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Abstract. For n ≥ 1, let SO(2n) be the special orthogonal group given by the stan-
dard split nondegenerate 2n-dimensional quadratic form over a field. The Chow ring
CH(B SO(2n)) of its classifying space has been computed for the field of complex num-
bers in 2000 by R. Field. Arbitrary fields of characteristic 6= 2 have been treated, using
a different method, in 2006 – by L. A. Molina Rojas and A. Vistoli. Using specialization
from characteristic 0, we extend their computation to characteristic 2.
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0. Introduction

Let G be an affine algebraic group over a field F . The Chow ring CH(BG) of the
classifying space of G, considered systematically for the first time in [17], is the graded
ring of characteristic classes for G, where a degree i characteristic class is a functorial
assignment for any G-torsor over a smooth F -variety X of a degree i element in the Chow
ring CH(X) of X.

Example 0.1. Let G be the general linear group GL(d) for some d ≥ 1. A G-torsor
over a smooth variety X yields a rank d vector bundle E over X. For i = 1, . . . , d, its ith
Chern class ci(E) is an elements of CHi(X) defining a characteristic classes ci ∈ CHi(BG).
By [17], c1, . . . , cd are independent generators of the ring CH(BG) identifying it with the
polynomial ring Z[c1, . . . , cd].
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For arbitrary G, given a faithful representation G ↪→ GL(d), the pull-back ring homo-
morphism CH(B GL(d)) → CH(BG) transfers the Chern classes c1, . . . , cd to CH(BG).
Besides, evaluating the characteristic classes for G on the base GL(d)/G of the G-torsor
GL(d), we get a ring homomorphism CH(BG) → CH(GL(d)/G).

Theorem 0.2 ([18, Theorem 5.1]). For any d ≥ 1 and any faithful G-representation
G ↪→ GL(d), the homomorphism CH(BG) → CH(GL(d)/G) is surjective; its kernel is the
ideal generated by c1, . . . , cd.

Remark 0.3. Theorem 0.2 is useful in both directions. First of all, it describes the Chow
ring of the quotient variety GL(d)/G in terms of CH(BG). On the other hand, any given
generators of the ring CH(GL(d)/G) can be lifted to CH(BG); any such lifts together
with the Chern classes c1, . . . , cd generate the Chow ring CH(BG).

Example 0.4. For the orthogonal group O(d), given by the standard split nondegenerate
d-dimensional quadratic form over a field (of arbitrary characteristic), and its standard
representation O(d) ↪→ GL(d), the quotient GL(d)/O(d) is an open subset in an affine
space (see §1). It follows that CH(GL(d)/O(d)) = Z and so the ring CH(BO(d)) is
generated by c1, . . . , cd. In characteristic 6= 2, the relations are: 2ci = 0 for every odd i,
[17, §15]. In characteristic 2, the relations are: ci = 0 for every odd i if d is even, and
2c1 = 0 and ci = 0 for odd i ≥ 3 if d is odd, [11, Appendix B]. For example, for d even,
d = 2n, the vanishing of ci for i odd follows from the fact that O(2n) is contained in the
symplectic group Sp(2n) in characteristic 2.

Now let us consider the special orthogonal group SO(d). For odd d, since

O(d) = µ2 × SO(d),

the ring homomorphism CH(BO(d)) → CH(B SO(d)), induced by the embedding of SO(d)
into O(d), is surjective. Its kernel is generated by c1.

The case of even d = 2n is much more difficult. The group SO(4) – the first nontrivial
case – was done over the complex numbers in [14]. The group SO(2n) for arbitrary n –
still over the complex numbers – has been treated in [5] (see also [6]). Over an arbitrary
field of characteristic 6= 2, the (“same”) answer was obtained (by a different method) in
[13]. Besides of the Chern classes, the answer, formulated below in Theorem 0.5, involves
certain characteristic class y ∈ CHn(B SO(2n)) constructed by Edidin and Graham. When
the base field is the complex numbers, the class y maps to 2n−1 times the Euler class in
H2n(B SO(2n),Z).

