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Abstract. Let G be an affine algebraic group over a field. The representation ring
R(G) has three standard filtrations, defining the same topology on R(G): augmentation,
Chern, and Chow, each of which contained in the next one. For split reductive G,
motivated by potential applications related to spin groups, we introduce and study one
more filtration, containing the previous ones, which we call induced because it is induced
by any of the filtrations on the representation ring of a maximal split torus of G. In the
case of semisimple simply connected G, this fourth filtration turns out to be equivalent
(in the above topological sense) to the previous three. However, for the spin group
G = Spin(d) over the complex numbers with d = 7, 8, the new filtration is shown to be
strictly larger than the others. It is also shown that for G = Spin(d) over an arbitrary
field and with any d ≥ 7, the Chern and Chow filtrations on R(G) are not the same,
giving new counter-examples to an extension of Atiyah’s conjecture.
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1. Introduction

Let G be an affine algebraic group of finite type over a field. The representation ring
R(G) has three standard filtrations: augmentation, Chern, and Chow, each of which is
smaller than the next one, see, e.g., [14]. These filtrations are known to be equivalent to
each other; in particular, they define the same topology on R(G), see [14, Corollary 4.8].

For split reductive G, motivated by potential applications related to spin groups (see the
explanation after Question 3.11), we introduce in §2 and then study one more filtration,
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containing the previous ones. We call it the induced filtration because it is induced by
any of the filtrations on the representation ring of a maximal split torus of G. In the
case of semisimple simply connected G, this fourth filtration turns out to be equivalent
to the previous three (see Proposition 3.1). However, for G = Spin(d) over the complex
numbers with d = 7, 8, it is shown to be strictly larger than the others (Theorem 4.9).
It is also shown (in Theorem 4.5) that for G = Spin(d) over an arbitrary field and with
any d ≥ 7, the Chern and Chow filtrations on R(G) are not the same, giving refined
counter-examples to an extension of Atiyah’s conjecture. The case of d = 7 has already
been observed (over an algebraically closed field) in [30, Theorem 1.1].

Indeed, for a finite group G viewed as a constant algebraic group over the complex
numbers, Atiyah conjectured in [1] that the Chern filtration on R(G) coincides with the
topological filtration defined with a help of the topological K-theory. The topological fil-
tration contains the Chow filtration (also called topological in some papers)– its algebraic
analogue defined for an arbitrary base field with a help of the algebraic K-theory. Var-
ious counter-examples to this conjecture have been constructed by Weiss [29], Thomas
[25] (this is the paper from which the title of the present paper is stolen), and Leary–
Yagita [17]. Totaro in [28, Chapter 15] produced new enhanced counter-examples with
a difference observed between the topological and the Chow filtration. He also extended
Atiyah’s question to more general algebraic groups and produced some (enhanced in the
above sense) counter-examples to that extension too.

Looking at the difference between the Chow and the Chern filtrations (over an arbi-
trary field) is another enhancement of the extended question. Note that with rational
coefficients, the two filtrations coincide (see Lemma A.1).

The first counter-example of that type with a split semisimple group is probably given
by the special orthogonal group SO(2n) with n ≥ 3. It was implicitly worked out in [5]
(see Example 4.4 here). In fact, we use the special orthogonal group to demonstrate a lot
of other related phenomena. One of the reasons why it provides so convenient source of
examples is a computation of the Chow ring for the classifying space of SO(2n) made over
a field of characteristic ̸= 2 in [19] and, by a different method, over the complex numbers
in [5].

Returning to the extended Atiyah’s conjecture, the groups Spin(d ≥ 7), treated by
Theorem 4.5, seem to provide the first split semisimple simply connected counter-examples
to it. The starting ingredient of the proof is a computation of the Chern filtration for
quadrics made by the author in [7] over 30 years ago.

In Appendix A, a definable for arbitrary affine algebraic group G replacement of the
induced filtration is suggested and briefly discussed.
The spin groups Spin(d) and the special orthogonal group SO(d) we consider in the

paper are defined using the standard split d-dimensional quadratic forms which, unlike
to the tradition in topology, are not sums of squares. To distinguish with topology, some
authors prefer the notation Spind and SOd.
In this paper, for an affine algebraic group, the condition of being reductive includes

the condition of being connected.
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2. The induced filtration

Let G be a reductive group with a split maximal torus T ⊂ G. We would like to restrain
the image of the homomorphism CH(BG) → CH(BT ) of the Chow rings of the classifying
spaces given by the inclusion. It follows from [27, Theorem 1.3(1)] that the kernel of this
homomorphism is exactly the torsion ideal (i.e., the ideal consisting of all elements of
finite order). The destination ring CH(BT ) is canonically isomorphic to the symmetric

Z-algebra S(T̂ ) of the character group T̂ of T . In particular, CH(BT ) is torsion free.
First of all, the image consists of elements invariant under the action of the Weyl group

W of G with respect to T . Therefore, we actually have a homomorphism

f : CH(BG) → CH(BT )W .

