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Abstract. Given a prime number p, we introduce the notion of a p′-inner reductive
algebraic group G over a field F , opposite to an older notion of p-inner group. (Any ab-
solutely simple group of type not D4 is p - or p′-inner; a reductive group is simultaneously
p - and p′-inner if and only if it is of inner type.) For such G, the degree of the minimal
field extension E/F , over which G becomes of inner type, is prime to p. (In the p -inner
case, the degree is a p -power.) In the category of Chow motives with coefficients Z/pZ
over the field F , we define the A-upper motives of G; they are naturally related to those
Artin motives which are indecomposable direct summands in the motives of spectra of
intermediate fields in E/F . We show that the motives of any projective G-homogeneous
variety is isomorphic to a direct sum of Tate shifts of A-upper motives. Based on that, we
get a motivic classification of such varieties by means of their higher Artin-Tate traces.
We also show that the higher Tits p-indexes determine motivic equivalence classes of the
p′-inner groups.
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1. Introduction

Envisioned by Alexander Grothendieck in the sixties, Chow motives provide powerful
invariants to study arithmetic and geometry of smooth projective varieties over fields. The
case of projective homogeneous varieties has received a lot of attention over the years and
numerous breakthroughs and solutions to classical conjectures were obtained through the
study of their motives. Most of these results are proved in the framework of semisimple
algebraic groups of inner type, i.e., such that the ∗-action of the absolute Galois group of
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the base field on the associated Dynkin diagram is trivial. In this work, we initiate the
study of motives and motivic decompositions for projective homogeneous varieties under
arbitrary reductive groups.

An extensive study of motives of projective quadrics, which were essential to Voevod-
sky’s proof of the Milnor conjecture [21], was carried out by Alexander Vishik in [19]. This
milestone led notably to advances on the Kaplansky problem [20] and a proof of Hoff-
mann’s conjecture [11]. Vishik provides on the way a qualitative description of motivic
structure of projective quadrics through the motives of Čech simplicial schemes associated
to orthogonal Grassmannians. Working now with coefficients in Z/pZ and motivated by
the case of generalized Severi-Brauer varieties, the second author then obtains a descrip-
tion of indecomposable summands in the motives of projective G-homogeneous varieties
for G a reductive group of inner type: the indecomposable summands are Tate shifts
of upper motives of G [14]. (More generally, the description holds for p-inner reductive
groups – the reductive groups which acquire inner type over a finite base field extension of
a p -power degree, see [12].) This result led to many applications, notably on the isotropy
of orthogonal involutions [13] and the classification of motivic decompositions for excep-
tional groups [8] as well as of motives of projective homogeneous varieties under p -inner
groups [6].
We continue to work with coefficients in Z/pZ, where p is a fixed prime. Let G be

an arbitrary reductive algebraic group over a field F and let E/F be a minimal field
extension over which G acquires inner type. The extension E/F is finite Galois, and its
isomorphism class is determined by G. We say that G is p′-inner if the degree of E/F is
not divisible by p and the following additional condition holds: for any intermediate field
L in E/F and any projective GL-homogeneous variety Y (over L), there exists a projective

G-homogeneous variety Ŷ (over F ) such that the L-varieties Y and ŶL are equivalent in

the sense of [6, §2] meaning that there exist multiplicity 1 ∈ F correspondences ŶL  Y

and Y  ŶL.
For Y as above, we define the A-upper motives of Y (see Definition 5.3). Each of them

is an indecomposable F -motive naturally related with an Artin F -motive – a summand
in the F -motive of the spectrum of L. This leads to the notion of the A-upper motives
of G (see Definition 5.4). If G is of inner type, the A-upper motives of G are the upper
motives of G considered previously.
Assume that G is p′-inner, and pick a projective G-homogeneous F -variety X. Theorem

7.1 provides a qualitative analysis of the motivic structure of X, stating that the motive
of X decomposes (in a unique way) as a direct sum of Tate shifts of A-upper motives
of G. As a consequence of this structural result we obtain a complete classification of
motives of such projective homogeneous varieties through their higher Artin-Tate traces
(Theorem 8.6). In fact, a complete classification is obtained for arbitrary sums of Tate
shifts of A-upper motives (of possibly distinct p′-inner groups). Note that by Remark 3.6,
Tate traces of [6] are not sufficient for this purpose.

Finally, in §9, we provide criteria of motivic equivalence for p′-inner groups by means of
higher Tits p-indexes of [5]. These results expound how higher isotropy of such reductive
groups determines motives of projective homogeneous varieties and extend results of [6].
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2. Notation

Let F be a field and F̄ a separable closure of F . We denote by ΓF the absolute Galois
group Gal(F̄ /F ) of F . Throughout the paper, p is a prime number, F := Z/pZ, and Ch(·)
denotes the Chow group with coefficients in F. We also let CM(F,F) be the category of
Chow motives over F with coefficients in F (see [7, §64]), while CMeff(F,F) stands for its
full subcategory of effective motives. A variety is a separated scheme of finite type over
a field. For any smooth projective F -variety X, we denote by M(X) its motive in both
categories. We use the notation AM(F,F) for the full subcategory of CMeff(F,F) which
consists of direct summands of motives of 0-dimensional varieties, that is, the category of
Artin (Chow) motives, see §3.
A complete decomposition of a motive M is a finite direct sum decomposition with

indecomposable summands. We say that the Krull-Schmidt property holds for a motive
M if any direct sum decomposition of M can be refined into a complete one, and M admits
a unique complete decomposition up to permutation and isomorphism of the summands.
Since we work with finite coefficients, this property holds for direct summand of motives of
geometrically split varieties satisfying the nilpotence principle, see [14, §2.I]. This covers,
in particular, the case of projective homogeneous varieties under the action of a reductive
algebraic group. More generally, by [12, Theorem 2.1], this includes the variety XF ,
defined in the next paragraph, when X is a projective homogeneous variety over a finite
separable extension field L/F . In particular, taking X = SpecL, one sees that the Artin
motives have the Krull-Schmidt property.
Given an F -variety X and a field extension L/F , XL is the L-variety given by the

product of the F -schemes X and SpecL; we also let X̄ = XF̄ . The functor X 7→ XL

for smooth projective X extends to motives; given an F -motive M , we write ML for the
corresponding L-motive.
If L/F is finite and Y is an L-variety, we let Y F be the F -variety given by the scheme Y

endowed with the composition Y → SpecL → SpecF . In practice, we will only consider
smooth projective varieties Y and finite separable field extensions L/F , in which case the
F -variety Y F is also smooth and projective. By [12, §3], the functor Y 7→ Y F extends to
motives, the resulting functor CM(L,F) → CM(F,F) is called the corestriction functor;
given an L-motive M , we write MF for the corresponding F -motive.
By default, the spectrum of a field is the variety over this very field; for a finite field

extension L/F , we use the notation (SpecL)F for the F -variety given by the spectrum of
L. We write M(L)F for the motive of (SpecL)F , and F = M(F ) = M(SpecF ) for the
Tate motive.
Let E/F be a Galois field extension with a Galois group Γ. Given an E-variety Y

and an automorphism γ ∈ Γ, we write Yγ for the E-variety obtained from Y by the base
change via γ. Thus Yγ is the scheme Y viewed as an E-variety via the composition

Y → SpecE
γ−1

−→ SpecE,

for which we also write Y γ−1
= Yγ. This base change is invertible: (Yγ)γ−1 = Y . Hence

the variety Yγ has a rational point if and only if Y has one. We use the similar notation
for motives, and for the same reason, a motive Mγ is indecomposable if and only if M is.
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3. Artin motives

A-upper motives, defined in §5, are an essential tool in this paper. The letter “A” in
their name indicates their relationship with the Artin motives. In this section, we recall
known facts about Artin motives.
By definition (cf. [22, Definitions 1.2, 1.3]), an Artin motive over F is a direct summand

in the Chow motive of the spectrum of an étale F -algebra (that is, up to an isomorphism,
a finite direct product of finite separable field extensions of F ). An Artin-Tate motive
is a Tate shift of an Artin motive.1 In particular, the Tate motive F, as well as M(L)F

for all finite separable field extensions L/F , are Artin motives. Artin motives form an
additive subcategory of CMeff(F,F), denoted by AM(F,F). Here is a simple example of
an indecomposable Artin motive that is not isomorphic to F:

Example 3.1 (see Example 3.4 for more details). Consider an odd prime number p, a
field F , and a separable quadratic field extension L/F . In CMeff(F,F) (as well as in
CM(F,F)), the complete decomposition of the motive M(L)F consists of two summands:
F and A, where the motive A (whose isomorphism class is uniquely determined by the
Krull-Schmidt property) satisfies

Hom(F, A) = 0 = Hom(A,F).
In particular, A is not isomorphic to F.

