
TWISTED POINCARÉ DUALITY
FOR UPPER MOTIVES

NIKITA A. KARPENKO

Abstract. Extending to a wider class of reductive groups an earlier result on Poincaré
duality for upper motives, we obtain a modified version of the duality, involving a twist
by an invertible Artin motive. The proof is based on a recent joint work with C. De
Clercq and A.Quéguiner-Mathieu.
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1. The statement

Let p be a prime number and let CM = CM(F,F) be the category of Chow motives
over a field F (of any characteristic) with coefficients in F := Z/pZ as defined, e.g., in [5,
§64]. We write M(X) ∈ CM for the motive of a smooth projective F -variety X and set

F := M(F ) := M(SpecF ).

(Traditionally, the coefficient ring notation is also used as notation for M(F ).) For M ∈
CM and i ∈ Z, M{i} is the ith (Tate) shift of M = M{0}. The category CM is equipped
with a commutative tensor product, induced by the direct product of varieties, satisfying

F{i} ⊗ F{i′} = F{i+ j} and M{i} = M ⊗ F{i}.

The groups

Chi(M) := Hom(M,F{i}) and Chi(M) := Hom(F{i},M)
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are the ith cohomological and homological Chow groups of M . If M = M(X), these
groups coincide with the usual Chow groups Chi(X) and Chi(X) of X (with coefficients
in F), vanishing for i < 0.
The duality cofunctor CM → CM, M 7→ M∗ of [5, §65] is a self-inverse anti-equivalence

of additive categories commuting with the tensor product and inverting the shifts. The
motive of every irreducible variety X satisfies the Poincaré duality

(1.1) M(X)∗ = M(X){−d} with d := dimX,

which shows up on the level of Chow groups as Chi(X) = Chd−i(X) for any i.
For a reductive algebraic F -group G and a projective G-homogeneous F -variety X, any

direct summand in the motive M(X) possesses a decomposition into a finite direct sum
of indecomposable motives. Such a decomposition, called complete below, is unique in
the usual sense, [2] (see also [9, Corollary 2.6]).
The upper motive U(X) ∈ CM, defined in [9, §2.II] (under the name of indecompos-

able upper motive), is the summand in a complete motivic decomposition of X with
Ch0(U(X)) = F. The motive U(X) is determined by X up to a canonical isomorphism:
by [9, Lemma 2.8], a projector π ∈ End(M(X)) which yields an upper motive of X has
multiplicity 1 ∈ F as a correspondence X ⇝ X; the composition of two such projectors
yields an isomorphism between the corresponding upper motives. By the isomorphism
criterion [9, Corollary 2.15], given one more projective homogeneous variety X ′ (possibly
under a different reductive group), the motives U(X) and U(X ′) are isomorphic if and
only if each of the varieties XF (X′) and X ′

F (X) possesses a closed point of prime to p degree.

Over a separable closure F̄ of F , the motive M(X) and, in particular, the motive U(X),
decompose into direct sums of Tate motives F{i} with various i ≥ 0 including i = 0
(appearing exactly once). Dimension dimU(X) is defined as the maximal i appearing
for U(X). More generally, for an arbitrary motive M ∈ CM decomposing over F̄ into
a direct sum of Tate motives, its dimension dimM is defined as the maximum of the
distance |i− j| between i and j for all F{i} and F{j} which are summands of M over F̄ .
Clearly,

(1.2) dimM = dimM∗ = dimM{i}
for such M and any i ∈ Z.

It has been shown in [8, Proposition 5.2] that U(X) satisfies the Poincaré duality
isomorphism

(1.3) U(X)∗ ' U(X){−d} with d := dimU(X)

provided that the group G is of inner type or, more generally, of p-inner type, i.e., becomes
of inner type over a finite base field extension of a p -power degree.