Next, as discussed in [13], the image satisfies certain constraints given by Steenrod oper-
ations on Chow groups modulo a prime. Besides, for semisimple G, constraints given by
reductive envelopes of G have been considered in [8].
If G is defined over the complex numbers, the cycle class map to the integral singular

cohomology delivers the commutative square

CH(BG) −−−→ CH(BT )y y≀
H(BG) −−−→ H(BT )

with an isomorphism on the right. Therefore f factors as

CH(BG) −−−→ H(BG)
fH−−−→ H(BT )W = CH(BT )W .

So, one more restraint on Im f is the inclusion Im f ⊂ Im fH. This inclusion is of practical
use because for many groups G, the image of fH is known.
Passing to an arbitrary base field, let us consider the similar restraint given by the

representation ring. Namely, the representation ring R(G) of G can be viewed as the
Grothendieck ring of BG and as such is endowed with the Chow filtration

R(G) = R(0)(G) ⊃ R(1)(G) ⊃ . . .

(also known under several different names, e.g., the filtration by codimension of support),
see [28] and [14]. For the associated graded ring ChowR(G), we have a canonical surjective
homomorphism of graded rings CH(BG) →→ ChowR(G) whose kernel is contained in the
torsion ideal. In particular, CH(BT ) →→ ChowR(T ) is an isomorphism. So, it follows
from the commutative square

CH(BG) −−−→ CH(BT )y y≀
ChowR(G) −−−→ ChowR(T )

that f factors through ChowR(G):

(2.1) f : CH(BG)
onto−−−→ ChowR(G)

fR−−−→ ChowR(T )W = CH(BT )W .
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We proceed by collecting some information on ChowR(G) starting with R(G). The
homomorphism R(G) → R(T ), induced by the embedding, is injective with the image
R(T )W (see [22, Théorème 4] or [18, Theorem 22.38]). So, the ring R(G) is identified with

R(T )W . The representation ring R(T ) is the group ring Z[T̂ ]. We follow the exponential

tradition of writing ex for the element in Z[T̂ ] corresponding to x ∈ T̂ to handle the

issue that the addition in T̂ becomes multiplication in the group ring. The elements ex all
together form an additive basis of Z[T̂ ] and the action of W permutes this basis. Therefore

Z[T̂ ]W is additively generated by the orbit sums of the basis elements. (This situation

drastically differs from S(T̂ ) for which determination of W -invariants often represents a
considerable difficulty.)

For semisimple and simply connected G there is even better classical description of
Z[T̂ ]W : it turns out to be the polynomial ring on the orbit sums of the fundamental
weights of G ([3, Theorem 1 and Example 1 of §3 of Chapter VI]). These orbit sums are
the classes in R(G) of the fundamental representations of G.

Example 2.2. For the special orthogonal group G = SO(2n+ 1) with n ≥ 2, let T ⊂ G

be its standard split maximal torus and let x1, . . . , xn be the standard basis of T̂ . The
action of the Weyl group W on T̂ makes it a subgroup of the automorphism group Aut T̂
of T̂ generated by the permutations of x1, . . . , xn and their sign changes.

The ring R(T ) is the Laurent polynomial ring Z[t±1
1 , . . . , t±1

n ], where ti := exi . The
action of W permutes t1, . . . , tn and exchanges ti with t−1

i for individual i so that R(T )W

is generated by the elementary symmetric polynomials in t1 + t−1
1 , . . . , tn + t−1

n .
Switching from G = SO(2n+ 1) to the spin group G = Spin(2n+ 1) with its standard

split maximal torus T , we “enlarge” T̂ by adjoining the element (x1+ · · ·+xn)/2. (There-

fore Z[T̂ ] is “enlarged” by adjoining a square root of t1 . . . tn.) The fundamental weights
are the partial sums x1 + · · · + xi for i = 1, . . . , n − 1 together with the adjoint element
(x1 + · · ·+ xn)/2, see [3, Table II].