Artin motives may be described in terms of Galois permutation modules, as we now
proceed to recall. Note that for any F -variety X, the Chow group Ch0(X̄) is a ΓF -module.
To better understand the structure of this module, one can use the anti-equivalence of
categories between étale F -algebras and finite sets with a (continuous) left ΓF -action, see
[15, (18.4)]. The ΓF -set corresponding to an étale F -algebra L is the set of F -algebra
homomorphisms from L to F̄ . Its cardinality is equal to the dimension of L over F .
The direct product (respectively, tensor product) of étale F -algebras corresponds to the
disjoint union (respectively, direct product) of ΓF -sets. Note that L is a field if and only
if the corresponding ΓF -set is transitive.

Let L ⊂ F̄ be a finite separable field extension of F embedded into F̄ , and let ΓL =
Gal(F̄ /L). The set of F -algebra homomorphisms from L to F̄ is identified with the
set of left cosets ΓF/ΓL, on which ΓF acts by left multiplication. For the F -variety
X := (SpecL)F , consider the F̄ -variety X̄ = Spec(L ⊗F F̄ ). Using the identification of
F̄ -algebras

(3.2) L⊗F F̄ =
∏

ΓF /ΓL

F̄ , x⊗ λ 7→ (γ(x)λ)γΓL∈ΓF /ΓL
,

we see that X̄ is a disjoint union of base points identified with ΓF/ΓL. To the Artin
motive M(L)F , we associate the Chow group Ch0(X̄), which is a transitive permutation
F[ΓF ]-module isomorphic to the F[ΓF ]-module F[ΓF/ΓL] given by the ΓF -set ΓF/ΓL. (The
choice of the embedding L ↪→ F̄ influences the isomorphism.) By permutation module
over a group ring F[Γ] we mean a module possessing a finite base over F permuted by Γ;
in particular, all our permutation modules are finite dimensional vector spaces over F.

1Thanks to Stefan Gille and Alexander Vishik for suggestion to consider the Artin and Artin-Tate
motives in this context.
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By the same arguments as in [3, §7], we obtain an anti-equivalence of additive categories
between the category of Artin motives AM(F,F) and the category of direct summands in
permutation F[ΓF ]-modules. This anti-equivalence is compatible with the tensor products
in these two categories. Indeed, the tensor product of two étale F -algebras corresponds to
the direct product of the associated ΓF -sets, which in turn gives rise to the tensor product
of the corresponding permutation modules.

Remark 3.3. Restricting to the subcategory AM(F,F) ⊂ CM(F,F) the duality functor
CM(F,F) → CM(F,F)op of [7, §65], we get a functor AM(F,F) → AM(F,F)op (which
is identity on the motives of varieties). Composing it with the above anti-equivalence,
one gets the equivalence of additive categories between the category of Artin motives
AM(F,F) and the category of direct summands of permutation F[ΓF ]-modules, obtained
in [3, §7] directly using the Chow functor Ch0 in place of Ch0.

By construction, the motive M(L)F corresponds to the permutation module F[ΓF/ΓL];
in particular, the Tate motive F = M(F ) corresponds to F[ΓF/ΓF ], that is, the 1-
dimensional module F with the trivial ΓF -action.

Let E ⊂ F̄ be a finite Galois extension field of F containing L, and let Γ be its Galois
group Gal(E/F ). The action of ΓF on F[ΓF/ΓL] factors through Γ. We may consider
F[ΓF/ΓL] as an F[Γ]-module rather than an F[ΓF ]-module (without affecting, say, its
endomorphism ring). This applies notably when L/F itself is Galois and E = L.

Example 3.4. In the settings of Example 3.1, we have ΓF/ΓL = Γ = {1, σ} ' Z/2Z.
The F[Γ]-module F[Γ], associated to M(L)F , decomposes as

F[Γ] = F · (1 + σ)⊕ F · (1− σ).

The action of Γ is trivial on the first summand, and non trivial on the second one. So
F · (1+ σ) corresponds to the Tate summand F in M(L)F whereas F · (1− σ) corresponds
to A.

Example 3.5. The previous example can be extended as follows. Let p be an arbitrary
prime number. Consider a finite Galois field extension L/F of some degree n prime to
p. The F[Γ]-module F[Γ] contains a submodule of dimension 1 over F with trivial Γ-
action, namely, F · (

∑
γ∈Γ γ). Since n is invertible in F, this submodule splits off as a

direct summand, where the complementary summand is given by the submodule B of
linear combinations

∑
γ∈Γ λγ · γ satisfying

∑
γ∈Γ λγ = 0. As a result, M(L)F contains an

indecomposable direct summand isomorphic to the Tate motive M(F ) = F. We get a
direct sum decomposition M(L)F = F⊕A, where the Artin motive A corresponds to the
F[Γ]-module B.
(i) Assume p = 2 and n = 3, so that L/F is a cubic field extension. The F[Γ]-

module B has no proper stable submodule in this case, so that M(L)F = F ⊕ A with A
indecomposable. Over L, the motive A is isomorphic to F⊕ F.

(ii) Assume now p = 7 and n = 3. Pick a generator σ of Γ. The module B admits
a basis given by the elements v1 := 1 + 2σ − 3σ2 and v2 := 1 − 3σ + 2σ2, which satisfy
σv1 = −3v1 and σv2 = 2v2. Therefore, B = B1 ⊕ B2 with Bi := F · vi, and A = A1 ⊕ A2

with Ai corresponding to Bi. The motives A1 and A2 are indecomposable Artin motives,
non-isomorphic to F over F and becoming isomorphic to F over L. Moreover, since σ
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acts on Fv1 and Fv2 by multiplication by two different scalars, the modules B1 and B2

are not isomorphic, so that the motives A1 and A2 are not isomorphic. The action of Γ
on the tensor products B⊗3

1 , B⊗3
2 , and B1 ⊗ B2 is trivial. Therefore each of the motives

A⊗3
1 , A⊗3

2 , and A1 ⊗A2 is isomorphic to F, i.e., the motives A1 and A2 are invertible, and
their classes in the Picard group of isomorphism classes of invertible motives in CM(F,F)
(with multiplication induced by tensor product, [9, Definition A.2.7]) are inverse to each
other elements of order 3.

Remark 3.6. The motives A1 and A2 defined in Example 3.5(ii) have the same Tate
trace (defined in [6]) over any extension field of F , even though they are not isomorphic
over F . Indeed, none of the indecomposable motives A1 and A2 is isomorphic to F, hence
each of them has the trivial Tate trace. This remains true over any extension field K of
F such that the tensor product L ⊗F K is a field. On the contrary, if L ⊗F K is not
a field, it is the split étale K-algebra K × K × K. Hence the motive M(L)F becomes
isomorphic to a direct sum of three copies of F over such K, so that both A1 and A2

become isomorphic to F meaning that F is the Tate trace of A1 as well as of A2 over K.
This example demonstrates limitations for possible generalizations of [6, Theorem 4.3],
and is a strong motivation to introduce the Artin-Tate traces below.

4. A retraction

We now construct a functor m from the category CMeff(F,F) of effective Chow motives
to its subcategory AM(F,F) of Artin motives, which is a crucial ingredient in the definition
of A-upper motives.

The category CMeff(F,F) is the idempotent completion of the category CC(F,F) of
degree 0 Chow correspondences. We first define a functor on CC(F,F).
By definition, the objects of CC(F,F) are given by smooth projective varieties over F ;

we write M(X) for the object given by such a variety X. The morphisms from M(X) to
M(X ′) are the degree 0 correspondences X  X ′ from X to X ′ with coefficients in F,
where the degree of a correspondence is defined as in [7, §63]. (Note a difference with the
definition of degree used in [16].)

