arbitrary anisotropic 4-dimensional formψ (with detψ �= 1) over an arbi-
trary fieldF0 by passing to an appropriate extensionF of F0 (see Corollary
18.4).

Let I(F ) be the ideal of even-dimensional forms in the Witt ringW (F )
of the quadratic forms overF . Another important problem in the algebraic
theory of quadratic forms is to give a classification of low-dimensional
forms belonging toIn(F ) for a fixedn > 0. Forn = 2 and forn = 3, this
problem was studied by many authors. In [20] N. Jacobson proved that the
quadratic formsφ ∈ I2(F ) of dimension≤ 6 are uniquely determined up
to similarity by the Clifford invariantc(φ). There exists a good description
of 8-dimensional formsφ ∈ I2(F ) satisfying the conditionindC(φ) ≤ 2.
Namely, these quadratic forms can be written as tensor product of a 2-
dimensional subform and a 4-dimensional subform (see e.g. [28, Ex. 9.12]).
The case of 8-dimensional quadratic formsφ ∈ I2(F ) with indC(φ) =
4 is much more complicated. It was an open question if these quadratic
forms can be written asτ1 ⊥ τ2, whereτ1 andτ2 are 4-dimensional forms
with trivial determinant. In Sect. 16 we construct a counterexample for
this question (Corollary 16.8). Nevertheless we find a “weak version” of
the decompositionφ = τ1 ⊥ τ2. Note that quadratic forms of the type
τ1 ⊥ τ2 can be regarded as Scharlau’s transfersL/F (τ) in the degenerate
caseL = F ×F . We show that an arbitrary 8-dimensional formφ ∈ I2(F )
with indC(φ) = 4 can be represented asScharlau’s transfersL/F (τ), where
L/F is an (́etale) quadratic extension andτ is a 4-dimensionalL-form with
trivial determinant (see Theorem 16.10).

In Sect. 17 we study the quadratic formsφ ∈ I3(F ). The structure of
φ in the casedimφ ≤ 12 was described by Pfister in [40, Satz 14 und
Zusatz] (see also [14]). Our aim is to study the 14-dimensional quadratic
forms in I3(F ). In [42] M. Rost proved that an arbitrary 14-dimensional
quadratic form can be represented (up to similarity) as Scharlau’s transfer
sL/F (

√
d τ ′), whereL = F (

√
d) andτ ′ is the pure subform of a 3-fold
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Pfister form. Note that in the degenerate caseL = F × F we get the
decompositionφ = k(τ ′

1 ⊥ −τ ′
2), whereτ

′
1, τ

′
2 are pure subforms of some

3-fold Pfister formsτ1, τ2 andk ∈ F ∗. It was an open question if any 14-
dimensional formφ ∈ I3(F ) can be written in the formφ = k(τ ′

1 ⊥ −τ ′
2).

It was remarked byD. Hoffmann (1995, Bielefeld, oral communication) that
this question is equivalent to the discussed above question on 8-dimensional
forms φ ∈ I2(F ) with indC(φ) = 4. Using the counterexample for 8-
dimensional forms, we construct (in Sect. 17) a counterexample for 14-
dimensional forms.

Similar counterexamples of 8-dimensional and 14-dimensional forms in
the case of characteristic 0 are independently constructed in [16] by using
completely different techniques.

Our methods are based on the computation of the topological filtration
on the Grothendieck group for certain projective homogeneous varieties.
There are numerous works onK-theory of particular projective homoge-
neous varieties (Quillen [41], Swan [51], Levine-Srinivas-Weyman [35],
Tao [52], and others) and a general work of Panin [39], where theK-theory
is computed. However none of them does not consider the question about
the topological filtration on theK-theory. In Part I we develop a machinery
whichmakes possible to compute the topological filtration onK0 for a wide
class of homogeneous varieties (see Corollaries 9.6, 10.6, and 11.4 which
are, in fact, not about the homogeneous varieties only). So, as to the future
applications, we consider Part I as themost interesting part of the article and
Part II as an example of an application of Part I to two known problems in
the theory of quadratic forms.

2. Plan of works

The paper consists of two Parts. All main results, mentioned in the Introduc-
tion, are obtained in Part II. However their proofs are based on the results
of Part I: the example of non-standard isotropy is based on Theorem 14.1;
the examples of the 8-dimensional and 14-dimensional quadratic forms are
based on Theorem 13.1. Although these two groups of our main results are
rather far from each other, Theorems 13.1 and 14.1 are quite similar. In fact,
they both are about an upper bound for the codimension (with respect to
the topological filtration) of a certain element (namely, the doubled rational
point class) in the Grothendieck group of certain varieties (see the proof of
Theorem 13.1 and the statement of Lemma 14.3).

Moreover, the varieties are quite similar (we mean the varietyXK in the
proof of Theorem 13.1 and the varietyX1 × X2 in Theorem 14.1). They
both are of the formXF (R(T )) with certainF -varietiesX andT , where
R(T ) is the Weil transfer of theL-varietyTL with respect to a Galois (in
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fact, quadratic or biquadratic) field extensionL/F . Note that the varieties
are not chosen by chance: in certain sense, they are generic models of the
situation we need.

In Sects. 4–11 of Part I we build up a technology for computing the
topological filtration on the Grothendieck groupK(XF (R(T ))). Nowwe are
going to explain the purpose of each Section.

The techniques shown in Sect. 5 allows one to move the problem from
the varietyXF (R(T )) to theF -varietyX ×R(T ).

Necessary back-grounds on the Weil transfer are given in Sect. 6.
SinceR(T )L is just the product of several copies ofTL, our current

varietyX ×R(T ) looks much simpler overL. Clearly, the Galois groupG
of the field extensionL/F acts onK(XL×R(T )L) and there is an inclusion

K(X ×R(T )) ⊂ K(XL ×R(T )L)G

respecting the filtrations.1 Let us consider the filtration on the right-hand
side group as an upper bound for the filtration on the left. It turns out that
this upper bound is good enough for the success. By that reason we forget
aboutK(X ×R(T )) and work further withK(XL ×R(T )L)G instead.

In Sect. 7 we obtain some quite obvious general assertion on the Galois
action on the Grothendieck groups.

After that we come to the problem: how the topological filtration for a
variety of the typeX × T can be computed. Note that in our caseX is a
product of Severi-Brauer varieties andT is a product of generalized Severi-
Brauer varieties. In Sect. 4 we study the structure of suchX×T as schemes
overX. We describe a situation whereX × T turns out to be isomorphic to
a grassmanian bundle overX. We obtain also certain additional information
in this situation: namely, a description of the tautological vector bundle on
the grassmanian bundle as a vector bundle onX × T .

Our next problem looks as follows: given a grassmanian bundleΓ → X
and knowledge of the topological filtration forX, how can we find the
topological filtration forΓ?Todescribe the answer, we develop inSect. 8 the
language offiltered basesof filteredmodules. In Sect. 10 we prove a general
assertion (Proposition 10.3) which answers our question immediately in the
particular case of a projective bundle. In Sect. 11, using the same method,
we give an answer for an arbitrary grassmanian bundle.

The last step we need is a computation of the topological filtration (and
of the Grothendieck group itself) for the varietyX. For this, we develop in
Sect. 9 a method of computation of the topological filtration for products
of varieties in the so calleddisjoint case. In fact, our varietyX is defined
as the direct product of two quadric surfacesX1 ×X2, which are disjoint;

1 We consider the filtration onK(XL × R(T )L)G induced by the topological filtration
onK(XL × R(T )L).



New examples of quadratic forms 651

using this (and Swan’s computation [51] ofK(Xi)), one can compute the
topological filtration forX via Sect. 9. However the way chosen in the paper
differs from that one and is even simpler (e.g. because it does not use [51]):
it makes use of the fact that eachXi is a projective line bundle over a conic
Yi and the conicsY1, Y2 are disjoint. It is also important that this way we
obtain a filtered basis ofK(X) in the terms which are more suitable for the
further purposes.

So, after we have shown how everything can be computed, we do some
specific computation in Sect. 12. After that almost all is done to proof the
basic Theorems in Sects. 13 and 14.

In the conclusion, we like to make certain additional remarks on the
contents of some Sections.

In Sect. 5, we prove that the pull-back to the generic fiber of a flat
morphism is surjective. For what kind of groups? Well, our final goal is the
topological filtration, i.e. each term of that (Corollary 5.3). We reach the
goal starting from the Chow groups (Proposition 5.1) and passing after that
to the successive quotients of the topological filtration (Corollary 5.2). The
statement on the Chow groups is not new; it is a formal consequence of the
spectral sequence [27, Th. 3.1]. What we give here is a short direct proof or,
better to say, an explanation of the evidence of this fact (Proposition 5.1).

The Weil transfer (also known as Weil restriction or Weil corestriction
and under several other names) is a common, well-known, frequently used
tool. However, we don’t have any reference for some of its basic properties.
By that reason, Sect. 6 is included. We consider only the situation of a
Galois field extension (since we need only it). This allows todefinetheWeil
transfer via Galois descent. With this definition, the properties we need
become straight-forward.

In Sect. 4, we show that certain products of (generalized) Severi-Brauer
varieties considered as schemes over certain subproducts via the projection
can be naturally identified with grassmanians bundles (Corollary 4.4). Sim-
ilar assertions were already proved in [24, Cor. 6.4] and in [25, Prop. 5.3].
However this time we need more explicit information: namely, we need a
description of the vector bundle on the product of the Severi-Brauer vari-
eties corresponding to the tautological vector bundle on the grassmanian
bundle under that identification; the answer is given in terms of the tauto-
logical vector bundles on the Severi-Brauer varieties. Also notice that the
basic statement of this section (Item 1 of Proposition 4.3) has amore general
form, which clarify the things happening.
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3. Terminology, notation, and backgrounds

3.1. Quadratic forms

By φ ⊥ ψ andφ � ψ we denote respectively orthogonal sum of forms and
isometry of forms. Sometimesφ denotes also the class ofφ in the Witt ring
W (F ) of the fieldF , e.g. in expressions likeφ + ψ; we apologize for this
abusing of notation.

The maximal ideal ofW (F ) generated by the classes of the even-
dimensional forms is denoted byI(F ). The anisotropic part ofφ is denoted
byφan. We denote by〈〈a1, . . . , an〉〉 then-fold Pfister form〈1,−a1〉⊗ . . .⊗
〈1,−an〉 and byPn(F ) the set of alln-fold Pfister forms. The set of all
forms similar to ann-fold Pfister form we denote byGPn(F ). For any field
extensionL/F , we putφL = φ⊗F L.

For a quadratic extensionL/F and anL-formφ, we denote bysL/F (φ)
the Scharlau’s transfer [46, Sect. 5 of Chap. 2] corresponding to theF -linear
homomorphism1

2 TrL/F : L→ F . In the case whereL = F (
√
d), we have

sL/F (〈1〉) = 〈1, d〉 andsL/F (〈
√
d 〉) = 〈1,−1〉.

For a quadratic formφ of dimension≥ 3, we denote byXφ the projective
variety given by the equationφ = 0. We setF (φ) = F (Xφ).

3.2. Linked forms

Wesay that quadraticF -formsφ andψ arelinkedif the following equivalent
conditions hold:

– there exists a 2-dimensional formµ which is similar to a subform ofφ
and to a subform ofψ,

– there exists a field extensionL/F of degree≤ 2 such thatφL andψL
are isotropic,

If φ andψ are forms of dimension≥ 3, then the condition thatφ and
ψ are linked can be reformulated as follows: there exists a closed point of
degree≤ 2 on the varietyXφ ×Xψ.

3.3. K-theory and Chow groups

For a smooth algebraicF -varietyX, its Grothendieck ring is denoted by
K(X). This ring is equipped with the filtration by codimension of support
(which respects the multiplication); itsn-th term (the term of codimension
n other speaking) is denoted byK(X)(n).

For a ring (or a group) with filtrationA, we denote byG∗A the adjoint
graded ring (resp., the adjoint graded group). There is a canonical surjective



New examples of quadratic forms 653

homomorphism of the gradedChow ringCH∗(X) ontoG∗K(X), its kernel
consists only of torsion elements and is trivial in the 0-th, 1-st, and 2-nd
graded components ([50, Sect. 9]). For a geometrically integral variety of
dimensiond we setCHi(X) = CHd−i(X) andGiK(X) = Gd−iK(X).

Very often, we identifyK(X) with a subgroup ofK(XE), whereX is
anF -variety andE/F is a field extension such that the restriction homo-
morphismK(X)→ K(XE) is injective.

LetX1, X2 beF -varieties andxi ∈ K(Xi) for i = 1, 2. In expressions
like x1x2 orx1+x2 we considerx1, x2 as elements ofK(X1×X2)with the
help of the pull-backs under the projections (so that the expressions become
a sense).

3.4. Algebras

Let A be an algebra over a fieldF . For a field extensionE/F (or, more
generally, for a unital commutativeF -algebraE), we denote byAE theE-
algebraA⊗F E. For anF -varietyX (or, more generally, for anF -scheme
X), we denote byAX the constantX-sheaf of algebras given byA.

In Sect. 4, the category of commutative unitalF -algebras is denoted by
F -alg.

Part 1. Basic constructions

4. Products of Severi-Brauer varieties

LetF be a field and letA be a central simple algebra overF .

Let n ≥ 0. The generalized Severi-Brauer varietyY def= SB(n,A) of A
is characterized as follows (cf. [26]): for anyR ∈ F -alg, the set ofR-points

Y (R) def= MorF (SpecR, Y ) of the varietyY consists of the right idealsJ

of the AzumayaR-algebraAR
def= A⊗F R having two following properties:

– the injection ofAR-modulesJ ↪→ AR splits (in particular,J is projective
as anR-module);

– theR-moduleJ has the constant rankn · degA;
moreover, for any homomorphismR→ R′ in the categoryF -alg, the map
Y (R)→ Y (R′) is given by the tensor multiplicationJ �→ J ⊗R R′.

The (usual) Severi-Brauer varietySB(A) ofA is by definition the variety
SB(1, A).

Example 4.1.Let A be a quaternion algebra(a, b), wherea, b ∈ F ∗ (we
suppose thatcharF �= 2 in this Example). TheSeveri-Brauer varietySB(A)
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is isomorphic to the projective conic determined by the quadratic form
〈1,−a,−b〉.
Example 4.2.Let A be a biquaternion algebra(a1, b1) ⊗ (a2, b2), where
a1, b1, a2, b2 ∈ F ∗ (we suppose thatcharF �= 2 in this Example). The
generalized Severi-Brauer varietySB(2, A) is isomorphic to the projective
quadric determined by the Albert form〈−a1,−b1, a1b1, a2, b2,−a2b2〉 .

The tautological(also calledcanonical) vector bundleJ on the gener-
alized Severi-Brauer varietyY = SB(n,A) is defined as follows: for any
R ∈ F -alg and anR-point J ∈ Y (R), the fiber ofJ over J is theR-
moduleJ ; if R → R′ is a homomorphism inF -alg, then the map of the

fibersJ → J ′, whereJ ′ def= J ⊗R R′ ∈ Y (R′), is defined by the formula
x �→ x⊗ 1.

Since every fiber ofJ is a right ideal,J has a structure of rightAY -
module.

Proposition 4.3. Let A be a central simpleF -algebra. LetX be anF -
scheme endowed with a rightAX -moduleM which is a locally freeOX -
module of rankdegA. Then

1. the productX×SB(n,Aop), considered overX via the first projection,
can be naturally identified (as a scheme overX) with the grassmanian
bundleIΓn(M) of n-planes inM;

2. under this identification, the tautological vector bundle on the grass-
manian bundle corresponds to the vector bundleM ⊗A J on X ×
SB(n,Aop), whereJ denotes the tautological vector bundle onSB(n,
Aop).

Proof. LetY
def= SB(n,Aop). LetR ∈ F -alg and letx be anR-point ofX.

