LIST OF CORRECTIONS FOR
 "THE ALGEBRAIC AND GEOMETRIC THEORY
 OF QUADRATIC FORMS"
 BY ELMAN-KARPENKO-MERKURJEV

(TO BE UPDATED)

- line - 2 before Lemma 1.4:
"alternative bilinear forms" \longmapsto "alternating bilinear forms"
- Example 5.5:
$"\{a,-a\}=1 " \longmapsto "\{a,-a\}=0 "$
- (6.12):
$" \mathrm{c} \approx " \longmapsto " \mathfrak{b} \approx$
- Definition 7.1:
"of of" \longmapsto "of"
- line -5 before Example 7.8:
"the quadratic form" \longmapsto "a quadratic form"
- Condition (4) right before Proposition 7.19 should be removed. (noticed by Erhard Neher).
(Notation for the group scheme $\operatorname{SO}(\varphi)$ adopted in the book is different, c.f. Page 355. For nondegenerate φ, the definition of $\operatorname{SO}(\varphi)$ given in (4) is incorrect. In characteristic 2 it is closed to the correct one if $\operatorname{dim} \varphi$ is odd: the radical of φ needs to be replaced by the radical of b_{φ}.)
- Proof of Theorem 17.13:
line -2: "Lemma 7.13" \longmapsto "Proposition 7.13"
- §7.B, line 3:
"isotopic" \longmapsto "isotropic"
- line -3 before Proposition 7.29:
"anisotopic" \longmapsto "anisotropic"
- §8.B, line 2:
"isotopic" \longmapsto "isotropic"
- Proof of Corollary 23.4:
"By Theorem 22.4," $\longmapsto ~ " B y ~ P r o p o s i t i o n ~ 22.4, " ~$
- Proof of Proposition 53.3, 1st line:
"to proof" \longmapsto "to prove"

- Proposition 56.11:

"a morphism" \longmapsto "a proper morphism"

- Page 277, lines 3-4 after 2nd displayed formula:

The words
", so it can be viewed as a contravariant functor from the category of smooth schemes to the category of abelian groups"
need to be removed.

- Theorem 61.14 should be replaced by

Theorem 61.14. Let X and Y be two smooth schemes. Then

$$
\operatorname{Sq}_{X \times Y}(\alpha \times \beta)=\operatorname{Sq}_{X}(\alpha) \times \operatorname{Sq}_{Y}(\beta)
$$

for any $\alpha \in \operatorname{Ch}(X)$ and $\beta \in \operatorname{Ch}(Y)$.
(The proof of Theorem 61.14 should be modified accordingly.)

- 1st paragraph of §72:

The paragraph should be replaced by its first two sentences.
(The rest of the 1st paragraph should be removed.)

- Proof of Corollary 78.2:
"Hence by" $\longmapsto ~ " B y " ~$
- Remark 80.5:
$" \operatorname{deg}_{X} " \longmapsto " \frac{1}{2} \operatorname{deg}_{X} " ; \quad " \operatorname{deg}_{Y} " \longmapsto " \frac{1}{2} \operatorname{deg}_{Y} "$
- Page 358, 2nd displayed formula:

If $\operatorname{dim} \varphi=2 n+2$ with odd n and $k=0$, then $e_{k}=e_{0}$ needs to be replaced by e_{0}^{\prime} (cf. Exercise 68.3). As a consequence, in the same situation, $e_{k}=e_{0}$ four lines lower as well as $e_{k}=e_{0}$ in (86.5) needs to be replaced by e_{0}^{\prime}.

- Proof of Proposition 87.1, line -9:
$" \mathrm{CH}\left(\mathbb{P}\left(E^{\prime}\right)\right) "$ " $\mathbb{P}\left(E^{\prime}\right)$ "
- 2nd line of §89:
"Let φ be a nondegenerate quadratic form" \longmapsto
"Let φ be a split nondegenerate quadratic form"
- Theorem 89.1:
"with φ be a nondegenerate quadratic form" \longmapsto
"with φ be a split nondegenerate quadratic form"
- Proof of Theorem 90.3:
(noticed by Raphaël Fino)
Line 9: "of odd degree" \longmapsto "of odd degree dividing".
To get the inequality of Line 3 after commutative square on Page 369, it is not enough to know that i_{*} is nontrivial: one needs to know that the composition of i_{*} followed by $\mathrm{Ch}(\mathrm{Gr}) \rightarrow \overline{\mathrm{Ch}}(\mathrm{Gr})$ is nontrivial. However, when proving that i_{*} is nontrivial, we actually proved that the composition is nontrivial.
- 2nd paragraph of §92:

It should be required that the variety X and the scheme X^{\prime} are defined over the same extension field of F.

- Remark 92.3 should be replaced by

Remark 92.3. As shown in [25], the class of all projective homogeneous varieties (under actions of semisimple affine algebraic groups) is included in a tractable class constructed as follows. For a field extension F^{\prime} / F, the F^{\prime}-schemes of the class are finite disjoint unions of F^{\prime}-varieties each of which can be obtained by the following procedure. We take a finite separable field extension L / F^{\prime}, a semisimple affine algebraic group G over L, a projective G-homogeneous L-variety X and consider X as an F^{\prime}-scheme via the composition $X \rightarrow \operatorname{Spec} L \rightarrow \operatorname{Spec} F^{\prime}$.

- Exercise 92.6:
"End $X \rightarrow$ End $X_{E} " \longmapsto$ "End $M(X) \rightarrow \operatorname{End} M\left(X_{E}\right)$ "
- Proof of Corollary 92.7, last paragraph:
(noticed by Charles de Clercq and Offer Gabber)
f^{t} is a morphism $\left(Y, q^{t}\right) \rightarrow\left(X, p^{t}\right)$, not $(Y, q) \rightarrow(X, p)$. The proof does not work. The statement of Corollary 92.7 should be modified by adding the requirement of existence of a morphism $g:(Y, q) \rightarrow(X, p)$ such that g_{E} is an isomorphism.
- Page 434 (Index):
"anisotopic" $\longmapsto ~ " a n i s o t r o p i c " ~$