Any smooth connected F -variety X determines a finite separable field extension L/F
and a smooth geometrically connected L-variety Y with Y F = X. The underlying scheme
of the variety Y is just the scheme of X. The field L coincides with the algebraic closure
of F inside the function field F (X) of X and is called the field of constants of X. Let us
choose an embedding L ↪→ F̄ . Since

X̄ = Y ×SpecL Spec (L⊗F F̄ ),

the isomorphism (3.2) provides an identification

(4.1) X̄ =
⨿

γΓL∈ΓF /ΓL

Ȳγ,

where Ȳγ is Ȳ modified by γ ∈ ΓF . (See notation introduced in §2.) Note that since Y
is defined over L, we have Ȳσ = Ȳ for all σ ∈ ΓL so that Ȳγ only depends on the coset
γΓL. Therefore, the ΓF -set of connected components of X̄ is identified with the ΓF -set
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ΓF/ΓL (the identification depends on the choice of the embedding L ↪→ F̄ ). It follows
that Ch0(X̄) is a transitive permutation F[ΓF ]-module isomorphic to F[ΓF/ΓL].

Dropping the assumption that X is connected, we see that Ch0(X̄) is the permutation
F[ΓF ]-module Ch0(X̄1)⊕· · ·⊕Ch0(X̄n), where X1, . . . , Xn are the connected components
of X.

Lemma 4.2. The additive contravariant functor from the category of correspondences
CC(F,F) to the category of abelian groups, which maps to Ch0(X̄) the motive M(X) of
a smooth projective F -variety X, yields an additive contravariant functor from CC(F,F)
to the category of permutation F[ΓF ]-modules.

Proof. We already noticed that Ch0(X̄) is a permutation F[ΓF ]-module. We need to
check that the respective homomorphisms of abelian groups respect this structure. Given
a degree 0 correspondence α : X  Y for smooth projective F -varieties X and Y ,
the induced homomorphism of abelian groups Ch0(Ȳ ) 7→ Ch0(X̄) coincides with the
composition

Ch0(Ȳ )
p̄⋆2−→ Ch0(X̄ × Ȳ )

·ᾱ−→ Chd(X̄ × Ȳ )
p̄1⋆−→ Ch0(X̄),

where d is the dimension of Y and p1 and p2 are the projections from X × Y to X and
Y . Since p1, p2, and α are defined over F , this composition commutes with the action of
ΓF , concluding the proof. �
Taking the idempotent completion of both categories, and combining with the anti-

equivalence of categories between direct summands of permutation modules and Artin
motives, described in §3, we get an additive functor

(4.3) m : CMeff(F,F) → AM(F,F).
We now prove some useful properties of this functor.

Lemma 4.4. The functor m maps the motive M(X) of a smooth projective connected
F -variety X to the Artin motive M(L)F , where L is the field of constants of X.
If the field extension L/F is Galois with Galois group Γ, and Y is the L-variety with

Y F = X, the additive group of the ring EndCM(F,F)(M(X)) is identified with the direct
sum

⊕
σ∈Γ ChdimY (Yσ × Y ), and m sends an element α ∈ ChdimY (Yσ × Y ) to

mult(α) · σ ∈ F[Γ] = EndAM(F,F)
(
M(L)F

)
,

where mult(α) is the multiplicity (see [7, §75]) of the degree 0 correspondence α : Yσ  Y .

Proof. Since L/F is finite separable, we may assume L ⊂ F̄ ; let ΓL = Gal(F̄ /L). The first
assertion of Lemma 4.4 is a direct consequence of the definition of m, since, as noticed at
the beginning of this section, Ch0(X̄) is isomorphic to the F[ΓF ]-module F[ΓF/ΓL], which
corresponds to the Artin motive M(L)F .

Assume now L/F is Galois. Using the identification

(4.5) L⊗F L =
∏
Γ

L, x⊗ y 7→ (σ(x)y)σ∈Γ,

we get that X ×X = Y × Spec(L⊗F L)× Y =
⨿

σ∈Γ Yσ × Y . Therefore, we have

EndM(X) = Chd(X ×X) =
⊕
σ∈Γ

Chd(Yσ × Y ),
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where d is the dimension of X.
By (4.1), we have X̄ =

⨿
σ∈Γ Ȳσ, hence Chd(X̄ × X̄) =

⊕
(σ,σ′)∈Γ2 Chd

(
Ȳσ × Ȳσ′

)
. To

determine the image of α in Chd(X̄ × X̄), we use the following identifications:

X̄ × X̄ = (X ×X)×SpecF Spec F̄ =
⨿
σ∈Γ

(Yσ × Y )× Spec(L⊗ F̄ ).

Using again the identification (3.2), we get X̄ × X̄ =
⨿

σ∈Γ
(⨿

τ∈γ Ȳστ × Ȳτ

)
. Hence, an

element α ∈ Chd(Yσ×Y ) ⊂ Chd(X×X) satisfies ᾱ ∈
⊕

τ∈Γ Chd(Ȳστ × Ȳτ ) ⊂ Chd(X̄×X̄).
The endomorphism of M(L)F , induced by α, corresponds to the endomorphism of F[Γ]-
modules defined by

Ch0(X̄)
p̄⋆2−→ Ch0(X̄ × X̄)

·ᾱ−→ Chd(X̄ × X̄)
p̄1⋆−→ Ch0(X̄).

The intersection product of the image under p∗2 of [Ȳ ] ∈ Ch0(X̄) with ᾱ is the projection of
ᾱ to the summand Chd(Ȳσ× Ȳ ). This element maps under p1∗ to mult(α)[Ȳσ]. Identifying
Ch0(X̄) with F[Γ], we get that the endomorphism of Ch0(X̄), induced by α, maps 1 to
mult(α) · σ; hence, it is the left multiplication by mult(α) · σ, as claimed. �
Remark 4.6. If X is geometrically connected, its field of constants is F , and we get that
m(M(X)) = F. The homomorphism EndM(X) → EndF of the endomorphism rings is
the multiplicity homomorphism ChdimX(X ×F X) → F.

Recall that for a finite separable field extension K/F and a K-motive M , we denote
by MF its corestriction to F , defined as in [12, §3].

Lemma 4.7. The functor m commutes with the corestriction functor. In particular, for
every finite separable field extension K/F , and every motive M ∈ CM(K,F), we have
m(MF ) = m(M)F .

Proof. Let Y be a connected smooth projective K-variety, and let L be its field of con-
stants. There exists an L-variety Z such that Y = ZK . It follows that Y F = ZF .
Therefore,

m
(
M(Y )F

)
= M(L)F =

(
M(L)K

)F
= m

(
M(Y )

)F
. �

Remark 4.8. The functor m also commutes with the restriction functors (given by
arbitrary base field extensions) and respects tensor products.

Remark 4.9. The restriction of m to the subcategory of Artin motives is the identity, so
m is a “retraction” of the entire category of the effective Chow motives to its subcategory
of Artin motives.

5. A-upper motives

Let G be a reductive algebraic group over F . Given a finite separable field extension
L/F , we consider a projective GL-homogeneous L-variety Y . The upper motive of the
F -variety Y F , denoted by U(Y F ), is the indecomposable summand in the F -motive of
Y F satisfying Ch0(U(Y F )) 6= 0 or, equivalently, Ch0(U(Y F )) = Ch0(Y ). It is uniquely
defined up to isomorphism. In particular, the L-motive U(Y ) is defined. As explained in
[12, §3], the corestriction U(Y )F of the L-motive U(Y ) contains the motive U(Y F ) as a
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direct summand. But in general, U(Y )F and U(Y F ) are not isomorphic, that is, U(Y )F

is not always indecomposable.

Proposition 5.1. Let G be a reductive group over F , and let Y be a projective GL-
homogeneous L-variety for some finite separable field extension L/F . Then

m
(
U(Y )F

)
= M(L)F .

Proof. Let p ∈ End
(
M(Y )

)
be an idempotent defining U(Y ). We have U(Y )F =(

M(Y )F , pF
)
, hence m(U(Y )F ) is the summand of M(L)F determined by the image

of pF in End(M(L)F ). By [14, Lemma 2.8], p has multiplicity 1; therefore p maps to
1 ∈ End(M(L)), see Remark 4.6. Since m commutes with the corestriction, we get that
pF also maps to 1 ∈ End(M(L)F ), so that m(U(Y )F ) = M(L)F . �
We get the following commutative diagram, where i is the natural inclusion, j is the

surjective map defined by j(f) = pFfpF for all f ∈ End
(
M(Y )F

)
, and the commutativity

follows from the fact that pF maps to 1.