Theorem 0.5 ([13]). For n ≥ 1, the group SO(2n), considered over a field of character-
istic 6= 2, has the Chow ring CH(B SO(2n)) generated by the Chern classes c2, c3, . . . , c2n
together with the Edidin-Graham characteristic class y. The generators are subject to the
following relations:

y2 = (−1)n22n−2c2n and 2ci = 0 = ci · y for every odd i.

We prove the analogue of Theorem 0.5 for characteristic 2. Any given field F of char-
acteristic 2 is the residue field of some characteristic 0 discrete valuation field K, [2,
Proposition 5 of §2.3 and Proposition 1 of §2.1 in Chapter IX]. We write SO(2n)K and
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SO(2n)F for the special orthogonal group over the respective fields and consider the spe-
cialization ring homomorphism

(0.6) CH(B SO(2n)K) → CH(B SO(2n)F ).

To explain the definition of (0.6), note that by [17, Theorem 1.3], the ring CH(BG) for
an affine algebraic group G over any field is approximated by algebraic varieties over the
field. By [17, Remark 1.4] (see also [11, Example 4.1]), in the case of G = SO(2n) it
is enough to consider varieties obtained by base change from smooth schemes over the
integers. For such varieties, the specialization homomorphism is a ring homomorphism
defined in [8, Example 20.3.1] and discussed in §4.

Theorem 0.7. The specialization homomorphism (0.6) is surjective; its kernel is gener-
ated by the odd Chern classes c3, c5, . . . , c2n−1.

The proof of Theorem 0.7 is given in the very end of the paper (see §5).
Theorems 0.5 and 0.7 together yield

Corollary 0.8. For the special orthogonal group SO(2n), where n ≥ 1, considered over
a field of characteristic 2, the Chow ring CH(B SO(2n)) is generated by the even Chern
classes c2, c4, . . . , c2n together with the specialization y ∈ CHn(B SO(2n)) of the Edidin-
Graham characteristic class. These generators are subject to the unique relation

y2 = (−1)n22n−2c2n.

Surjectivity of the specialization homomorphism is the most subtle part of Theorem
0.7. By Theorem 0.2, since the Chern classes specialize to “themselves” (see Corollary
4.5), it is equivalent to the surjectivity of specialization for the quotient variety X̃ :=
GL(2n)/ SO(2n), investigated in §2 and §3. Note that a posteriori, the latter specialization
homomorphism turns out to be an isomorphism.

We start in §1 with a study of the variety X := GL(2n)/O(2n), which is much simpler
although quite close to X̃.

Commutative rings we are considering are unital; ring homomorphisms preserve iden-
tities.

Acknowledgements. I thank Alexander Merkurjev for useful comments and for
Remark 2.2.

1. X := GL(2n)/O(2n)

Let us consider the algebraic group schemes GL(2n) and O(2n) over the integers Z.
The quotient scheme GL(2n)/O(2n) exists: it is the scheme of nondegenerate rank 2n
quadratic forms. In more details, let us define a scheme X by the following condition: for
any commutative ring R, the set X(R) of R-points of X consists of all quadratic maps
q : R2n → R such that the determinant of the matrix of the associated symmetric bilinear
form

bq : R
2n ×R2n → R, bq(a, b) := q(a+ b)− q(a)− q(b)

is invertible in R. Then X is an open affine subscheme in the affine space of all quadratic
maps (including the degenerate ones) on which GL(2n) naturally acts. For any ring R
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which is an algebraically closed field, the action of the abstract group GL(2n)(R) on the
set X(R) is transitive. By the very definition of O(2n), it is the stabilizer of the point in
X(Z) given by the standard split quadratic form

Z2n → Z, (a1, b1, . . . , an, bn) 7→ (a1b1 + · · ·+ anbn).