Example 2.3. For G = SO(2n) with n ≥ 3, let T ⊂ G be its standard split maximal

torus and let x1, . . . , xn be the standard basis of T̂ . The action of the Weyl group W on
T̂ makes it a subgroup of Aut T̂ generated by the permutations of x1, . . . , xn and the sign
changes of any even number of them.

Switching from G = SO(2n) to G = Spin(2n) with its standard split maximal torus

T , we “enlarge” T̂ as in Example 2.2 – by adjoining the element (x1 + · · · + xn)/2. The
fundamental weights are the partial sums x1 + · · ·+ xi for i = 1, . . . , n− 2 together with
(x1 + · · · + xn−1 − xn)/2 and (x1 + · · · + xn−1 + xn)/2, see [3, Table II]. Note that since
the Weyl group here is smaller than in Example 2.2, the orbit sum

√
t1 . . . tn +

√
t1 . . . tn/(t1t2) + · · · ∈ Z[T̂ ]

of the last fundamental weight we have here is different from the orbit sum
√
t1 . . . tn +

√
t1 . . . tn/t1 + · · · ∈ Z[T̂ ]

of Example 2.2.

So, we can calculate the ring R(G) = R(T )W . If we could also calculate its Chow
filtration, then we would be able to determine Im f precisely because Im f = Im fR as
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we see from decomposition (2.1). Unfortunately, we cannot calculate the filtration in
general. But we can calculate the Chow filtration on R(T ). And this will provide us with
an estimate on the filtration on R(G) ⊂ R(T ).

Let I be the kernel of the (augmentation or rank) ring homomorphism R(T ) → Z,
mapping every ex to 1. Clearly, I is additively generated by the differences 1 − ex. Since
CH(BT ) is generated by CH1(BT ), it follows by [14, Corollary 3.4] that the Chow filtration
on R(T ) is the filtration

R(T ) ⊃ I ⊃ I2 ⊃ . . .

by the powers of the augmentation ideal. Since the homomorphism

R(G) = R(T )W ↪→ R(T )

respects the filtrations, we have for any i the inclusion R(i)(G) ⊂ R(G)∩ I i = (I i)W . The
terms on the right define a filtration on R(G) which we call the induced filtration because
it is induced by any of the augmentation = Chern = Chow filtration of R(T ). (There also
is a much smaller and less interesting augmentation filtration on R(G) – the filtration by
the powers (IW )i of the augmentation ideal R(G)∩ I = IW of R(G).) We write IndR(G)
for the graded ring associated to the induced filtration. The homomorphism f decomposes
as

(2.4) f : CH(BG)
onto−−−→ ChowR(G) −−−→ IndR(G) ↪→ CH(BT )W .

This gives the following estimation for the image of f :

Proposition 2.5. The image of f is contained in IndR(G). □

Remark 2.6. Proposition 2.5 can also be explained via the equivariant connective K-
theory CK of [15], which yields the commutative square

CK(BG) −−−→ CK(BT )Wyonto

y
CH(BG)

f−−−→ CH(BT )W

with surjection on the left, showing that the image of f is contained in the image of the
map on the right. Note that CKi(BT ) = I i for any i ∈ Z, where the non-positive powers of
I are defined to be equal to the entire R(T ). Therefore, for any i ≥ 0, CKi(BT )W = (I i)W

is the ith term of the induced filtration on R(G).

Remark 2.7. The representation ring R(G), the induced filtration on it, and therefore

the ring IndR(G) can be constructed in terms of the character lattice T̂ , Weyl group W ,

and the action of W on T̂ . In particular, these objects do not depend on the base field.
One can use [18, Theorem 23.74] to state it accurately.

Remark 2.8. Example 3.9 below shows that the inclusion IndR(G) ↪→ CH(BT )W can
be strict. In other terms, the estimate of Proposition 2.5 is in general nontrivial.

We describe in Proposition 3.5 below a situation where the estimate of Proposition 2.5
is the exact value of Im f .
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3. Relations between filtrations

There are 4 filtrations on the representation ring R(G) of a split reductive group G,
related by a chain of inclusions. The smallest one is the augmentation filtration which
is followed by the Chern, the Chow, and the induced ones. Recall that by [14, Corollary
4.8], the first 3 filtrations are equivalent to each other. In particular, they define the same
topology on R(G). Besides, the Chern and Chow filtrations coincide rationally.