(5.2) End
(
U(Y )F

)
i

��

**VVVV
VV

End
(
M(L)F

)
End

(
M(Y )F

)j

OO

44hhhhhh

The arrow i in the diagram is an additive homomorphism; the remaining arrows are ring
homomorphisms.

A motive M satisfying m(M) 6= 0 is called sustainable.

Definition 5.3. LetG be a reductive group over F , and Y be a projectiveGL-homogeneous
variety for some finite separable field extension L/F . The A-upper F -motives of Y are the
sustainable F -motives isomorphic to indecomposable summands of U(Y )F . (The letter
“A” in their name honors Emil Artin and Artin motives.)

Definition 5.4. Let G be a reductive group over F and E/F be a minimal field extension
such that GE is of inner type. An A-upper motive of G is an F -motive isomorphic to an
A-upper motive of a projective GL-homogeneous variety, defined over an intermediate
field L of E/F .

Remark 5.5. Note that for a given G, the field extension E/F in Definition 5.4 is uniquely
determined up to an isomorphism so that its choice does not influence the notion of the
A-upper motives of G.

6. Groups of p′-inner type

Theorem 6.1. Let G be a reductive group over a field F and Y a projective GL-homogeneous
variety for some finite separable field extension L/F . Assume that the degree of the nor-

mal closure of L/F is prime to p and there exists a projective G-homogeneous variety Ŷ

such that ŶL is equivalent to Y in the sense of [6, §2] meaning that there exist multiplicity

1 ∈ F correspondences ŶL  Y and Y  ŶL. Then the following holds:
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(1) every summand in M(L)F is isomorphic to the image under m of a summand in
U(Y )F ;

(2) two summands in U(Y )F with isomorphic images under m are isomorphic;
(3) a summand in U(Y )F is indecomposable if and only if its image under m is so.

Theorem 6.1 implies that under its hypotheses, the set of isomorphism classes of A-
upper motives of Y is in bijection with the set of isomorphism classes of indecomposable
Artin motives which are direct summands in M(L)F . In equivalent terms, given such an
Artin motive A there is a unique up to isomorphism A-upper motive UA(Y ) of Y whose
image under the functor m is isomorphic to A, and any A-upper motive of Y is obtained
this way.

Remark 6.2. The base field F of the motive UA(Y ) does not show up in its notation
because it is concealed in the motive A. With these notation in hand, Theorem 6.1 implies
that if A1⊕· · ·⊕Ar is a complete decomposition for M(L)F , then UA1(Y )⊕· · ·⊕UAr(Y )
is a complete decomposition for U(Y )F .

The rest of the section is devoted to the proof of Theorem 6.1.

Proof of Theorem 6.1 in the Galois case. Let us assume that L/F is Galois and write Γ
for its Galois group ΓF/ΓL.

Lemma 6.3. The ring homomorphism

m : End
(
U(Y )F

)
→ End

(
M(L)F

)
given by the functor m is surjective; its kernel consists of nilpotents.

Proof. Since Y is equivalent to ŶL, for every σ ∈ Γ, there exists a multiplicity 1 corre-
spondence Yσ  Y . Viewed as an element of End

(
M(Y )F

)
, it maps under m to σ ∈ F[Γ]

– by the description of m given in Lemma 4.4. This proves that End
(
M(Y )F

)
maps sur-

jectively onto End
(
M(L)F

)
= F[Γ], and the surjectivity statement of Lemma 6.3 follows

by diagram (5.2).
To prove the statement on the kernel, let us take some f ∈ End

(
U(Y )F

)
withm(f) = 0.

Since we work with finite coefficients, by [14, Corollary 2.2], some power of f is a projector
q, which also satisfies m(q) = 0. To show that f is nilpotent, it is enough to show that
q = 0. The projector q determines a summand M of U(Y )F , and since m(q) = 0, it
satisfies m(M) = 0. On the other hand, L/F is Galois, so by (4.5) we have

(Y F )L =
⨿
σ∈Γ

Yσ, and (U(Y )F )L =
⊕
σ∈Γ

U(Y )σ,

with U(Y )σ = U(Yσ) indecomposable for all σ ∈ Γ. By the Krull-Schmidt property, we
get that ML =

⊕
σ∈S U(Y )σ for some subset S of Γ. By Proposition 5.1, m(U(Yσ)) is the

copy of M(L) indexed by σ in m
(
M(Y F )L

)
=

⊕
σ∈Γ M(L). The condition m(ML) = 0

implies that S is empty, i.e., ML = 0. Consequently, M = 0 and q = 0 by the nilpotence
principle [12, Theorem 2.1]. �

The three statements of Theorem 6.1 in the Galois case are now proved as follows.
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(1) By Lemma 6.3, the projector p defining a given summand in M(L)F lifts to an
element of End

(
U(Y )F

)
. By [14, Corollary 2.2], an appropriate power of this

element is a projector which maps to p under m .

(2) Let M1 and M2 be summands of U(Y )F . Any morphism between m(M1) and
m(M2) is given by an endomorphism of M(L)F and therefore, by Lemma 6.3,
can be lifted to a morphism between M1 and M2. In particular, if m(M1) and
m(M2) are isomorphic, mutually inverse isomorphisms lift to some morphisms
f : M1 → M2 and g : M2 → M1. By Lemma 6.3 once again, each of the compo-
sitions g ◦ f and f ◦ g has the form id + ε with some nilpotent ε and so is an
isomorphism (with the inverse given by the finite sum id − ε+ ε2 − . . . ).

(3) This is a consequence of (1) and (2). �

Proof of Theorem 6.1 in the general case.

Lemma 6.4. U(Y ) ' U(Y F )L.

Proof. Let us recall that Y ≈ ŶL for certain projective homogeneous F -variety Ŷ . More-
over, Y F ≈ Ŷ because [L : F ] is prime to p. The statement of Lemma 6.4 therefore reads

as U(ŶL) ' U(Ŷ )L.

The indecomposable motive U(ŶL) is a direct summand in U(Ŷ )L. So, the two motives
are isomorphic provided that the second one is also indecomposable.
To get the indecomposability of U(Ŷ )L for the field extension L/F , it is enough to check

the indecomposability of U(Ŷ )E for its normal closure E/F . Therefore we may assume
that the extension L/F itself is Galois.
Let us writeN ↪→ M for motivesN andM to indicate thatN is a direct summand inM .

Since F ↪→ M(L)F (see Example 3.5), using the already proven Galois case of Theorem 6.1,
we obtain a motive UF(Y ) ↪→ U(Y )F , which is indecomposable and whose image under m
is isomorphic to F. Since U(Y )F ↪→ M(Y )F = M(Y F ), we have UF(Y ) ↪→ M(Y F ). Since
Ch0(UF(Y )) = Ch0(m(UF(Y ))) 6= 0, there is an isomorphism UF(Y ) ' U(Y F ), implying

that U(Y F ) ↪→ U(Y )F . Since U(Ŷ ) ' U(Y F ), it follows that

U(Ŷ )L ↪→ (U(Y )F )L '
⊕

Gal(L/F )

U(Y )

and so, U(Ŷ )L is isomorphic to a direct sum of several copies of U(Y ) ' U(ŶL). Since

Ch0(U(Ŷ )L) = F = Ch0(U(ŶL)), or – equivalently – m(U(Ŷ )L) = F = m(U(ŶL)), we

finally conclude that U(Ŷ )L ' U(ŶL). �

Lemma 6.5. U(Y )F ' U(Y F )⊗M(L)F .

Proof. The second isomorphism in the chain

U(Y )F '
(
U(Y F )L ⊗M(L)

)F ' U(Y F )⊗M(L)F
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is a particular case of the following general formula that holds for any finite separable
field extension L/F , an F -motive M , and an L-motive N :

�(6.6) (ML ⊗N)F = M ⊗NF .

Let A be an indecomposable direct summand in M(L)F . Let us consider the tensor
product of F -motives M := U(Y F )⊗ A. Note that m(M) = A.

Proposition 6.7. The motive M := U(Y F )⊗ A is indecomposable.

