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Abstract. For a given a reductive algebraic group G over a field F , let E/F be a
minimal field extension over which G becomes of inner type. The extension E/F is
finite Galois; let us assume that its Galois group is the product of a Dedekind group and
a p-group for some prime number p. (The assumption holds for all absolutely simple
groups of type not 6D4 with any prime p.) Working with coefficients in Z/pZ, we define
the A-upper motives of G. These are indecomposable Chow motives naturally related to
indecomposable summands in the motives of spectra of intermediate fields in E/F . We
show that motives of projective homogeneous varieties under G are isomorphic to direct
sums of Tate shifts of A-upper motives. Based on that, we get a motivic classification of
the varieties by means of their higher Artin-Tate traces. We also show how Tits indexes
over suitable field extensions determine motivic equivalence classes for these algebraic
groups.
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1. Introduction

Envisioned by Alexander Grothendieck in the sixties, Chow motives provide powerful
invariants to study arithmetic and geometry of smooth projective varieties over fields. The
case of projective homogeneous varieties has received a lot of attention over the years and
numerous breakthroughs and solutions to classical conjectures were obtained through the
study of their motives. Most of these results are proved in the framework of semisimple
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algebraic groups of inner type, i.e. such that the ∗-action of the absolute Galois group of
the base field on the associated Dynkin diagram is trivial. In this work, we initiate the
study of motives and motivic decompositions for projective homogeneous varieties under
arbitrary reductive groups.

The extensive study of motives of projective quadrics, which were essential to Voevod-
sky’s proof of the Milnor conjecture [21], was carried out by Alexander Vishik in [19]. This
milestone led notably to advances on the Kaplansky problem [20] and a proof of Hoff-
mann’s conjecture [10]. Vishik provides on the way a qualitative description of motivic
structure of projective quadrics through the motives of Čech simplicial schemes associated
to orthogonal Grassmannians. Working now with Z/pZ coefficients and motivated by the
case of generalized Severi-Brauer varieties, the second author then obtains a description
of indecomposable summands in the motives of projective G-homogeneous varieties for G
a reductive group of inner type: the indecomposable summands are Tate shifts of upper
motives of G [13]. (More generally, the description holds for p-inner reductive groups,
see [11]). This result led to many applications, notably on the anisotropy of orthogonal
involutions [12] and the classification of motivic decompositions for exceptional groups [9]
as well as of motives of projective homogeneous varieties under p-inner groups [6].
We set F = Z/pZ for the ring of coefficients, where p is a prime. Given a finite

separable field extension L/F and a projective homogeneous variety X, we introduce in
this work the A-upper F -motives of X (see Definition 6.8). An A-upper F -motive of X
is indecomposable and naturally related with an indecomposable Artin motive which is
a summand in the F -motive of the spectrum of L. This leads to the notion of A-upper
motives of a reductive group G, satisfying certain conditions (see Definition 6.9). If G is
of inner type or, more generally, p-inner type, the A-upper motives of G are the upper
motives of G considered previously.

Now assume that G is an absolutely simple group of any Dynkin type different from 6D4,
and pick a projective homogeneous variety X under G. Theorem 7.1 provides a qualitative
analysis of the motivic structure of X, stating that the motive of X decomposes (in a
unique way) as a direct sum of Tate shifts of A-upper motives of G. The result holds more
generally for Dp-inner reductive groups (see §6), that is reductive groups which become
of inner type over a finite Galois field extension E/F such that Gal(E/F ) is the product
of a Dedekind group (i.e., a group, where all subgroups are normal) and a p-group. As
a consequence of this structural result we obtain a complete classification of motives of
projective homogeneous varieties under such reductive groups, through their higher Artin-
Tate traces (Corollary 9.6). We then provide criteria of motivic equivalence, by means
of combinatorial invariants derived from the classical Tits indices of reductive algebraic
groups. These results expound how higher isotropy of reductive groups determines motives
of projective homogeneous varieties.

2. Preliminaries

A variety is a separated scheme of finite type over a field. Let X be an F -variety. For
a field extension L/F , XL is the L-variety given by the product of the F -schemes X and
SpecL. For a finite field extension F/K, XK is the K-variety given by the scheme X
endowed with the composition X → SpecF → SpecK. In particular, X = XF = XF
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and the notation with F can be employed as a way to evoke the base field of X. By
default, the spectrum of a field is the variety over this very field; the correct notation for
the K-variety given by the spectrum of F is (SpecF )K .

Throughout this paper, p is a prime number and F is the field (of coefficients) Z/pZ.
We use the notation Ch(·) for Chow groups with coefficients in F.

3. The field of constants

Any smooth connected F -variety X determines a finite separable field extension L/F
and a smooth geometrically connected L-variety Y with Y F = X. The underlying scheme
of the variety Y is just the scheme of X. The field L coincides with the algebraic closure
of F inside the function field F (X) of X and is called the field of constants of X. Let’s
fix a separable closure F̄ of F containing L and write Γ for the absolute Galois group
Gal(F̄ /F ) of F . The finite Γ-set, which determines the étale F -algebra L in the sense of
[14, §18.A], is the set of connected components of the F̄ -variety X̄ := XF̄ .

Let us consider the category of degree 0 correspondences with coefficients in F. The
objects of this category are given by smooth projective F -varieties, the morphisms – by
the degree 0 correspondences, where the degree of a correspondence is defined as in [8,
§63]. (Note a difference with the definition of [16].) This is a full subcategory in the
category of Chow motives so that the object, given by a smooth projective F -variety X,
can already be called the motive of X and denoted M(X). Associating to the motive
M(X) of a smooth projective F -variety X the F -variety (SpecL)F given by its field of
constants L, we get a functor m of the category of degree 0 correspondences to its full
subcategory of 0-dimensional varieties: for one more pair X ′, L′, any morphism of motives
M(X) → M(X ′) yields a homomorphism Ch0(X̄ ′) → Ch0(X̄) of permutation Γ-modules,
which yields a morphism M(L′)F → M(L)F (cf. [3, §7]). Note that

Hom(M(L′)F ,M(L)F ) = Hom(M(L)F ,M(L′)F )

so that we can define m to be a functor, not a cofunctor.
Passing to the idempotent completions, we extend this functor to the category of ef-

fective Chow motives CMeff(F,F); the extension, for which we continue to write m, takes
values in the category of Artin Chow motives (see §4 for more details on this category).
The restriction of m to the subcategory of Artin Chow motives is the identity, so, m is
a “retraction” of the entire category of the effective Chow motives to its subcategory of
Artin Chow motives.

Note that CMeff(F,F) is a full subcategory in the entire category of Chow motives
CM(F,F) of [8, §64] mainly used in this paper. The dual of CMeff(F,F) is defined and
studied in [16] without mentioning the word “effective” in the name (see [16, Remark
of §8]). Since the subcategory CMeff(F,F) ⊂ CM(F,F) is closed under taking direct
summands, and we are investigating motivic decompositions of varieties in this paper,
CM(F,F) can be replaced by CMeff(F,F) everywhere below.

