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Abstract. For a split maximal torus T of a split spin group G = Spin(n) over an
arbitrary field, we consider the restriction homomorphism f : CH(BG) → CH(BT )W of
the Chow rings of their classifying spaces with W the Weyl group of G. For n ≤ 6, f
is known to be surjective. For n ≥ 7, an obstruction for an element of CH(BT )W to be
in the image of f is given by the Steenrod operations on CH(BT )/2CH(BT ). Using it,
we show that several standard generators of CH(BT )W, including the defined for even n

Euler class e ∈ CHn/2(BT )W , are outside the image of f . This result differs from the
analogues topological result.

Let F be a field and let G be a split reductive group over F with a split maximal torus
T ⊂ G. We are interested in the restriction homomorphism CH(BG) → CH(BT ) of the
graded (by codimension of cycles) Chow rings of the classifying spaces (see [15]). This
homomorphism relates the in general quite mysterious CH(BG) with the tame CH(BT )

canonically isomorphic to the symmetric ring S(T̂ ) on the character group T̂ of T . Every
element in the image of the restriction homomorphism is invariant under the action of the
Weyl group W = NG(T )/T of G. By [4, Proposition 6], the homomorphism

f : CH(BG) → CH(BT )W

becomes bijective after tensoring with Q. Therefore the kernel and the cokernel of f are
torsion. More precisely, by [16, Theorem 1.3(1)], the kernel and the cokernel are killed
by the torsion index t(G) of G. In particular, f “computes” CH(BG) for any G with
t(G) = 1. In general, since the group CH(BT ) is torsion free, the kernel of f is actually
precisely the ideal TorsCH(BG) of torsion elements of the ring CH(BG) so that the image
of f is identified with the quotient ring CH(BG)/TorsCH(BG).
Besides W -invariancy, the image of f satisfies another restriction: for every prime

integer p it is stable under the total Steenrod operation

St : Ch(BT ) → Ch(BT )

on the Fp-coefficients version Ch of the Chow ring CH, where Fp := Z/pZ. Indeed, the
Steenrod operation for smooth varieties over an arbitrary field, constructed in [3] for
characteristic 6= p and in [13] for characteristic p, extends to Ch(BG) for any G including
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G = T . And the stability mentioned follows from commutativity of the square

Ch(BG) −−−→ Ch(BT )ySt

ySt

Ch(BG) −−−→ Ch(BT )

Therefore we have the following obstruction for an element x ∈ CH(BT )W to be in the
image of f :

Proposition 1. If x ∈ Im f , then St(g(x)) ∈ Im g, where g is the composition

CH(BT )W ↪→ CH(BT ) → Ch(BT )

of the embedding followed by the reduction modulo p. □

Note that the image of the homomorphism g is contained in (but, in general, not equal
to) Ch(BT )W . An example of strict inclusion is given below.

We are going to apply the obstruction of Proposition 1 with p = 2 to investigate the
image of f for G the standard split spin group Spin(n), n ≥ 2, which is a split simply
connected simple group of rank l := [n/2]. For n = 2l + 1, it has the Dynkin type Bl; for
n = 2l – the Dynkin type Dl. We take for T the standard split maximal torus Gl

m ⊂ G.
We first recall the situation with the similar homomorphism

f ′ : CH(BG′) → CH(BT ′)W

for the standard split special orthogonal group G′ = SO(n). Note that the inverse image
of the standard split maximal torus T ′ ⊂ G′ under the cental isogeny G → G′ is T and
the Weyl group of G′ coincides with W .
The ring CH(BT ′) is the polynomial ring over Z in l variables y1, . . . , yl. It is a graded

ring with respect to the usual grading of the polynomial ring, where each variable has
degree 1. Several special elements in this ring have traditional names and notation, c.f.
[1, §2]. The elementary symmetric polynomials in y1, . . . , yl are called the Chern classes
and denoted c1, . . . , cl, where ci is of degree i. The highest Chern class cl is also called
the Euler class and denoted e. The elementary symmetric polynomials in the squares
y21, . . . , y

2
l are called the Pontrjagin classes and denoted p1, . . . , pl, where pi is of degree 2i.