Note that for any i, relation (1.1) implies that the number of the summand F{i},
appearing in the complete decomposition of M(X) over F̄ , coincides with the number of
F{d− i}. The similar property for U(X), implied by (1.3), is a bit of surprise.
Theorem 1.4 below is an analogue of (1.3) for p′-inner reductiveG. A reductive algebraic

group G over F is called p′-inner (cf. [4]), if it acquires inner type over a finite base field
extension of degree prime to p, and the higher Tits p-indexes of G (defined as in [3]) are
invariant under the ∗-action of the absolute Galois group of F on the Dynkin diagram of
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G. The class of p′-inner groups includes the group of inner type and the groups becoming
quasi-split over a finite base field extension of degree prime to p. Moreover, it is stable
under taking the direct products of groups and the operation G 7→ RL/F (GL), where RL/F

is the Weil transfer for a subextension L/F of a finite Galois field extension of degree prime
to p. Every absolutely simple group of type different from 6D4 (with p = 2, 3) and 3D4

(with p = 2) is p′-inner or p -inner.

Theorem 1.4. The upper motive U(X) of any projective homogeneous variety X under
a p′-inner reductive algebraic group G satisfies a twisted Poincaré duality

U(X)∗ ' U(X){−d} ⊗ A,

where A is an invertible Artin motive.

By definition, an Artin motive is a motive isomorphic to a direct summand in the
spectrum of an étale F -algebra. An arbitrary motive A ∈ CM is invertible if A⊗ B ' F
for some motive B ∈ CM. Invertible Artin motives are characterized below in Lemma
1.5. An arbitrary Artin F -motive A becomes over F̄ a finite direct sum of several copies
of F; the number of the copies is the rank rk(A) of A.

Lemma 1.5. The following properties of an Artin motive A are equivalent:

(1) A is invertible;
(2) A⊗ B ' F for some Artin motive B;
(3) A⊗ A∗ ' F;
(4) rk(A) = 1.

Proof. The implications (3) ⇒ (2) ⇒ (1) are trivial. Assuming (1), we get that over F̄
the indecomposable motive F is a direct sum of rk(A) copies of B implying (4). Finally,
under the equivalence of [2, §7], a rank 1 Artin motive A corresponds to a 1-dimensional
(over F) module over the group ring F[ΓF ] of the absolute Galois group ΓF of the field F .
The tensor product of this module with its dual yields a 1-dimensional F[ΓF ]-module with
the trivial ΓF -action, corresponding to the Tate motive F. Consequently, (4) ⇒ (3). □

As a consequence of Theorem 1.4, we have

Chi(U(X)) ' Chd−i(U(X)⊗ A) and Chi(U(X)⊗ A) ' Chd−i(U(X))

for any i; in particular, Chi U(X) = 0 = Chi U(X) for i > d.

2. The proof

The proof of Theorem 1.4 is based on

Theorem 2.1 ([4]). Every summand in the complete motivic decomposition of a projective
homogeneous variety X under a p′-inner group G is a shift of U(Y ) ⊗ A, where Y is a
projective G-homogeneous variety with X(F (Y )) 6= ∅ and A is an Artin motive.

Remark 2.2. The Artin motives A, showing up in Theorem 2.1, are all of the following
kind. Let E/F be a minimal field extension such that the group GE is of inner type. The
extension E/F is known to be finite Galois. For any given A, there is a subextension L/F
in E/F such that A is an indecomposable direct summand in M(L)F – the F -motive of
the F -variety SpecL.
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Let CMeff ⊂ CM be the full subcategory of effective Chow motives. Its objects are direct
summands in the motives of smooth projective varieties. This subcategory is stable under
positive shifts.

Another ingredient of the proof of Theorem 1.4, described below, is a (commuting with
tensor products) retraction

m : CMeff → AM

of CM onto its full subcategory AM of Artin motives, constructed in [4]. It is a retraction
in the sense that its restriction to the subcategory AM ⊂ CMeff yields the identity. It
satisfies

(2.3) m(U(X)) ' F
for any projective homogeneous variety X.