4. Artin motives

The letter “A” in the name of A-upper motives, introduced in the next section, indicates
their relationship with the Artin motives. By definition (cf. [22, Definition 1.2]), an Artin
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motive (over F ) is a direct summand in the Chow motive of the spectrum of an étale
F -algebra. This includes the motive F of SpecF , also called a Tate motive. Here is the
simplest example of an Artin motive not isomorphic to F:

Example 4.1 (cf. [11, Example 3.3]). Let p be an odd prime number. In the category of
Chow motives with coefficients F = Z/pZ over a base field F , the motive of the F -variety
(SpecL)F , given by a separable quadratic field extension L/F , is a direct sum of two
indecomposable motives. One of them is the Tate motive F – the motive of the base point
SpecF . The other one, let’s call it A, becomes F over L but is not isomorphic to F over
F . Moreover,

Hom(F, A) = 0 = Hom(A,F).

The shifts F{i} (with i ∈ Z) of the Tate motive F are also called Tate motives. The
shifts A{i} of an Artin motive A (as well as finite direct sums of A{i} with various A and
i) are called the Artin-Tate Chow motives [22, Definition 1.3].1

Now let p be any prime number, possibly even. Let L/F be a finite separable field
extension. Let M(L)F be the Chow motive with coefficients F = Z/pZ of the F -variety
(SpecL)F . For any finite Galois field extension E/F , an analysis of the full additive
subcategory of Chow motives generated by all M(L)F with F ⊂ L ⊂ E is made in [3, §7].
It is shown to be equivalent to the category of (finite-dimensional over F) permutation
modules over the group ring F[Γ], where Γ is the Galois group Gal(E/F ). Below are some
interesting examples of computations in these categories.

Example 4.2. Let L/F be a cubic Galois field extension and p = 2. The F-algebra
EndM(L)F is generated by a single element x subject to the relation x3 = 1. It follows
that the ring EndM(L)F is the direct product F2 × F4, where F2 = F is the field of 2
elements and

F4 = F[x]/(x2 + x+ 1)

is the field of 4 elements. One gets a complete decomposition M(L)F ' F⊕A, where the
indecomposable summand A satisfies Hom(F, A) = 0 = Hom(A,F) over F and becomes
isomorphic to F⊕ F over L.

Example 4.3. Let L/F be a finite Galois field extension and let Γ be its Galois group.
Let us consider the group F-algebra F[Γ]. As explained in [3, §7], EndM(L)F is the ring
of endomorphisms of the left F[Γ]-module F[Γ]. Associating to any element σ ∈ Γ the
right multiplication by σ−1, we get an identification F[Γ] = EndM(L)F .

Example 4.4. Let q be a prime number different from p and let L/F be a finite Galois
field extension of degree q. The F-algebra EndM(L)F is generated by a single element
x subject to the relation xq = 1. It follows that the F-algebra EndM(L)F is the direct
product F× B of the F-algebra F and the F-algebra

B := F[x]/(xq−1 + xq−2 + · · ·+ 1).

The Tate motive F splits off as a direct summand in M(L)F . (The complementary sum-
mand can be but is not necessarily indecomposable.)

1Thanks to Stefan Gille and Alexander Vishik for suggestion to consider the Artin-Tate motives in
this context.
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Example 4.5. In general, let us embed a finite separable field extension L/F in a finite
Galois field extension E/F . Then EndM(L)F is the ring of endomorphisms of the F[Γ]-
module F[Γ/Γ′], where Γ is the Galois group of E/F , Γ′ ⊂ Γ is the subgroup of elements
fixing the elements of L, and Γ/Γ′ is the set of left cosets on which the group Γ acts by
left multiplication.

Example 4.6. Direct sum decompositions of the motive M(L)F are given by the direct
sum decompositions of the Γ-module F[Γ/Γ′]. In Example 4.1, where p is odd, Γ = {1, σ},
and Γ′ = {1}, the Γ-module F[Γ] is a direct sum of the submodule generated by 1 + σ
(which corresponds to the Tate summand of M(L)F ) and the submodule generated by
1 − σ (corresponding to A). Note that the generator 1 + σ is Γ-invariant whereas 1 − σ
is not (although the F-subspace it generates is Γ-invariant).

5. Introducing A-upper motives

Let L/F be a finite separable field extension and let Y be a projective homogeneous
variety over L. Let us consider its upper L-motive U(Y ) defined as a (unique up to an
isomorphism) indecomposable summand of the L-motive of Y satisfying the condition

Ch0(U(Y )) := Hom(U(Y ),F) 6= 0

(or, equivalently, Ch0(U(Y )) = Ch0(Y )) on its codimension 0 Chow group.
We are going to consider the L/F -corestriction U(Y )F := corL/F U(Y ) of U(Y ) – the F -

motive defined as in [11, §3]. In general, in contrast to the L-motive U(Y ), the F -motive
U(Y )F is not indecomposable anymore. Next we are going to investigate its complete
decomposition.
Let M(Y )F be the F -motive given by the L/F -corestriction of the motive M(Y ) of Y ,

i.e., M(Y )F := M(Y F ). Since L is the field of constants of the F -variety Y F , the functor
m from §3 yields a ring homomorphism

(5.1) m : EndM(Y )F → EndM(L)F .

Example 5.2. Over L, the homomorphism

m : EndM(Y ) → EndM(L) = EndF = F
takes an element of EndM(Y ), viewed as a correspondence Y ⇝ Y , to its multiplicity,
defined as in [8, §75].

Let p ∈ EndM(Y ) be the projector defining the upper motive U(Y ). By definition of
the corestriction of motives (cf. [11, §3]), the F -motive U(Y )F is the direct summand
of M(Y )F given by the projector pF which is the image of p under the push-forward
homomorphism

End(M(Y )) = Chd(Y × Y ) → Chd(Y
F × Y F ) = EndM(Y )F

with respect to the closed embedding Y ×Y ↪→ Y F ×Y F , where d = dim Y . Since m(pF )
is the identity in EndM(L)F , the functor m also yields a homomorphism

(5.3) m : EndU(Y )F → EndM(L)F .

Note that the additive group of EndU(Y )F is a direct summand of EndM(Y )F . The
homomorphism (5.3) is the composition of the embedding End U(Y )F ↪→ EndM(Y )F
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followed by (5.1). Besides, the homomorphism (5.1) is the composition of the projection
EndM(Y )F →→ EndU(Y )F followed by (5.3).

Example 5.4. The kernel of the homomorphism

m : EndU(Y ) → F
from Example 5.2 consists of nilpotents. Indeed, by [13, Corollary 2.2], any endomorphism
of U(Y ) raised to an appropriate power becomes idempotent. Since the motive U(Y ) is
indecomposable, the idempotent is 1 or 0. If the endomorphism vanishes under m, the
idempotent has to be 0, i.e., the endomorphism has to be nilpotent.