To prove the first statement of theProposition, it suffices to describe a natural
bijection of the fibers overx. The fiber ofX × Y over the pointx is the set
Y (R). The fiber ofIΓn(M) over the pointx is the set ofR-submodulesN of
theR-moduleMx such that the injectionN ↪→Mx splits andrkRN = n.
For anyN like that, the setJ = {a ∈ AR | Mx · a ⊂ N} is a left ideal
of theR-algebraAR (i.e. a right ideal ofAop

R ), determining an element of
Y (R). This way, we get the natural bijection required.

To describe an isomorphism of the vector bundles (for the second state-
ment of Proposition), it suffices to give a natural isomorphism of theR-
modulesMx ⊗AR

J andN . This is given by the rulex ⊗ a �→ x · a.
��

Now we consider a special situation, where Proposition 4.3 can be ap-
plied. Suppose that

A
def= A⊗i1

1 ⊗ . . .⊗A⊗im
m ,
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whereA1, . . . , Am are some central simpleF -algebras andi1, . . . , im are
some non-negative integers. LetX1, . . . , Xm be the Severi-Brauer varieties

of the algebrasA1, . . . , Am. PutX
def= S × X1 × . . . × Xm, whereS is

anF -variety. For everyj = 1, . . . ,m, denote byIj the tautological vector
bundle onXj . Put

M def= OS ⊗ I⊗i1
1 ⊗ . . .⊗ I⊗im

m ;

it is a rightAX -module which is a locally freeOX -module of rankdegA.
Finally, letY

def= SB(n,Aop) and letJ be the tautological vector bundle on
Y ; it is a leftAY -module. Applying Proposition 4.3, we get the following

Corollary 4.4. In the notation introduced right above, the productX ×
Y , considered overX via the first projection, can be naturally identified
(as a scheme overX) with the grassmanian bundleIΓn(M); under this
identification, the tautological vector bundle on the grassmanian bundle
corresponds to the vector bundleM⊗A J onX × Y . ��

Since the projective space bundleP(M) is (by definition)IΓ1(M), we
get the following

Corollary 4.5. Let A be a central simpleF -algebra and letS be anF -

variety. SetX
def= S × SB(A) andY

def= SB(Aop). Denote byI the tauto-
logical vector bundle onSB(A) and byJ the tautological vector bundle on

Y . SetM def= OS ⊗ I.
Then the productX × Y , considered overX via the first projection,

can be naturally identified (as a scheme overX) with the projective space
bundleP(M); under this identification, the tautological vector bundle on
P(M) corresponds to the vector bundleM⊗A J onX × Y . ��

5. Pull-back to generic fiber

We fix the following notation for this section:F is a field,Y andT are
irreducibleF -varieties,π : Y → T is a flat morphism,θ is the generic point

of T , andYθ
def= Y ×T SpecF (θ) is the generic fiber ofπ, i.e. the fiber of

π overθ. We are going to consider the pull-backi∗ with respect to the flat
morphism of schemesi : Yθ → Y .

Note that from the set-theoretical (even topological) point of view,Yθ is
really the fiber ofπ over the pointθ (see [10, Exercise 3.10 after Sect. 3 of
Chap. II]). In particular,Yθ is a subset ofY .

The groupCH∗(Y ) is generated by the classes[y] of pointsy ∈ Y . The
pull-back homomorphismi∗ : CH∗(Y ) → CH∗(Yθ) is determined by the
following rule: if y �∈ Yθ (i.e., if π(y) �= θ), theni∗([y]) = 0; if y ∈ Yθ (i.e.,
if π(y) = θ), theni∗([y]) = [y] ∈ CH∗(Yθ).
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Proposition 5.1. The pull-back homomorphismi∗ : CH∗(Y ) → CH∗(Yθ)
is surjective.

Proof. Take any generatorα
def= [y] of the groupCH∗(Yθ), wherey ∈ Yθ.

If we considery as a point ofY , we get an elementβ
def= [y] ∈ CH∗(Y )

such thati∗(β) = α. ��
Now we pass from the Chow group to the Grothendieck group.

Corollary 5.2. The pull-back homomorphismi∗ : G∗K(Y ) → G∗K(Yθ)
is surjective.

Proof. The diagram
CH∗(Y ) → CH∗(Yθ)

↓ ↓
G∗K(Y )→ G∗K(Yθ)

where the vertical arrows are the canonical epimorphisms (see Sect. 3.3), is
commutative.Since themapCH∗(Y )→ CH∗(Yθ) is surjective (Proposition
5.1) and the mapCH∗(Yθ)→ G∗K(Yθ) is surjective, the mapG∗K(Y )→
G∗K(Yθ) is surjective as well. ��
Corollary 5.3. For anyn ≥ 0, the pull-back homomorphismi∗ : K(Y )(n)

→ K(Yθ)(n) is surjective.

Proof. Follows from Corollary 5.2. ��
Example 5.4.We shall apply Corollary 5.3 only to the particular situation,
whereY = X×T (with certainF -varietiesX andT ) andπ : Y = X×T →
T is the projection. ThusYθ = XF (T ) andi

∗ will be a homomorphism of
K(X × T ) ontoK(XF (T )). Note thati∗ is a homomorphism ofK(X)-
algebras if we considerK(X × T ) andK(XF (T )) asK(X)-algebras in
the natural way (i.e. via the pull-backs). We shall use the notationf for the
homomorphismi∗ in the situation like described here.

6. Weil transfer via Galois descent

In this section,L/F is a finite Galois field extension with the Galois group
G. All varieties here are assumed to be quasi-projective.

Definition 6.1. LetX beanF -variety.AnL/F -formofX is anF -varietyY
suppliedwith anL-isomorphismYL→̃XL. A morphismof anL/F -formY
to anotherL/F -formY ′ of the same varietyX is a morphism ofF -varieties
f : Y → Y ′ such that the diagram ofL-morphisms

YL
fL−→ Y ′

L
↘ ↙

XL
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commutes (note that the set of morphisms of formsY → Y ′ contains at
most 1 element; in particular, an isomorphism of twoL/F -forms ofX is
always canonical).

Let X be anF -variety. The (abstract) groupAutL(XL) of the auto-
morphisms of theL-varietyXL can be supplied with a structure ofG-
module in the standard way (see [48, Sect. 1.1 de Chap. III]): forτ ∈ G

andf ∈ AutL(XL) one putsτ(f) def= (idX ⊗ τ) ◦ f ◦ (idX ⊗ τ−1) where
idX ⊗ τ is the automorphism of the schemeXL overF given byτ . Denote
by Z1(L/F,AutL(XL)) = Z1(G,AutL(XL)) the set of 1-cocycles onG
with values inAutL(XL) ([48, Sect. 5.1 de Chap. I]).

Any L/F -formY ofX determines a cocyclez ∈ Z1(L/F,AutL(XL))
([48, 1.3 de Chap. III]): for anyτ ∈ G, the automorphismzτ ∈ AutL(XL)
is the composition

XL→̃YL
idY ⊗τ−−−−→ YL→̃XL

idX⊗τ−1

−−−−→ XL .

Moreover, the rule described above is a 1-1-correspondence between the set
of L/F -forms ofX (up to thecanonicalisomorphism) and the set

Z1(L/F,AutL(XL))

(see [3, Prop. 2.6]).
Now suppose thatX =

∏
G T (the product of|G| copies ofT numbered

by the elements ofG), whereT is a variety overF .We are going to construct
a special 1-cocyclez ∈ Z1(L/F,AutL(XL)) in this situation.

For anyτ ∈ G, consider the left translation byτ , that is the permutation
σ �→ τσ of the setG, and denote byzτ ∈ AutL(XL) the automorphism
of the productXL =

∏
G YL given by the corresponding permutation of

factors. The mapz : G→ AutL(XL), τ �→ zτ is a 1-cocycle.

Definition 6.2. The following data are fixed: a finite Galois field extension
L/F and anF -variety T . TheL/F -form (see Definition 6.1) of the va-

riety X
def=

∏
G T determined by the cocyclez ∈ Z1(L/F,AutL(XL))

constructed above will be denoted byR(T ) orRL/F (T ).

Remark 6.3.The varietyRL/F (T ) is the same as theWeil transfer(see [3,
Sect. 2.8] and/or [4, 6.6 de Sect. 1 de Chap. I] and/or [47, Chap. 4]) of
theL-varietyTL with respect to the extensionL/F . Usually, working with
varietiesover fields, onedefines theWeil transfer for anyfinite separablefield
extensionL/F and a quasi-projectiveL-variety. However, we are interested
here only in the case where the extensionL/F is Galois and theL-variety
“comes fromF ”. Definition 6.2 can be regarded as an alternative definition
of the Weil transfer in this particular situation. It is more convenient for our
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purposes: the property ofR(Y ) we need (see Lemma 6.5 below) becomes
evident.

Example 6.4.Let us take asL/F a quadratic extensionL = F (
√
d) with

somed ∈ F ∗ and asT the Severi-Brauer variety of a quaternionF -algebra
(a, b) (we suppose thatcharF �= 2 in this Example). ThenR(T ) is iso-
morphic to the projective quadric hypersurface, determined by the quadratic
form

〈−a,−b, ab, d〉 .
Lemma 6.5. Let L/F be a finite Galois field extension with the Galois
groupG. LetT be anF -variety. For anyτ ∈ G, the following diagram of
isomorphisms commutes

R(T )L
id⊗τ−−−−→ R(T )L

↓ ↓∏
G

TL
(id⊗τ) ◦ zτ−−−−→ ∏

G

TL

Proof. It is a direct consequence of Definition 6.2.��

7. Galois action on Grothendieck group

In this section,F is an arbitrary field,L/F is a field extension (e.g., a Galois
field extension),G is a group of automorphism ofL overF (e.g., the Galois
group in the case whereL/F is a Galois extension),Y is anF -variety.

The groupG acts on the Grothendieck groupK(YL) of the varietyYL.
We are interested in a condition onY which guarantees that the action ofG
onK(YL) is trivial.

Lemma 7.1. Suppose that the groupK(YL) is torsion-free and that the
cokernel of the restriction mapresL/F : K(Y ) → K(YL) is a torsion
group. Then the action ofG onK(YL) is trivial.

Proof. Take anyy ∈ K(YL) and anyσ ∈ G. SinceCoker(resL/F ) is a
torsion group, some multipleny of y is in Im(resL/F ), thereforeσ(ny) =
ny. Since the groupK(YL) is torsion-free, it follows thatσ(y) = y. ��

Working with homogeneous varieties, we have the first condition of
Lemma 7.1 for free: the groupK(Y ) is natural (with respect to extensions
of the base fieldF ) isomorphic toK(A), whereA is a separable algebra
(i.e. a direct product of simple algebras with centers separable overF ) ([39,
Introduction]). The second condition holds forY and for all extensionsL/F
if and only if every simple component ofA is central overF .We do not need
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here the complete list of such varieties. We only notice that the generalized
Severi-Brauer varieties are included2 as well as their direct products3. So
that we have

Corollary 7.2. LetY be a product of generalized Severi-Brauer varieties.
Then the action ofG onK(YL) is trivial. ��
Corollary 7.3. LetL/F be a finite Galois extension,G be its Galois group,
and Y be the product of some generalized Severi-Brauer varieties over
F . Let us identifyR(Y )L with

∏
G YL (see Definition 6.2). Then, for any

σ ∈ G, the automorphism ofK(R(Y )L), given byσ, corresponds to the
automorphism ofK(

∏
G YL), given by the automorphism of the product,

induced by the permutationzσ of the factors, wherezσ is the left translation
byσ.

Proof. By Lemma 6.5, the diagram

K(R(Y )L)
σ−→ K(R(Y )L)

↓
K(

∏
G

YL)
σ ◦ zσ−−−−→ K(

∏
G

YL)

commutes. By Corollary 7.2,σ over the bottom arrow is the identity.��

8. Filtered rings, modules, and bases

In this section we introduce some terminology concerning filtrations on
abstract rings and modules. This terminology will be then applied (in the
further Sections) to the Grothendieck rings of varieties.

A commutative unital non-zero ringR is calledfiltered, if it is supplied
with a finite filtrationR(n) (n ∈ Z), satisfying the following conditions:

– R(n) ·R(m) ⊂ R(n+m) for all n,m and
– R(0) = R

(note that the filtration of a filtered ring is automatically descending and
R(1) �= R).

LetR be a filtered ring. AnR-moduleM is calledfiltered, if it is supplied
with a finite filtrationM (n) (n ∈ Z), satisfying the following conditions:

– R(n) ·M (m) ⊂M (n+m) for all n,m and
2 This follows from [41, Th. 4.1 of Sect. 8] in the particular case of usual Severi-Brauer

varieties and [35, Th. 4.4] in the general case of generalized Severi-Brauer varieties.
3 It is a consequence of the following assertion: ifA1 is the separable algebra for a

homogeneous varietyY1 andA2 is the separable algebra for a homogeneous varietyY2, then
A1 ⊗F A2 is the separable algebra forY1 × Y2, see [38, Sect. 1.8].
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– M (0) = M

(note that the filtration of a filtered module is automatically descending).

Example 8.1.LetX → Y be amorphismof smooth varieties. TheGorthen-
dieck ringK(Y ) suppliedwith the topological filtrationK(Y )(n) is a filtered
ring. ConsideringK(X) as aK(Y )-module via the pull-back homomor-
phismK(Y ) → K(X), we get an example of a filtered module (where
K(X) is supplied with the topological filtration as well).

Let M be a filtered module over a filtered ringR. The codimension
codimx of an elementx ∈M is defined as

codimx = codimM x
def= sup{n ∈ Z | x ∈M (n)} .

Let R be a filtered ring and letM be a (free and finitely generated)
filteredR-module. AnR-basise1, . . . , ek ofM is calledfiltered, if for any
n ∈ Z one has

M (n) =
k∑

j=1
R(n−nj) · ej ,

wherenj
def= codim ej .

Clearly, a filteredmodule is uniquely determined by its filtered basis and
the codimensions of the basis elements.

SupplyingZ with the trivial filtration

Z
(n) def=

{
0, if n > 0;
Z, if n ≤ 0,

we get a filtered ring. This way we transfer definitions from above to the
case of abelian groups, obtaining the notions of afiltered (abelian) group
and afiltered basisof it.

Example 8.2 (cf. Lemmas 9.8 and 9.7 and Corollary 9.6).Let Y1, . . ., Yn
be projective lines. Denote bypi the class of a rational point onYi. Then
the elements of the formpε11 · · · pεn

n , whereε1, . . . , εn ∈ {0, 1}, constitute
a filtered basis of the filtered groupK(Y1 × . . .× Yn); besides

codim(pε11 · · · pεn
n ) = ε1 + . . .+ εn .

For a non-zero elementu of a filtered moduleM , we denote bȳu the
class ofu in GcodimuM ⊂ G∗M .

The following three assertions are evident:

Lemma 8.3. letR be a filtered ring,M be a filteredR-module, and

u1, . . . , uk ∈M

be non-zero elements such thatG∗M is a freeG∗R-module with the basis
(ū1, . . . , ūk). Then(u1, . . . , uk) is a filtered basis of theR-moduleM . ��
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Corollary 8.4. A finitely generated filtered groupA possess a filtered basis
if and only if the groupG∗A is torsion-free. ��
Lemma 8.5. Let R be a filtered ring, letS be a filtered ring which is a
filteredR-module, and letM be a filteredS-module. If(e1, . . . , en) is a
filtered basis ofS overR and (f1, . . . , fm) is a filtered basis ofM over
S, then the collection(eifj) (wherei = 1, . . . , n and j = 1, . . . ,m) is a
filtered basis ofM overR andcodimM (eifj) = codimS ei+codimM fj .
��

9. Filtered bases for products of disjoint varieties

Let X1, . . . , Xn be F -varieties. The main purpose of this section is to
find a filtered basis ofK(X1 × . . . × Xn) (starting from filtered bases
ofK(X1), . . . ,K(Xn)) in the so calleddisjointcase.