Proof. Let E/F be the normal closure of L/F . The motive ME is the direct sum of rk(A)
copies of the indecomposable by Lemma 6.4 motive U(Y F )E, where rk(A) stands for the
rank of A defined as the number of (Tate) summands in the complete decomposition of
A over its splitting field (e.g., the field E). To prove indecomposability of M , we take
any its nonzero direct summand U and check that UE is still the sum of rk(A) copies of
U(Y F )E. Since dimCh0(U(Y F )E) = 1, it suffices to show that dimCh0(UE) ≥ rk(A).
Let X be the F -variety of Borel subgroup in G. The motive

(
U(Y F ) ⊗ A

)
F (X)

is a

direct sum of the Artin motive AF (X) and some positive shifts of some effective motives.
It follows that the (indecomposable by Corollary 7.5) motive AF (X) is a summand of
UF (X). Therefore

dimCh0(UE) ≥ dimCh0(AE(X)) = rk(A). �
The proof of Theorem 6.1 follows: Lemma 6.5 and Proposition 6.7 give that under our

hypothesis, any complete motivic decomposition M(L)F ' A1 ⊕ ...⊕Ak of the spectrum
of L yields a complete decomposition

(6.8) U(Y )F ' U(Y F )⊗M(L)F '
k⊕

i=1

(U(Y F )⊗ Ai).

Since m is an additive functor and m(U(Y F ) ⊗ Ai) = Ai, any summand of M(L)F is
isomorphic to the image of some summand of U(Y )F , proving (1). Assertions (2) and (3)
follow directly from decomposition (6.8) as well. �
Remark 6.9. It follows by Proposition 6.7 that the motive UA(Y ) defined right after
Theorem 6.1 is isomorphic to the tensor product U(Y F )⊗ A.

7. Motivic decompositions

The following result generalizes [14, Theorem 3.5] (dealing with G of inner type). An-
other generalization of [14, Theorem 3.5] (going in a different direction) is given in [12,
Theorem 1.1] (dealing with p -inner G).

Theorem 7.1. Let G be a p′-inner reductive group. Every summand in the complete
decomposition of the Chow motive with coefficients in F = Z/pZ of any projective G-
homogeneous variety X is a Tate shift of an A-upper motive of G.

Proof. Since the center of G acts on X trivially, we may assume that G is semisimple and
adjoint.
We write DG (or simply D) for the set of vertices of the Dynkin diagram of G. We write

F for the base field of G and let E/F be a minimal field extension with inner GE. The
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field extension E/F is Galois and its Galois group Γ = Gal(E/F ) acts on D. For a field
L with F ⊂ L ⊂ E, the set DGL

is identified with D = DG. Any Gal(E/L)-stable subset
τ in D determines a projective GL-homogeneous variety YGL,τ the way described in [14,
§3] (which is opposite to the original convention of [18, §1.6]). For instance, YGL,D is the
variety of Borel subgroups of GL, and YGL,∅ = SpecL. Any projective GL-homogeneous
variety is isomorphic to YGL,τ for some Gal(E/L)-stable τ ⊂ D.
We prove Theorem 7.1 simultaneously for all F,G,X using induction on n := dimX.

The base of the induction is n = 0 where X = SpecF and the statement is trivial.
From now on we are assuming that n ≥ 1 and that Theorem 7.1 is already proven for

varieties of dimension < n.
For any field extension L/F , we write L̃ for the function field L(X) (note that any

projective homogeneous variety and, in particular X, is geometrically integral). Let G′ be
the semisimple group over the field F̃ = F (X) given by the semisimple anisotropic kernel
of the group GF̃ . We note that the group G′

Ẽ
is of inner type. The field extension Ẽ/F̃

is Galois with the Galois group

Γ = Gal(Ẽ/F̃ ) = Gal(E/F )

(see Lemma 7.4). In particular, any of its intermediate fields is of the form L̃ for some
intermediate field L of the extension E/F . The set DG′ is identified with a Γ-invariant
subset in DG; the complement DG \DG′ contains the subset in DG corresponding to X.

Let M be an indecomposable summand of the motive of X. We are going to show that
M is isomorphic to a shift of a direct summand in U(YGL,τ )

F for some intermediate field
L of E/F and some Gal(E/L)-stable subset τ ⊂ DG containing the complement of DG′ .
This will prove Theorem 7.1.

According to [1, Theorem 4.2] (an enhancement of [2, Theorem 7.5]), the motive of XF̃

decomposes into a sum of shifts of motives of projective G′
L̃
-homogeneous (where L runs

over intermediate fields of the extension E/F ) varieties Y , satisfying dim Y < dimX =
n. It follows by the induction hypothesis that each summand of the complete motivic

decomposition of XF̃ is a shift N ′{i} of a summand N ′ in U(Y ′)F̃ for some L/F ⊂ E/F ,
some Gal(E/L)-stable τ ′ ⊂ DG′ , and Y ′ := YG′

L̃,τ ′
. By the Krull-Schmidt property [12,

Corollary 2.2], the summands of the complete decomposition of MF̃ are also of this shape.
In the complete decomposition of MF̃ , let us choose a summand N ′{i} with minimal

i. We set τ := τ ′ ∪ (DG \DG′) ⊂ DG with the corresponding τ ′ ⊂ DG′ . The subset τ is
Gal(E/L)-stable. To prove Theorem 7.1, it is enough to show that M is isomorphic to a
direct summand in U(Y )F{i} for these L, τ , i, and Y := YGL,τ .
Since M is indecomposable, it suffices to construct morphisms

α : U(Y )F{i} → M and β : M → U(Y )F{i}

such that no power of the composition α ◦ β vanishes. (We recall that by [14, Corollary
2.2], an appropriate power of any endomorphism of M is a projector.)

We first construct certain, defined over the field F̃ , predecessors α̃ and β̃ of α and

β. Recall that N ′{i} is a summand in MF̃ and note that U(Y ′)F̃ is a summand in

(U(Y )F )F̃ . Using projections to and inclusions of direct summands, we define α̃ and β̃ as



14 C. DE CLERCQ, N. KARPENKO, AND A. QUÉGUINER-MATHIEU

the compositions

α̃ : U(Y )F{i}F̃ →→ U(Y ′)F̃{i} →→ N ′{i} ↪→ MF̃ and

β̃ : MF̃ →→ N ′{i} ↪→ U(Y ′)F̃{i} ↪→ U(Y )F{i}F̃ ,
where →→ is a sign for a projection onto a direct summand and ↪→ means an inclusion
of a direct summand. The composition α̃ ◦ β̃ is the projector which yields the summand
N ′{i} of MF̃ .
Now we construct α and β starting with α. Note that α̃ is an element of the Chow

group Ch(Y F ×X)F̃ over F̃ . We take for α an element of the Chow group Ch(Y F ×X)
over F such that its image under the surjective ring homomorphism

Ch(Y F ×X) → Ch(XF (Y F ))

(from [7, Corollary 57.11]) followed by the change of field homomorphism for the field
extension F̃ (Y F )/F (Y F ), coincides with the image of α̃ under the surjective ring homo-
morphism

Ch(Y F ×X)F̃ → Ch(XF̃ (Y F )).

Such α exists because the field extension F̃ (Y F )/F (Y F ) is purely transcendental and
therefore the change of field homomorphism Ch(XF (Y F )) → Ch(XF̃ (Y F )) is surjective as

follows from the homotopy invariance of Chow groups (see [7, Theorem 57.13] or [7,
Corollary 52.11]) and [7, Corollary 57.11].

In order to define β, we note that β̃ is an element of Ch(X × Y F )F̃ and let β′ be an

element of Ch(X×X×Y F ) mapped to β̃ under the surjection (from [7, Corollary 57.11])

Ch(X ×X × Y F ) → Ch(X × Y F )F̃

given by the generic point of the second factor in the product X ×X × Y F . We consider
β′ as a correspondence X  X × Y F and let β′′ be the composition of correspondences
β′ ◦ µ, where µ ∈ Ch(X × X) is the projector which yields the motivic summand M of
X. Finally, we define β as the pullback of β′′ with respect to the closed embedding

X × Y F ↪→ X ×X × Y F , (x, y) 7→ (x, x, y)

given by the diagonal of X.
An appropriate power of the endomorphism α ◦β of the motive M is a projector which

defines a summand in M isomorphic to N{i} for certain summand N in U(Y )F . By
construction, m(N ′) is a summand in m(N)F̃ . Since N ′ 6= 0, we have m(N ′) 6= 0 by
Theorem 6.1. Consequently, m(N)F̃ 6= 0. It follows that N is nonzero and therefore
isomorphic to M . �
Remark 7.2. Instead of [1, Theorem 4.2], the weaker result [2, Theorem 7.5] can be used
in the proof of Theorem 7.1. To do so, it suffices to take for G′ the semisimple part of the
parabolic subgroup defining XF̃ .