For odd n = 2l + 1, the Weyl group W is a semidirect product by the symmetric
group Sl, permuting the variables, of the direct product of l copies of Z/2Z, each of
which acts by changing the sign of the respective variable. The ring of W -invariants
CH(BT ′)W = Z[y1, . . . , yl]W is therefore generated by the Pontrjagin classes p1, . . . , pl.

Note that the Weyl group W acts on the F2-version Ch(BT ′) = F2[y1, . . . , yl] of the
Chow ring (only) by permutations of the variables y1, . . . , yl. Therefore the ring Ch(BT

′)W

is the polynomial ring F2[c1, . . . , cl] which is strictly larger than the image of the integral
invariants CH(BT ′)W under the homomorphism g from Proposition 1.

For even n = 2l, the Weyl group is the subgroup in the Weyl group described above,
generated by Sl and the even sign changes. In this case, the ring of W -invariants
CH(BT ′)W = Z[y1, . . . , yl]W is generated by the Pontrjagin classes p1, . . . , pl and the
Euler class e.
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Let us consider the Chern classes in CH(BG′) of the standard representation of G′ given
by the embedding G′ ↪→ GL(n). Their images in CH(BT ′) are the Chern classes of the
representation of T ′ given by the embedding

T ′ ↪→ GL(2l), (a1, . . . , al) 7→ diag(a1, a
−1
1 , . . . , al, a

−1
l )

followed (if n = 2l+1) by the standard embedding GL(2l) ↪→ GL(n). This representation
of T ′ is a direct sum of the 1-dimensional representations given by the characters T ′ → Gm,
(a1, . . . , al) 7→ ai and T ′ → Gm, (a1, . . . , al) 7→ a−1

i (i = 1, . . . , l) of T ′, having the first
Chern classes yi and −yi. It follows that the images in CH(BT ′) of the Chern classes of the
standard representation of G′ are the elementary symmetric polynomials in ±y1, . . . ,±yl,
i.e., the homogeneous components of the polynomial

(1 + y1)(1− y1) . . . (1 + yl)(1− yl) = (1− y21) . . . (1− y2l ).

The homogeneous components of odd degrees are trivial. The homogeneous components
of even degrees are, up to signs, the Pontrjagin classes. In particular, the Pontrjagin
classes are in the image of f ′.

It follows that f ′ is surjective for odd n.
For even n = 2l, the computation of CH(BG′), made in [12] over any field of character-

istic not 2 (see also [5]), tells us that the image of f ′ is generated by the Pontrjagin classes
and the multiple 2l−1e of the Euler class. In particular, for n ≥ 4, the Euler class itself
is outside the image of f ′. This can also be shown directly (and in any characteristic) as
follows.
Let Ch(BT ′) = F2[y1, . . . , yl] be the Chow ring with coefficients F2 = Z/2Z and consider

the total Steenrod operation St : Ch(BT ′) → Ch(BT ′) – the (non-homogeneous) ring
endomorphism mapping each yi to yi(1 + yi). Its degree 1 homogeneous component St1

(raising degrees by 1) applied to e yields ec1. If e would be in Im f , then ec1 viewed as
an element of F2[y1, . . . , yl], would be inside the subring of F2[y1, . . . , yl], generated by
p1 = c21, . . . , pl−1 = c2l−1 and e = cl, which is false.
We are going to study the group G = Spin(n) using the similar approach. For n ≤ 6,

the torsion index of G is 1 so that f is an isomorphism. Therefore we need to deal with
n ≥ 7 only. The torsion index of G (computed in [16]) is then a power of 2 (with a positive
exponent). Besides results on n = 7 ([6]) and on n = 8 ([14]), the ring CH(BG) is far
from being understood. One can say that the special orthogonal group G′, whose torsion
index is a power of 2 as well, constitutes a rare example of a split reductive group with a
nontrivial torsion index, for which the Chow ring of its classifying space is computed.
We start with a description of CH(BT ).
Note that CH(BT ′) is a subring in CH(BT ). The CH(BT ′)-algebra CH(BT ) is gener-

ated by a single element a satisfying the relation 2a = y1 + · · ·+ yl. The action of W on
CH(BT ′) extends uniquely to CH(BT ): the symmetric group Sl ⊂ W acts on a trivially
and the action on a of the change of sign of yi yields a− yi.