Thus X = GL(2n)/O(2n) over Z by [3, Proposition 2.1 of Chapter III §3].
Let e1, . . . , e2n be the standard basis of the free R-module R2n. We define a filtration

by closed subschemes

(1.1) X ⊃ X1 ⊃ · · · ⊃ X2n−1 ⊃ X2n = ∅,
where X1 ⊂ X is defined by the condition q(e1) = 0 and for each i = 2, . . . , 2n the
condition defining X i inside of X i−1 is bq(e1, ei) = 0. Note that the scheme X2n is empty
– as claimed in (1.1) – because bq is nondegenerate. The idea of considering this filtration
comes from [7].

Lemma 1.2 (cf. [7, Lemma 5]). For n ≥ 2 and any i = 2, . . . , 2n, there is an isomorphism

X i−1 \X i = Gm × A×X ′,

where Gm is the multiplicative group scheme, A is an affine space, and

X ′ := GL(2n− 2)/O(2n− 2) over Z.
Proof. For U := X i−1 \X i, a commutative ring R, and q ∈ (U)(R), the value bq(e1, ei) is
invertible in R. Therefore, since q(e1) = 0, the restriction of q to the R-submodule

Re1 +Rei ⊂ R2n,

generated by e1 and ei, is nondegenerate. The restriction q′ of q to the orthogonal com-
plement (Re1 + Rei)

⊥ with respect to bq is also nondegenerate. Using the basis of the
orthogonal complement, given by the orthogonal projections of e2, . . . , ei−1, ei+1, . . . , e2n,
we get the morphism U → X ′, q 7→ q′.

We define the morphism U → Gm by associating to q the value bq(e1, ei). We finally
map U to A by associating to q the values bq(e1, ej) for j = i + 1, . . . , 2n, the values
bq(ei, ej), for j = 2, . . . , i− 1, i+ 1, . . . , 2n, and the value q(ei).

We prove by constructing the inverse that the resulting morphism

U → Gm × A×X ′

is an isomorphism.
Given an R-point of Gm×A×X ′, we first “reconstruct” q in the basis of R2n, consisting

of e1, ei and the “orthogonal projections” of the remaining standard basis elements. We
also have all needed values to determine the matrix of the basis change. □

2. X̃ := GL(2n)/ SO(2n)

For the algebraic group schemes GL(2n) and SO(2n) over the integers Z, the quotient
scheme X̃ := GL(2n)/ SO(2n) exists as well: for any commutative ring R, the set X̃(R)
of R-points of X̃ consists of the pairs (q, ε) with q ∈ X(R) and ε being an isomorphism of
R-algebras Z(C0(q)) → R × R, where Z(C0(q)) is the center of the even Clifford algebra
C0(q) of q. Our reference for Clifford algebras of quadratic forms over general rings is [1,
Chapter II].
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Remark 2.1. Composing an isomorphism ε : Z(C0(q)) → R×R with the first projection
R×R → R, we get a homomorphism of R-algebras f : Z(C0(q)) → R. Conversely, for any
homomorphism of R-algebras f : Z(C0(q)) → R, the formula a 7→ (f(a), f(σ(a))), where
σ is the canonical involution on Z(C0(q)), defines an isomorphism ε : Z(C0(q)) → R×R.
The two maps ε 7→ f and f 7→ ε are mutually inverse bijections.

Remark 2.2 (A. Merkurjev). Let A be the commutative ring representing X: X(R) =
Hom(A,R) for any R. Let qA ∈ X(A) be the quadratic form corresponding to idA ∈
Hom(A,A). Then the commutative ring Ã := Z(C0(qA)) represents X̃. Indeed, an
element of Hom(Ã, R) is the same as an element q of X(R) = Hom(A,R) together with a
homomorphism of R-algebras f : Z(C0(q)) → R. So, X̃(R) = Hom(Ã, R) by Remark 2.1.
In particular, X̃ is an affine scheme.