Remark 7.3. As follows from the proof of Theorem 7.1, the A-upper motives of G, whose
Tate shifts actually appear as direct summands of M(X) in Theorem 7.1, are associated
with varieties Y with Y F dominating X in the sense of [4] (see also [6, Lemma 2.2]).

The following lemma and corollary have been applied in the proof of Theorem 7.1:
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Lemma 7.4. Let X be a geometrically integral variety over a field F and let E/F be a
finite Galois field extension. Then E(X)/F (X) is also a finite Galois field extension and
its Galois group Γ̃ is isomorphic to Γ := Gal(E/F ).

Proof. The extension E(X)/F (X) is algebraic, normal, and separable; therefore it is
Galois. Since E is algebraically closed in E(X), any element of Γ̃ maps E to E. Since the
subfields E and F (X) both together generate the field E(X), the group homomorphism
Γ̃ → Γ, σ 7→ σ|E is injective. Since any element of E, which is stable under the image of
Γ̃, belongs to E ∩ F (X) = F , the image of Γ̃ is the entirety of Γ. �

Corollary 7.5. Let X be a geometrically integral F -variety. Let L/F be a subexten-
sion of a finite Galois field extension E/F . For any direct summand Ã of the mo-
tive M(L(X))F (X), there is one and only one direct summand A of M(L)F satisfying
AF (X) = Ã. The motive Ã is indecomposable if and only if A is. Direct summands A and
A′ of M(L)F with isomorphic AF (X) and A′

F (X) are isomorphic. �

8. Criteria of isomorphism

The notion of a reductive group of p′-inner type (or simply a p′-inner group), introduced
in §1, is opposite to the notion of p-inner group introduced in [12]. Any absolutely simple
group of type different from 3D4 and 6D4 is p - or p′-inner (the case of E6 follows from
[5]). Direct product of p′-inner groups is p′-inner. Here is an additional source of p′-inner
groups:

Example 8.1. Let L/F be a p′-extension, i.e., a finite separable field extension such that
the degree of its normal closure is prime to p. Given an inner reductive group H over F ,
the group G := RL/F (HL), where RL/F is the Weil transfer, is p′-inner.

Note that for any p′-inner group G over F and any projective GL-homogeneous variety
Y over an arbitrary extension field L/F , there exists a projective G-homogeneous variety

Ŷ (over F ) with ŶL equivalent to Y . Therefore, A-upper motives of p′-inner reductive
groups fit in with the conditions of Theorem 6.1. We keep using the notation UA(Y ) for
them introduced right after the theorem.
In this section, we produce criteria of isomorphism for A-upper motives of p′-inner

reductive groups (see Theorem 8.3 and Corollary 8.5) and their direct sums (Theorem
8.6), the latter formulated in terms of higher Artin-Tate traces.
Let G be a p′-inner reductive group over a field F , L/F a p′-extension, Y a projective

GL-homogeneous variety, and A an indecomposable direct summand in M(L)F . Let L′/F ,
G′, Y ′, and A′ be another set of such data. We are going to formulate (below in Theorem
8.3) our first criterion of isomorphism for the A-upper F -motives UA(Y ) and UA′(Y ′). We
start with

Proposition 8.2. If UA(Y ) ' UA′(Y ′), then A ' A′.

Proof. Applying the functor m to an isomorphism UA(Y ) → UA′(Y ′), we get an isomor-
phism A → A′. �
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Recall that the variety Y F dominates Y ′F if there is a multiplicity 1 correspondence
Y F  Y ′F . The varieties Y F and Y ′F are equivalent, Y F ≈ Y ′F , if each of them dominates
the other.

Theorem 8.3. The motives UA(Y ) and UA′(Y ′) are isomorphic if and only if A ' A′

and Y F ≈ Y ′F .

Proof. By Proposition 8.2, we may assume that A ' A′.
The Artin motive AF (Y F ) is a direct summand in UA(Y )F (Y F ). Assuming UA(Y ) '

UA′(Y ′), we conclude that the Artin motive AF (Y F ) ' A′
F (Y F ) is also a direct summand in

UA′(Y ′)F (Y F ). With Remark 6.9 taken into account, this implies that the Tate motive F
is a direct summand in U(Y ′F )F (Y F ) and so the variety (Y ′F )F (Y F ) is isotropic (i.e., has a

0-cycle of degree 1 ∈ F), which means that Y F dominates Y ′F . Similarly, Y ′F dominates
Y F and we conclude that Y F ≈ Y ′F .
Conversely, assume Y F ≈ Y ′F . Then U(Y F ) ' U(Y ′F ). It follows by Remark 6.9 that

UA(Y ) ' U(Y F )⊗ A ' U(Y ′F )⊗ A′ ' UA′(Y ′). �
We write RL/F (Y ) for the F -variety given by the Weil transfer of the L-variety Y .

Proposition 8.4. One has Y F ≈ RL/F (Y ).

Proof. Since the degree of L/F is prime to p, the statement of Proposition 8.4 can be
reformulated as equivalence Y ≈ RL/F (Y )L.

Since the functor RL/F is right adjoint to the base change functor (see [17, (4.2.2)]), we
have

Mor(RL/F (Y )L, Y ) = Mor(RL/F (Y ), RL/F (Y )) 3 id

showing that there is a morphism RL/F (Y )L → Y and, in particular, RL/F (Y )L dominates
Y .
To obtain the other domination, recall that by our assumption on Y , there exists a

projective homogeneous F -variety Ŷ with ŶL ≈ Y . Applying the Weil transfer of [10,

§3] to multiplicity one correspondences between ŶL and Y , we get multiplicity one cor-

respondences between the varieties RL/F (ŶL) and RL/F (Y ) witnessing their equivalence.
Since

Mor(Ŷ , RL/K(ŶL)) = Mor(ŶL, ŶL) 3 id,

there is a morphism Ŷ → RL/K(ŶL). It follows that Ŷ dominates RL/K(Y ) and therefore

Y ≈ ŶL dominates RL/K(Y )L. �
Corollary 8.5. The motives UA(Y ) and UA′(Y ′) are isomorphic if and only if A ' A′

and RL/F (Y ) ≈ RL′/F (Y
′). �

With Corollary 8.5 at hand, we can now prove Theorem 8.6 below giving a criterion
of isomorphism for direct sums of A-upper motives in terms of higher Artin-Tate traces
defined just next.

Let M and M ′ be F -motives which are finite direct sums such that each summand N is
a shift of the motive UA(Y ) for some p′-inner algebraic group G over F , some projective
GL-homogeneous variety Y over a p′-extension L/F , and for an indecomposable summand
A in M(L)F (where G, L, Y , A may vary with N). The Artin-Tate trace of M is defined
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as the part of the above (complete) decomposition of M consisting of Artin-Tate motives.
We say that M and M ′ have isomorphic higher Artin-Tate traces, if over any extension
field of F , the Artin-Tate trace of M is isomorphic to the Artin-Tate trace of M ′.
The following result shows that the isomorphism class of the motive M is determined

by its higher Artin-Tate trace. We recall that by Remark 3.6 the higher Tate trace of [6]
is insufficient for this purpose.

Theorem 8.6. The motives M and M ′ are isomorphic if and only if they have isomorphic
higher Artin-Tate traces.

Proof. If M and M ′ are isomorphic, then by the Krull-Schmidt property, they have iso-
morphic higher Artin-Tate traces.
Conversely, assume that M and M ′ have isomorphic higher Artin-Tate traces. We

prove that M and M ′ are isomorphic by induction on the maximum of the numbers of
summands in their complete motivic decompositions. If this maximum is zero, both M
and M ′ are trivial. If it is nonzero, write

M = UA1(X1){n1} ⊕ ..⊕ UAk
(Xk){nk} and M ′ = UB1(Y1){m1} ⊕ ...⊕ UBs(Ys){ms}.