4 NIKITA A. KARPENKO

The maps f and f ′ are related by the commutative square

CH(BG)
f−−−→ CH(BT )Wx x

CH(BG′)
f ′

−−−→ CH(BT ′)W

In particular, Im f ⊃ Im f ′.
The ring of W -invariants Z[a, y1, . . . , yl]W is computed (in a topological context) by

D. Benson and J. Wood in [1, Theorem 7.1]. To formulate the result, they first in-
ductively construct in [1, Proposition 3.3] for every i ≥ 1 certain homogeneous element
qi ∈ Z[a, y1, . . . , yl]W of degree 2i. Besides, they define one more homogeneous element
α ∈ Z[a, y1, . . . , yl]W . If n is 0 modulo 4, the degree of α is 2l−2. If n is not 0 modulo 4
(i.e., n is ±1 or 2 modulo 4), the degree of α is 2l−1. If n is 2 modulo 4, then α is the
orbit product α′ of a, i.e., α coincides with the product α′ of the elements in the W -orbit
of a. If n is not 2 modulo 4 (i.e., n is 0 or ±1 modulo 4), then α′ = α2, i.e., α is a square
root of the orbit product α′.

Theorem 2 (c.f. [1, Theorem 7.1]). The Z[y1, . . . , yl]W -algebra Z[a, y1, . . . , yl]W is gen-
erated by α together with all qi of lower (than that of α) degree.

Here is our main result:

Theorem 3. For G = Spin(n), the generators qi of Theorem 2 with 2i + 1 < n/2 are
outside the image of the homomorphism f : CH(BG) → CH(BT )W . Moreover, for even
n ≥ 7, the Euler class e ∈ CH(BT ′)W ⊂ CH(BT )W is also outside the image of f .

Remark 4. Theorem 3 states, inter alia, that q1 6∈ Im f for n ≥ 7. In particular, the
map f is not surjective in degree 2 for such n. The latter statement is apparent already
from [11]. See also [18, Theorem 3.3] together with [2, Théorème 12.1(b)].
Let us explain how to determine the image of f in degree 2 without using the Steenrod

operation. The representation ring R(G) of G is the subring Z[T̂ ]W of W -invariants

in the group ring Z[T̂ ] of the character group T̂ of T . The second Chern class map
c2 : R(G) → CH2(BG) is surjective and the square

R(G) = Z[T̂ ]W −−−→ R(T ) = Z[T̂ ]yc2

yc2

CH2(BG)
f−−−→ CH2(BT )W = S2(T̂ )W

commutes. It follows that the image of f in degree 2 is the image of

(5) c2 : Z[T̂ ]W → S2(T̂ )W .

Remark 6. In topology, the similar to f map fH , departing out of the integral cohomology
H(BG) and having the same destination as f (see Remark 8), is surjective if and only if n
is not congruent to ±3 or 4 modulo 8, see [1, Theorem 10.2]. Moreover, all the generators
qi (for any n) as well as the Euler class (for any even n) are always in the image.
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Remark 7. Concerning the generator α, note that α′, which appears in the above de-
scription of α, is a Chern class of the orbit sum of the element of Z[T̂ ] given by a (c.f.
[8, Proof of Proposition 3.4]). (This orbit sum is an element of the representation ring

R(G) = Z[T̂ ]W of G. The Chern classes R(G) → CH(BG) we are using are defined, e.g.,
in [10, §4]. They already appeared above for G′ in place of G during the discussion of
the Pontrjagin classes. The second Chern class also appeared in Remark 4.) Therefore
α′ ∈ Im f . It follows that α ∈ Im f if n is 2 modulo 4 (or, equivalently, n is ±2 modulo 8).
If n is ±3 or 4 modulo 8, then by [1, Theorem 10.2] α is not in the image of the topological
analogue fH of f (all the remaining generators of CH(BT )W are in the image); therefore
α 6∈ Im f (at least in characteristic 0). Finally, when n is ±1 or 0 modulo 8, α is in the
image in topology, but we do not know whether α ∈ Im f for our f .