Proof of Theorem 1.4. Let r = r(X) be the rank of the semisimple anisotropic kernel of
GF (X). We induct on r.
The motive U(X)∗{dX}, where dX := dimX, is an indecomposable summand of

M(X)∗{dX} = M(X). Therefore by Theorem 2.1

(2.4) U(X)∗{dX} ' U(Y ){n} ⊗ A

for a projective G-homogeneous variety Y with X(F (Y )) 6= ∅, an Artin motive A, and an
integer n.
The smallest i for which F{i} is a summand of the left-hand side in (2.4) over F̄ , is

dX−d. Since A over F̄ is a sum of several copies of F, the similar integer for the right-hand
side of (2.4) is n. It follows that n = dX − d and so (2.4) reads as

(2.5) U(X)∗ ' U(Y ){−d} ⊗ A.

By (1.2), the dimension of the motive U(Y ) also equals d = dimU(X).
If besides of X(F (Y )) 6= ∅ we also have Y (F (X)) 6= ∅, the motives U(X) and U(Y )

are isomorphic by [9, Corollary 2.15] and so

(2.6) U(X)∗ ' U(X){−d} ⊗ A.

Dualizing (2.6), we obtain U(X) ' U(X)∗{d} ⊗A∗. Substituting (2.6) into this formula,
we come to the isomorphism

U(X) ' U(X)⊗ A⊗ A∗,

and the retraction m applied to it (with (2.3) taken into account) yields F ' A⊗ A∗.
If Y (F (X)) = ∅, the rank of the semisimple anisotropic kernel of GF (Y ) is smaller than

r, and, by the induction hypothesis, we have

(2.7) U(Y )∗ ' U(Y ){−d} ⊗ B

for an invertible Artin motive B. Dualizing (2.5) and substituting (2.7), we see that

U(X) ' U(Y )⊗ B ⊗ A∗.

Applying m, we get F ' B ⊗ A∗ demonstrating that U(X) ' U(Y ) and A ' B. Thus
(2.7) is the desired isomorphism. □
Remark 2.8. It follows from Remark 2.2 and the proof of Theorem 1.4 that the Artin
motive A in the statement of Theorem 1.4 is as in Remark 2.2.
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3. Examples

It would be interesting to find examples for Theorem 1.4 with nontrivial twist. This
would provide counter-examples for possible extensions of the untwisted duality result [8,
Proposition 5.2] which could be viewed as “negative” applications of the theorem.

On the other hand, there is a lot of situations where the (a priori) twisted duality of
Theorem 1.4 yields the (stronger) untwisted duality providing “positive” applications of
the theorem. Below we list some situations of that kind.

3.1. G = RL/F (HL). Let H be a reductive group of inner type over F and let L/F be a
subextension of a finite Galois field extension of degree prime to p. We set G := RL/F (HL)
and X := RL/F (YL), where Y is a projective homogeneous variety under H. Then the
upper motives of X and of Y are isomorphic implying that U(X) satisfies the untwisted
duality.

3.2. p = 2. Assume that p = 2. In this case, the Tate motive F is the only invertible
Artin motive. Indeed, any invertible Artin motive if given by some 1-dimensional F[ΓF ]-
module. Since p = 2, such a module has no non-trivial F-linear automorphisms and so
has the trivial ΓF -action.

It follows for any 2′-inner groupG that the upper motive of any projective G-homogenous
variety satisfies the untwisted duality.

3.3. [E : F ] = 2. Assume that p is odd and a p′-inner group G acquires inner type over a
quadratic Galois extension E/F . Assume furthermore that the rank of the motive U(X)
(i.e., the number of Tate summands in the complete decomposition of the motive over
a separable closure of F ) is odd (e.g., equal to p). Then, as shown right below, U(X)
satisfies the untwisted duality.
For the sake of contradiction, let us assume that U(X) satisfies the twisted duality with

an invertible Artin motive A 6' F. Note that A is uniquely determined by the complete
decomposition F⊕ A of M(E)F .
Let Y be the variety of Borel subgroups for G. Over the function field F (Y ), the motive

U(X) becomes a direct sum of shifts of n copies of F and of m copies of A. The dual of
U(X) as well as any shift of U(X) is also a direct sum of shifts of the same number of
copies of of F and of A. However, since F ⊗ A ' A and A ⊗ A ' F, tensoring with A
exchanges n and m. The twisted duality for U(X) therefore implies that n = m in which
case the rank n+m of U(X) is even.