Recall that the discriminant of q ∈ X(R) is defined as the isomorphism class of the
separable quadratic R-algebra Z(C0(q)). The set of all separable quadratic R-algebras
form an exponent 2 abelian group whose 0 is the class of the split quadratic separable
algebra R×R. In particular, the discriminant of q is trivial for every (q, ε) ∈ X̃(R). The
group of quadratic separable R-algebras is canonically isomorphic to the multiplicative
group of R modulo the squares for every characteristic 6= 2 field R (see [4, Example 98.2]);
for every characteristic 2 field R (where the discriminant is also called Arf invariant), it
is isomorphic to the additive group of R modulo the image of the Artin-Schreier map
R → R, r 7→ r2 + r (see [4, Example 98.3]).

To verify that the scheme X̃ is indeed the above quotient, one can use [3, Proposition
2.1 of Chapter III §3] as we did for X in §1: the natural action of GL(2n) on X̃ has
the required properties. In particular, by its very definition, the algebraic group scheme
SO(2n) is the stabilizer of the point in X̃(Z) given by the standard split quadratic form
q together with an identification Z(C0(q)) = Z× Z, c.f. [12, §23A].

Since SO(2n) ⊂ O(2n), the homogeneous space X̃ maps to X. For any R, the map
X̃(R) → X(R) is the forgetting map (q, ε) 7→ q.
We pull-back along the morphism X̃ → X the filtration (1.1) and write

X̃ ⊃ X̃1 ⊃ · · · ⊃ X̃2n−1 ⊃ X̃2n = ∅

for the resulting filtration on X̃. Given any i = 2, 3, . . . , 2n, we write – as in Lemma 1.2 –
U for the differenceX i−1\X i. We consider the morphism U → X ′ := GL(2n−2)/O(2n−2)
over Z of Lemma 1.2, write X̃ ′ for the homogeneous space GL(2n− 2)/ SO(2n− 2), and
write Ũ for the difference X̃ i−1 \ X̃ i.

In the construction of the morphism U → X ′ in the proof of Lemma 1.2, given some
R-point q ∈ U(R) of U , we split off from the quadratic form q its binary subform living
on Re1 + Rei and associate to q its restriction q′ to (Re1 + Rei)

⊥. Since q(e1) = 0, this
binary subform is hyperbolic so that we have an isomorphism of the centers of the even
Clifford algebras Z(C0(q)) = Z(C0(q

′)). Thus we get a morphism Ũ → X̃ ′ making the
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square

(2.3)

Ũ −−−→ X̃ ′y y
U −−−→ X ′

commutative. The following property is immediate:

Lemma 2.4. The square (2.3) is cartesian. □

Corollary 2.5. For any field F , the pull-back homomorphism CH(X̃ ′
F ) → CH(ŨF ) is

surjective.

Proof. Since by Lemma 1.2, U → X ′ is a trivial fibration with the fiber Gm × A, the
morphism Ũ → X̃ ′ is also a trivial fibration with the same fiber. Homotopy invariance
and localization property of Chow groups (see [8, Theorem 3.3(a) and Proposition 1.8] or
[4, Theorem 57.13 and Proposition 57.9]) yield the surjectivity. □

3. X̃ \ X̃1

We turn attention to the difference Y := X̃ \ X̃1 which has not been treated so far. We
introduce the filtration

(3.1) Y := Y 1 ⊃ Y 2 ⊃ · · · ⊃ Y 2n,

where for each i = 2, 3, . . . , 2n the condition defining Y i inside Y i−1 is bq(e1, ei) = 0. Note
that Y 2n

F = ∅ for any field F of characteristic 2.

Lemma 3.2. For n ≥ 2 and for every i = 2, . . . , 2n, there is an open subscheme

U ⊂ Y i−1 \ Y i

and a morphism

U → X ′ := GL(2n− 2)/O(2n− 2)

over Z such that for any field F of characteristic 2 one has UF = (Y i−1 \ Y i)F and the
morphism UF → X ′

F is flat with the fibers Gm ×Gm × A for some affine space A.