Proof of Theorem 3. The generators of the modulo 2 reduction Ch(BT ) = F2[a, y1, . . . , yl]
of the ring CH(BT ) = Z[a, y1, . . . , yl] are subject to the only relation y1 + · · · + yl = 0.
For the images in Ch(BT ) of the special elements of CH(BT ′) = Z[y1, . . . , yl] we are still
using the same notation. The first Chern class c1 vanishes and the remaining Chern classes
c2, . . . , cl are algebraically independent. The Pontrjagin classes are simply the squares of
the respective Chern classes: pi = c2i for every i = 1, . . . , l. The Steenrod operation

St : F2[a, y1, . . . , yl] → F2[a, y1, . . . , yl]

is the ring endomorphism mapping yi 7→ yi(1 + yi) and a 7→ a(1 + a) .
By [1, Proposition 3.3(i) and Proof of Proposition 3.3 (1st Displayed Formula)], we have

g(q1) = c2. By [1, Proof of Proposition 3.3 (3d Displayed Formula and Definition of qi)],
one sees that g(qi) ∈ F2[y1, . . . , yl] for any i ≥ 1 and that g(qi+1) is the sum of all pairwise
products of distinct monomials of g(qi). It follows that for i with 2i + 1 < n/2, g(qi) is
equal to c2i plus a polynomial in the Chern classes of smaller degree. Since St1(c2i) is
equal to c2i+1 plus a polynomial in the Chern classes of smaller degree, St1(g(qi)) is also
equal to c2i+1 plus a polynomial in the Chern classes of smaller degree.
If n is odd or divisible by 4, the subring g(CH(BT )W ) ⊂ Ch(BT ) is generated by homo-

geneous elements of even degrees. In the remaining case, it is generated by homogeneous
elements of even degrees and the Euler class e = cl = cn/2. It follows that St

1(g(qi)) 6∈ Im g
so that qi 6∈ Im f by Proposition 1. This proves the first part of Theorem 3. Note that we
used the first Steenrod square only. Therefore, in characteristic 2, instead of the newer
[13], we may refer to the older [7].

Regarding the Euler class, we have Sti(e) = eci for i = 1, . . . , l. In particular,

St3(e) = ec3 6∈ Im g.

Therefore e 6∈ Im f . □

Remark 8. To explain relations and differences with topology, let us recall that for any
affine algebraic group G over the complex numbers, the cycle class map

cl : CH(BG) → H(BG)

is a functorial in G homogeneous ring homomorphism, where H(BG) is the integral co-
homology ring of the classifying space of G studied in topology. In general, the map cl is
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neither surjective nor injective; it is an isomorphism provided that G is a torus. By [17,
Theorem 2.14], for arbitrary G, tensoring with Q makes cl an isomorphism.

For G as in Theorem 3 (still over C), the homomorphism f fits into the commutative
square

CH(BG)
f−−−→ CH(BT )Wycl

y≃

H(BG)
fH−−−→ H(BT )W

It follows that the image of f is contained in the image of fH . In the cases of strict
inclusion (e.g., provided by Theorem 3), the map cl is not surjective.

Let us now explain why the proof of Theorem 3 does not work in topology. As a
replacement of the Steenrod operation, used in the proof, one can try to use the Steen-
rod operation on the cohomology H(BG,F2) with coefficients F2. However, unlike the
homomorphism CH(BG) → Ch(BG), the homomorphism

H(BG) = H(BG,Z) → H(BG,F2)

is not surjective. Because of that, we do not get the analogue of Proposition 1.

The positive answer to the following question would allow one to determine the indexes
of generic grassmannians for even spin groups. Lower bounds on these indexes, which are
within 1 from the exact values, are recently obtained in [9]. For the odd spin groups, a
procedure for determination of the exact values is described in [8].

Question 9. For even n ≥ 12, is the image of f : CH(B Spin(n)) → CH(BT )W con-
tained in the subring of CH(BT )W generated by 2e together with the remaining (without
e) generators (including the Pontrjagin classes) of CH(BT )W , listed in Theorem 2?

One can show that for each n ≤ 10 the answer to Question 9 is negative. The Euler
class part of Theorem 3 can be viewed as a first step towards resolution of Question 9.
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