Definition 9.1 (cf. [25, D́ef. 3.1]).A collection ofF -varietiesX1, . . . , Xn

is calleddisjoint, if the homomorphism

K(X1)⊗ . . .⊗K(Xn)→ K(X1 × . . .×Xn)

(given by the product of the pull-back homomorphisms with respect to the
projections) is bijective.

Example 9.2 (cf. [25, Prop. 3.6]).LetQ1, . . . , Qn be arbitrary central sim-
pleF -algebras of exponent≤ 2. The Severi-Brauer varieties

SB(Q1), . . . ,SB(Qn)

are disjoint if and only ifind(Q1 ⊗F . . .⊗F Qn) = ind(Q1) · · · ind(Qn) .

Lemma 9.3. LetK be a finitely generated filtered abelian group. LetK =
F0K ⊃ F1K ⊃ F2K . . . andK = Γ 0K ⊃ Γ 1K ⊃ Γ 2K . . . be some
other filtrations of the groupK satisfying the following conditions:

– Γ pA ⊂ FpK ⊂ K(p) for all p ≥ 0;
– the adjoint graded groupG∗FK is torsion-free;
– the natural homomorphism(G∗ΓK)Q → (G∗K)Q is bijective.

ThenK(p) = FpK for all p ≥ 0.

Proof. Since the isomorphism(G∗ΓK)Q → (G∗K)Q factors through the
group(G∗FK)Q, it follows that thehomomorphism(G∗FK)Q → (G∗K)Q
is surjective. Obviously,dim(G∗FK)Q = dimKQ = dim(G∗K)Q .
Therefore, the homomorphism(G∗FK)Q → (G∗K)Q is bijective. Since
the groupG∗FK is torsion-free, the homomorphismG∗FK → (G∗FK)Q
is injective. Therefore, the compositionG∗FK → (G∗FK)Q→̃(G∗K)Q is
injectiveaswell. Thus,G∗FK → G∗K is an injection, i.e.FpK∩K(p+1) =
Fp+1K for all p ≥ 0. Finally, induction onp shows thatFpK = K(p). ��
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Lemma 9.4. LetA andB be finitely generated filtered abelian groups such
that G∗A and G∗B are torsion-free. Let us consider the tensor product
A ⊗ B with the filtration induced by the filtrations onA andB. Then the
homomorphismG∗(A)⊗G∗(B)→ G∗(A⊗B) is bijective.

Proof. The homomorphismG∗A ⊗ G∗B → G∗(A ⊗ B) is surjective by
the definition of the filtration onA⊗B. The equality of ranks

rk(G∗A⊗G∗B) = rk(G∗A)·rk(G∗B) = rk(A)·rk(B) = rk(G∗(A⊗B))

shows that it is bijective. ��
Proposition 9.5. LetX1, . . . , Xn be disjoint varieties such that the groups
K(Xi) are finitely generated and the groupsG∗K(Xi) are torsion-free.
Then the homomorphismK(X1) ⊗ . . . ⊗ K(Xn) → K(X1 × . . . × Xn)
is an isomorphism of filtered rings.4 Besides,G∗K(X1 × . . . × Xn) �
G∗K(X1)⊗ . . .⊗G∗K(Xn) (in particular, the groupG∗K(X1× . . .×Xn)
is torsion-free).

Proof. An easy induction reduces the general case to the casen = 2. Set
X

def= X1 andY
def= X2. Let us denote byF i(K(X × Y )) the filtration on

K(X × Y ) induced by the topological filtrations onK(X) andK(Y ). Let
Γ iK(X×Y ) stays for the gamma-filtration on theGrothendieck group (see
[36, Def. 8.3] and/or [24, Def. 2.6]). To prove the Proposition, it is sufficient
to verify thatF i(K(X × Y )) = K(X × Y )(i) for all i. For this, it suffices
to check the conditions of Lemma 9.3.

Letusconsider thefiltrationonK(X)⊗K(Y ) inducedby the topological
filtration onK(X) andK(Y ). By Lemma 9.4 we have

G∗(K(X)⊗K(Y )) � G∗K(X)⊗G∗K(Y ).

Since the varietiesX andY are disjoint, the homomorphism

G∗(K(X)⊗K(Y ))→ G∗F(K(X × Y ))

is bijective. Therefore,G∗F(K(X × Y )) � G∗K(X)⊗G∗K(Y ). In par-
ticular, the groupG∗F(K(X × Y )) is torsion-free.

SinceΓ iK(X) ⊂ K(X)(i) andΓ iK(Y ) ⊂ K(Y )(i) (see [9, Th. 3.9 of
Chap. V]), and since the gamma-filtration onK(X × Y ) is induced by the
gamma-filtrations onK(X) andK(Y ) (see [25, Prop. 3.2]), one has

Γ iK(X × Y ) ⊂ F iK(X × Y ) for all i ≥ 0.

4 Here we consider the tensor productK(X1)⊗ . . .⊗K(Xn) with the filtration induced
by the topological filtrations onK(X1), . . .,K(Xn).
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Finally, by [9, Prop. 5.5 of Chap. VI], we have

G∗ΓK(X × Y )Q � G∗K(X × Y )Q.

We have checked that all conditions of Lemma 9.3 hold. Therefore,
F iK(X × Y ) = K(X × Y )(i) and the proof is complete.��
Corollary 9.6. Let X1, . . . , Xn be disjoint varieties. Suppose that every
groupK(Xi) possess a filtered basisEi. Then the productE1 · · · En is a
filtered basis ofK(X1 × . . . × Xn) and codim(e1 · · · en) = codim e1 +
. . .+ codim en for everye1 ∈ E1, . . . , en ∈ En.

Proof. Since everyK(Xi) possess a filtered basis, it is finitely generated
and the groupG∗K(Xi) is torsion-free (Corollary 8.4), i.e. all conditions
of Proposition 9.5 hold. Applying Proposition 9.5, we get the assertion
required. ��

Lemma 9.7. Let Xi
def= SB(Qi) for i = 1, . . . , n, whereQi are some

central simpleF -algebras of exponent≤ 2 and of index≤ 4. Suppose that

ind(Q1 ⊗F . . .⊗F Qn) = ind(Q1) · · · ind(Qn) .

Then the varietiesX1, . . . , Xn satisfy the conditions of Proposition 9.5 and
of Corollary 9.6.

Proof. Since

ind(Q1 ⊗F . . .⊗F Qn) = ind(Q1) · · · ind(Qn),

the varietiesX1, . . . , Xn are disjoint (see Example 9.2). The groupsK(Xi)
are finitely generated by [41]. The groupsG∗K(Xi) are torsion-free by [23].
The filtered groupsK(Xi) possess filtered bases by Corollary 8.4.��
Lemma 9.8. Let Q be a quaternionF -algebra and letY be its Severi-
Brauer variety. We denote byp ∈ K(YF̄ ) the class of a rational point and
identifyK(Y ) with a subgroup ofK(YF̄ ). Then

1. If Q is split, then(1, p) is a filtered basis ofK(Y ), herebycodim1 = 0
andcodim p = 1.

2. If Q is non-split, then(1, 2p) is a filtered basis ofK(Y ), herebycodim1
= 0 andcodim2p = 1.

Proof. Since in the split caseY is isomorphic to the projective line, the first
statement is easy (cf. Example 8.2). Let us prove the second.

Since there exists a quadratic extensionL/F splittingQ, the transfer
argument and Item 1 show that2p ∈ K(Y )(1). ThusK(Y ) contains the
subgroup ofK(YF̄ ) generated by1 and2p. Since there is a natural (with
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respect to extensions of scalars) isomorphismK(Y ) � K(F ) ⊕ K(Q)
([41, Th. 4.1 of Sect. 8]), the index ofK(Y ) in K(YF̄ ) equalsindQ = 2.
Consequently,K(Y ) coincides with the subgroup generated by1 and2p.
SinceK(YF̄ )

(1) is generatedbyp, wesee thatK(Y )∩K(YF̄ )
(1) is generated

by 2p. On the other hand2p ∈ K(Y )(1) ⊂ K(Y ) ∩K(YF̄ )
(1). Therefore,

K(Y )(1) coincides with the subgroup generated by2p. ��
Applying Lemma 9.8, Lemma 9.7, and Corollary 9.6, we get

Corollary 9.9. LetQ1, . . . , Qn be quaternionF -algebras such thatQ1⊗F

. . . ⊗F Qn is a division algebra. SetYi
def= SB(Qi) and denote bypi ∈

K((Yi)F̄ ) the class of a rational point. Then the elements of the form
(2p1)ε1 · · · (2pn)εn , whereε1, . . . , εn ∈ {0, 1}, constitute a filtered basis
ofK(Y1× . . .×Yn); besidescodim ((2p1)ε1 · · · (2pn)εn) = ε1+ . . .+ εn.

��

10. Filtered bases for projective space bundles

For any non-zero homogeneous elementu of the Chow groupCH∗(X) of
a varietyX, we denote bycodimu the homogeneous degree ofu.

Definition 10.1. Letu ∈CH∗(X)beanon-zero homogeneouselement.We
say that an elementv ∈ K(X) correspondstou, if codim v = codimu = n
and the imagēv of v under the homomorphismK(X)(n) → GnK(X) coin-
cides with the image ofu under the homomorphismCHn(X)→ GnK(X).

Example 10.2.For a varietyY and an integeri ≥ 0, we denote byci :
K(Y ) → K(Y )(i) and c̃i : K(Y ) → CHi(Y ) the i-th Chern classes (see
[24, Def. 2.1 and 2.11]). If̃ci(v) �= 0 for an elementv ∈ K(Y ), then
ci(v) ∈ K(Y )(i) corresponds tõci(v) (see [24, Lemma 2.16]).

Letf : Y → X bea smooth propermorphismofF -varietieswith smooth
X. For any smooth proper morphism ofF -varietiespX : X ′ → X, let

Y ′ f ′
→ X ′

pY ↓ ↓ pX

Y
f→ X

(∗)

be the fiber square. We considerCH∗(Y ′) as aCH∗(X ′)-module via the
pull-back ring homomorphism(f ′)∗ : CH∗(X ′)→ CH∗(Y ′). Besides, we
considerG∗K(Y ) as aG∗K(X)-module.

Proposition 10.3. LetX be a smoothF -variety, letf : Y → X be a smooth
proper morphism ofF -varieties, and letui ∈ CH∗(Y ) (i = 1, . . . , k) be
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homogeneous elements such that for any fiber square(∗) the CH∗(X ′)-
moduleCH∗(Y ′) is free with the basis(p∗

Y (ui))
k
i=1. If vi ∈ K(Y ) are

elements corresponding toui (i = 1, . . . , k), then

1. TheG∗K(X)-moduleG∗K(Y ) is free with the basis(v̄i)ki=1.
2. The elements(vi)ki=1 form a filtered basis of theK(X)-moduleK(Y ).

Proof. Consider the fiber square

Y ×X Y
p2−→ Y

p1 ↓ ↓ f

Y
f−→ X

It is a square of the type(∗) (withX ′ = Y andpX = f ). Therefore, by our
assumption, the homomorphism

k⊕
i=1

CH∗(Y )→ CH∗(Y ×X Y ), (w1, . . . , wk) �→
k∑
i=1

p∗
1(ui) · p∗

2(wi)

is bijective. In particular, it is surjective and consequently

k∑
i=1

p∗
1(ui) · p∗

2(u
′
i) = δY ∈ CH∗(Y ×X Y )

for someu′
1, . . . , u

′
k ∈ CH∗(Y ), whereδY is the diagonal class inCH∗(Y

×X Y ).
Consider the homomorphisms

α :
k⊕
i=1

CH∗(X)→ CH∗(Y ), α : (w1, . . . , wk) �→
k∑
i=1

ui · f∗(wi),

β = (βi)ki=1 : CH
∗(Y ) βi : w �→ f∗(w · u′

i).

→
k⊕
i=1

CH∗(X),

We claim, that the compositionα ◦β is an identity, i.e. for anyw ∈ CH∗(Y )

α(β(w)) def=
k∑
i=1

ui · f∗(f∗(w · u′
i)) = w .

To prove this, let us first compute a summand of the sum:

ui · f∗(f∗(w · u′
i)) = ui · p2∗(p

∗
1(w · u′

i)) = p2∗(p
∗
2(ui) · p∗

1(w) · p∗
1(u

′
i)).
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Here the first equality holds sincef∗ ◦ f∗ = p2∗ ◦ p∗
1 ([8, Prop. 1.7]); the

second equality holds by the projection formula forp2 and sincep∗
1 is a ring

homomorphism. Consequently

α(β(w)) = p2∗
(
p∗
1(w)

k∑
i=1

p∗
2(ui) · p∗

1(u
′
i)

)
= p2∗(p

∗
1(w) · δY ) = w,

where the last equality is well-known in the caseX = SpecF (see [8, Prop.
16.1.2.(c)]) and is proved in exactly the same way in the general case (cf.
[5, Prop. 1.2.1]).

Thus, we have proved thatα ◦β = id. Sinceα is an isomorphism (by
the assumption of the Proposition), it follows thatβ ◦α = id as well.

Let us now consider the homomorphisms

ᾱ :
k⊕
i=1

G∗K(X)→ G∗K(Y ), ᾱ : (w1, . . . , wk) �→
k∑
i=1

v̄i · f∗(wi),

β̄ = (β̄i)ki=1 : G
∗K(Y ) β̄i : w �→ f∗(w · v̄′

i),→
k⊕
i=1

G∗K(X),

where v̄′
1, . . . , v̄

′
k ∈ G∗K(Y ) are the images ofu′

1, . . . , u
′
k ∈ CH∗(Y )

underCH∗(Y )→→ G∗K(Y ).
The diagrams

n⊕
i=1

CH∗(X) α→ CH∗(Y )

↓ ↓
n⊕
i=1

G∗K(X) ᾱ→ G∗K(Y )

and

CH∗(Y )
β→

n⊕
i=1

CH∗(X)

↓ ↓
G∗K(Y )

β̄→
n⊕
i=1

G∗K(X)

are obviously commutative. Since the vertical arrows in these diagrams are
surjective,α ◦β = id, andβ ◦α = id, one has̄α ◦ β̄ = id andβ̄ ◦ ᾱ = id.
In particular,ᾱ is an isomorphism. This completes the proof of the first
assertion of the Proposition. The second assertion (on the filtered basis of
K(Y )) follows from the first one (see Lemma 8.3).��
Remark 10.4.In fact, Proposition 10.3 is of “motivic nature”: it follows
from the assumptions made that the motive ofY is a direct sum of several
copies of the motive ofX in an appropriate motivic category, namely in the
category of correspondences, whose objects are smooth and properschemes
overX (this category is constructed in [5, Sect. 1]). Since the functor of
taking the adjoint graded Grothendieck group factors through that category
(cf. [26,Sect. 5]), themotivicdecompositionmentioned implies theassertion
required.

The proof of Proposition 10.3 given above is in fact almost a “decoding”
of the motivic proof.
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One possible application of Proposition 10.3, which comes to the mind
immediately, is the construction of a filtered basis for a projective space
bundle, using the following well-known result:

Proposition 10.5. Let X be a smoothF -variety,M be a rankd vector
bundle overX, andT be the tautological vector bundle on the projectiveX-

bundleP(M). Seth̃
def= − c̃1([T ]) ∈ CH1(P(M)) (it is the “hyperplane”

class). Then theCH∗(X)-moduleCH∗(P(M)) is free and the elements
1, h̃, h̃2, . . . , h̃d−1 form its basis.

Proof. By [8, Th. 3.3], a basis ofCH∗(P(M)) overCH∗(X) is given by
the powers of̃c1([OP(M)(1)]). Since

T = OP(M)(−1) and c̃1([OP(M)(1)]) = − c̃1([OP(M)(−1)]) ,
we are done.5 ��
Corollary 10.6. In the notation of the Proposition, seth

def= 1 − [T ] ∈
K(P(M)) (it is the “hyperplane” class). Then(1, h, h2, . . . , hd−1) is a
filtered basis of theK(X)-moduleK(P(M)) and codimhi = i (for i =
1, . . . , d− 1).