Proof. To define the subscheme U ⊂ Y i−1 \ Y i, we define for every commutative ring
R the subset U(R) ⊂ (Y i−1 \ Y i)(R) as the set of (q, ε) ∈ (Y i−1 \ Y i)(R) such that the
restriction of the bilinear form bq to the submodule Re1+Rei ⊂ R2n is nondegenerate. We
can define then the morphism U → X ′ “as usual” – by mapping (q, ε) to the restriction
q′ of q to the orthogonal complement (Re1 + Rei)

⊥. As in the proof of Lemma 1.2,
we use the basis of the orthogonal complement given by the orthogonal projections of
e2, . . . , ei−1, ei+1, . . . , e2n.

Let F be a field of characteristic 2. For any F -algebra R and any

(q, ε) ∈ (Y i−1 \ Y i)(R),

the value bq(e1, e1) = 2q(e1) is zero and the value bq(e1, ei) is invertible in R implying that
the restriction of bq to Re1 +Rei is nondegenerate. It follows that UF = (Y i−1 \ Y i)F .
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Let A be the affine space of dimension 4n− i−1. To finish the proof, it suffices to show
that for any local F -algebra R and any q′ ∈ X ′(R), the fiber of the morphism UF → X ′

F

over q′ is the product (Gm ×Gm × A)R (cf. [4, Lemma 52.12]).
For any commutative R-algebra S and any (q, ε) ∈ U(S), lying over the image of

q′ ∈ X ′(R) in X ′(S), the values q(e1) and bq(e1, ei) are invertible in S. We use them
to define the morphism of the fiber to (Gm × Gm)R. The morphism of the fiber to
AR is defined using the values bq(e1, ej) for j = i + 1, . . . , 2n, the values bq(ei, ej), for
j = 2, . . . , i− 1, i+ 1, . . . , 2n, and one more value which we define in the next paragraph.
Let us choose a basis f2, g2, . . . , fn, gn of the free R-module R2n−2, on which the qua-

dratic form q′ is defined, such that bq(fj, gj) = 1 for all j and bq(fj, fk) = bq(fj, gk) =
bq(gj, gk) = 0 for j 6= k. We can find such a basis by [1, Proposition 3.4 of Chapter
I] because the ring R is local. We identify R2n−2 with the submodule (Re1 + Rei)

⊥ of
R2n. By [1, Proposition 4.4 of Chapter II], the center of the even Clifford algebra C0(q)
is generated by the single element

t := e1ei/bq(e1, ei) + f2g2 + · · ·+ fngn

subject to the single relation t2 + t+ d = 0, where d ∈ R is defined by

d := q(e1)q(ei)/bq(e1, ei)
2 + q(f2)q(g2) + · · ·+ q(fn)q(gn).

By Remark 2.1, ε determines an element s ∈ S satisfying s2+ s = d. We use this s as the
last value in the definition of the morphism of the fiber to AR.
We prove that the resulting morphism of the fiber to (Gm×Gm×A)R is an isomorphism

by constructing its inverse. Given an S-point of (Gm×Gm×A)R, using all its components
aside from the last component in A, we almost “reconstruct” the matrix of q in the usual
way. It only remains to determine the value q(ei). This value is uniquely determined by
the condition s2 + s = d. □
Corollary 3.3. The pull-back homomorphism CH(X ′

F ) → CH(UF ) is surjective.