Now we turn our attention to the case where the finite separable field extension L/F
is Galois. For σ ∈ Γ := Gal(L/F ) and any L-variety X, let us write Xσ for the L-variety
obtained from X by the base change via σ. Thus Xσ is the scheme X viewed as an L-

variety via the composition X → SpecL
σ−1

−→ SpecL, i.e., Xσ = Xσ−1
. We use the similar

notation for the motives. Since the base change by σ is invertible (namely, (Mσ)σ−1 = M
for any L-motive M), the motive Mσ is indecomposable provided that M is. By a similar
reason, the variety Xσ has a rational point if and only if X has one.

Proposition 5.5. For a finite Galois field extension L/F , the ring homomorphism (5.3)
is surjective; its kernel consists of nilpotents.

Proof. The étale F -algebra L⊗F L decomposes into the direct product

L⊗F L =
∏
σ∈Γ

L

of [L : F ] copies of L indexed by σ ∈ Γ, where we identify the two algebras by sending
l⊗ 1 to the diagonal image of l in

∏
σ∈Γ L and 1⊗ l to the tuple (σ(l))σ∈Γ. It follows that

EndM(Y )F = Chd(Y
F × Y F ) = Chd(Y × Spec(L⊗F L)× Y ) =

⊕
σ

Chd(Y × Yσ),

where d := dim Y .
In terms of this direct sum decomposition, the homomorphism (5.1)

m : EndM(Y )F → EndM(L)F =
⊕
σ

F

is the direct sum of the multiplicity homomorphisms Chd(Y ×Yσ) → F. The variety Y has
a rational point if and only if the variety Yσ has one. Therefore there exists a multiplicity
1 correspondence Y ⇝ Yσ. This proves that the homomorphism (5.1) is surjective. It
follows that the homomorphism (5.3) is also surjective.

To prove the statement on the kernel, let us take some f ∈ EndU(Y )F vanishing under
(5.3). By [13, Corollary 2.2], some power of f is a projector; this projector determines a
summand M of U(Y )F satisfying m(M) = 0. To show that f is nilpotent, it is enough
to show that M = 0.

The L-variety (Y F )L is the disjoint union of the L-varieties Yσ, σ ∈ Γ, and the motive
(U(Y )F )L is the direct sum of the indecomposable motives U(Y )σ = U(Yσ), σ ∈ Γ. By
the Krull-Schmidt property, ML decomposes in a direct sum of some of them. Since
m(U(Yσ)) 6= 0 for every σ ∈ Γ, we conclude that ML = 0. Consequently, M = 0 by the
nilpotence principle [11, Theorem 2.1]. □
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Corollary 5.6. For a finite Galois field extension L/F , the following holds:

(1) Every summand in M(L)F is isomorphic to the image under m of a summand in
U(Y )F .

(2) Two summands in U(Y )F with isomorphic images under m are isomorphic.
(3) A summand in U(Y )F is indecomposable if and only if its image under m is so.

Proof. (1) By Proposition 5.5, the projector defining a given summand in M(L)F lifts to
an element of EndU(Y )F . By [13, Corollary 2.2], an appropriate power of this element is
a projector.

(2) LetM1 andM2 be summands of U(Y )F . Any morphism betweenm(M1) andm(M2)
is given by an endomorphism of M(L)F and therefore, by Proposition 5.5, can be lifted
to a morphism between M1 and M2. In particular, if m(M1) and m(M2) are isomorphic,
mutually inverse isomorphisms lift to some morphisms f : M1 → M2 and g : M2 → M1.
By Proposition 5.5 once again, each of the compositions g ◦f and f ◦g has the form id+ε
with some nilpotent ε and so is an isomorphism (with the inverse given by the finite sum
id− ε+ ε2 − . . . ).
(3) This is a consequence of (1) and (2). □

6. Dp-inner algebraic groups

Let G be a reductive algebraic group over a field F and let E/F be the finite Galois
field extension corresponding to the kernel of the ∗-action of the absolute Galois group of
F on the Dynkin diagram of G. Recall from [11] that G is p-inner, if Γ := Gal(E/F ) is
a p-group. We say that G is D-inner, if Γ is a Dedekind group (a D-group for short) by
which we mean a finite group, where every subgroup is normal. Note that any absolutely
simple group G of any Dynkin type different from 6D4 is D-inner; moreover, the minimal
field extension E/F with GE of inner type is always quadratic except from 3D4, where it
is cubic.

Now we merge the above notions by saying that G is Dp-inner, if Γ is a Dp-group, i.e.,
the direct product ΓD × Γp of a D-group ΓD by a p-group Γp.
Recall from [7] that a finite group ΓD is Dedekind if and only if it is abelian or the direct

product of the (non-abelian order 8) quaternion group, an (abelian) group of exponent
2, and an abelian group of odd order. As a consequence, any Dp-group Γ is the direct
product

(6.1) Γ = ΓD × Γp

of a D-group ΓD by a p-group Γp, where the order of the D-group is not divisible by p.
Note that ΓD and Γp are uniquely determined subgroups in Γ – namely, the subgroup of
the elements of p-coprime orders and the subgroup of the elements of p-primary orders.

Lemma 6.2. Any subgroup of a Dp-group Γ is a Dp-group normalized by ΓD (defined in
(6.1). A homomorphic image of a Dp-group Γ is a Dp-group.

Proof. In terms of the decomposition (6.1), any subgroup H ⊂ Γ is the direct product
HD ×Hp, where HD (resp., Hp) is the image of the projection of H to ΓD (resp., to Γp).
It follows that H is a Dp-group. Since the subgroup HD ⊂ ΓD is normal, H is normalized
by ΓD.
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The subgroup H ⊂ Γ is normal if and only if its component Hp is normal in Γp. In that
case, the quotient Γ/H = (ΓD/HD)× (Γp/Hp) is also a Dp-group. □
A Dp-extension is a finite Galois field extension whose Galois group is a Dp-group.

D-extensions and p-extensions are defined similarly.

Corollary 6.3. Let G be a reductive group over a field F which acquires inner type over
a Dp-extension of F . Then G is Dp-inner. Moreover, for any field extension L/F , the
group GL is also Dp-inner.

Proof. If G acquires inner type over a Dp-extension E/F , the Galois group of the minimal
field extension (which can be found inside E/F ) is a homomorphic image of Gal(E/F )
and so a Dp-group by Lemma 6.2.

For any given L/F , we can find its field extension containing E/F . The group GL

acquires inner type over the composite L · E. The field extension (L · E)/L is finite
Galois. Its Galois group is isomorphic to a subgroup in Gal(E/F ) and so is a Dp-group
by Lemma 6.2. □
Let us consider a Dp-extension E/F and let us write Γ for its Galois group decomposed

as in (6.1).
Let L be an intermediate field of E/F and let H ⊂ Γ be the corresponding subgroup.