Proof. According to Proposition 10.5, the assumption of Proposition 10.3

holds for Y
def= P(M) and ui

def= h̃i ∈ CHi(P(M)) = CHi(Y ) (for
i = 0, . . . , d−1). Since the vector bundleT is of rank 1, one hasc1([T ]) =
[T ]− 1 ∈ K(P(M)). Thereforehi = (− c1([T ]))i and hence the elements
hi ∈ K(P(M)) correspond to the elementsh̃i, defined as(− c̃1([T ]))i (cf.
Example 10.2). Proposition 10.3 says that(1, h, h2, . . . , hd−1) is a filtered
basis of theK(X)-moduleK(P(M)) andcodimhi = i (for i = 1, . . . , d−
1). ��

Proposition 10.7. Let X
def= S × SB(A) and Y

def= SB(Aop), whereA
is a central simpleF -algebra of degreed and S is a homogeneousF -
variety. LetI and J be the tautological vector bundles onSB(A) and

SB(Aop). Consider the vector bundleT def= OS ⊗ I ⊗A J onX × Y and

seth
def= 1− [T ] ∈ K(X × Y ). Then

1. The elements1, h, h2, . . . , hd−1 form a filtered basis of theK(X)-mod-
uleK(X × Y ); codimhi = i.

5 In fact, T is by definition a vector bundle whileO(−1) is anO-module. However,
we follow here the functor of points ideology where the notions of a vector bundle and a
locally freeO-module coincide (cf. [26, Sect. 8]). In the standard geometric point of view,
there is a correspondence between vector bundles and locally freeO-modules; the equality
T = O(−1) should then be understood in the appropriate way.
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2. In the groupK(XF̄ ×YF̄ ), the elementh is equal to
∧
h +

∨
h −

∧
h

∨
h, where

∧
h∈ K(SB(A)F̄ ) � K(Pd−1

F̄
) and

∨
h∈ K(SB(Aop)F̄ ) � K(Pd−1

F̄
) are

the hyperplane classes.6

Proof. 1.SetM def= OS⊗I. ByCorollary 4.5, theproductX×Y considered
overX is identified withP(M). Besides, the tautological vector bundle on
P(M) corresponds toM⊗A J = OS ⊗ I ⊗A J = T . To complete the
proof, apply Corollary 10.6.
2.We may assume thatS = SpecF . First, note thatd2[T ] = [I] · [J ],
becausedimF A = d2. For the rest of the proof we may replaceF by F̄ ; in
particular,A is split now. Then the varietiesSB(A)andSB(Aop)are isomor-

phic to projective spaces. Let
∧
ξ= [OSB(A)(−1)] and

∨
ξ= [OSB(Aop)(−1)].

We have[I] = d
∧
ξ and [J ] = d

∨
ξ (see [41, Sect. 8.4]). The hyper-

plane class
∧
h is defined as

∧
h= 1−

∧
ξ. Analogously,

∨
h= 1−

∨
ξ. So, we

get the formulad2[T ] = d(1− ∧
h) · d(1−

∨
h). Since the Grothendieck

group we are working in is torsion-free, one can divide byd2. Hence

h
def= 1− [T ] = 1− (1− ∧

h)(1−
∨
h) =

∧
h +

∨
h −

∧
h

∨
h. ��

Corollary 10.8. Let Q be a quaternionF -algebra and let
∧
Y ,

∨
Y be two

copies ofSB(Q). Let
∧
p and

∨
p be the classes of rational points on

∧
Y F̄ and

∨
Y F̄ . Let S be a homogeneousF -variety. ThenK(S× ∧

Y × ∨
Y ) is a free

K(S× ∧
Y )-module with the filtered basis(1,

∧
p +

∨
p − ∧

p
∨
p); besidescodim(

∧
p

+
∨
p − ∧

p
∨
p) = 1.

Proof. SinceQ is a quaternionalgebra, it hasacanonical anti-automorphism

Q→̃Qop.We identify
∨
Y withSB(Qop) via this anti-automorphismandapply

Proposition 10.7. ��
Remark 10.9.It probably deserves to be mentioned that the element

∧
p +

∨
p − ∧

p
∨
p∈ K(

∧
Y × ∨

Y )

in the notation of Corollary 10.8 coincides with the class of the diagonal.

11. Filtered bases for grassmanian bundles

Definition 11.1. Let m,n be some integers. An(m,n)-partition λ is a
sequence of integers(λ1, . . . , λm) of lengthm satisfying the condition

6 We consider
∧
h and

∨
h as elements ofK(XF̄ × YF̄ ) via the pull-back.
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n ≥ λ1 ≥ . . . ≥ λm ≥ 0. The weight|λ| of λ is by definition the sum
λ1 + . . .+ λm.

Let λ be an(m,n)-partition and lets
def= (s1, . . . , sn) be a sequence

of variables. For alli < 0 and alli > n, we putsi = 0, besides we put
s0 = 1. TheSchur polynomial∆λ(s) of λ is by definition the determinant
of the matrix(sλi+j−i)

m
i,j=1. It is a homogeneous polynomial of weight|λ|,

if everysi is taken with the weighti.

Example 11.2.One has exactly six(2, 2)-partitions:(2, 2), (2, 1), (2, 0),
(1, 1), (1, 0), and(0, 0). Applying the formula

∆(λ1,λ2)(s) = det
(

sλ1 sλ1+1
sλ2−1 sλ2

)
= sλ1sλ2 − sλ1+1sλ2−1

(take in attention thats−1 = s3 = 0 and s0 = 1), one computes their
Schur polynomials:∆(2,2)(s) = s2

2, ∆(2,1)(s) = s2s1, ∆(2,0)(s) = s2,
∆(1,1)(s) = s2

1 − s2,∆(1,0)(s) = s1, and∆(0,0)(s) = 1.

We fix the following notation for the rest of this section:F is an arbitrary
field,X is a smoothF -variety,r ≥ n ≥ 0 are integers,M is a rankr vector

bundle overX, andΓ
def= IΓn(M) → X is the grassmanian bundle of

n-planes in the vector bundleM. We denote byT the tautological vector
bundle onΓ (also calleduniversal vector subbundle, see [8, Sect. 14.6]).
Note that the rank ofT equalsn.

For an(m,n)-partitionλ, we put∆λ
def= ∆λ(s)with si

def= (−1)i ci([T ])
∈ K(Γ )(i), i = 1, . . . , n. Besides, we put∆̃λ

def= ∆λ(s̃) with s̃i
def=

(−1)i c̃i([T ]) ∈ CHi(Γ ), i = 1, . . . , n. Since∆λ(s) is a homogeneous
polynomial of degree|λ|, one has∆λ ∈ K(Γ )(|λ|) and∆̃λ ∈ CH|λ|(Γ ).
Obviously,∆λ corresponds tõ∆λ in the sense of Definition 10.1 (see Ex-
ample 10.2).

We considerCH∗(Γ ) as aCH∗(X)-module via the pull-back homomor-
phismCH∗(X)→ CH∗(Γ ).

Proposition 11.3. TheCH∗(X)-moduleCH∗(Γ ) is free and the elements
∆̃λ, whereλ runs over the set of all(r − n, n)-partitions, form its basis.

Proof. By [8, Prop. 14.6.5], the elements̃∇λ′
def= ∆λ′(s), si

def= c̃i(−[T ]),
whereλ′ runs over the set of all(n, r−n)-partitions, formabasis ofCH∗(Γ )
overCH∗(X). By [8, Lemma 14.5.1], one has̃∇λ′ = ∆̃λ, whereλ is the
(r−n, n)-partitiondualtoλ′ (see [8, Sect. 14.5] for the definition of the dual
partition). Therefore, the collection(∇̃λ′)λ′ coincides with the collection
(∆̃λ)λ up to a permutation. ��

Nowwe considerK(Γ ) as aK(X)-module via the pull-back homomor-
phismK(X)→ K(Γ ).
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Corollary 11.4. TheK(X)-moduleK(Γ ) is free and the elements∆λ,
whereλ runs over the set of all(r−n, n)-partitions, form its filtered basis;
besidescodim∆λ = |λ|.
Proof. Follows from Propositions 11.3 and 10.3.��

We are especially interested in the case of the grassmanian of 2-dimen-
sional subspaces in a rank 4 vector bundle:

Corollary 11.5. Let Γ → X be the grassmanian bundle of2-planes in a
rank 4 vector bundle over a smoothF -varietyX. Put η = − c1([T ]) and
µ = c2([T ]), whereT is the tautological vector bundle onΓ . ThenK(Γ )
is a freeK(X)-module with the filtered basis

(ηα · µβ)α,β≥0,α+β≤2 = (1, η, µ, η2, ηµ, µ2).

The codimension of any basis elementηα · µβ is equal toα+ 2β.

Proof. By Corollary 11.4 (see also Example 11.2), the elements∆(2,2) =
µ2,∆(2,1) = µη,∆(2,0) = µ,∆(1,1) = η2 − µ,∆(1,0) = η, and∆(0,0) = 1
forma filtered basis ofK(Γ ) overK(X). To finish the proof, we just replace
∆(1,1) by∆(1,1) +∆(2,0) = η2. ��

Here is the situation Corollary 11.5 will be applied to:

Let Q1 andQ2 be quaternionF -algebras andQ
def= Q1 ⊗ Q2. Let I1

andI2 be the tautological vector bundles onSB(Q1) andSB(Q2). Let S
be an arbitrary smoothF -variety andX

def= S × SB(Q1) × SB(Q2). Set
M def= OS ⊗I1⊗I2. Clearly,M has a structure of a rightQX -module. We
denote byT the generalized Severi-Brauer varietySB(2, Q) and byJ the
tautological vector bundleonT (which is a rightQY -module). Thecanonical
anti-automorphisms ofQ1 andQ2 determine an anti-automorphism ofQ;
using this, we considerJ as aleft QT -module and define a vector bundle
T onX × T as the tensor productM⊗QX×T

J . Applying Corollary 4.4
one sees that

– the productX × T = S × SB(Q1)× SB(Q2)× SB(2, Q1 ⊗Q2) con-
sidered overX = S × SB(Q1) × SB(Q2) via fist projection can be
naturally identified (as a scheme overX) with the grassmanian bundle
IΓ2(M);

– under this identification, the tautological vector bundle on the grassma-

nian bundle corresponds to the vector bundleT def= M⊗QX×T
J on

X × T .

Now we setη
def= − c1([T ]) andµ def= c2([T ]). SincerkM = 4, Corol-

lary 11.5 gives rise to the following
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Lemma 11.6. In the notation introduced right above,K(X × T ) is a free
K(X)-module with the filtered basis

(ηα · µβ)α,β≥0,α+β≤2 = (1, η, µ, η2, ηµ, µ2).

The codimension of any basis elementηα · µβ is equal toα+ 2β. ��
Lemma 11.7. In the notation of Lemma 11.6, let us consider the homo-
morphismf : K(X × T ) → K(XF (T )) defined as in Example 5.4. Then
f(η) = 2(p1 + p2− p1p2) andf(µ) = 2p1p2 wherepi denotes the class of
a rational point inK(SB(Qi)F̄ ) = K(SB(Qi)F̄ (T )) (i = 1, 2).

Proof. It suffices to check the statement under the assumption thatF = F̄ .
In particular,SB(Q1) andSB(Q2) are isomorphic to the projective lines.
SinceT = M ⊗QX×T

J anddimQ = dimQ1 ⊗ Q2 = 16, we have
16[T ] = [M] · [J ] = [I1] · [I2] · [J ]. Applying the pull-back to the right-
hand side, we get[I1] · [I2] · 8 because the rank of the vector bundleJ is
equal to2 degQ = 8. SinceSB(Qi) is isomorphic to the projective line

for i = 1, 2, we have[Ii] = 2ξi, whereξi
def= [OSB(Qi)(−1)]. Therefore,

f([T ]) = 2ξ1ξ2. Since the Chern classes are compatible with the pull-back,
it follows thatf(η) = − c1(2ξ1ξ2) andf(µ) = c2(2ξ1ξ2).

Let us compute the total Chern classct of 2ξ1ξ2:

ct(2ξ1ξ2) = ( ct(ξ1ξ2))
2 = (1 + (ξ1ξ2 − 1)t)2 .

Therefore, the first Chern class equals2(ξ1ξ2 − 1) and the second Chern
class equals(ξ1ξ2 − 1)2. Substitutingξi = 1 − pi we get the statement on
η andµ required. ��
Remark 11.8.As noticed by the referee, replacingη by η− 2p1− 2p2 +µ,
one may get another filtered basis of theK(X)-moduleK(X × T ) having
the additional nice property thatf(η) = 0. This may simplify a bit the
computations of Sect. 12.

12. Preliminary calculations

In order to formulate the basic theorem, i.e. Theorem 12.1, more comfort-
ably, we need certain formalisms.

We denote byΩ the two element set{∧, ∨}. LetG be the groupAutΩ
of permutations ofΩ (G consists of two elements: the identity and the
transposition of∧ with ∨).

We denote byGII the direct productG1 × G2 of two copies ofG and
we denote byGI the diagonal subgroup ofGII . We identifyG1 with a
subgroup ofGII via the homomorphism(id, 1); we identifyG2 with a
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subgroup ofGII via the homomorphism(1, id). The nontrivial element of
Gi (for i = 1, 2) will be denoted bysi; the nontrivial element ofGI will
be denoted bys. ThusGI = {1, s},GII = {1, s1, s2, s}, s = s1s2 ∈ GII ,
GI � Z/2,GII � Z/2⊕ Z/2.

LetΩ1 andΩ2 be two copies of the setΩ. We denote byΩII the direct
productΩ1×Ω2. Taking theproduct of theactionofG1 onΩ1with theaction
ofG2 onΩ2, we get an action ofGII = G1×G2 on the setΩII = Ω1×Ω2.

The trivial action ofGi onΩj for i �= j and the (nontrivial) action of
Gi onΩi gives rise to an action ofGII on the set-theoretical direct sum
Ω1

∐
Ω2.

As a subgroup ofGII , the groupGI as well acts on the setΩ1
∐

Ω2.
The groupGI naturally acts on the diagonal ofΩII , which we denote by
ΩI .

We apply these formalisms to the following situation.
LetQ1 andQ2 bequaternionF -algebras such thatQ1⊗FQ2 is a division

algebra. Let us denote byYi the Severi-Brauer variety ofQi and byX the
product

X
def=

( ∏
Ω1

Y1

)
×

( ∏
Ω2

Y2

)
=

∧
Y 1 ×

∨
Y 1 ×

∧
Y 2 ×

∨
Y 2,

where
∧
Y i and

∨
Y i are two copies ofYi. The action of the groupsGI and

GII on the setΩ1
∐

Ω2 determines their action on the varietyX (by means
of the permutations of the factors). In particular, the elementsi acts onX

interchanging
∧
Y i with

∨
Y i (the other two factors are left untouched).

LetusdenotebyT thegeneralizedSeveri-BrauervarietySB(2, Q1⊗Q2).
We set

TI
def=

∏
ΩI

T =
∧∧
T × ∨∨

T and TII
def=

∏
ΩII

T =
∧∧
T × ∨∨

T × ∧∨
T × ∨∧

T .

The action of the groupGII on the setΩII = {∧∧, ∨∨, ∧∨, ∨∧} determines
an action ofGII onTII bymeans of the permutations of the factors. Besides,
the action ofGI onΩI = {∧∧, ∨∨} determines an action ofGI onTI .

Now, we setXI
def= X × TI and XII

def= X × TII . The action
ofGII onX and onTII determines an action ofGII onXII . Hence we get
an action ofGII onK(XII). Analogously, we get an action ofGI onXI

and onK(XI).
We consider the homomorphisms

fI : K(XI) = K(X × TI) −→ K(XF (TI))

and
fII : K(XII) = K(X × TII) −→ K(XF (TII))
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as in Example 5.4. We identifyK(XF (TI)) with a subgroup ofK(XF̄ (TI))
and we identifyK(XF (TII)) with a subgroup inK(XF̄ (TII)). Note that in
fact

F̄ ⊂ F̄ (TI) ⊂ F̄ (TII) and K(XF̄ ) = K(XF̄ (TI)) = K(XF̄ (TII)) .