Proposition 3.1. For a simply connected split semisimple group G, all four filtrations
on R(G) are equivalent.

Proof. By [20, Theorem 2.2(2)], the kernel of the canonical (surjective since G is simply
connected) homomorphism of R(T ) to the Grothendieck ring of the quotient variety G/T
is the ideal generated by IW . Since the homomorphism respects the Chow filtration, I i

is in the kernel, where i := 1 + dim(G/T ). It follows that I i ⊂ IW · R(T ). Therefore
(3.2) I ij ⊂ (IW )j · R(T )
for any j ≥ 0. Since G is simply connected, the embedding of R(T )W -modules R(T )W ↪→
R(T ) splits, see [23, Theorem 2.2], so that (3.2) implies (I ij)W ⊂ (IW )j. This inclusion
proves equivalence of the induced filtration (the largest of the four) with the augmentation
filtration (which is the smallest of the four). □
Corollary 3.3. Let G be as in Proposition 3.1. For any i ≥ 0, the ith term (I i)W of the
induced filtration on R(G) consists of all elements in R(G) having a positive multiple in
R(i)(G).

Proof. If a ∈ R(G) has a positive multiple in R(i)(G) ⊂ (I i)W , then a ∈ (I i)W because
the quotient R(G)/(I i)W ⊂ R(T )/I i is torsion free. On the other hand, if a ∈ (I i)W ,
then a determines an element of (I i)W/(I i+1)W ⊂ (I i/I i+1)W = CHi(BT )W , which after
multiplication by the torsion index t of G comes to the image of f . Here we use [27,
Theorem 1.3(1)] telling that the cokernel of f is killed by t.
It follows that

ta ∈ R(i)(G) + (I i+1)W .

Applying the same procedure to the (I i+1)W -component of ta and continuing this way,
we show that for any j, a positive multiple of a is in R(i)(G) + (Ij)W . Taking sufficiently
large j we get by Proposition 3.1 that a positive multiple of a is in R(i)(G). □

Since the homomorphism ChowR(G) → ChowR(T ) is the composition

ChowR(G) → IndR(G) ↪→ ChowR(T ),

the kernel of ChowR(G) → IndR(G) coincides with the kernel of the homomorphism
ChowR(G) → ChowR(T ).

Lemma 3.4. The kernel of the homomorphism ChowR(G) → IndR(G) coincides with
the torsion ideal of ChowR(G).

Proof. Since IndR(G) is free of torsion, the kernel contains the torsion ideal.
Any element of ChowR(G) is the image of an element of CH(BG). Since the kernel

of CH(BG) → CH(BT ) = ChowR(T ) is killed by the torsion index of G ([27, Theorem
1.3(1)]), the statement follows. □
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Proposition 3.5. For G and T given, conditions (2) and (3) below are equivalent and
imply condition (1). If G is as in Proposition 3.1, then all the three conditions are equiv-
alent.

(1) the homomorphism ChowR(G) → IndR(G) is surjective (i.e., Im f = IndR(G));
(2) the homomorphism ChowR(G) → IndR(G) is injective (i.e., ChowR(G) is torsion

free, see Lemma 3.4);
(3) the induced filtration on R(G) coincides with the Chow filtration.

Proof. Condition (3) clearly implies (1) and (2).
Assuming condition (2), one shows by induction on i ≥ 0 that the ith terms of the two

filtrations of (3) coincide. Therefore conditions (2) and (3) are equivalent.
The surjectivity (1) implies that for any i ≥ 0, the ith term (I i)W of the induced

filtration on R(G) equals the sum R(i)(G) + (Ij)W with any j ≥ i. By Proposition 3.1,
(Ij)W ⊂ R(i)(G) for large enough j provided that G is as in Proposition 3.1. Consequently,
(1)⇒(3) for such G. □

Despite of the examples constructed in [28, Chapter 5], the following question seems to
be open:

Question 3.6. Does there exist a split reductive G with torsion in ChowR(G)?

This question is answered by positive in Theorem 4.9 below.

Example 3.7. Assume that the torsion index of a split reductive group G is equal to 1.
Then CH(BG) is torsion free. It follows by Proposition 3.5 that the induced filtration
on R(G) coincides with the Chow filtration and IndR(G) = Im f . However, the homo-
morphism f is surjective in this case. Therefore we do not get an interesting application
ground for Proposition 2.5 with such G.