We have the following diagram of subgroups (below on the left) and diagram of subfields
(below on the right), where ED ⊂ E is the subfield of elements invariant under ΓD ⊂ Γ
and where the bars stand for inclusions (represented upside down in the case of groups):

1

H ∩ ΓD

QQQ
QQQ

QQ

mmm
mmm

mm

H
QQQ

QQQ
Q ΓD

mmm
mmm

m

H ·ΓD

Γ

E

L·ED

SSS
SSS

SSS

lll
lll

lll

L
RRRR

RRRR
R ED

kkkk
kkkk

K := L ∩ ED

F

By Lemma 6.2, the field extension L/K is a D-extension; let A and A′ be some of its
Artin motives, i.e., direct summands in the motive M(L)K .

Lemma 6.4. The Artin K-motive A is indecomposable if and only if the Artin F -motive
AF is indecomposable. Besides, A′ ' A if and only if A′F ' AF .

Proof. The Artin motive A corresponds to a direct summand of the F[H · ΓD]-module
F[(H · ΓD)/H]; the motive is indecomposable if and only if the corresponding module is.
The Artin motive AF is given by the induced summand B := A⊗F[H·ΓD] F[Γ] of the F[Γ]-
module F[Γ/H]. We need and are going to show that the F[Γ]-module B is indecomposable
if and only if the module A is.

Let I be the augmentation ideal of the group ring F[Γp]. By [15, Corollary 1.11.11],
the ideal J := F[ΓD] ⊗ I of the ring F[Γ] = F[ΓD] ⊗ F[Γp] is its Jacobson radical. By
Nakayama’s Lemma [15, Theorem 1.10.4)]), the F[Γ]-module B is indecomposable if and
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only if the F[Γ]/J-module B/JB is indecomposable. Note that F[Γ]/J = F[ΓD] and the
quotient ring homomorphism F[Γ] → F[Γ]/J is the homomorphism F[ΓD]×F[Γp] → F[ΓD]
induced by the projection ΓD × Γp → ΓD.
Recall that H is a normal subgroup in H ·ΓD and so the F[H ·ΓD]-module A is actually

an F[(H · ΓD)/H]-module. Since (H · ΓD)/H = ΓD/(H ∩ ΓD), A is an indecomposable
F[ΓD]-module. The F[ΓD]-module B/JB is computed as

B/JB = A⊗F[ΓD] F[ΓD] = A.

Since the last formula reconstructs A from B, the second statement of Lemma 6.4 also
follows. □
Remark 6.5. Lemma 6.4 and the Krull-Schmidt property [11, Corollary 2.2] imply that
the set of isomorphism classes of indecomposable Artin motives given by the extension
L/F is in natural bijection with the analogues set given by the D-extension L/K.

Let G be a reductive group over F . For L and A as in Lemma 6.4, let us consider
the A-upper motive UA(Y ) given by a projective GL-homogeneous L-variety Y . This is a
motive over the field K = L ∩ ED.

Proposition 6.6. The F -motive UA(Y )F is indecomposable.

Proof. Since ED/F is a p-extension and K/F is its subextension, there is a chain

K = Fn ⊃ Fn−1 ⊃ · · · ⊃ F1 ⊃ F0 = F

of degree p Galois field extensions. Employing induction, we may assume that the motive
U := UA(Y )F1 is indecomposable. We need to check that the motive UF = UA(Y )F is
also indecomposable.
The F1-motive UF

F1
= (UF )F1 is the direct sum of the indecomposable motives Uσ

with σ running over the Galois group Gal(F1/F ), where Uσ is the base change of U via
σ : F1 → F1. To prove indecomposability of UF , we take its nonzero direct summand U ′

and check that U ′
F1

is still the sum of all Uσ. What we know a priori is that U ′
F1

is the

sum of some nonzero number of Uσ. Since dimCh0(Uσ)E = [Fn : F1] · rkA, to show that
all Uσ are involved in the sum, it suffices to show that dimCh0(U ′

E) ≥ [Fn : F ] · rkA. In
the above formulas, rkA is the rank of A, i.e., the number of (Tate) summands in the
complete decomposition of A over its splitting field.
Let X be the F -variety of Borel subgroup in G. The motive UA(Y )Fn(X) is a direct sum

of the Artin motive AFn(X) and some positive shifts of some A-upper motives. It follows
that the (indecomposable by Lemma 6.4 and Corollary 7.8) motive AF

F (X) is a summand

of U ′. Therefore

dimCh0(U ′
E) ≥ dimCh0(AF

E(X)) = [Fn : F ] · rkA. □
As a consequence, we get an analogue of Corollary 5.6, where a finite Galois field

extension L/F is replaced by an arbitrary subextension L/F of a Dp-extension:

Corollary 6.7. For any L/F and Y as in Proposition 6.6 and the additive functor m of
§3, the following holds:

(1) Every summand in M(L)F is isomorphic to the image under m of a summand in
U(Y )F .
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(2) Two summands in U(Y )F with isomorphic images under m are isomorphic.
(3) A summand in U(Y )F is indecomposable if and only if its image under m is so. □

Definition 6.8. Given a finite separable field extension L/F and a projective homoge-
neous L-variety Y , indecomposable summands of U(Y )F , whose images under m are also
indecomposable, will be called A-upper F -motives of Y , where “A” honors Emil Artin
and Artin motives.
Assuming that L/F is a subextension in a Dp-extension, that Y is GL-homogeneous

for a reductive F -group G, and given an indecomposable summand A of M(L)F , we will
write UA(Y ) for the corresponding (defined up to an isomorphism) A-upper motive of Y .
(The base field F of the motive UA(Y ) does not show up in the notation because it is
concealed in the motive A.)

Definition 6.9. Let G be a Dp-inner algebraic group over F and let E/F be a minimal
field extension such that GE is of inner type. A motive M over an intermediate field
L of E/F is an A-upper motive of G if there is an indecomposable direct summand A
of M(L)F , and a projective GL-homogeneous L-variety Y such that M is isomorphic to
UA(Y ).

Note that for a given G, the field extension E/F in the above definition is uniquely
determined up to an isomorphism so that its choice does not influence the notion of
A-upper motives of G.

7. Motivic decompositions

The following result generalizes [13, Theorem 3.5] (dealing with the case of inner type
G) as well as [11, Theorem 1.1] (dealing with the p-inner case):

Theorem 7.1. Let G be a Dp-inner algebraic group. Every summand in the complete
decomposition of the Chow motive with coefficients in F = Z/pZ of any projective G-
homogeneous variety X is a Tate shift of an A-upper motive of G.

Proof. We modify the proof of [11, Theorem 1.1]. Since the center of G acts on X trivially,
we may assume that G is semisimple and adjoint.
We write DG (or simply D) for the set of vertices of the Dynkin diagram of G. We

write F for the base field of G and let E/F be a Dedekind field extension with inner GE.
The Galois group Γ = Gal(E/F ) of the field extension E/F acts on D. For a field L
with F ⊂ L ⊂ E, the set DGL

is identified with D = DG. Any Gal(E/L)-stable subset
τ in D determines a projective GL-homogeneous variety YGL,τ the way described in [13,
§3] (which is opposite to the original convention of [17, §1.6]). For instance, YGL,D is the
variety of Borel subgroups of GL, and YGL,∅ = SpecL. Any projective GL-homogeneous
variety is isomorphic to YGL,τ for some Gal(E/L)-stable τ ⊂ D. Given an indecomposable
summand A of the motive M(L)F , we write UGL,τ,A for the corresponding (in the sense
of Corollary 5.6) indecomposable summand UA(YGL,τ ) of U(YGL,τ )

F .
We prove Theorem 7.1 simultaneously for all F,G,X using induction on n := dimX.