Wedenotebyp theclassofa rationalpoint inK(XF̄ (TI)) = K(XF̄ (TII)).

Theorem 12.1. In the notation introduced above, one has

2p /∈ fI((K(XI)(4))GI ) and 2p /∈ fII((K(XII)(3))GII ) .

Two applications of the Theorem are in Sect. 13 and Sect. 14. In the rest
of this section we prove this Theorem.

We start with an investigation ofK(X).

Let
∧
pi and

∨
pi denote the classes of rational points on(

∧
Y i)F̄ and on

(
∨
Y i)F̄ . SinceXF̄ � P

1×P
1×P

1×P
1, a filtered basis ofK(XF̄ ) consists

of the elements(
∧
p1)ε1 ·(

∨
p1)ε2 ·(

∧
p2)ε3 ·(

∨
p2)ε4 ·, whereε1, ε2, ε3, ε4 ∈ {0, 1}.

Clearly, the action ofGI andGII on the ringK(XF̄ ) is determined by the
following rules:

– s(
∧
pi) =

∨
pi ands(

∨
pi) =

∧
pi,

– si(
∧
pi) =

∨
pi andsi(

∨
pi) =

∧
pi,

– si(
∧
pj) =

∧
pj andsi(

∨
pj) =

∨
pj for i �= j;

that isGII acts on the set{∧
p1,

∨
p1,

∧
p2,

∨
p2} in the same way as on the set

Ω1
∐

Ω2 (if we identify these two sets in the natural way).
Let us consider the groupK(X) as a subgroup ofK(XF̄ ).

Lemma 12.2. A filtered basis ofK(X) consists of the elements of the form

eε1ε2ε3ε4
def= (2

∧
p1)ε1 · (2

∧
p2)ε2 · (

∧
p1 +

∨
p1 −

∧
p1

∨
p1)ε3 · (

∧
p2 +

∨
p2 −

∧
p2

∨
p2)ε4

whereε1, ε2, ε3, ε4 ∈ {0, 1}. Besides,codim eε1ε2ε3ε4 = ε1+ ε2+ ε3+ ε4.

Proof. SetR1
def= K(

∧
Y 1 ×

∧
Y 2), R2

def= K(
∧
Y 1 ×

∧
Y 2 ×

∨
Y 1), andR3

def=

K(
∧
Y 1 ×

∧
Y 2 ×

∨
Y 1 ×

∨
Y 2). By Corollary 9.9, a filtered basis ofR1 consists

of
(2

∧
p1)ε1 · (2

∧
p2)ε2 ,

whereε1, ε2 ∈ {0, 1}. By Corollary 10.8, a filtered basis of theR1-module

R2 consists of(
∧
p1 +

∨
p1 −

∧
p1

∨
p1)ε3 , whereε3 ∈ {0, 1}, and a filtered basis

of theR2-moduleR3 consists of(
∧
p2 +

∨
p2 −

∧
p2

∨
p2)ε4 , whereε4 ∈ {0, 1}.

Lemma 8.5 completes the proof.��
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Below, we use the following notation:h1
def=

∧
p1 +

∨
p1 − ∧

p1
∨
p1 and

h2
def=

∧
p2 +

∨
p2 −

∧
p2

∨
p2 (cf. Item 2 of Proposition 10.7).

Corollary 12.3. One hasK(X)(4) ⊂ 4K(XF̄ ) andK(X)(3) ⊂ 4K(XF̄ )
+ H, whereH is the subgroup ofK(XF̄ ) generated by2

∧
p1

∨
p1 h2 and

2
∧
p2

∨
p2 h1.

Proof. The groupK(X)(4) is generated by the elemente1111 ∈ 4 ·K(XF̄ ).
The groupK(X)(3) is generated by the following five elements:

e1111, e1101, e1110 ∈ 4 ·K(XF̄ ) and e1011, e0111.

Using an evident formula(
∧
pi)2 = 0, one getse1011 = 2

∧
p1 h1h2 = 2

∧
p1

∨
p1

h2 ∈ H ande0111 = 2
∧
p2 h1h2 = 2

∧
p2

∨
p2 h1 ∈ H. ��

Definition 12.4. We denote byE the filtered basis ofK(X) described in
Lemma 12.2. We set

Eodd
def= {e ∈ E | e /∈ 2K(XF̄ )} andEeven

def= {e ∈ E | e ∈ 2K(XF̄ )} .
For anyd ≥ 0, we setE(d) def= E ∩ K(X)(d), E(d)

even
def= Eeven ∩ K(X)(d),

andE(d)
odd

def= Eodd ∩K(X)(d).

The following Lemma is obvious.

Lemma 12.5. The setEodd consists of1, h1, h2, andh1h2. Moreover

1. The setE(d)
odd is empty ford ≥ 3.

2. The setE(2)
odd consists of one element:h1h2.

3. The setE(1)
odd consists of three elements:h1, h2, andh1h2. ��

Corollary 12.6. For anye ∈ Eodd, one hass(e) = s1(e) = s2(e) = e, i.e.
the setEodd consists ofGII -invariant elements. ��

Now we are going to study the structure ofK(XI) andK(XII).
Theelementsη, µ ∈ K(SB(Q1)×SB(Q2)×SB(2, Q1⊗Q2))of Lemma

11.6 give rise to the elements
∧∧
η ,

∧∧
µ∈ K(

∧
Y 1 ×

∧
Y 2 ×

∧∧
T ),

∨∨
η ,

∨∨
µ∈ K(

∨
Y 1 ×

∨
Y 2 ×

∨∨
T ),

∧∨
η ,

∧∨
µ∈ K(

∧
Y 1 ×

∨
Y 2 ×

∧∨
T ),

∨∧
η ,

∨∧
µ∈ K(

∨
Y 1 ×

∧
Y 2 ×

∨∧
T ).

Using the pull-back homomorphisms (with respect to the projections), one

can consider
∧∧
η ,

∧∧
µ,

∨∨
η ,

∨∨
µ as elements ofK(XI). Analogously, one can con-

sider ∧∧
η ,

∧∧
µ,

∨∨
η ,

∨∨
µ,

∧∨
η ,

∧∨
µ,

∧∨
η ,

∧∨
µ
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as elements ofK(XII).
The following Lemma is obvious.

Lemma 12.7. I.The groupGI acts on the subset{∧∧
η ,

∨∨
η ,

∧∧
µ,

∨∨
µ} of the group

K(XI) in the same way as it acts onΩI .

II. The groupGII acts on the subsets{∧∧
η ,

∨∨
η ,

∧∨
η ,

∨∧
η} and{∧∧

µ,
∨∨
µ,

∧∨
µ,

∨∧
µ} of the

groupK(XII) in the same way as it acts onΩII . ��
Proposition 12.8. I.A filtered basis of theK(X)-moduleK(XI) consists

of the elements(
∧∧
η )α1 · (∨∨

η )α2 · (∧∧
µ)β1 · (∨∨

µ)β2 , whereα1, α2, β1, β2 run over
the set of all non-negative integers such thatα1+β1, α2+β2 ≤ 2. Besides,
the codimension of any basis element is equal to the sum of the codimensions
of its factors:

codim ((
∧∧
η )α1 · (∨∨

η )α2 · (∧∧
µ)β1 · (∨∨

µ)β2) = α1 + α2 + 2(β1 + β2).

II. A filtered basis of theK(X)-moduleK(XII) consists of the elements(
∧∧
η

)α1 ·(∨∨
η )α2 ·(∧∨

η )α3 ·(∧∨
η )α4 ·(∧∧

µ)β1 ·(∨∨
µ)β2 ·(∨∧

µ)β3 ·(∨∧
µ)β4 , whereα1, . . . , α4, β1,

. . . , β4 run over the set of all non-negative integers such thatα1+β1, . . . , α4
+β4 ≤ 2. Besides, the codimension of any basis element is equal to the sum
of the codimensions of its factors:

codim ((
∧∧
η )α1 · (∨∨

η )α2 · (∧∨
η )α3 · (∧∨

η )α4 · (∧∧
µ)β1 · (∨∨

µ)β2 · (∨∧
µ)β3 · (∨∧

µ)β4)
= α1 + α2 + α3 + α4 + 2(β1 + β2 + β3 + β4) .

Proof. I. It suffices to apply Lemma 11.6 two times (taking Lemma 8.5 in
account).
II. It suffices toapply Lemma11.6 four times (takingLemma8.5 inaccount).

��
Applying Lemma 11.7, we get

Lemma 12.9. I, II. For the homomorphismfI : K(XI)→ K(XF (TI)) as
well as for the homomorphismfII : K(XII)→ K(XF (TII)), one has

∧∧
η �→ 2(

∧
p1 +

∧
p2 − ∧

p1
∧
p2) ;

∨∨
η �→ 2(

∨
p1 +

∨
p2 − ∨

p1
∨
p2) ;

∧∧
µ �→ 2

∧
p1

∧
p2 ;

∨∨
µ �→ 2

∨
p1

∨
p2 .

II. For the homomorphismfII : K(XII)→ K(XF (TII)), one has

∧∨
η �→ 2(

∧
p1 +

∨
p2 − ∧

p1
∨
p2) ;

∨∧
η �→ 2(

∨
p1 +

∧
p2 − ∨

p1
∧
p2) ;

∧∨
µ �→ 2

∧
p1

∨
p2 ;

∨∧
µ �→ 2

∨
p1

∧
p2

additionally. ��
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Corollary 12.10. I.TheelementfI(h1h2(
∧∧
µ +

∨∨
µ))belongs to4K(XF̄ (TI)).

II. The elementsfII(h1(
∧∧
µ +

∨∧
µ +

∧∨
µ +

∨∨
µ)), fII(h2(

∧∧
µ +

∨∧
µ +

∧∨
µ +

∨∨
µ)),

fII(h1h2(
∧∧
µ +

∨∧
µ +

∧∨
µ +

∨∨
µ)), andfII(h1h2(

∧∧
η +

∨∧
η +

∧∨
η +

∨∨
η )) belong to

4K(XF̄ (TII)).

Proof. It is just a direct calculation using Lemma 12.9.��
Our main tool for study offI((K(XI)(4))GI ) is the following

Lemma 12.11.Suppose that a subgroupM of K(XF̄ (TI)) and an integer
d satisfy the following conditions:

– 4K(XF̄ (TI)) ⊂M ;

– fI(K(X)(d)) ⊂M ;

– for anye ∈ E(d−1)
odd one hasfI(e(

∧∧
η +

∨∨
η )) ∈M ;

– for anye ∈ E(d−2)
odd one hasfI(e(

∧∧
µ +

∨∨
µ)) ∈M .

ThenfI((K(XI)(d))GI ) ⊂M .

Proof. Let us divide the elements of the filtered basisE of theK(X)-
moduleK(XI), given in Proposition 12.8, into four groups:E0 = {1},
E1 = {∧∧

η ,
∨∨
η},E2 = {∧∧

µ,
∨∨
µ}, andE3 = {all other generators}. Let us denote

by Vi ⊂ K(XI) (for i = 0, 1, 2, 3) theK(X)-submodule generated byEi.

Clearly,K(XI) = V0 ⊕ V1 ⊕ V2 ⊕ V3. Now, we setV
(d)
i = Vi ∩K(X)(d).

Since the basisE ofK(XI) is filtered, one has

K(XI)(d) = V
(d)
0 ⊕ V

(d)
1 ⊕ V

(d)
2 ⊕ V

(d)
3 .

Moreover, the setsEi areGI -invariant; consequently, the submodulesVi are
GI -invariant as well. Therefore,

(K(XI)(d))GI = (V (d)
0 )GI ⊕ (V (d)

1 )GI ⊕ (V (d)
2 )GI ⊕ (V (d)

3 )GI .

Thus, it is sufficient to verify thatfI((V
(d)
i )s) ⊂M for all i = 0, 1, 2, 3 (we

recall thats is defined as the only nontrivial element of the groupGI ).
For i = 0, we haveV0 = K(X) · 1 = K(X) and hencefI((V

(d)
0 )s) ⊂

fI(K(X)(d)) ⊂M by the assumption of the Lemma.
For i = 3, it follows from Lemma 12.9 thatfI(E3) ⊂ 4K(XF̄ (TI)).

Since fI is a homomorphism ofK(X)-modules, one hasfI(V3) ⊂
4K(XF̄ (TI)). Consequently,fI((V

(d)
3 )s) ⊂ fI(V3) ⊂ 4K(XF̄ (TI)) ⊂M .

Now, consideri = 1. We haveV (d)
1 = K(X)(d−1)· ∧∧

η ⊕K(X)(d−1)· ∨∨
η

(here we use once again the fact that the basisE is filtered). Therefore

(V (d)
1 )GI = {r· ∧∧

η +s(r)· ∨∨
η |r ∈ K(X)(d−1)}. Thus it is sufficient to
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verify that fI(r·
∧∧
η +s(r)· ∨∨

η ) ∈ M for all r ∈ K(X)(d−1). Clearly, it
suffices to consider the case wherer belongs to a basis ofK(X)(d−1); e.g.

we may assume thatr = e ∈ E(d−1). If e ∈ E(d−1)
even , thene ∈ 2K(XF̄ )

ands(e) ∈ 2K(XF̄ ). SincefI(
∧∧
η ), fI(

∨∨
η ) ∈ 2K(XF̄ (TI)), one hasfI(e·

∧∧
η

+s(r)· ∨∨
η ) ∈ 4K(XF̄ (TI)) ⊂M in this case. Ife ∈ E(d)

odd, then by Corollary

12.6 we haves(e) = e. Therefore,fI(e·
∧∧
η +s(e)· ∨∨

η ) = fI(e(
∧∧
η +

∨∨
η

)) ∈ M by the third assumption of the Lemma. This completes the proof
for i = 1.

For i = 2, we haveV (d)
2 = K(X)(d−2)· ∧∧

µ ⊕K(X)(d−2)· ∨∨
µ. Therefore

(V (d)
2 )s = {r· ∧∧

µ +s(r)· ∨∨
µ |r ∈ K(X)(d−2)}. The rest of the proof is the

same as that fori = 1. ��
Lemma 12.12. fI

(
(K(XI)(4))GI

)
⊂ 4K(XF̄ (TI)).

Proof. By Lemma 12.11 it suffices to verify the following assertions:

(a) K(X)(4) ⊂ 4K(XF̄ ),
(b) for anye ∈ E(3)

odd one hasfI(e(
∧∧
η +

∨∨
η )) ∈ 4K(XF̄ (TI)),

(c) for anye ∈ E(2)
odd one hasfI(e(

∧∧
µ +

∨∨
µ)) ∈ 4K(XF̄ (TI)).

Assertion (a) is a part of Corollary 12.3. Assertion (b) is obvious because
E(3)

odd is empty (Item 1 of Lemma 12.5). Assertion (c) is an obvious conse-
quence of Lemma 12.5 (Item 2) and Corollary 12.10.��
Corollary 12.13. 2

∧
p1

∨
p1

∧
p2

∨
p2 /∈ fI((K(XI)(4))GI ). ��

Our main tool for study offII((K(XII)(3))GII ) is

Lemma 12.14.Suppose that a subgroupM ofK(XF̄ (TII)) and an integer
d satisfy the following conditions:

– 4K(XF̄ (TII)) ⊂M ;

– fII(K(X)(d)) ⊂M ;

– for anye ∈ E(d−1)
odd , one hasfII(e(

∧∧
η +

∨∧
η +

∧∨
η +

∨∨
η )) ∈M ;

– for anye ∈ E(d−2)
odd , one hasfII(e(

∧∧
µ +

∨∧
µ +

∧∨
µ +

∨∨
µ)) ∈M .