Example 3.8. Let G be the special orthogonal group SO(2n+1) with n ≥ 1. It has been
shown in [14, §5] that ChowR(G) is torsion free. Note that over a field of characteristic
not 2, CH(BG) is not torsion free (see the computation of CH(BG) made in [26, §16] and
[19, Theorem 5.1]): its torsion ideal is generated by the odd Chern classes (each of order 2
besides the vanishing first one) of the standard G-representation. In contrast, over a field
of characteristic 2, CH(BG) is torsion free by [14, Appendix B] (the odd Chern classes
vanish all together).

Since Im f is known to coincide with CH(BT )W , we do not get an interesting applica-
tion ground for Proposition 2.5 with this G. To recall why f is surjective, let us write
x1, . . . , xn for the standard basis of T̂ and identify CH(BT ) = S(T̂ ) with the polynomial
ring Z[x1, . . . , xn]. The Weyl group W of G permutes x1, . . . , xn and changes the sign
of any of them. Therefore the ring of W -invariants Z[x1, . . . , xn]

W is generated by the
Pontryagin classes – the elementary symmetric polynomials in x2

1, . . . , x
2
n. The Pontrya-

gin classes are in the image of f : up to signs, they are images of the even Chern classes
c2, c4, . . . , c2n ∈ CH(BG) of the standard G-representation. Concretely, for i = 1, 2, . . . , n,
the image of c2i is equal to (−1)ipi because±x1,±x2, . . . ,±xn are the roots of the standard
representation meaning that for i = 1, 2, . . . , c2n the image of ci is the ith elementary sym-
metric polynomial in ±x1,±x2, . . . ,±xn. Note that the images of the odd Chern classes
vanish.
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Example 3.9. Let G be the special orthogonal group SO(2n) with n ≥ 2 and let T

be its standard split maximal torus. Writing x1, . . . , xn for the standard basis of T̂ , we
identify CH(BT ) = S(T̂ ) with the polynomial ring Z[x1, . . . , xn]. The Weyl group W of
G permutes x1, . . . , xn and change the signs of any even number of them. The ring of W -
invariants Z[x1, . . . , xn]

W is generated by the Euler class e := x1 . . . xn and the Pontryagin
classes – the elementary symmetric polynomials in x2

1, . . . , x
2
n (see, e.g., [8, Lemma 4.5]).

The Pontryagin classes are in the image of f : up to a sign as in Example 3.8, they are
images of the even Chern classes of the standard G-representation. (The images of the
odd Chern classes vanish.) Since the cokernel of f is killed by the torsion index of G (by
[27, Theorem 1.3(1)]), which is equal to 2n−1 (see [27, Theorem 3.2]), the multiple 2n−1e
is also in the image of f .

In fact, the image of f is generated by the Pontryagin classes and 2n−1e. In particular,
it is strictly smaller than CH(BT )W .

The above description of Im f in characteristic ̸= 2 can be obtained from the compu-
tation of CH(BG) made over a field of characteristic ̸= 2 in [19] and [5]. Over a field
of characteristic 2, a computation of CH(BG) is not available. But one can refer to [8,
Proposition 4.2], where the image of f has been determined in a characteristic free setting.

In turns out that one can determine Im f with the help of Proposition 2.5 as well.
Indeed, by Lemma 3.10 below, in characteristic ̸= 2, the group ChowR(G) is torsion
free. Since by Remark 2.7 the ring IndR(G) does not depend on the base field (and, in
particular, on its characteristic), IndR(G) = Im f in any characteristic.

Lemma 3.10. For G = SO(2n) over a field of characteristic ̸= 2, the group ChowR(G)
is torsion free.

Proof. By [19] and [5], In characteristic ̸= 2, the torsion ideal of CH(BG) is generated
by the odd Chern classes of the standard G-representation. Since they are restrictions
of odd Chern classes of the standard representation of SO(2n + 1) ⊃ SO(2n) = G, they
vanish in ChowR(G). □
Question 3.11. It would be interesting to compute the ring IndR(G) for the spin groups
G = Spin(d).

The case of even d in Question 3.11 is especially interesting. Depending on the answer,
it may help to resolve the problem of determination of the indexes of generic orthogonal
grassmannians for even spin groups. For odd spin groups the similar problem has been
resolved in [9] – a continuation of [4].