The base of the induction is n = 0 where X = SpecF and the statement is trivial.
From now on we are assuming that n ≥ 1 and that Theorem 7.1 is already proven for

varieties of dimension < n.



A-UPPER MOTIVES 11

For any field extension L/F , we write L̃ for the function field L(X) (note that any
projective homogeneous variety and, in particular, X is geometrically integral). Let G′ be
the semisimple group over the field F̃ = F (X) given by the semisimple anisotropic kernel
of the group GF̃ . We note that the group G′

Ẽ
is of inner type. The field extension Ẽ/F̃

is Galois with the Galois group

Γ = Gal(Ẽ/F̃ ) = Gal(E/F )

(see Lemma 7.7). In particular, any its intermediate field is of the form L̃ for some
intermediate field L of the extension E/F ; moreover, the indecomposable summands of
the motive M(L)F are in one-to-one correspondence with the indecomposable summands

of M(L̃)F̃ (see Corollary 7.8). The set DG′ is identified with a Γ-invariant subset in DG;
the complement DG \DG′ contains the subset in DG corresponding to X.
Let M be an indecomposable summand of the motive of X. We are going to show

that M is isomorphic to a shift of UGL,τ,A for some intermediate field L of E/F , some
Gal(E/L)-stable subset τ ⊂ DG containing the complement of DG′ , and some A. This
will prove Theorem 7.1.

According to [1, Theorem 4.2] (an enhancement of [2, Theorem 7.5]), the motive of XF̃

decomposes into a sum of shifts of motives of projective G′
L̃
-homogeneous (where L runs

over intermediate fields of the extension E/F ) varieties Y , satisfying dim Y < dimX =
n. It follows by the induction hypothesis that each summand of the complete motivic
decomposition of XF̃ is a shift of UG′

L̃
,τ ′,A′ for some L, some τ ′ ⊂ DG′ , and some A′ – an

indecomposable summand in M(L̃)F̃ . By the Krull-Schmidt property [11, Corollary 2.2],
the complete decomposition of MF̃ consists of shifts of some of these UG′

L̃
,τ ′,A′ .

In the complete decomposition of MF̃ , let us choose a summand N ′ := UG′
L̃
,τ ′,A′{i} with

minimal i. We set τ := τ ′ ∪ (DG \DG′) ⊂ DG. We will show that

M ' N := UGL,τ,A{i}
for these L, τ , and i, where A is the summand in M(L)F from Corollary 7.8 satisfying
AF̃ = A′. Since M is indecomposable, it suffices to construct morphisms

α : N → M and β : M → N

satisfying the condition β ◦ α = idN . Since N is indecomposable, the condition on the
composition is satisfied if (and only if) over some extension of the base field a power of the
composition is a nonzero projector. We recall that by [13, Corollary 2.2], an appropriate
power of any endomorphism of N (over any field extension of the base) is a projector; the
point of the formulated condition is the non-vanishing of the projector.

We first construct predecessors α̃ and β̃ of α and β defined over the field F̃ . Note that
N ′ is a summand of NF̃ as well as of MF̃ . Using projections to and inclusions of the direct

summand, we define α̃ and β̃ as the compositions

α̃ : NF̃ → N ′ → MF̃ and β̃ : MF̃ → N ′ → NF̃ .

The composition β̃ ◦ α̃ is the (nonzero) projector which yields the summand N ′ of NF̃ .
Recall that the F -motive N is a shift of the summand UA(Y ) of U(Y )F , where Y is the

projective homogeneous L-variety Y := YGL,τ . Therefore EndN ⊂ EndU(Y )F and the
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homomorphism m of (5.3) is defined on EndN . Extending the base field F to F̃ , let us
consider a restriction of the ring homomorphism of (5.1)

(7.2) EndNF̃ ↪→ EndM(Y F )F̃ = EndM(YL̃)
F̃ → EndM(L̃)F̃ = EndM(L)F .

The image under it of the composition β̃ ◦ α̃ is the (nonzero) projector corresponding to
the Artin motive A.

Now we construct α and β starting with α. Note that α̃ is an element of the Chow
group Ch(Y F ×X)F̃ over F̃ . We take for α an element of the Chow group Ch(Y F ×X)
over F such that its image under the surjective ring homomorphism

Ch(Y F ×X) → Ch(XF (Y F ))

(from [8, Corollary 57.11]) followed by the change of field homomorphism for the field
extension F̃ (Y F )/F (Y F ), coincides with the image of α̃ under the surjective ring homo-
morphism

Ch(Y F ×X)F̃ → Ch(XF̃ (Y F )).

Such α exists because the field extension F̃ (Y F )/F (Y F ) is purely transcendental and
therefore the change of field homomorphism Ch(XF (Y F )) → Ch(XF̃ (Y F )) is surjective as

follows from the homotopy invariance of Chow groups (see [8, Theorem 57.13] or [8,
Corollary 52.11]) and [8, Corollary 57.11].

In order to define β, we note that β̃ is an element of Ch(X × Y F )F̃ and let β′ be an

element of Ch(X×X×Y F ) mapped to β̃ under the surjection (from [8, Corollary 57.11])

Ch(X ×X × Y F ) → Ch(X × Y F )F̃

given by the generic point of the second factor in the product X ×X × Y F . We consider
β′ as a correspondence X ⇝ X × Y F and let β′′ be the composition of correspondences
β′ ◦ µ, where µ ∈ Ch(X × X) is the projector which yields the motivic summand M of
X. Finally, we define β as the pullback of β′′ with respect to the closed embedding

X × Y F ↪→ X ×X × Y F , (x, y) 7→ (x, x, y)

given by the diagonal of X.
By construction, the image under (7.2) of (β ◦ α)F̃ coincides with the image of β̃ ◦ α̃:

the detailed verification made in [13, End of Proof of Theorem 3.5] for L = F carries over
the general case. Therefore a power of β ◦ α is a nonzero projector. □
Remark 7.3. Instead of [1, Theorem 4.2], the weaker result [2, Theorem 7.5] can be used
in the proof of Theorem 7.1. To do so, it suffices to take for G′ the semisimple part of the
parabolic subgroup defining XF̃ .

Remark 7.4. The A-upper motives, whose Tate shifts are direct summands of M(X) in
Theorem 7.1, are associated with varieties dominating X in the sense of [4] (see also [6,
Lemma 2.2]). This can be seen directly using [6, Lemma 2.2] or deduced from the proof
of Theorem 7.1.