ThenfII((K(XII)(d))GII ) ⊂M .

Proof. Similar to that of Lemma 12.11.��
Lemma 12.15. fII

(
(K(XII)(3))GII

)
⊂ 4K(XF̄ (TII)) + H, whereH is

the subgroup ofK(XF̄ (TII)) generated by2
∧
p1

∨
p1 (

∧
p2 +

∨
p2 −

∧
p2

∨
p2) and

2
∧
p2

∨
p2 (

∧
p1 +

∨
p1 −

∧
p1

∨
p1).
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Proof. By Lemma 12.14, it suffices to verify the following three conditions:

(a) K(X)(3) ⊂ 4K(XF̄ ) +H;

(b) for anye ∈ E(2)
odd, one hasfII(e(

∧∧
η +

∨∧
η +

∧∨
η +

∨∨
η )) ∈ 4K(XF̄ (TII));

(c) for anye ∈ E(1)
odd, one hasfII(e(

∧∧
µ +

∨∧
µ +

∧∨
µ +

∨∨
µ)) ∈ 4K(XF̄ (TII)).

Assertion (a) is a part of Corollary 12.3. To verify conditions (b) and (c)
apply Lemma 12.5 and Corollary 12.10.��

Corollary 12.16. 2
∧
p1

∨
p1

∧
p2

∨
p2 /∈ fII((K(XII)(3))GII ). ��

Corollaries12.13and12.16complete theproof ofTheorem12.1, because

p =
∧
p1

∨
p1

∧
p2

∨
p2 in the groupsK(FF̄ (TI)) andK(FF̄ (TII)).

13. First basic construction

Let k be a field of characteristic different from 2, containing elements

a1, b1, a2, b2, d ∈ k∗

such that the quadratic extensionl
def= k(

√
d) is a field and the biquaternion

l-algebra((a1, b1)⊗k (a2, b2))l is a skewfield.
Let T be the generalized Severi-Brauer variety (see Sect. 4) of rank 2

right ideals in the biquaternionk-algebra(a1, b1)⊗ (a2, b2). Denote byK
the function field of thek-varietyR(T ) = Rl/k(T ) (see Definition 6.2).

PutL
def= K(

√
d); it is the function field of thel-varietyR(T )l. Since

R(T )l � Tl × Tl (see Sect. 6), one has

ind ((a1, b1)⊗ (a2, b2))L = 2

by the index reduction formula [2, Th. 3].
For i = 1, 2, let qi be the quadratic form〈−ai,−bi, aibi, d〉 overK.

Theorem 13.1.For any odd field extensionK ′/K, the quadratic forms
(q1)K′ and(q2)K′ are non-linked (see Sect. 3.2 for the definition oflinked).
In particular, the formsq1 andq2 themselves are non-linked.

Proof. Let us remember that the quadratic formsq1 andq2 are in fact defined
overk and denote byX1 andX2 the projective quadrics overk determined

by q1 andq2. SetX
def= X1 ×X2. We have to show that the degree of any

closed point on the varietyXK is divisible by 4.
Consider the Grothendieck groupK(XK) of the varietyXK supplied

with the topological filtration. Letp ∈ K(XK̄) denote the class of a rational
point. To show that degree of every closed point onX is divisible by 4, it
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suffices toshow that2p �∈ K(XK)(0),whereK(XK)(0) is the0-dimensional
term of the topological filtration onK(XK). SincedimX = 4, we have
K(XK)(0) = K(XK)(4).

Thepull-backhomomorphismK(X×R(T ))(4) → K(XK)(4), givenby
the flat morphism of schemesXK → X ×R(T ), is surjective by Corollary
5.3 (see also Example 5.4). Therefore it suffices to show that2p is not in the
image of this homomorphism.

Denote byσ the non-trivial automorphismofl overk. The groupK(X×
R(T ))(4) is contained in theσ-invariant part of thegroupK(Xl×R(T )l)(4).
Thus it suffices to show that

2p �∈ Im (K(Xl ×R(T )l)(4)σ → K(XL)) .

For this, we apply Theorem 12.1.
In order to meet the conditions of Theorem 12.1, note that fori = 1, 2,

one hasXi � R(Yi), whereR = Rl/k andYi is the Severi-Brauer variety
of the quaternionk-algebra(ai, bi) (see Example 6.4).

Thus we haveX×R(T ) � R(Y1×Y2×T ). Therefore, we can identify
Xl ×R(T )l with the product

XI
def=

∧
Y 1 ×

∧
Y 2 ×

∨
Y 1 ×

∨
Y 2 ×

∧
T × ∨

T

where
∧
Y i,

∨
Y i are two copies of(Yi)l and

∧
T ,

∨
T are two copies ofTl. More-

over, by Corollary 7.3, the automorphism ofK(Xl ×R(T )l) induced byσ
corresponds to the automorphism ofK(XI) induced by the permutation of

the factors interchanging
∧
Y i with

∨
Y i and

∧
T with

∨
T .

We have met the conditions of Theorem 12.1. Applying it, we get the
affirmation required. ��
Corollary 13.2. For any fieldk0 with char k0 �= 2 there exist a field exten-
sionK/k0 and elementsa1, a2, b1, b2, d ∈ K∗ with the following properties:

– ind((a1, b1)⊗ (a2, b2))K(
√
d) = 2;

– for any odd field extensionK ′/K, the quadratic forms

q1
def= 〈−a1,−b1, a1b1, d〉 and q2

def= 〈−a2,−b2, a2b2, d〉
are not linked overK ′.

Proof. Put k
def= k0(a1, b1, a2, b2, d) wherea1, b1, a2, b2, d are indetermi-

nates. Thenl
def= k(

√
d) is a field and the biquaternionl-algebra((a1, b1)⊗

(a2, b2))l is a skewfield. For the fieldK ⊃ k as in Theorem 13.1, all affir-
mations of the Corollary hold.��
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14. Second basic construction

Let k be a field of characteristic different from 2, containing elements

a1, b1, a2, b2, d1, d2 ∈ k∗

such that the biquadratic extensionl
def= k(

√
d1,

√
d2) is a field and the

biquaternionl-algebra((a1, b1)⊗k (a2, b2))l is a skewfield.
Let T be the generalized Severi-Brauer variety (see Sect. 4) of rank 2

right ideals in the biquaternionk-algebra(a1, b1)⊗ (a2, b2). Denote byK
the function field of thek-varietyR(T ) = Rl/k(T ) (see Definition 6.2).

PutL
def= K(

√
d1,

√
d2); it is the function field of thel-varietyR(T )l.

SinceR(T )l � T×4
l (see Sect. 6), one has

ind ((a1, b1)⊗ (a2, b2))L = 2

by the index reduction formula [2, Th. 3].
For i = 1, 2, let qi be the quadratic form〈−ai,−bi, aibi, di〉 overK.

Theorem 14.1.Denote byX1 andX2 the projective quadric overK de-
termined byq1 andq2. The Chow groupCH2(X1 ×X2) has a torsion.

Proof. PutX
def= X1 ×X2 and consider the Grothendieck groupK(X) of

thevarietyX. There isan isomorphismCH2(X) � G2K(X) (seeSect. 3.3).
We are going to show thatG2K(X) contains a torsion.

Denote byp ∈ K(XK̄) the class of a rational point. As we did all
the time, we identifyK(X) with a subgroup ofK(XK̄) via the restriction
homomorphism.

Lemma 14.2. 2p ∈ K(X).

Proof. For i = 1, 2, denote byUi Swan’s vector bundle onXi ([51]). It

has a structure of right(Qi)Xi-module, whereQi
def= (ai, bi)K . For the

class[Ui(2)] ∈ K(Xi) of the 2 (= dimXi) times twisted Swan’s vector
bundle, there is a formula (see [22, Lemma 3.6]):[Ui(2)] = 4 + 2hi + h2

i ,
wherehi is the class of a general hyperplane section ofXi. Lifting toX, we
consider the tensor productU1 ⊗ U2. It is a vector bundle overX, having a
structure of rightQ1 ⊗K Q2-module. Therefore, sincedegQ1 ⊗K Q2 = 4
andindQ1 ⊗K Q2 = 2, the class[U1(2)⊗ U2(2)] = (4 + 2h1 + h2

1)(4 +
2h2 + h2

2) is divisible by 2 inK(X). Consequently, the producth2
1h

2
2 is

divisible by 2 as well. Sinceh2
1h

2
2 = 4p, we are done. ��

Since one can find a field extension ofK of degree 4 such that the forms
q1 andq2 become isotropic over this extension, one has4p ∈ K(X)(4).
Therefore, if we manage to show that2p �∈ K(X)(3), we get an element of
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order 2 in the quotientK(X)/K(X)(3), namely the class of2p. Since the
groupsK(X)(0/1) andK(X)(1/2) are torsion-free (see [44, Lemme 6.3, (i)]
for the statement onK(X)(0/1) � CH1(X)), it will be a nontrivial torsion
element inK(X)(2/3).

So, the last step in the proof of the Theorem is the following

Lemma 14.3. 2p �∈ K(X)(3).

Proof. Let us remember that the quadratic formsq1 andq2 are in fact defined
overk. Let us change the notation and from now on denote byX1 andX2

the projective quadrics overk determined byq1 andq2. SetX
def= X1×X2.

We have to show that2p �∈ K(XK)(3).
Thepull-backhomomorphismK(X×R(T ))(3) → K(XK)(3), givenby

the flat morphism of schemesXK → X ×R(T ), is surjective by Corollary
5.3 (see also Example 5.4). Therefore it suffices to show that2p is not in the
image of this homomorphism.

Let us denote byG the Galois group of the biquadratic field extension
l/k. The groupK(X ×R(T ))(3) is contained in theG-invariant part of the
groupK(Xl ×R(T )l)(3). Thus it suffices to show that

2p �∈ Im (K(Xl ×R(T )l)(3)G → K(XL)) .

For this, we apply Theorem 12.1.

In order to meet the conditions of Theorem 12.1, fori = 1, 2, put li
def=

k(
√
di) and denote byσi the nontrivial automorphism ofl over l3−i. The

groupG consists of1, σ1, σ2, σ1σ2 and is generated byσ1, σ2.
Let Yi be the Severi-Brauer variety of the quaternionk-algebra(ai, bi).

OnehasXi � Rli/k(Yi) (seeExample6.4). Therefore,wecan identify(Xi)l
with

∧
Y i ×

∨
Y i,where

∧
Y i and

∨
Y i are twocopiesof thevariety(Yi)l;moreover,

by Lemma 6.5, the automorphism of(Xi)l given byσi corresponds to the

automorphism of
∧
Y i ×

∨
Y i given byσi composed with the interchanging of

the factors. The automorphism of(Xi)l given byσ3−i corresponds to the

automorphism of
∧
Y i ×

∨
Y i given byσ3−i.

We also can identifyR(T )l with
∏

G Tl. Choosing the following corre-
spondence between the signs∧∧, ∨∨, ∧∨, ∨∧ and the elements ofG:

∧∧ ↔ 1 · 1 = 1
∨∨ ↔ σ1σ2
∧∨ ↔ 1 · σ2 = σ2
∨∧ ↔ σ1 · 1 = σ1

we identifyR(T )l with
∧∧
T × ∨∨

T × ∧∨
T × ∨∧

T where
∧∧
T ,

∨∨
T ,

∧∨
T ,

∨∧
T are copies

of Tl. The automorphism ofR(T )l given by σ1 corresponds under this
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identification to the automorphism of
∧∧
T × ∨∨

T × ∧∨
T × ∨∧

T given by σ1

composedwith the interchanging of
∧∧
T with

∨∧
T and of

∨∨
T with

∧∨
T . Analogously,

the automorphism ofR(T )l given byσ2 corresponds to the automorphism

of
∧∧
T × ∨∨

T × ∧∨
T × ∨∧

T given byσ2 composed with the interchanging of
∧∧
T

with
∧∨
T and of

∨∨
T with

∨∧
T .

Summarizing and passing to the Grothendieck group of the varieties, we
get the following commutative diagram (fori = 1, 2):

K(Rl1/k(Y1)l ×Rl2/k(Y2)l K(Rl1/k(Y1)l ×Rl2/k(Y2)l
×R(T )l)

σi→ ×R(T )l)
↓ ↓

K(XII)
σi ◦ si−→ K(XII)

whereXII andsi are as in Theorem 12.1. By Corollary 7.2,σi over the
bottom arrow is the identity.

We have met the conditions of Theorem 12.1. Applying it, we get the
affirmation required. ��

The Theorem is proved.��
Corollary 14.4. Letk be a field of characteristic�= 2 anda, b, u, v, d, δ ∈
k∗. Suppose thatd, δ, dδ /∈ k∗2 and ((a, b) ⊗ (u, v))k(

√
d,

√
δ) is a division

algebra. Putρ = 〈−a,−b, ab, d〉, ψ = 〈−u,−v, uv, δ〉. Then there exists a
field extensionK/k such thatd, δ, dδ �∈ K∗2, TorsCH2(XρK × XψK

) �
Z/2Z, andindC0(ρK)⊗ C0(ψK) = 2.

Proof. To come to the situation considered in the beginning of the Section,

we simply puta1
def= a, b1

def= b, a2
def= u, b2

def= v, d1
def= d, andd2

def= δ.
Let K be the field extension ofk constructed in the beginning of this

section. Sincek is algebraically closed inK, we haved, δ, dδ �∈ K∗2.
Further we haveq1 = ρK andq2 = ψK ; so, by Theorem 14.1, the group
TorsCH2(XρK×XψK

) is nontrivial. On the other hand, by [19, Th. 5.7], the
order of this group is atmost 2. ThereforeTorsCH2(XρK×XψK

) � Z/2Z.
Finally, let us note thatC0(ρ) � (a, b)k(

√
d) andC0(ψ) � (u, v)k(

√
δ).

ConsequentlyindC0(ρK)⊗ C0(ψK) = ind ((a, b)⊗ (u, v))L = 2. ��

Part 2. Quadratic forms

15. Quadratic forms over complete fields

In this sectionweneed some results concerning theWitt ring over a complete
discrete valuation field. We fix the following notation:
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– (L, v) is a complete discrete valuation field.
– We setOL = {x ∈ L∗ | v(x) ≥ 0}, ML = {x ∈ L | v(x) > 0}, and

UL = OL −ML = {x ∈ L | v(x) = 0}.
– The residue field̄L is defined asOL/ML.
– For anya ∈ OL we denote bȳa the class ofa in L̄ = OL/ML.

If a ∈ UL, we obviously havēa ∈ L̄∗. Let π be an element ofL such that
v(π) is odd. SinceL∗/L∗2 = UL/U

∗2
L ×{1, π}, an arbitrary quadratic form

φ overL can bewritten in the formφ = 〈a1, . . . , ak〉 ⊥ π 〈b1, . . . , bl〉where
a1, . . . , ak, b1, . . . , bl ∈ UL. We define quadratic̄L-formsd1

π(φ) andd
2
π(φ)

as follows:

d1
π(φ) = 〈ā1, . . . , āk〉an , d2

π(φ) =
〈
b̄1, . . . , b̄l

〉
an
.

Remark 15.1.1) Springer’s theorem asserts that a quadratic formφ and an
elementπ ∈ L∗ determine quadratic formsd1

π(φ) andd
2
π(φ) uniquely up to

isomorphism7. The maps

d1
π, d

2
π : {isometry classes ofL-forms} → {isometry classes of̄L-forms}

give rise to group homomorphismsW (L) → W (L̄), which are calledthe
first and the second residue classesanddenoted by∂1 and∂2 (see [33, Sect. 1
of Chap. 6] or [46, Def. 2.5 of Chap. 6]).

2) In the case whereφ is anisotropic, quadratic forms〈ā1, . . . , āk〉 and〈
b̄1, . . . , b̄l

〉
are anisotropic as well. Thus, in this case

d1
π(φ) = 〈ā1, . . . , āk〉 , d2

π(φ) =
〈
b̄1, . . . , b̄l

〉
.