4. Spin groups

Let us recall that on the Grothendieck ring K(X) of a smooth variety X, the Chern
filtration

K(X) = K[0](X) ⊃ K[1](X) ⊃ . . .

is defined (also called gamma filtration in the literature). It is defined using the Chern
classes (with values in K(X)) of the elements of K(X) and satisfies for any i the relation
K[i](X) ⊂ K(i)(X) with the Chow filtration. For i ≤ 2, the inclusion is actually the
equality.
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Similarly, for any affine algebraic group G we have the Chern filtration on R(G) re-
lated the same way to the Chow filtration on R(G), see [15]. We write ChernK(X) and
ChernR(G) for the associated graded ring of the corresponding Chern filtration.

The two filtrations on K(X) coincide (in every term) if and only if the ring ChowK(X) is
generated by Chern classes; this condition is implied by but is weaker than the condition
for CH(X) to be generated by Chern classes. The same holds for the two filtrations
on R(G). Indeed, by its very construction, the ring ChernR(G) is generated by Chern
classes. The condition that ChowR(G) is generated by Chern classes means surjectivity
of the homomorphism ChernR(G) → ChowR(G) and implies that for any i ≥ 0, the ith
term R(i)(G) of the Chow filtration equals the sum R[i](G) + R(j)(G) with any j ≥ i. By
equivalence of the filtrations shown in [14, Corollary 4.8], we know that R(j)(G) ⊂ R[i](G)
for sufficiently large j.

Remark 4.1. For a split reductive group G, similarly to the induced filtration as in
Remark 2.7, the Chern filtration on the ring R(G) and therefore the associated graded

ring ChernR(G) can be constructed in terms of T̂ , W , and its action on T̂ . In contrast to
this, the Chow filtration on R(G), situated between the Chern and the induced filtration,
and its associated graded ring ChowR(G) are much more subtle invariants of G.

Example 4.2. Assume that a split reductive group G is special, i.e., every G-torsor over
every field extension of the base field is trivial. (The torsion index of G is 1 in this case.)
Then by [12, Proposition 5.5], the ring CH(BG) is generated by Chern classes. It follows
that the Chow and the Chern filtrations on R(G) coincide.

Example 4.3. The torsion index of G = SO(2n+1) is 2n (see [27, Theorem 3.2]). However
the ring CH(BG) is still generated by Chern classes (of the standard G-representation –
see the references provided in Example 3.8) and so, the two filtrations on R(G) coincide.

Example 4.4. For G = SO(2n) with n ≥ 3 and over a field of characteristic not 2,
according to [5, Corollary 2], the ring CH(BG) is not generated by Chern classes. Since
the kernel of the homomorphism CH(BG) → ChowR(G) is generated by Chern classes,
the ring ChowR(G) is not generated by Chern classes and the two filtrations on R(G)
differ each from the other.
In characteristic 2, each of the homomorphisms CH(BG) → ChowR(G) → IndR(G) is

surjective. The ring IndR(G) is “the same” in any characteristic (see Remark 2.7) and is
not generated by Chern classes. Therefore in characteristic 2 neither the ring ChowR(G),
nor the ring CH(BG) is generated by Chern classes. The Chern and Chow filtrations on
R(G) differ each from the other as well.

Theorem 4.5. For G = Spin(d) with d ≥ 7, the Chern and Chow filtrations on R(G)
differ each from the other. More exactly, their codimension 3 terms are different. This
statement also holds with the coefficients Z(2) (the ring of integers Z localized at the prime
ideal generated by 2) in place of Z.

We prove Theorem 4.5 in three steps, the first two being Lemma 4.6 and Proposition
4.8.
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Lemma 4.6. Let X be a smooth projective quadric of dimension d ≥ 7 defined by a
quadratic form of trivial discriminant and Clifford invariant. Then K[3](X) ̸= K(3)(X).
This statement also holds with the coefficients Z(2).

Proof. We write X̄ for X with the scalars extended to an algebraic closure of its base field.
By the conditions on the discriminant and Clifford invariant, we have K(X) = K(X̄) (see
[24] or [20]). More correctly, the change of field homomorphism K(X) → K(X̄) is an
isomorphism. Note that the Chern filtrations on K(X) and on K(X̄) coincide, but the
Chow filtrations differ each from the other in general.

Let l ∈ K(X̄) be the class of a maximal totally isotropic subspace. As an element of
K(X), l belongs to the codimension 2 term K[2](X) = K(2)(X) of both filtrations. Note
that some positive multiple of l is in K[3](X) ⊂ K(3)(X). In particular, l yields a torsion
element (possibly zero) in Chow2K(X).