Remark 7.5. Let G be a reductive group over a field F . Assume that G becomes
quasisplit over some finite field extension of F of p-coprime degree. In this case, for any
field extension L/F , the upper motive of any projective GL-homogeneous variety over
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L is the Tate motive F = M(L). If G is also Dp-inner, it follows by Theorem 7.1 that
every summand in the complete motivic decomposition of any projective G-homogeneous
variety over F is a shift of an Artin motive given by an intermediate field of a minimal
field extension over which G acquires inner type. In fact, since no A-upper motives aside
from the classical Artin motives show up here, the proof of Theorem 7.1 goes through
and the above statement holds without the assumption that G is Dp-inner.

Remark 7.6. Recall that any projective homogeneous variety is so under an adjoint
semisimple group G. Let D be the Dynkin diagram of such G and let G0 be the cor-
responding split adjoint semisimple group. Write P for the set of torsion primes of G0

(these are the prime divisors of the torsion index of G0 determined in [18]) together with
the prime divisors of the order |AutD|. Then for any prime p outside of P , the group G
splits over some finite field extension of F of p-coprime degree; in particular, the situation
of Remark 7.5 occurs.

Here is the constitution of the set P for every absolutely simple G depending on its
type: 2 and prime divisors of n + 1 for An, n ≥ 1; just 2 for Bn and Cn with n ≥ 2 as
well as for G2 and Dn with n ≥ 5; 2 and 3 for D4, F4, and E6; 2, 3, 5 for E8. (The group
AutD is non-trivial here for An, D4, and E6 only.)

The following lemma and corollary have been applied in the proof of Theorem 7.1 and
earlier – in Proposition 6.6:

Lemma 7.7. Let X be a geometrically integral variety over a field F and let E/F be a
finite Galois field extension. Then E(X)/F (X) is also a finite Galois field extension and
its Galois group Γ̃ is isomorphic to Γ := Gal(E/F ).

Proof. The extension E(X)/F (X) is algebraic, normal, and separable; therefore it is
Galois. Since E is algebraically closed in E(X), any element of Γ̃ maps E to E. Since the
subfields E and F (X) both together generate the field E(X), the group homomorphism
Γ̃ → Γ, σ 7→ σ|E is injective. Since any element of E, which is stable under the image of
Γ̃, belongs to E ∩ F (X) = F , the image of Γ̃ is the entirety of Γ. □
Corollary 7.8. Let X be a geometrically integral F -variety. Let L/F be a subexten-
sion of a finite Galois field extension E/F . For any direct summand Ã of the mo-
tive M(L(X))F (X), there is one and only one direct summand A of M(L)F satisfying
AF (X) = Ã. The motive Ã is indecomposable if and only if A is. Direct summands A and
A′ of M(L)F with isomorphic AF (X) and A′

F (X) are isomorphic. □

8. Structure of A-upper motives

Let G be a reductive algebraic group over a field F ; L/F a subextension in a Dp-
extension of F ; X a projective GL-homogeneous variety over L; A an indecomposable
direct summand in M(L)F .

We would like to understand the structure of the A-upper motive UA(X).
The Galois group Γ of any Dp-extension can be decomposed in the direct product

(6.1). Using such a decomposition for the Dp-extension containing L/F and results of
§6, we see that the extension L/F possesses an intermediate field K such that L/K is a
D-extension of p-coprime degree, K/F is a p-extension, A = A′F for an indecomposable
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direct summand A′ in M(L)K , and UA(X) = UA′(X)F . So, the question on the structure
of UA(X) reduces to the case where L/F is a p-coprime D-extension. This is the case we
are considering below in this section. More generally, L/F below is allowed to be any
finite Galois field extension of p-coprime degree.

Note that the Tate motive F is a direct summand of M(L)F . Besides, U(Y F ) =
UF(Y ). The L-motive U(Y )FL is the sum of σ-modifications U(Y )σ, each of which is
indecomposable. Finally, U(Y ) = U(Y )1 = U(Y F )L.

Lemma 8.1. U(Y )F = U(Y F )⊗M(L)F .

Proof. The second isomorphism in the chain

U(Y )F =
(
U(Y F )L ⊗M(L)

)F
= U(Y F )⊗M(L)F

is a particular case of the following general formula that holds for any finite separable
field extension L/F , an F -motive M , and an L-motive N : (ML ⊗N)F ' M ⊗NF . □

The following proposition expresses the A-upper motive UA(Y ), given by A, in terms
of U(Y F ) and A:

Proposition 8.2. UA(Y ) = U(Y F )⊗ A.

Proof. Since A is a direct summand in M(L)F , the tensor product U(Y F )⊗A is a direct
summand in U(Y F )⊗M(L)F = U(Y )F . Besides,

m(U(Y F )⊗ A) = m(U(Y F ))⊗m(A) = F⊗ A = A. □

9. Criterion of isomorphism for A-upper motives

Let L/F and L′/F be subextensions of some (possibly different) Dp-extensions, let Y
be a projective GL-homogeneous variety over L and Y ′ a projective GL′-homogeneous
variety over L′, where G and G′ are reductive algebraic groups over F . Let A be an
Artin motive isomorphic to an indecomposable direct summand of M(L)F and let A′ be
an Artin motive isomorphic to an indecomposable direct summand of M(L′)F .
We are going to formulate a criterion of isomorphism for the A-upper F -motives UA(Y )

and UA′(Y ′). We start with

Proposition 9.1. If UA(Y ) ' UA′(Y ′), then A ' A′.

Proof. Applying the functor m to an isomorphism UA(Y ) → UA′(Y ′), we get an isomor-
phism A → A′. □

Recall from [6, §2] that the variety Y F dominates Y ′F if there is a multiplicity 1 cor-
respondence Y F ⇝ Y ′F . The varieties Y F and Y ′F are equivalent, Y F ≈ Y ′F , if each of
them dominates the other.

Theorem 9.2. The motives UA(Y ) and UA′(Y ′) are isomorphic if and only if A ' A′

and Y F ≈ Y ′F .

Proof. By Proposition 9.1, we may assume that A ' A′.
The Tate motive F is a direct summand in UA(Y )F (Y F ). Assuming UA(Y ) ' UA′(Y ′),

we conclude that F is also a direct summand in UA′(Y ′)F (Y F ). This implies that the
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variety (Y ′F )F (Y F ) is isotropic (i.e., has a 0-cycle of degree 1 ∈ F), which means that Y F

dominates Y ′F . Similarly, Y ′F dominates Y F so that Y F ≈ Y ′F .
Conversely, assume that

(9.3) Y F ≈ Y ′F .