We may assume that n = min1≤i≤k ni is not higher than m = min1≤j≤s mj. Pick an
integer 1 ≤ α ≤ k such that the Weil transfer R(Xα) to F of Xα is minimal for the
domination relation among the R(Xi)’s such that UAi

(Xi){n} is a direct summand in the
above decomposition of M (to lighten notation, we write here R(·) for Weil transfers,
dismissing the associated finite separable extensions).
By assumption on the higher Artin-Tate traces of M and M ′, since over the function

field of R(Xα) the motive M contains as a summand the Artin-Tate motive A{n} with
A := (Aα)F (R(Xα)), the motive M ′ over the same function field also contains A{n}. It
follows that n = m and that for some 1 ≤ β ≤ s, the summand UBβ

(Yβ){mβ} of M ′ is
such that R(Xα) dominates R(Yβ), (Bβ)F (R(Xα)) is isomorphic to A, and mβ = n. The
Artin motives Aα and Bβ are isomorphic by Corollary 7.5. The same reasoning over the
function field of R(Yβ) yields some 1 ≤ γ ≤ k such that R(Xγ) is dominated by R(Yβ),
Aγ ' A, and nγ = n.
By minimality of R(Xα), the varieties R(Xα) and R(Yβ) are equivalent. The A-upper

motives UA(Xα) and UA(Yβ) are then isomorphic by Corollary 8.5. Induction, applied to
the complementary summands in M and M ′ of UA(Xα){n} and UA(Yβ){n}, proves that
M and M ′ are isomorphic. �

9. Motivic equivalence

In this section we produce a criterion of motivic equivalence for p′-inner reductive
algebraic groups which are inner forms of each other. We remind that absolutely simple
algebraic groups of any type other than 3D4 and

6D4 are p
′-inner or p-inner, the latter case

treated in [6].
Recall that a projective homogeneous variety is called isotropic (with coefficients in F)

if it possesses a closed point of degree prime to p.

Proposition 9.1. Let X be a projective homogeneous F -variety.
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i) If L/F is a finite separable field extension and A is an indecomposable direct sum-
mand in the F -motive M(L)F , then the F (X)-motive AF (X) is indecomposable.

ii) Let G and G′ be reductive algebraic groups over F , let L/F , L′/F be two p′-
extensions, and let Y , Y ′ be projective homogeneous varieties over L and L′ under
GL and G′

L′, respectively, which are equivalent to the restrictions of some projective
homogeneous F -varieties and such that Y F and Y ′F both dominate X. If the A-
upper F (X)-motives UAF (X)

(YL(X)) and UA′
F (X)

(Y ′
L(X)) are isomorphic, then the

F -motives UA(Y ) and UA′(Y ′) are isomorphic as well.

Proof. Given an indecomposable summand A of M(L)F , the F (X)-motive AF (X) is inde-
composable by Corollary 7.5, proving i).
We prove ii) using Theorem 8.3. First, by Corollary 7.5 once again, if the Artin F (X)-

motives AF (X) and A′
F (X) are isomorphic, then the F -motives A and A′ are isomorphic.

Assume that UAF (X)
(YL(X)) and UA′

F (X)
(Y ′

L(X)) are isomorphic. By Theorem 8.3, the

F (X)-varieties (Y F )F (X) and (Y ′F )F (X) are equivalent and AF (X) ' A′
F (X), hence A ' A′.

By [4, Proof of Proposition 9], Y F and Y ′F are equivalent and so UA(Y ) ' UA′(Y ′) by
Theorem 8.3. �
Let G be a reductive group over F . Recall that we write DG for its Dynkin diagram,

which can be canonically attached to G using the generic point of the variety of pairs
T ⊂ B with T a maximal torus and B a Borel subgroup. Sometimes, depending on the
context, DG stands for the set of vertices of the Dynkin diagram.

Any ΓF -invariant subset of DG, yields a projective G-homogeneous variety (we keep
the same convention as in the proof of Theorem 7.1). This induces a bijection between
the ΓF -invariant subsets of DG and the isomorphism classes of projective G-homogeneous
varieties. An invariant subset τ ⊂ DG is p-distinguished, if the associated projective G-
homogeneous variety XG,τ is isotropic. The union of all p-distinguished orbits yields the
largest p-distinguished subset, denoted Dp

G (see [5]).
We are going to consider two reductive groups G and G′ each of which is an inner form

of the other, that is, both of them are inner forms of the same quasi-split group. In such
a situation, the Dynkin diagrams DG and DG′ are ΓF -equivariant isomorphic and we will
be fixing one of the possible isomorphisms.

Proposition 9.2. Let G and G′ be p′-inner reductive groups over F , inner forms of each
other. Fix an equivariant isomorphism of their Dynkin diagrams ϕ : DG −→ DG′ and an
invariant subset τ0 of DG. The following conditions on G, G′, τ0, and ϕ are equivalent:

i) for any field extension K/F , one has τ0 ⊂ Dp
GK

(i.e., τ0 is p-distinguished over
K) if and only if ϕ(τ0) ⊂ Dp

G′
K
; moreover, ϕ(Dp

GK
) = Dp

G′
K
in this case;

ii) for any minimal field extension E/F such that GE (and G′
E) are of inner type,

any field extensions L/F contained in E, any indecomposable summand A of the
motive M(L)F , and any Gal(E/L)-invariant subset τ ⊂ DG containing τ0, the
A-upper motives UA(XGL,τ ) and UA(XG′

L,φ(τ)
) are isomorphic.

Proof. i) ⇒ ii) Assuming i), fix a field extension L/F contained in E, an Artin motive A,
and a subset τ ⊃ τ0 as in ii). The subset τ0 is p-distinguished for G over the function field
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L̃ of the variety XGL,τ . It follows from i) that the subset ϕ(τ) ⊂ DG′ is p-distinguished

over L̃. The L-variety XGL,τ thus dominates XG′
L,φ(τ)

. The same reasoning with ϕ(τ) and
the inverse of ϕ implies that the L-varieties XGL,τ and XG′

L,φ(τ)
are equivalent. It follows

that the F -varieties XF
GL,τ

and XF
G′

L,φ(τ)
are equivalent and hence the A-upper motives

UA(XGL,τ ) and UA(XG′
L,φ(τ)

) are isomorphic by Theorem 8.3.

ii) ⇒ i) First, given a field extension K/F , the variety XGK ,τ0 is isotropic if and only
if XGK ,φ(τ0) is isotropic as well, since by assumption ii) (with L = F ) the upper motives
U(XG,τ0) and U(XG′,φ(τ0)) are isomorphic. This means that τ0 is p-distinguished over K
if and only if ϕ(τ0) is.
Now fix a field extension K/F such that τ0 is p-distinguished over K. Fix a minimal

subextension L/F of K such that Dp
GK

⊂ DG is Gal(E/L)-invariant, for some minimal
field extension E/F over which G (and G′) become of inner type. By assumption ii), the
A-upper motives UA(XGL,D

p
GK

) and UA(XG′
L,φ(D

p
GK

)) are isomorphic for any A, thus, by

Theorem 8.3, the L-varieties XGL,D
p
GK

and XG′
L,φ(D

p
GK

) are equivalent. As L is contained

in K, it follows that the K-varieties XGK ,Dp
GK

and XG′
K ,φ(Dp

GK
) are also equivalent.

Since the first of the two equivalent K-varieties is isotropic, the second one is also
isotropic (see, e.g., [6, Lemma 2.2] and [14, Corollary 2.15]) which means that the subset
ϕ(Dp

GK
) is p-distinguished for G′ over K. The same reasoning with G replaced by G′, τ0

by ϕ(τ0), and ϕ by its inverse, gives that ϕ−1(Dp
G′

K
) ⊂ Dp

GK
. Hence ϕ(Dp

GK
) = Dp

G′
K
. �

Let G be a reductive algebraic group over a field F . Recall that the classical Tits index
of G is its Dynkin diagram DG, endowed with the action of the absolute Galois group of
F , together with the subset D0

G of distinguished vertices. A vertex of DG is distinguished
if it is contained in a Galois orbit τ such that the projective homogeneous variety XG,τ

has a rational point.
For any subset τ of DG, let us consider the minimal subextension Fτ/F inside of a fixed

separable closure F̄ /F such that τ is ΓFτ -invariant. The F -motive MG,τ := M(XGFτ ,τ
)F

is called the standard motive of G of type τ . Up to isomorphism, the motive MG,τ does
not depend on the choice of the separable closure F̄ /F . If τ is ΓF -invariant, it is simply
the motive of the projective G-homogeneous variety XG,τ .

We now introduce a set of integers describing motivic decompositions. Let G be a
p′-inner reductive group, E/F a Galois p′-extension such that GE is of inner type, X a
projective G-homogeneous variety, and M a direct summand in M(X). For any A-upper
F -motive UA(Y ) and any integer n, we write lA,Y,n(M) for the number of indecomposable
summands isomorphic to UA(Y ){n} in a complete decomposition of M .