For odd d = 2n+1, it has been shown in [11] (see also [7, Chapter IV]) that l ̸∈ K[3](X).
The assumption that the characteristic of the base field if not 2, made in [11] and in [7],
can be omitted because the ring K(X) along with the Chern filtration does not depend
on the characteristic.
The case of even d = 2n+2 was discussed in [11] and [7, Chapter IV] with less details.

However, taking a smooth subquadric X ′ ⊂ X of the odd dimension d − 1 = 2n + 1
and writing l′ ∈ K(X ′) for the class in K(X ′) of a maximal totally isotropic subspace,
we get the pull-back homomorphism K(X) → K(X ′) respecting the Chern filtrations and
mapping l to l′. Since l′ ̸∈ K[3](X ′), it follows that l ̸∈ K[3](X).

Now, turning to the Chow filtration and arbitrary (odd or even) d ≥ 7, we use the fact
that the group CH2(X) is torsion free. The condition d ≥ 7 is needed in this result; the
discriminant and the Clifford invariant conditions are superfluous. The result was proven
in [10, Theorem 6.1] for characteristic ̸= 2 and in [2, Theorem A.1] for characteristic
2. It implies that Chow2K(X) is torsion free and therefore l ∈ K(3)(X). In particular,
K[3](X) ̸= K(3)(X).

At this point, we proved Lemma 4.6 for coefficients Z. To prove if for coefficients Z(2),

we show that no odd multiple of l is in K[3](X). For odd d = 2n+1 this follows from the
inclusion 2l ∈ K[3](X), which is a consequence of the formula

(4.7) 2l = h · (hn + l)

(see [10, §3.2] or – for more details – [7, Lemma 2.2.9]), where h ∈ K[1](X) is the class of
a hyperplane section, or, equivalently, the first Chern class of the dual to the tautological
line bundle on X. For even d the formula (4.7) does not hold, but we can reduce the
initial statement “no odd multiple of l is in K[3](X)” to the odd-dimensional codimension
1 subquadric the same way as above. □
Now we are going to consider the even Clifford group Γ+(d) defined as in [16, §23] out of

the standard split nondegenerate quadratic form of dimension d. This is a split reductive
group and Spin(d) is its semisimple part.

Proposition 4.8. For d ≥ 7, the Chern and Chow filtrations on the representation ring
R(Γ+(d)) differ each from the other. More exactly, their codimension 3 terms are different.
This statement also holds with the coefficients Z(2).
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Proof. Let P be the standard maximal parabolic subgroup in Spin(d + 2) corresponding
to the first vertex of the Dynkin diagram. The quotient variety Spin(d+ 2)/P is a (split
d-dimensional) quadric. Since Γ+(d) is the reductive part of P , the representation rings
with their Chern and Chow filtrations for the two groups are identical, see [12, Proof of
Proposition 6.1].

Let E be a generic Spin(d + 2)-torsor (i.e., the generic fiber of the quotient morphism
GL(N) → GL(N)/ Spin(d+2) given by an embedding of Spin(d+2) into the general linear
group GL(N) for some N) and let X be the quotient variety E/P . Then X is a smooth d-
dimensional projective quadric defined by the associated with E quadratic form of trivial
discriminant and Clifford invariant. We have a natural surjective ring homomorphism
R(P ) → K(X) mapping the terms of the Chern and Chow filtrations on R(P ) surjectively
onto corresponding terms of the filtrations on K(X). Since K[3](X) ̸= K(3)(X) by Lemma
4.6, it follows that R[3](P ) ̸= R(3)(P ). □

Proof of Theorem 4.5 – the third and final step. In order to show that R[3](G) ̸= R(3)(G),
we assume that R[3](G) = R(3)(G) and get in contradiction with Proposition 4.8.
The group G = Spin(d) is the semisimple part of the group G′ := Γ+(d). In particular,