Let K be an intermediate field in L/F as in §6 with L/K a p-coprime D-extension and
[K : F ] a p-power; let K ′ be a similar intermediate field in L′/F . Note that L = Lp ·K,
F = Lp ∩K and similarly L′ = L′

p ·K ′, F = L′
p ∩K ′, where Lp ⊂ L and L′

p ⊂ L′ are the
subfields given by the p-Sylow subgroups:

L = Lp ·K
D QQQ

QQQ
QQ

pmmm
mmm

mm

Lp
D
QQQ

QQQ
QQ K

p

mmm
mmm

mm

F = Lp ∩K

L′ = L′
p ·K ′

D QQQ
QQQ

QQ
pmmm

mmm
mm

L′
p

D
QQQ

QQQ
QQQ K ′

p

mmm
mmm

mmm

F = L′
p ∩K ′

Since restricting from L to Lp yields an isomorphism Gal(L/K) → Gal(Lp/F ), the
change of field from F to K yields a bijection of the set of isomorphism classes of inde-
composable direct summands in M(Lp)

F with the similar set for M(L)K . So, by Remark
6.5, we can find an indecomposable direct summand B in M(Lp)

F with BF
K ' A. Simi-

larly, we can find an indecomposable direct summand B′ in M(L′
p)

F with B′F
K′ ' A′. Note

that BF
K = B ⊗ M(K)F by the general formula mentioned in the proof of Lemma 8.1;

similarly, B′F
K′ = B′ ⊗M(K ′)F .

We claim that B′ ' B. To prove the claim, note that both K and K ′ are contained
in a common p-extension E/F . Since the natural map Gal((Lp · E)/E) → Gal(Lp/F )
(resp., Gal((L′

p ·E)/E) → Gal(L′
p/F )) is an isomorphism, the change of field from F to E

yields a bijection of the set of isomorphism classes of indecomposable direct summands in
M(Lp)

F (resp., M(L′
p)

F ) with the corresponding set for M(Lp ·E)E (resp., M(L′
p ·E)E).

In particular, the Artin E-motives BE and B′
E are still indecomposable. Since the motive

M(K)FE (resp., M(K ′)FE) is split, the motive AE (resp., A′
E) is a direct sum of several

copies of BE (resp., B′
E). Since A ' A′, we have an isomorphism AE ' A′

E implying that
there is an isomorphism BE ' B′

E and so an isomorphism B ' B′ of the claim.
It follows that

UA(Y ) ' UBK
(Y )F '

(
U(Y K)⊗ BK

)F ' U(Y K)F ⊗ B ' U(Y F )⊗ B '

' U(Y ′F )⊗ B′ ' U(Y ′K′
)F ⊗ B′ '

(
U(Y ′K′

)⊗ B′
K′

)F ' UB′
K′ (Y

′)F ' UA′(Y ′).

The third and the seventh isomorphisms here are particular cases of the general formula
mentioned in the proof of Lemma 8.1. □
Remark 9.4. As shown in the proof of Theorem 9.2, any subextension of a Dp-extension
has the following property:

(9.5) It decomposes in a composite Lp ·K, where Lp/F is a subextension

of a p-extension and K/F is a finite Galois field extension of p-coprime degree.
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Corollary 6.7 and its proof actually hold for arbitrary field extension L/F satisfying (9.5).
Therefore, the A-upper motive UA(Y ) of Definition 6.8 can be defined the same way for
any such L/F . Finally, Theorem 9.2 and its proof hold for arbitrary L/F and L′/F
satisfying condition (9.5).

Let M and M ′ be F -motives which are finite direct sums, where each summand N is a
shift of the motive UA(Y ) for some reductive algebraic group G over F , some projective
GL-homogeneous variety Y over an extension field L/F satisfying (9.5), and for an inde-
composable summand A in M(L)F (where G, L, Y , A may vary with N). For any such A,
let MA be the sum of the summands in M involving an Artin motive isomorphic to A. We
say that M and M ′ have isomorphic higher Artin-Tate traces, if for every (isomorphism
class of) A the motives MA and M ′

A have isomorphic higher Tate traces as defined in [6,
Remark 3.16].

Corollary 9.6. The motives M and M ′ are isomorphic if and only if they have isomorphic
higher Artin-Tate traces.

Proof. If M and M ′ are isomorphic, then by Proposition 9.1 and the Krull-Schmidt prop-
erty, the motives MA and M ′

A are isomorphic and have isomorphic higher Tate traces, for
any indecomposable Artin motive A.

Conversely, assume that M and M ′ have isomorphic higher Artin-Tate traces. Given an
indecomposable Artin motive A, we prove that MA and M ′

A are isomorphic by induction
on the maximum of the numbers of summands in their complete motivic decompositions.
If this maximum is zero, both MA and M ′

A are trivial. Else, write

MA = UA(X1){n1} ⊕ ..⊕ UA(Xk){nk} and M ′
A = UA(Y1){m1} ⊕ ...⊕ UA(Ys){ms}.

We may assume that n = min1≤i≤k ni is not higher than m = min1≤j≤s mj. Pick an integer
1 ≤ α ≤ k such that XF

α is minimal for the domination relation among the XF
i ’s such

that UA(Xi){n} is a direct summand in the above decomposition of MA. By assumption
on the higher Tate traces of MA and M ′

A, the latter contains a Tate motive F{n} over
the function field of XF

α . It follows that n = m and that M ′
A contains a direct summand

isomorphic to UA(Yβ){n}, for some 1 ≤ β ≤ s, such that XF
α dominates Y F

β . The same
reasoning over the function field of Yβ implies that a direct summand of MA is isomorphic
to UA(Xγ){n} for some 1 ≤ γ ≤ k, where XF

γ is dominated by Y F
β .

The varieties XF
α and Y F

β are equivalent, by minimality of XF
α . The A-upper motives

UA(Xα) and UA(Yβ) are then isomorphic by Theorem 9.2. Induction, applied to the

summands M̃A and M̃ ′
A given by the decompositions MA = UA(Xα){n}⊕ M̃A and M ′

A =

UA(Yβ){n} ⊕ M̃ ′
A, proves that MA and M ′

A are isomorphic. □
The previous result shows that for groups acquiring inner type over a Dp-extension,

isomorphism classes of direct summands of motives of projective homogeneous varieties
are determined by their higher Artin-Tate traces. The following example shows fur-
ther that the higher Tate traces of [6] are already not sufficient to distinguish between
non-isomorphic Artin motives arising from finite Galois field extensions of prime degree.
Namely, the Artin motives A and B (each of which is a twisted form of the Tate motive
F), constructed in the example, are not isomorphic and though have isomorphic higher
Tate traces.
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Example 9.7. Let p = 7 and let E/F be a cubic Galois field extension. Recall that the
F-algebra EndM(E)F is identified with the group algebra F[Γ], where Γ := Gal(E/F ),
and therefore with the F-algebra F[x]/(x3 − 1). Since the polynomial x3 − 1 ∈ F[x] splits
into the product of three linear factors

x3 − 1 = (x− 1)(x− 2)(x+ 3),

the F-algebra EndM(E)F is isomorphic to the product F × F × F of three copies of F,
and the motive M(E)F splits as F⊕ A⊕ B for some Artin motives A and B.

For any field extension K/F , the K-algebra K ⊗F E is either still a cubic Galois
field extension or the split étale K-algebra K × K × K. In the latter case, we have
AK = F = BK . We will verify that in the former case, the motives F, A, B over F are
pairwise non-isomorphic. We may assume that K = F for this verification.