Proof. Since UF → X ′
F is a flat morphism such that each fiber is an open subset in an

affine space, the statement follows with a help of the spectral sequence [16, Corollary 8.2]
(see also [10, §3]). Another possibility to prove the result is to adopt the proof of [4,
Proposition 52.10] to the situation. □

4. Specialization

Let Λ be a discrete valuation ring, let K be its field of fractions, and let F be the residue
field of Λ. For a separated Λ-scheme X of finite type, we are going to use the specialization
homomorphism CH(XK) → CH(XF ) defined in [8, §20.3]. This is a homomorphism of
graded groups, where the grading on the Chow groups is defined by dimension of cycles.
It has a very simple description on the level of algebraic cycles: for a reduced closed
subvariety in XK , its closure in X intersected with XF is a closed subscheme in XF

yielding an algebraic cycle on XF .
The specialization homomorphism commutes with proper push-forwards and flat pull-

backs, [8, Proposition 20.3]. If X is smooth over Λ, then the specialization is a homomor-
phism of graded rings (with the grading by codimension of cycles), [8, Example 20.3.1],
commuting with arbitrary pull-backs.
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Lemma 4.1. For any n ≥ 0, the specialization homomorphism

CH(Pn
K) → CH(Pn

F )

maps the hyperplane class to “itself”.

Proof. Since the Λ-scheme Pn−1
Λ is smooth, the specialization homomorphism

CH(Pn−1
K ) → CH(Pn−1

F ),

being a unital ring homomorphism, maps 1 = [Pn−1
K ] to 1 = [Pn−1

F ]. Since the specialization
homomorphism commutes with proper push-forward, the square

CH(Pn−1
K ) −−−→ CH(Pn

K)y y
CH(Pn−1

F ) −−−→ CH(Pn
F )

is commutative. □
Similarly, one proves

Lemma 4.2. For X a product of projective spaces, the specialization homomorphism

CH(XK) → CH(XF )

is “identical”. □
Since for any field L, the Chow ring CH(BTL) for a split Z-torus T is approximated by

products of projective spaces, we get

Corollary 4.3. For a split Z-torus T , the specialization homomorphism

CH(BTK) → CH(BTF )

is “identical”. □
Corollary 4.4. For any d ≥ 1, the specialization homomorphism

CH(B GL(d)K) → CH(B GL(d)F )

maps the generators c1, . . . , cd to “themselves”.

Proof. Let T ⊂ GL(d) be standard split Z-torus of rank d. Since the specialization
homomorphism commutes with pull-backs, the square

CH(B GL(d)K) −−−→ CH(BTK)y y
CH(B GL(d)F ) −−−→ CH(BTF )

is commutative. Since the horizontal maps are injective, the statement follows. □
Let G be an algebraic group scheme over Z with a faithful representation G ↪→ GL(d).

As in §0, for any field L, we continue to write c1, . . . , cd for the images of c1, . . . , cd under
the restriction homomorphism CH(B GL(d)L) → CH(BGL).
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Corollary 4.5. The specialization homomorphism

CH(BGK) → CH(BGF )

maps the elements c1, . . . , cd to “themselves”. □

5. Surjectivity

In this section, K is a discrete valuation field of characteristic 0 with a residue field F
of characteristic 2.

Proposition 5.1. The specialization homomorphisms

CH(X̃K) → CH(X̃F ) and CH(B SO(2n)K) → CH(B SO(2n)F )

are surjective, where X̃ := GL(2n)/ SO(2n).

Proof. We prove the statement using an induction on n ≥ 1. As explained in §0, surjec-
tivity of specialization for X̃ is equivalent to the same property of B SO(2n). For n = 1,
the group SO(2n) = SO(2) = Gm has this property (see Corollary 4.3). Below we are
assuming that n ≥ 2 and prove the statement for X̃.