G is a normal subgroup in G′. The quotient G′/G is a rank 1 split torus. The homomor-
phism R(G′) → R(G), induced by the embedding of the groups, is surjective (see, e.g.,
[12, Lemma 5.4]) and its kernel is generated by certain element y ∈ R[1](G′) \ R[2](G′)
– the first Chern class of the image under the homomorphism R(G′/G) → R(G′) of the
tautological character of G′/G. It follows that R(G′)[i] → R(G)[i] is surjective for any
i ≥ 0. Given any x ∈ R(3)(G′), its image in R(3)(G) belongs to R[3](G) so that we can find
x′ ∈ R[3](G′) with the difference x− x′ vanishing in R(G). Therefore we have x− x′ = yz
for some z ∈ R(G′). If we show that z ∈ R[2](G′), then we get that R[3](G′) = R(3)(G′)
which is a contradiction with Proposition 4.8, finishing the proof of Theorem 4.5.
Clearly, z ∈ R[1](G′). Let T be a split maximal torus of G′. If z ̸∈ R[2](G′), then y and

z yield two nonzero elements of Chern1R(G) ⊂ Chern1R(T ) = S1(T̂ ) with zero product,
a contradiction. □

Theorem 4.9. For the group G = Spin(d) over the complex numbers with d = 7, 8, the
ring ChowR(G) is not torsion free. More exactly, the component Chow3R(G) contains
an element of order 2.

Proof. Although the statement of Theorem 4.9 is for the integer coefficients, it suf-
fices to prove it for the coefficients Z(2). It has been shown in [6] that the Chow ring
CH(B Spin(7)) ⊗ Z(2) is generated by Chern classes together with a single additional el-

ement ξ ∈ CH3(B Spin(7)) of order 2. (The description of the integral Chow groups,
worked out later in [21], has more generators which are not Chern classes.) Since by The-
orem 4.5, the ring ChowR(Spin(7))⊗ Z(2) is not generated by Chern classes, the element
ξ does not vanish there. This proves the d = 7 part of Theorem 4.9.

In [21], a 2-torsion element ξSpin(8) ∈ CH3(B Spin(8)) is constructed. It maps to ξ under
the homomorphism induced by an embedding Spin(7) ↪→ Spin(8). It follows from the
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commutative square

CH3(B Spin(8)) −−−→ Chow3R(Spin(8))y y
CH3(B Spin(7)) −−−→ Chow3R(Spin(7))

that ξSpin(8) does not vanish in Chow3R(Spin(8)). □

Appendix A. The reduced filtration

In this appendix we briefly discuss another filtration on the representation ring R(G)
which is defined for arbitrary affine G and seems to be a suitable replacement for the
induced filtration, the latter being defined for split reductive G only.

Let G be any affine algebraic group (of finite type over a field). The Chern filtration
and containing it Chow filtration on R(G) also have the following relation:

Lemma A.1. For any i ≥ and any a ∈ R(i)(G), some positive multiple of a is in R[i](G).

Proof. By [14, Corollary 4.9], after tensoring with Q, the homomorphism

ChernR(G) → ChowR(G)

becomes isomorphism. It follows that for any j ≥ i some positive multiple of a is in
R[i](G) + R(j)(G). By [14, Corollary 4.8], R(j)(G) ⊂ R[i](G) for sufficiently large j. □
For an arbitrary affine algebraic group G, let us call reduced the filtration on R(G) the

ith term of which – for any i ≥ 0 – consists of all elements in R(G) possessing a positive
multiple in R[i](G). We write RedR(G) for its associated graded ring. By Lemma A.1,
the reduced filtration contains the Chow filtration and can be defined using the Chow
filtration in place of the Chern one. The inclusion yields a ring homomorphism

ChowR(G) → RedR(G).

By Corollary 3.3, for a split semisimple simply connected G, the reduced filtration
coincides with the induced one. It seems to be a good replacement for the induced
filtration also because, unlike the latter, it is defined for arbitrary G and has the following
property in the case when G is split reductive:

Lemma A.2. For any split reductive G, the reduced filtration is contained in the induced
one. Moreover, the resulting homomorphism RedR(G) → IndR(G) is surjective.

Proof. If for some i ≥ 0, some a is in the ith term of the reduced filtration, then a positive
multiple of a is in R(i)(G) which is a subset in the ith term (I i)W of the induced filtration.
Since the ring IndR(G) is torsion free, it follows that a ∈ (I i)W .
By the argument of the proof of Corollary 3.3, for any a ∈ (I i)W , the multiple ta of

a, where t is the torsion index of G, is in R(i)(G) + (I i+1)W . This means surjectivity of
RedR(G) → IndR(G). □
Remark A.3. Like the induced filtration (see Remark 2.7) and like the Chern filtration
(see Remark 4.1), the reduced filtration on the representation ring of a split reductive G
only depends on the type of G and, in particular, does not depend on the base field.
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