LIST OF CORRECTIONS FOR "THE ALGEBRAIC AND GEOMETRIC THEORY OF QUADRATIC FORMS" BY ELMAN-KARPENKO-MERKURJEV (TO BE UPDATED)

- line -2 before Lemma 1.4:
 "alternative bilinear forms" → "alternating bilinear forms"
- Example 5.5:
 "{a, −a} = 1" → "{a, −a} = 0"
- (6.12): " $\mathfrak{c} \approx$ " \mapsto " $\mathfrak{b} \approx$ "
- Definition 7.1: "of of" \mapsto "of"
- line -5 before Example 7.8:
 "the quadratic form" → "a quadratic form"
- Condition (4) right before Proposition 7.19 should be removed.

(noticed by Erhard Neher).

(Notation for the group scheme $SO(\varphi)$ adopted in the book is different, c.f. Page 355. For nondegenerate φ , the definition of $SO(\varphi)$ given in (4) is incorrect. In characteristic 2 it is closed to the correct one if dim φ is odd: the radical of φ needs to be replaced by the radical of b_{φ} .)

- Proof of Theorem 17.13: line -2: "Lemma 7.13" → "Proposition 7.13"
- §7.B, line 3: "isotopic" → "isotropic"
- line -3 before Proposition 7.29: "anisotopic" → "anisotropic"
- §8.B, line 2: "isotopic" → "isotropic"

Date: 11 Jan 2024.

LIST OF CORRECTIONS

- Proof of Corollary 23.4:
 "By Theorem 22.4," → "By Proposition 22.4,"
- Proof of Proposition 53.3, 1st line:
 "to proof" → "to prove"
- Proposition 56.11:

"a morphism" \mapsto "a proper morphism"

• Page 277, lines 3–4 after 2nd displayed formula:

The words

", so it can be viewed as a contravariant functor from the category of smooth schemes to the category of abelian groups" need to be removed.

• Theorem 61.14 should be replaced by Theorem 61.14. Let X and Y be two smooth schemes. Then

$$\operatorname{Sq}_{X \times Y}(\alpha \times \beta) = \operatorname{Sq}_X(\alpha) \times \operatorname{Sq}_Y(\beta)$$

for any $\alpha \in Ch(X)$ and $\beta \in Ch(Y)$. (The proof of Theorem 61.14 should be modified accordingly.)

• 1st paragraph of §72:

The paragraph should be replaced by its first two sentences. (The rest of the 1st paragraph should be removed.)

- Proof of Corollary 78.2: "Hence by" → "By"
- Remark 80.5: $\operatorname{``deg}_X" \longmapsto \operatorname{``'\frac{1}{2}deg}_X"; \operatorname{``'deg}_Y" \longmapsto \operatorname{``'\frac{1}{2}deg}_Y"$

• Page 358, 2nd displayed formula:

If dim $\varphi = 2n + 2$ with odd n and k = 0, then $e_k = e_0$ needs to be replaced by e'_0 (cf. Exercise 68.3). As a consequence, in the same situation, $e_k = e_0$ four lines lower as well as $e_k = e_0$ in (86.5) needs to be replaced by e'_0 .

- Proof of Proposition 87.1, line -9: " $CH(\mathbb{P}(E'))$ " \mapsto " $\mathbb{P}(E')$ "
- 2nd line of §89:

"Let φ be a nondegenerate quadratic form" \mapsto "Let φ be a split nondegenerate quadratic form"

 $\mathbf{2}$

LIST OF CORRECTIONS

• Theorem 89.1:

"with φ be a nondegenerate quadratic form" \mapsto "with φ be a split nondegenerate quadratic form"

• Proof of Theorem 90.3:

(noticed by Raphaël Fino)

Line 9: "of odd degree" \mapsto "of odd degree dividing".

To get the inequality of Line 3 after commutative square on Page 369, it is not enough to know that i_* is nontrivial: one needs to know that the composition of i_* followed by $Ch(Gr) \to \overline{Ch}(Gr)$ is nontrivial. However, when proving that i_* is nontrivial, we actually proved that the composition is nontrivial.

• 2nd paragraph of §92:

It should be required that the variety X and the scheme X' are defined over the same extension field of F.

• Remark 92.3 should be replaced by

Remark 92.3. As shown in [25], the class of all projective homogeneous varieties (under actions of semisimple affine algebraic groups) is included in a tractable class constructed as follows. For a field extension F'/F, the F'-schemes of the class are finite disjoint unions of F'-varieties each of which can be obtained by the following procedure. We take a finite separable field extension L/F', a semisimple affine algebraic group G over L, a projective G-homogeneous L-variety X and consider X as an F'-scheme via the composition $X \to \text{Spec } L \to \text{Spec } F'$.

• Exercise 92.6:

"End $X \to \text{End } X_E$ " \longmapsto "End $M(X) \to \text{End } M(X_E)$ "

• Proof of Corollary 92.7, last paragraph:

(noticed by Charles de Clercq and Offer Gabber)

 f^t is a morphism $(Y, q^t) \to (X, p^t)$, not $(Y, q) \to (X, p)$. The proof does not work. The statement of Corollary 92.7 should be modified by adding the requirement of existence of a morphism $g: (Y, q) \to (X, p)$ such that g_E is an isomorphism.

• Page 434 (Index):

"anisotopic" \mapsto "anisotropic"