Lemma 15.2. Letφ andτ be anisotropic quadratic forms over a complete
discrete valuation field(L, v). Letπ be an element ofL such thatv(π) is
odd. Suppose thatτ ⊂ φ. Thend1

π(τ) ⊂ d1
π(φ) andd2

π(τ) ⊂ d2
π(φ).

Proof. Let γ be such thatτ ⊥ γ = φ. It follows from Remark 15.1 that
d1
π(τ) ⊥ d1

π(γ) = d1
π(φ) andd

2
π(τ) ⊥ d2

π(γ) = d2
π(φ). Thusd

1
π(τ) ⊂

d1
π(φ) andd

2
π(τ) ⊂ d2

π(φ). ��
Lemma 15.3. Let φ1 andφ2 be anisotropic quadratick-forms. LetK =
k((t)), and letφ = φ1 ⊥ tφ2 be a quadratic form overK. LetL/K be an
odd extension. Suppose that there existsτ ∈ GP2(L) such thatτ ⊂ φL.
Then there exists an odd extensionl/k of degree≤ [L : K] such that at least
one of the following conditions holds:

– there existsρ ∈ GP2(l) such thatρ ⊂ (φ1)l.
7 In the original version of Springer’s theorem,π is an uniformizing element ofL. How-

ever, we can suppose thatπ is an arbitrary element such thatv(π) is odd because there exists
a prime elementπL ∈ L such thatπ ≡ πL in L∗/L∗2.



684 O.T. Izhboldin, N.A. Karpenko

– there existsρ ∈ GP2(l) such thatρ ⊂ (φ2)l.
– quadratic forms(φ1)l and(φ2)l are linked.

Moreover, we can takel = L̄.

Proof. SinceL/K is a finite field extension,L is a complete discrete val-
uation field. Letv be a valuation onL, and letl = L̄ be the residue field
of L. We have[l : k] = [L̄ : K̄] ≤ [L : K]. SinceL/K is odd, [l : k]
is odd too. Besides, the ramification indexe(L/K) = v(t) is odd. Thus,
d1
t andd

2
t are well defined. Sincedim τ = 4 anddet τ = 1, it follows

thatdim d1
t (τ) anddim d2

t (τ) are even,dim d1
t (τ) + dim d2

t (τ) = 4, and
det d1

t (τ) det d
2
t (τ) = 1. Thus one of the following conditions holds:

1) d1
t (τ) ∈ GP2(L̄) andd2

t (τ) = 0,
2) d2

t (τ) ∈ GP2(L̄) andd1
t (τ) = 0,

3) dim d1
t (τ) = dim d2

t (τ) = 2 andd1
t (τ) is similar tod

2
t (τ).

Clearly,d1
t (φ) = (φ1)l andd2

t (φ) = (φ2)l. It follows from Lemma 15.2
thatd1

π(τ) ⊂ d1
π(φ) = (φ1)l andd2

π(τ) ⊂ d2
π(φ) = (φ2)l. Thus, we are

done. ��

16. 8-dimensional quadratic forms inI2(F )

It is an important problem to find a good classification of 8-dimensional
quadratic formsφ ∈ I2(F ). One of important invariants ofφ is the Schur
index of the Clifford algebraC(φ). Clearly,indC(φ) is equal to one of the
integers: 1, 2, 4, or 8.

If φ is a “generic” 8-dimensional form withdetφ = 1, thenindC(φ) =
8. This shows that we cannot say anything “specific” in the caseindC(φ) =
8. In the caseindC(φ) = 1 we have plenty information on the structure of
φ. Indeed, in this casec(φ) = 0, and henceφ ∈ I3(F ). Finally, the Arason-
Pfister Hauptsatz implies thatφ ∈ GP3(F ). The caseindC(φ) = 2 is well
known too (see e.g. [28, Ex. 9.12]). Namely, for a quadratic formφ ∈ I2(F )
the following two conditions are equivalent: a)indC(φ) ≤ 2; b) φ can be
written in the formφ = 〈〈a〉〉 q, wheredim q = 4.

Thus, the only open case isindC(φ) = 4. It is very easy to give examples
of quadratic formsφ with indC(φ) ≤ 4. If φ = π1 ⊥ π2 whereπ1, π2 ∈
GP2(F ), thenc(φ) = c(π1)+c(π2), andhenceindC(φ) ≤ 4. This example
gives rise to the following natural

Question 16.1.Suppose thatφ ∈ I2(F ) is an 8-dimensional quadratic
form withindC(φ) ≤ 4. Do there necessarily exist quadratic formsπ1, π2 ∈
GP2(F ) such thatφ = π1 ⊥ π2 ?

In this section we construct a counterexample for this question. We start
from the following
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Definition 16.2 (cf. [22, Sect. 7]).Let φ be a quadratic form overF .

1) By S(F ) we denote the set of quadratic forms overF satisfying the
following condition: there existsρ ∈ GP2(F ) such thatρ ⊂ φ.

2) By Sodd(F ) we denote the set of quadratic forms overF satisfying the
following condition: there exist an odd extensionL/F andρ ∈ GP2(L)
such thatρ ⊂ φL. In other words,

Sodd(F ) = {φ | there exists an odd extensionL/F
such thatφL ∈ S(L)}.

Clearly,S(F ) ⊂ Sodd(F ). We do not know if there exists a fieldF such
thatS(F ) �= Sodd(F ).8 Our interest in the setSodd(F ) is motivated by the
following

Theorem 16.3 (see [22, Th. 7.3]).Letφ be a quadratic form of dimension
≥ 3. The groupTorsG1K(Xφ) is zero or equal toZ/2Z; it is nontrivial if
and only ifφ is anisotropic,dimφ ≥ 5, andφ ∈ Sodd(F ). ��
Proposition 16.4. Let φ ∈ I2(K) be an anisotropic 8-dimensional qua-
dratic form such thatindC(φ) = 4. Then the following conditions are
equivalent:

1) φ ∈ S(K), i.e., there existsρ ∈ GP2(K) such thatρ ⊂ φ,
2) there existρ1, ρ2 ∈ GP2(K) such thatφ = ρ1 ⊥ ρ2,
3) φandq are linked, whereq is an Albert form corresponding to the algebra

C(φ).

Proof. 1)⇒2). Let ρ′ be a complement ofρ in φ. We haveφ = ρ ⊥ ρ′.
Clearlydet ρ′ = 1 anddim ρ′ = 4. Thereforeρ′ ∈ GP2(K).

2)⇒3). One can writeρ1, ρ2 as follows:ρ1 = k1 〈〈a1, b1〉〉 andρ2 =
k2 〈〈a2, b2〉〉. Thenc(q) = c(φ) = (a1, b1) + (a2, b2). Therefore,q is sim-
ilar to the form〈−a1,−b1, a1b1, a2, b2,−a2b2〉. Obviously,φK(

√
a1) and

qK(
√
a1) are isotropic. Henceφ andq are linked.

3)⇒1). Suppose thatφ and q are linked. Then there existss ∈ K∗
such thatφK(

√
s) andqK(

√
s) are isotropic. We claim thatiW (φK(

√
s)) ≥

2. Suppose at the moment thatiW (φK(
√
s)) = 1. Then(φK(

√
s))an is an

anisotropic Albert form. ThenindC(φK(
√
s)) = 4. Sincec(q) = c(φ), we

see thatindC(qK(
√
s)) = 4. Hence the Albert formqK(

√
s) is anisotropic,

a contradiction. ThusiW (φK(
√
s)) ≥ 2. Hence there exists a 2-dimensional

form µ such thatµ 〈〈s〉〉 ⊂ φ. To complete the proof it is sufficient to set
ρ = µ 〈〈s〉〉. ��

8 In [22, Rem. 7.2], it is remarked that a fieldF and a 7-dimensional formφ ∈ Sodd(F )\
S(F ) can be constructed. However, recently the first named author showed that the formφ
the second named author had in mind is in fact inS(F ).
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In this section we construct some new examples of quadratic formsφ
such thatφ /∈ Sodd(K) (and henceφ /∈ S(K)) (see Theorem 16.7). The
main tool for our construction is the following

Lemma 16.5. 1.Letφ1 andφ2 be anisotropick-forms such thatφ1, φ2 /∈
Sodd(k). Denote byφ the quadratic formφ1 ⊥ tφ2 overk((t)). Suppose
thatφ ∈ Sodd(k((t))). Then there exists a finite odd extensionl/k such that
(φ1)l and(φ2)l are linked.
2. Let φ1 and φ2 be anisotropick-forms such thatφ1, φ2 /∈ S(k). Let
φ = φ1 ⊥ tφ2 be a quadratic form overk((t)). Suppose thatφ ∈ S(k((t))).
Thenφ1 andφ2 are linked.

Proof. It is an obvious consequence of Lemma 15.3.��
Corollary 16.6. Letφ1 andφ2 be 4-dimensionalk-forms such thatφ1, φ2 /∈
GP2(k). Suppose that(φ1)l and(φ2)l are not linked for any odd extension
l/k. Then the quadratic formφ1 ⊥ tφ2 over k((t)) does not belong to
Sodd(k((t))). ��
Theorem 16.7.There exist a fieldK and an 8-dimensional quadratic form
φ ∈ I2(K) such thatindC(φ) = 4 butφ /∈ Sodd(K).

Proof. Let field k, elementsa1, a2, b1, b2, d ∈ k∗, and 4-dimensional qua-
dratic formsq1, q2 be as in Corollary 13.2. We setK = k((t)) and

φ = q1 ⊥ tq2 = 〈−a1,−b1, a1b1, d〉 ⊥ t 〈−a2,−b2, a2b2, d〉 .
Clearly,dimφ = 4 + 4 = 8 anddet± φ = 1. In W (K) we haveφ =
(〈〈a1, b1〉〉 − 〈〈d〉〉)− t(〈〈a2, b2〉〉 − 〈〈d〉〉) = 〈〈a1, b1〉〉 − t 〈〈a2, b2〉〉+ 〈〈d, t〉〉.
Therefore,c(φ) = (a1, b1) + (a2, b2) + (d, t). Applying Tignol’s theorem
[53, Prop. 2.4], we see thatindC(φ) = ind((a1, b1)⊗ (a2, b2)⊗ (d, t)) =
2 ind((a1, b1)⊗ (a2, b2))K(

√
d) = 2 · 2 = 4. It follows from Corollary 16.6

thatφ /∈ Sodd(K). ��
Corollary 16.8. The answer to Question 16.1 is negative.��
Corollary 16.9. There exist a fieldK and an 8-dimensional quadratic form
φ ∈ I2(K) such thatTorsGiK(Xφ) = 0 for i �= 4 andTorsG4K(Xφ) =
Z/2Z.

Proof. It is an obvious consequence of Theorem 16.7 and [22, Th. 8].��
Theorem 16.10.Let φ be an 8-dimensional quadratic form overk. Then
the following conditions are equivalent:

1) φ ∈ I2(k) andindC(φ) ≤ 4;
2) at least one of the following conditions holds:
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(a) there existπ1, π2 ∈ GP2(k) such thatφ = π1 ⊥ π2,
(b) there exist a field extensionl/k of degree 2 and a quadratic form

τ ∈ GP2(l) such thatφ = sl/k(τ).

Proof. 1)⇒2). If φ is isotropic, we can writeφ as a sumφ = q ⊥ 〈1,−1〉,
whereq is an Albert form. Writingq in the formq = s〈−a,−b, ab, u, v,
−uv, 〉, we haveφ = s 〈〈a, b〉〉 ⊥ −s 〈〈u, v〉〉. Settingπ1 = s 〈〈a, b〉〉 andπ2
= −s 〈〈u, v〉〉, we are done. Thus we can suppose thatφ is anisotropic.

SinceindC(φ) ≤ 4, there exists an Albert formq such thatc(q) =
c(φ). If q is isotropic, thenindC(φ) ≤ 2, and henceφ can be written
in the formφ = 〈〈a〉〉 ⊗ 〈b1, b2, b3, b4〉. Settingπ1 = 〈〈a〉〉 ⊗ 〈b1, b2〉 and
π2 = 〈〈a〉〉 ⊗ 〈b3, b4〉, we haveφ = π1 ⊥ π2 andπ1, π2 ∈ GP2(k). Thus in
the case whereq is isotropic, the proof is complete.

Now, we can suppose thatφ andq are anisotropic. Letρ = φ ⊥ tq be a
quadratic form overK = k((t)). Obviously,dim ρ = 14 andρ ∈ I3(K).
It follows from [42] that there existd ∈ K andπ ∈ P3(K(

√
d)) such that

ρ = φ ⊥ tq is similar tosK(
√
d)/K(

√
d π′). LetL = K(

√
d).

SinceK∗/K∗2 = k∗/k∗2×{1, t}, it is sufficient to consider the follow-
ing two cases:

– d = a ∈ k∗,
– d has the format with a ∈ k∗.

First, consider the cased = a ∈ k∗. In this case we haveL = l((t))
with l = k(

√
a). Then an arbitraryL-form γ can be written in the form

φ1 ⊥ tφ2, whereφ1 andφ2 arel-forms. We have

sL/K(γ) = sL/K(φ1 ⊥ tφ2) = sl/k(φ1) ⊥ tsl/k(φ2).

Applying this formula to the caseγ =
√
dπ′, we see thatφ ⊥ tq is similar

to sl/k(φ1) ⊥ tsl/k(φ2). Hence, one of thek-forms sl/k(φ1), sl/k(φ2) is
similar toφ and the other is similar toq. Let i be such thatsl/k(φi) ∼ φ, and
let j be such thatsl/k(φj) ∼ q. Thendimφi = 4 anddimφj = 3. Since
sl/k(φi) ∼ φ, thereexistsr ∈ k∗ such thatφ = r·sl/k(φi) = sl/k(rφi).Now
it is sufficient toprove thatrφi ∈ GP2(l). Letφ̃j = φj ⊥ 〈det(φi) det(φj)〉.
Obviously,φi ⊥ tφ̃j ∈ I2(L). Clearly,φ1 ⊥ tφ2 is similar toφi ⊥ tφj .
Thereforeπ′ is similar toφi ⊥ tφj , and henceπ is similar toφi ⊥ tφ̃j .
Sinceπ ∈ I3(l((t))), it follows thatφi, φ̃j ∈ I2(l). Sincedimφi = 4, we
haveφi ∈ GP2(l). Thus in the cased ∈ k∗ we are done.

Now, consider the cased = at, a ∈ k∗. In this caseL = k((t))(
√
at)

is a complete discrete valuation field with residue fieldk and uniformizing
element

√
at. Then an arbitraryL-form γ can be written in the formφ1 ⊥√

atφ2, whereφ1 andφ2 arek-forms. We have

sL/K(γ) = sL/K(φ1 ⊥
√
atφ2)
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= sL/K(〈1〉)⊗ φ1 ⊥ sL/K(〈
√
at 〉)⊗ φ2

= 〈1, at〉 ⊗ φ1 ⊥ 〈1,−1〉 ⊗ φ2

= (φ1 ⊥ 〈1,−1〉 ⊗ φ2) ⊥ t · aφ1.

Applying this formula to the caseγ =
√
dπ′, we see thatφ ⊥ tq is similar

to (φ1 ⊥ 〈1,−1〉⊗φ2) ⊥ t ·aφ1. Therefore one of the formsφ, q is similar
to φ1 ⊥ 〈1,−1〉 ⊗ φ2 and the other is similar toaφ1. Sinceφ andq are
anisotropic, we see thatdimφ2 = 0. Thereforedim(φ1 ⊥ 〈1,−1〉⊗φ2) =
dim aφ1. Hencedimφ = dim q, a contradiction.

2)⇒1). In the case whereφ = π1 ⊥ π2 andπ1, π2 ∈ GP2(k), we have
φ ∈ I2(k) andindC(φ) ≤ indC(π1) · indC(π2) ≤ 2 · 2 = 4.