Theorem 9.3. Let G and G′ be p′-inner reductive groups over a field F which are inner
forms of each other. Let τ0 be a invariant subset in DG. The equivalent conditions of
Proposition 9.2 are satisfied if and only if for any subset τ ⊂ DG containing τ0, the
motives MG,τ and MG′,φ(τ) are isomorphic.

Proof. The “if” part is clear: if the motives MG,τ and MG′,φ(τ) are isomorphic, then for
any intermediate field L of a minimal field extension E/F such that GE and G′

E are of



20 C. DE CLERCQ, N. KARPENKO, AND A. QUÉGUINER-MATHIEU

inner type, the varieties XF
GL,τ

and XF
G′

L,φ(τ)
are equivalent. Hence, by Theorem 8.3, G

and G′ satisfy condition ii) of Proposition 9.2.
We prove the opposite implication by induction on the (common) semisimple rank of G

and G′. More concretely, assuming the conditions of Proposition 9.2, we will prove that
for every τ ⊃ τ0 the motives MG,τ andMG′,φ(τ) are isomorphic. For τ = ∅ the isomorphism
trivially holds. This covers the rank zero case, which is the base of the induction. Below
we assume that τ 6= ∅.

We first show that MG,τ and MG′,φ(τ) are isomorphic if τ and ϕ(τ) are Gal(E/F )-
invariant and the associated varieties both have a rational point (hence the reductive
algebraic groups G and G′ are isotropic).
Let G̃ be the semisimple part of a parabolic subgroup in G of type τ . The Dynkin

diagram DG̃ of G̃ is obtained by removing the subset τ from DG, and G̃E is of inner type.
By [1, Theorem 4.2], there is a motivic decomposition

MG,τ '
⊕
i∈I

MF
G̃Li

,τi
{ni}

with some field extensions Li/F contained in E and some Gal(E/Li)-invariant τi ⊂ DG̃.

Note that the fields Li, the projective G̃Li
-homogeneous varieties XG̃Li

,τi
, and the shifting

numbers ni in this decomposition are completely determined by the underlying combina-
torics of G. The isomorphism ϕ : DG −→ DG′ from Proposition 9.2 yields an analogous
decomposition of MG′,φ(τ) with respect to its semisimple part G̃′ of a parabolic subgroup
in G′ of type ϕ(τ) with the same I, Li, τi, and ni:

MG′,φ(τ) '
⊕
i∈I

MF
G̃′

Li
,φ(τi)

{ni}

Since G and G′ are inner forms of each other and satisfy condition i) of Proposition 9.2, so
do G̃ and G̃′. Indeed, for any field extension K/F , we have disjoint union decompositions

Dp
GK

= Dp

G̃K
t τ and Dp

G′
K
= Dp

G̃′
K
t ϕ(τ).

Condition i) of Proposition 9.2 for G and G′ gives that Dp
G′

K
= ϕ(Dp

GK
) and hence

Dp

G̃′
K

= ϕ(Dp

G̃K
). It follows that for any any i ∈ I and any field extension Li/F , the

reductive groups G̃Li
and G̃′

Li
satisfy condition i) of Proposition 9.2 with respect to the

restriction of ϕ and the subset τ̃0 = ∅. By induction, the motives MG̃Li
,τi

and MG̃′
Li

,φ(τi)

are thus isomorphic. Therefore, the motives MF
G̃Li

,τi
and MF

G̃′
Li

,φ(τi)
are isomorphic as well

and so MG,τ ' MG′,φ(τ).
We now treat the case of arbitrary Gal(E/F )-invariant subsets τ and ϕ(τ). Assume

that the motives of XG,τ and XG′,φ(τ) are not isomorphic. By Theorem 7.1, since G and
G′ satisfy conditions of Proposition 9.2, this means that lA,Y,n(MG,τ ) 6= lA,Y,n(MG′,φ(τ))
for some indecomposable Artin motive A and some projective homogeneous variety Y
defined over a field extension contained in E. Consider the minimal integer n for which
such a non-equality occurs.
Over the function field K/F of the product Π := XG,τ ×XG′,φ(τ) both XG,τ and XG′,φ(τ)

have a rational point. The motive AK is indecomposable (see Corollary 7.5) and so we can
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investigate the integer lAK ,YK ,n(MGK ,τ ). To lighten notation (by abusing it), below we will
write YK for the variety YL(Π). If UAK

(YK){n} is a direct summand of MGK ,τ , then by the
Krull-Schmidt property and Theorem 7.1, it is a direct summand in the K/F -restriction
(UB(Z))K of an A-upper motive UB(Z) of G, shifted by some k ≤ n.
Note that (UB(Z))K ' UBK

(ZK) ⊕ N, where N is a direct sum of A-upper motives
with Tate shifts at least 1. Since XG,τ and XG′,φ(τ) are equivalent, any projective homoge-
neous variety which dominates XG,τ (or XG′,φ(τ)) dominates their product. In particular,
Proposition 9.1 implies that a direct summand UAK

(YK){k} of M(XGK ,τ ) may only arise
from a K/F -restriction (UB(Z){k})K (with the same shift) if B ' A and Z ≈ Y , that is
from the A-upper motive UA(Y ){k} (see Theorem 8.3).
Write M for the direct summand of MG,τ given by the sum of all its indecomposable

summands with shifts strictly lower than n (in a fixed complete decomposition). Sepa-
rating the summands UAK

(YK){n} of MGK ,τ which arise from MK , we get thanks to the
previous discussion the equality

lAK ,YK ,n(MGK ,τ ) = lA,Y,n(MG,τ ) + lAK ,YK ,n(MK).

Since by assumption the A-upper motives of G and G′ are pairwise isomorphic, the same
reasoning with XG′,φ(τ) ensures that

lAK ,YK ,n(MG′
K ,φ(τ)) = lA,Y,n(MG′,φ(τ)) + lAK ,YK ,n(M

′
K),

where M ′ is the direct sum of the summands in a complete motivic decomposition of
XG′,φ(τ) with shifts strictly lower than n. By minimality of n, the motives M and M ′ are
isomorphic, hence MK and M ′

K are isomorphic as well and lAK ,YK ,n(MK) = lAK ,YK ,n(M
′
K).

As by assumption lA,Y,n(MG,τ ) 6= lA,Y,n(MG′,φ(τ)), it follows that lAK ,YK ,n(MGK ,τ ) and
lAK ,YK ,n(MG′

K ,φ(τ)) are not equal, a contradiction to the fact that the motives of XGK ,τ

and of XG′
K ,φ(τ) are isomorphic (recall that both of these varieties have a rational point).

We can now conclude: let τ be an arbitrary subset of DG. The reductive groups GFτ and
G′

Fτ
satisfy condition i) of Proposition 9.2. It follows from the Galois-invariant case that

the motives MGFτ ,τ
and MG′

Fτ
,φ(τ) are isomorphic, hence so are the motives MG,τ = MF

GFτ ,τ

and MG′,φ(τ) = MF
G′

Fτ
,φ(τ). �

A field is called p-special if every finite extension of this field has a p -power degree. Let
G and G′ be two reductive groups, inner forms of each other. Similarly to [4, Definition
1], we say that G and G′ are motivic equivalent (with coefficients in F) with respect to a
Galois-equivariant isomorphism ϕ : DG −→ DG′ , if for any subset τ of DG, the motives
Mτ,G and Mφ(τ),G′ are isomorphic.

Corollary 9.4. Let G and G′ be p′-inner reductive algebraic groups over F , inner forms
of each other. Let ϕ be a ΓF -equivariant isomorphism of their Dynkin diagrams. The
groups G and G′ are motivic equivalent with respect to ϕ if and only if for any p-special
field extension K/F , ϕ identifies the Tits indexes of GK and G′

K.

Proof. Theorem 9.3 with τ0 = ∅ states that G and G′ are motivic equivalent with respect
to ϕ if and only if for any field extension K/F , ϕ identifies the subsets of p-distinguished
vertices of GK and G′

K . Over p-special field K, this expresses as ϕ(D0
GK

) = D0
G′

K
(through
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classical Tits indexes), since a variety is isotropic if and only it has a rational point over
a p-special closure of its base field [6, Proof of Lemma 4.11]. �
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