Using descending induction on i ≤ 2n, we first prove that for any i = 2n, 2n−1, . . . , 2, 1,
the specialization homomorphism for X̃ i is surjective. We start with i = 2n, where
X̃2n = ∅.
For i < 2n, we have the commutative diagram

CH(X̃ i+1)K −−−→ CH(X̃ i)K −−−→ CH(X̃ i \ X̃ i+1)K −−−→ 0y y y
CH(X̃ i+1)F −−−→ CH(X̃ i)F −−−→ CH(X̃ i \ X̃ i+1)F −−−→ 0

where the rows are exact localization sequences (see [8, Proposition 1.8] or [4, Proposition
57.9]) and the vertical arrows are the specialization maps. The left specialization map is
surjective by induction hypothesis on i+ 1. The right specialization map is surjective by
Corollary 2.5 and the induction hypothesis on n− 1. Therefore the specialization map in
the middle is surjective as well.
We proved that the specialization map for X̃1 is surjective. To prove the same statement

for X̃ itself, we proceed similarly, using the filtration (3.1) on the complement Y of X̃1

together with Lemma 3.2. In the commutative diagram

CH(Y i+1)K −−−→ CH(Y i)K −−−→ CH(Y i \ Y i+1)K −−−→ 0y y y
CH(Y i+1)F −−−→ CH(Y i)F −−−→ CH(Y i \ Y i+1)F −−−→ 0
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with exact rows, it suffices to show that the specialization map on the right is surjective.
This follows from the commutative diagram

CH(Y i \ Y i+1)K −−−→ CH(Y i \ Y i+1)Fyonto

yisomorphism

CH(UK) −−−→ CH(UF )x xonto

CH(X ′
K)

onto−−−→ CH(X ′
F )

(Since CH(X ′
K) = Z = CH(X ′

F ), the lower map is actually an isomorphism.) The right
lower arrow in the diagram is onto by Corollary 3.3. □
Proof of Theorem 0.7. Having done Proposition 5.1 already, we only need to check the
statement on the kernel of the specialization homomorphism. We first show that the odd
Chern classes are in the kernel. In other terms, we show that the odd Chern classes

c3, c5, . . . , c2n−1 ∈ CH(B SO(2n))

vanish over a field of characteristic 2.
Indeed, over a field of characteristic 2, the standard representation of SO(2n) factors

through the standard representation of the symplectic group:

SO(2n) ↪→ Sp(2n) ↪→ GL(2n).

The odd Chern classes of the standard representation for Sp(2n) vanish (see [17, §15] or
[13, §3]). Therefore they vanish for SO(2n).

It follows by Theorem 0.5 and Proposition 5.1 that – for SO(2n) considered over
a field of characteristic 2 – the ring CH(B SO(2n)) is generated by the even Chern
classes c2, c4, . . . , c2n and the specialization of the Edidin-Graham characteristic class
y ∈ CH(B SO(2n)). These generators satisfy the relation

(5.2) y2 = (−1)n22n−2c2n.

To finish the proof of Theorem 0.7, it remains to show that there are no further relations.
Let T ⊂ SO(2n) be the standard split maximal torus. The ring CH(BT ) is canoni-

cally isomorphic to the symmetric Z-algebra S(T̂ ) of the character group T̂ of T . Tak-

ing the standard basis x1, . . . , xn of T̂ , we identify CH(BT ) with the polynomial ring
Z[x1, . . . , xn]. For every i = 1, . . . , n, the image of c2i under the restriction ring homomor-
phism CH(B SO(2n)) → CH(BT ) equals (−1)ipi (see, e.g., [9, Examples 2.8 and 2.9]),
where pi is the ith Pontryagin class defined as the ith elementary symmetric polynomial in
the squares x2

1, . . . , x
2
n of the variables. The image of y equals 2n−1e (see, e.g., [15, Lemma

4.8]), where e := x1 . . . xn. The elements p1, . . . , pn, e satisfy the unique relation e2 = pn.
Therefore the generators c2, c4, . . . , c2n, y satisfy no further relations besides (5.2). □

Remark 5.3. The specialization homomorphism CH(X̃K) → CH(X̃F ) turns out to be
an isomorphism.

As a byproduct, we extended to the arbitrary base field the main result of [7]:
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Corollary 5.4. For any field L (of any characteristic), the ring CH(X̃L) is generated by
a single element y ∈ CHn(X̃L) subject to the unique relation y2 = 0. □
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