Now, suppose that there exist a field extensionl/k of degree 2 and a
quadratic formτ ∈ GP2(l) such thatφ = sl/k(τ). First of all, we have
dimφ = [l : k] · dim τ = 8. Sinceτ ∈ I2(l), it follows thatφ = sl/k(τ) ∈
I2(k) ([46, Cor. 14.9 of Chap. 2] or [1, Satz 3.3]).

Finally, by [1, Satz 4.18], we havec(φ) = c(sl/k(τ)) = Nl/k(c(τ)),
whereNl/k : Br(l)→ Br(k) is the norm map (also called transfer, or trace,
or corestriction map).

For any finite separable extensionl/k the normNl/k([A]) of the Brauer
class[A] of a central simple l-algebraA is represented by the corestriction
Nl/k(A) of the algebraA (see [6, Sect. 8] or [43, Sect. 7.2] for the assertion
in the general case of a finite separable extension; for a simpler treatment
in the special case of a quadratic extension see [29, Sect. 3.B]). Note that
Nl/k(A) is a central simplek-algebra of degreedeg(A)[l:k].

Therefore, comingback to thequadratic extensionl/k, wehaveindC(φ)
= indNl/k(C(τ)). SinceindC(τ) ≤ 2, it follows thatindNl/k(C(τ)) ≤
2 · [l : k] = 4. ��
Remark 16.11.1) Settingl = k × k, one can consider Condition 2(a) of
Theorem 16.10 as a degenerate case of Condition 2(b).

2) Actually, Theorem 16.10 is an easy consequence of the deep Rost’s
theorem [42]. Rost’s proof uses numerous results on the algebraic groups. It
wouldbe interesting to findadirect proof of Theorem16.10 in the framework
of theory of quadratic forms.

17. 14-dimensional quadratic forms inI3(F )

In this section we discuss the problem of classification of anisotropic forms
φ ∈ I3(K). For anisotropic quadratic formsφ ∈ I3(K), the following
results are known: ifdimφ < 8, thenφ is hyperbolic; ifdimφ = 8, thenφ
is similar to a 3-fold Pfister form; there are no anisotropic 10-dimensional
forms belonging toI3(K); if dimφ = 12, then there exist a 2-dimensional
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quadratic formµ and a 6-dimensional Albert formq such thatφ = µ ⊗ q.
Analyzing these results, one can see that:

– all anisotropic quadratic formsφ ∈ I3(K) of dimension≤ 12 belong to
S(K),

– any quadratic formφ ∈ I3(K) of dimension≤ 12 can be represented
as a sum

∑k
i=1 ρi with ρi ∈ GP3(K) andk ≤ 2.

Here we consider the casedimφ = 14. It is not difficult to construct a
form of dimension 14 belonging toI3(K). Let τ ′

1 andτ
′
2 be pure subforms

of 3-fold Pfister formsτ1 andτ2. Then for anyk ∈ K∗ the quadratic form
φ = k(τ ′

1 ⊥ −τ ′
2) has dimension 14 and belongs toI3(K). This example

gives rise to the following

Question 17.1.Suppose thatφ ∈ I3(K) is a 14-dimensional quadratic
form. Do there necessarily exist quadratic formsτ1, τ2 ∈ P3(K) andk ∈
K∗ such thatφ = k(τ ′

1 ⊥ −τ ′
2) ?

We have the following

Proposition 17.2. Letφ ∈ I3(K) be an anisotropic 14-dimensional form.
The following conditions are equivalent:

1) φ ∈ S(K), i.e., there existsρ ∈ GP2(K) such thatρ ⊂ φ,
2) There existρ1, ρ2 ∈ GP3(K) such thatφ = ρ1 + ρ2 in W (K),
3) There existτ1, τ2 ∈ P3(K) andk ∈ K∗ such thatφ = k(τ ′

1 ⊥ −τ ′
2).

Hereτ ′
1 andτ ′

2 denote pure subforms of Pfister formsτ1, τ2,
4) There existτ1, τ2 ∈ P3(K) such thatφ ≡ τ1 + τ2 (mod I4(K)),
5) e3(φ) is a sum of two symbols, i.e., there exista1, b1c1, a2, b2, c2 ∈ K∗

such thate3(φ) = (a1, b1, c1) + (a2, b2, c2).

Proof. 1)⇒2). Let s ∈ K∗ be such thatρF (
√
s) is isotropic. Sinceρ ∈

GP2(K), it follows thatiW (φK(
√
s)) ≥ 2. Thereforedim(φK(

√
s))an ≤ 10,

and hence Pfister’s theorem [40] implies thatdim(φK(
√
s))an ≤ 8. Thus,

iW (φK(
√
s)) ≥ 3. Hence there exists a 3-dimensional formµ such that

µ 〈〈s〉〉 ⊂ φ. We setρ1 = (µ ⊥ 〈detµ〉) 〈〈s〉〉. Clearly,ρ1 ∈ GP3(K). Let
ρ2 = (φ ⊥ −ρ1)an. We haveφ = ρ1+ρ2 inW (K). It is sufficient to prove
thatρ2 ∈ GP3(K). Sincedimφ = 14 > 8 = dim ρ1 andφ = ρ1 + ρ2,
it follows thatρ2 �= 0. Sinceφ, ρ1 ∈ I3(K), it follows thatρ2 ∈ I3(K).
Therefore,dim ρ2 ≥ 8. Sinceρ1 andφ contain a common 6-dimensional
form µ 〈〈s〉〉, we havedim ρ2 = dim(φ ⊥ −ρ1)an ≤ 14 + 8 − 2 · 6 = 10.
Sinceρ2 is anisotropic andρ2 ∈ I3(K), Pfister’s theorem implies that
dim ρ2 = 8. Therefore,ρ2 ∈ GP3(K).

2)⇒3). It is a particular case of [13, Lemma 3.2] (see also [7, Thm. 4.5])
3)⇒4). Sincek(τ ′

1 ⊥ −τ ′
2) ≡ τ1 + τ2 (mod I4(K)), we are done.
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4)⇒1). LetL = K(
√
s) be a field extension such that(ρ2)L is isotropic.

We haveφL(ρ1) ≡ (ρ1 + ρ2)L(ρ1) = 0 (mod I4(L(ρ1))). Sincedimφ =
14 < 16, the Arason-Pfister Hauptsatz implies thatφL(ρ1) is hyperbolic.
Hence there exists anL-form γ such that(φL)an = (ρ1)L · γ. Hence,
dim(φL)an is divisible by 8. Sincedimφ = 14, it follows thatiW (φL) ≥
(14 − 8)/2 = 3. SinceL = K(

√
s), there exists a 2-dimensional formµ

such that〈〈s〉〉µ ⊂ φ. Now it is sufficient to setρ = 〈〈s〉〉µ.
4)⇐⇒5). It is aneasyconsequenceofbijectivity ofē3 : I3(K)/I4(K)→

H3(K). ��
Theorem 17.3.There exist a fieldE and a 14-dimensional quadratic form
τ ∈ I3(E) such thatτ /∈ Sodd(E).

Proof. LetK andφ ∈ I2(K) be as in Theorem 16.7. SinceindC(φ) = 4,
there exists an Albert formq such thatc(φ) = c(q). LetE = K((t)), and
let τ = φ ⊥ tq be a quadratic form overE. Clearly,dimφ = 14. We have
c(τ) = c(φ) + c(q) = 0. Thereforeτ ∈ I3(E). To complete the proof, it
suffices to verify thatτ /∈ Sodd(E)

Suppose at the moment thatτ ∈ Sodd(E). By Theorem 16.7, we have
φ /∈ Sodd(K). Sinceq is an anisotropic Albert form, it follows thatq /∈
Sodd(K). Now, it follows from Lemma 16.5 that there exists an odd ex-
tensionL/K such thatφL andqL are linked. Proposition 16.4 implies that
φL ∈ S(L). SinceL/K is an odd extension, we haveφ ∈ Sodd(K), a
contradiction. ��
Corollary 17.4. The answer to Question 17.1 is negative.��
Corollary 17.5. There exist a fieldK and a 14-dimensional formφ ∈
I3(K) such thate3(φ) cannot be represented as a sum of two symbols.

��
Remark 17.6.It was proved by D. W. Hoffmann (see for instance [16]) and
the first author (independently) that an arbitrary 14-dimensional quadratic
form φ ∈ I3(K) can be written in the formτ1 + τ2 + τ3 in W (K) where
τ1, τ2, τ3 ∈ GP3(K). In particular,e3(φ) can be represented as a sum of 3
symbols.

Remark 17.7.Letn be an even integer such thatn > 14. It is not difficult to
construct a fieldE and a quadratic formφ ∈ I3(E) of dimensionn such that
φ /∈ Sodd(E). The following example shows how to construct a quadratic
form φ ∈ I3(E) of dimension6n (n ≥ 4) so thatφ /∈ Sodd(E).

Example 17.8.Let n ≥ 4, and letk0 be an arbitrary field of characteristic
�= 2. Letk = k0(X1, . . . , Xn, Y1, . . . , Yn, U1, . . . , Un, V1, . . . , Vn). For any
i = 1, . . . , n we setAi = (X1, Y1)⊗k (Ui, Vi) andqi = 〈−Xi,−Yi, XiYi,
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Ui, Vi,−UiVi〉. LetA = A1 ⊗k . . . ⊗k An andK = k(SB(A)). Let 1 ≤
i < j ≤ n. By the index reduction formula [49], we haveind(Ai ⊗k

Aj)K = min(ind(Ai⊗kAj), ind(Ai⊗kAj⊗kA)) = min(42, 4n−2) = 16.
Therefore, for any odd extensionL/K we haveind(Ai⊗kAj)L = 16. Then
(qi)L and (qj)L are not linked. Now we setE = K((t1)) . . . ((tn)) and
φ = t1(q1)E ⊥ . . . ⊥ tn(qn)E . We havec(φ) = [(A1)E ]+ . . .+[(An)E ] =
[AE ] = [(Ak(SB(A)))E ] = 0. Henceφ ∈ I3(E). Applying Lemma16.5, one
can show thatφ /∈ Sodd(E).

18. Nonstandard isotropy

Let φ andψ be anisotropic quadratic forms overF . An important problem
in the algebraic theory of quadratic forms is to find conditions onφ andψ so
thatφF (ψ) is isotropic. In the casewheredimφ ≤ 6 the problemwas studied
by many authors: the casedimφ ≤ 4 was studied by Schapiro in [45]; the
casedimφ = 5 was studied by D. W. Hoffmann in [11]; for 6-dimensional
formsφ the problem was studied by D. W. Hoffmann ([12]), A. Laghribi
([31], [32]), D. Leep ([34]), A. S. Merkurjev ([37]), and the authors ([18],
[19]).

In these papers the authors show that under certain conditions onφ andψ
the isotropy ofφ overF (ψ) is standard in a sense. Let us recall the definition
of “standard isotropy” given in [19].9

Definition 18.1. Letφ andψ be anisotropic quadratic forms such thatφF (ψ)
is isotropic. We say that the isotropy ofφF (ψ) is standard, if at least one of
the following conditions holds:

– ψ is similar to a subform inφ;
– there exists a subformφ0 ⊂ φ with the following two properties:

– the formφ0 is a Pfister neighbor,
– the form(φ0)F (ψ) is isotropic.

Otherwise, we say that the isotropy isnon-standard.

Themain theorem of [19] asserts that in the casedimφ ≤ 6, the isotropy
φF (ψ) is standard except (possibly) the following case:dimφ = 6,dimψ =
4, 1 �= det± φ �= det± ψ �= 1, andindC0(φ) = 2 = indC0(φ)⊗F C0(ψ).

In this section we show that there exist a6-dimensional quadratic form
φ and a 4-dimensional quadratic formψ such thatφF (ψ) is isotropic, but the
isotropy is not standard. More precisely, we prove the following

9 If dim φ ≤ 6, this definition coincides with the definitions given in [17] and [21]. In
this section we consider only the casedim φ ≤ 6.
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Theorem 18.2.Letk be a field of characteristic�= 2, and leta, b, u, v, d, δ ∈
k∗. Suppose thatd, δ, dδ /∈ k∗2 and((a, b)⊗(u, v))k(

√
d,

√
δ) is a division al-

gebra. Then there exist a field extensionK/k andc ∈ K∗ with the following
properties:

1) Quadratic formsφ = 〈〈a, b〉〉 ⊥ −c 〈〈d〉〉 andψ = 〈−u,−v, uv, δ〉 are
anisotropic, andφK(ψ) is isotropic,

2) the isotropyφK(ψ) is not standard.

Proof. Let ρ = 〈−a,−b, ab, d〉. It follows from Corollary 14.4 that there
exists a field extensionK/k such thatd, δ, dδ �∈ K∗2,TorsCH2((Xψ)K ×
(Xρ)K) = Z/2Z, andindC0(ψK)⊗ C0(ρK) = 2. To complete the proof,
it is sufficient to apply [19, Th. 9.1] ��

Let φ be anF -form andE/F be a field extension. We recall that a
quadratic formφ is calledE-minimal[15, Def. 1.1] if the following condi-
tions hold:

– φ is anisotropic,
– φE is isotropic,
– (φ0)E is anisotropic for any formφ0 ⊂ φ with dimφ0 < dimφ.

The following statement (in a slightly different form) has been noticed
by D. Hoffmann (see [12, Sect. 4a]).

Lemma 18.3. Letφ be a 6-dimensional andψ a 4-dimensional quadratic
forms overF . Suppose thatφ is anisotropic andφF (ψ) is isotropic. Then
the following conditions are equivalent:

1) the isotropyφF (ψ) is not standard,
2) φ is aF (ψ)-minimal form.

Proof. 1)⇒2). Suppose at the moment thatφ is notF (ψ)-minimal. Then
there existsφ0 ⊂ φ with dimφ0 < dimφ such that(φ0)F (ψ) is isotropic.
The isotropy(φ0)F (ψ) is standard because the dimension ofφ0 is≤ 5. The
definition of standard isotropy shows that the isotropyφF (ψ) is standard too,
a contradiction.

2)⇒1). Suppose that isotropyφF (ψ) is standard. Then at least one of
the cases of Definition 18.1 holds. First suppose thatψ is similar to a sub-
form of φ. Let φ0 ⊂ φ be such thatψ ∼ φ0. Clearly,(φ0)F (ψ) is isotropic
anddimφ0 = 4 < 6 = dimφ. Thereforeφ is notF (ψ)-minimal, a con-
tradiction. Now, consider the second case in Definition 18.1, i.e., suppose
that there exists a subformφ0 ⊂ φ which is a Pfister neighbor such that
(φ0)F (ψ) is isotropic. Ifdimφ0 < dimφ, thenφ is not aF (ψ)-minimal,
and we have a contradiction. Now, letdimφ0 = dimφ = 6. Thenφ = φ0
is a 6-dimension Pfister neighbor. SinceφF (ψ) is isotropic, it follows that
an arbitrary 5-dimensional subform ofφ is isotropic overF (ψ). Hence,φ
is notF (ψ)-minimal, a contradiction ��
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Corollary 18.4. Let ψ be an anisotropic 4-dimensional quadratic form
over k with det± ψ �= 1. Then there exist a field extensionK/k and a
6-dimensional formφ overK such thatφ is aK(ψ)-minimal form.

Proof. Replacingψ by a similar form, we can suppose thatψ has the form
〈−u,−v, uv, δ〉. Replacingk by the field of rational functionsk(a, b, d),
we can suppose that there exista, b, d ∈ k∗ such thatd, δ, dδ /∈ k∗ and
((a, b) ⊗ (u, v))k(

√
d,

√
δ) is a division algebra. LetK/k andc ∈ K∗ be as

in Theorem 18.2. Letφ = 〈〈a, b〉〉 ⊥ −c 〈〈d〉〉. Theorem 18.2 implies that
φK(ψ) is isotropic, but isotropy is not standard. Lemma 18.3 shows thatφ
is aK(ψ)-minimal form. ��
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