3.4. 2E6. If a reductive group G becomes quasi-split over a finite base field extension of
degree prime to p, then the upper motive of any projective G-homogeneous variety is
isomorphic to the Tate motive F satisfying the untwisted duality. It follows that p = 3 is
our only prime of interest in the case where the group G is absolutely simple adjoint of
type 2E6.
Let E/F be the quadratic Galois field extension such that GE is of inner type and let

X be a projective G-homogeneous variety. By [4], the upper F -motive U(X) remains
indecomposable over E so that U(X)E ' U(XE).
The possible Tits 3-indexes of GE, listed in [3, Table 4], show that U(X) is isomorphic

to F or to U(X2) or to U(B), where B is the variety of Borel subgroups whereas X2 is
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the variety of maximal parabolic subgroups in G corresponding to the 2nd vertex of its
Dynkin diagram.
Possible Poicaré polynomials (and, in particular, dimensions and ranks) of U(X) are

determined in [6, Table 2]. If the rank of U(X) is odd, then by §3.3, U(X) satisfies the
untwisted duality.

We claim that U(X) satisfies the untwisted duality even when its rank is even. Indeed,
if the rank of U(X) is even, then U(X) ' U(X2) (so that we may assume X = X2) and
dimU(X) = 20 whereas dimX = 21 (see [6, Tables 1 and 2]). Assume that U(X) satisfies
the twisted duality with an Artin motive A whose isomorphism class is determined by
M(E)F ' F ⊕ A. Then U(X){1} ⊗ A ↪→ M(X), where the sign ↪→ means that the
former motive is a direct summand in the latter. Since F ↪→ U(X)F (B), we get that
A{1} ↪→ M(X) over the function field F (B). It follows then by [1, Theorem 7.5] that
M(E)F{1} ↪→ M(X) over F (B), implying that dimF Ch

1(X̄) ≥ 2, where X̄ is X over a
separable closure of F . However it is known (see, e.g., [6, §8]) that dimF Ch

1(X̄) = 1.
This contradiction proves the above claim.

3.5. 2An. Given any n ≥ 2, any adjoint absolutely simple group G of type 2An over F is
realized as the automorphism group AutE(C, τ), where E/F is a quadratic Galois field
extension and C a degree n + 1 central simple E-algebra with a unitary F -involution τ .
The primes p of interest here are the odd prime divisors of n+ 1.

By [4] once again, for any projective G-homogeneous variety X, the upper motive U(X)
remains indecomposable over E so that U(X)E ' U(XE). In particular, the motives U(X)
and U(XE) are of the same rank.
The group GE = AutE(C) is of the inner type 1An. Let pr be the maximal p-power

dividing the index of C and let D be the degree pr central division E-algebra given by the
p-primary part of C. The motive U(XE) is then isomorphic to U(Xi) for some i = 0, . . . , r,
where Xi is the generalized Severi-Brauer variety of rank pi right ideals in D.

There is no apparent reason for the rank of U(Xi) to be always odd (for odd p), but
it is odd in all the cases where it is computed. By §3.3, the corresponding motive U(X)
satisfies the untwisted duality in these cases. Below is the list.

First of all, U(Xr) = F has the odd rank 1.
Next, by [9, Corollary 2.22] (see also [7, Theorem 2.2.1]), the motive U(X0) is the entire

M(X0) which has the odd rank pr.
Finally, [10, §4] describes a way to compute the rank of U(X1) for any p and r. However,

the final answer is worked out for p = 3 ≥ r ≥ 2 only. The rank of U(X1) turns out to be
odd in the both new cases. Note that for any p and r, the entire motive M(X1) is of the
rank

(
pr

p

)
; in the case p = 3, this binomial coefficient is even for r = 2 and odd for r = 3.

By [9, Theorem 2.8 and 4.1], the direct summand in M(X1) complementary to U(X1) is
a direct sum of shifts of several copies of M(X0), each of odd rank; by [10, Examples 4.1
and 4.8], in the case p = 3, the number of the copies is odd for r = 2 and even for r = 3.
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