A rank 1 direct summand of the motive M(E)F (we recall that the rank is the number
of (Tate) summands in the complete decomposition of the motive over an algebraic closure
of its base field) is given by a Γ-invariant dimension 1 ideal in the group algebra F[Γ]. Let
σ be a generator of the group Γ. The elements

u := 1 + σ + σ2, v := 1 + 2σ − 3σ2, w := 1− 3σ + 2σ2 ∈ F[Γ]

satisfy

(9.8) σu = u, σv = −3v, σw = 2w

and therefore each of them does generate a Γ-invariant 1-dimensional ideal. Note that
u, v, w are linearly independent over F so that the F[Γ]-module F[Γ] decomposes as

F[Γ] = Fu⊕ Fv ⊕ Fw.

Moreover, since multiplication by σ yields multiplication by three different constants in
the three formulas of (9.8), the three ideals are pairwise non-isomorphic (as F[Γ]-modules).
By the Krull-Schmidt property, these three ideals correspond to the motives F, A, B. In
particular, the three motives are also pairwise non-isomorphic.

10. Motivic equivalence

In this section we produce a criterion of motivic equivalence for Dp-inner reductive
algebraic groups which are inner forms of each other. We remind that absolutely simple
algebraic groups of any type other than 6D4 are Dp-inner.

Recall that a projective homogeneous variety is isotropic (with coefficients in F) if it
possesses a 0-cycle of degree coprime to p.

Proposition 10.1. Let K be the function field of a projective homogeneous F -variety X.

i) If L/F is a subextension of a Dp-extension and A is an indecomposable direct
summand in the F -motive M(L)F , then the K-motive AK is indecomposable.

ii) Let G and G′ be reductive algebraic groups over F , let L/F , L′/F be two subexten-
sions of a Dp-extension, and let Y , Y ′ be projective homogeneous varieties over L
and L′ under GL and G′

L′, respectively, each of which dominates X. If the A-upper
K-motives UAK

(YK) and UA′
K
(Y ′

K) are isomorphic, then the F -motives UA(Y ) and
UA′(Y ′) are isomorphic as well.
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Proof. Given an indecomposable summand A of M(L)F , the K-motive AK is indecom-
posable by Corollary 7.8, proving i).

We prove ii) using Theorem 9.2. First, by Corollary 7.8 once again, if the Artin K-
motives AK and A′

K are isomorphic, then the F -motives A and A′ are isomorphic.
Assume that UAK

(YK) and UA′
K
(Y ′

K) are isomorphic. By Theorem 9.2, the K-varieties

(Y F )K and (Y ′F )K are equivalent and AK ' A′
K , hence A ' A′. By [4, Proof of Proposi-

tion 9], Y and Y ′ are equivalent and so UA(Y ) ' UA′(Y ′) by Theorem 9.2. □

Let G be a reductive group over F . Recall that we write DG for its Dynkin diagram,
which can be canonically attached to G using the generic point of the variety of pairs
T ⊂ B with T a maximal torus and B a Borel subgroup. Sometimes, depending on the
context, DG stands for the set of vertices of the Dynkin diagram.

Any Gal(F̄ /F )-invariant subset of DG, where F̄ is a separable closure of F , yields
a projective G-homogeneous variety (we keep the same convention as in the proof of
Theorem 7.1). This induces a bijection between the Gal(F̄ /F )-invariant subsets of DG

and the isomorphism classes of projective G-homogeneous varieties. An invariant subset
τ ⊂ DG is p-distinguished, if the associated projective G-homogeneous variety XG,τ is
isotropic. The union of all p-distinguished orbits yields the largest p-distinguished subset,
denoted Dp

G (see [5]).
We are going to consider two reductive groups G and G′ each of which is an inner

form of the other. In such a situation, the Dynkin diagrams DG and DG′ are Gal(F̄ /F )-
equivariantly isomorphic and we will be fixing one of the possible isomorphisms.

Proposition 10.2. Let G and G′ be Dp-inner reductive groups over F , inner forms of
each other. Fix an equivariant isomorphism of their Dynkin diagrams ϕ : DG −→ DG′ and
an invariant subset τ0 of DG. The following conditions on G, G′, τ0, and ϕ are equivalent:

i) for any field extension K/F , one has τ0 ⊂ Dp
GK

(i.e., τ0 is p-distinguished over
K) if and only if ϕ(τ0) ⊂ Dp

G′
K
; moreover, ϕ(Dp

GK
) = Dp

G′
K
in this case;

ii) for any minimal field extension E/F such that GE (and G′
E) are of inner type,

any field extensions L/F contained in E, any indecomposable summand A of the
motive M(L)F , and any Gal(E/L)-invariant subset τ ⊂ DG containing τ0, the
A-upper motives UA(XGL,τ ) and UA(XG′

L,φ(τ)
) are isomorphic.

Proof. i) ⇒ ii) Assuming i), fix a field extension L/F contained in E, an Artin motive A,
and a subset τ ⊃ τ0 as in ii). The subset τ0 is p-distinguished for G over the function field
L̃ of the variety XGL,τ . It follows from i) that the subset ϕ(τ) ⊂ DG′ is p-distinguished

over L̃. The L-variety XGL,τ thus dominates XG′
L,φ(τ)

. The same reasoning with ϕ(τ) and
the inverse of ϕ implies that the L-varieties XGL,τ and XG′

L,φ(τ)
are equivalent. It follows

that the F -varieties XF
GL,τ

and XF
G′

L,φ(τ)
are equivalent and hence the A-upper motives

UA(XGL,τ ) and UA(XG′
L,φ(τ)

) are isomorphic by Theorem 9.2.
ii) ⇒ i) First, given a field extension K/F , the variety XGK ,τ0 is isotropic if and only

if XGK ,φ(τ0) is isotropic as well, since by assumption ii) (with L = F ) the upper motives
U(XG,τ0) and U(XG′,φ(τ0)) are isomorphic. This means that τ0 is p-distinguished over K
if and only if ϕ(τ0) is.
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Now fix a field extension K/F such that τ0 is p-distinguished over K. Fix a minimal
subextension L/F of K such that Dp

GK
⊂ DG is Gal(E/L)-invariant, for some minimal

field extension E/F over which G (and G′) become of inner type. By assumption ii), the
A-upper motives UA(XGL,D

p
GK

) and UA(XG′
L,φ(D

p
GK

)) are isomorphic for any A, thus, by

Theorem 9.2, the L-varieties XGL,D
p
GK

and XG′
L,φ(D

p
GK

) are equivalent. As L is contained

in K, it follows that the K-varieties XGK ,Dp
GK

and XG′
K ,φ(Dp

GK
) are also equivalent.

Since the first of the two equivalent K-varieties is isotropic, the second one is also
isotropic (see, e.g., [6, Lemma 2.2] and [13, Corollary 2.15]) which means that the subset
ϕ(Dp

GK
) is p-distinguished for G′ over K. The same reasoning with G replaced by G′, τ0

by ϕ(τ0), and ϕ by its inverse, gives that ϕ−1(Dp
G′

K
) ⊂ Dp

GK
. Hence ϕ(Dp

GK
) = Dp

G′
K
. □

Let G be a reductive algebraic group over a field F . Recall that the classical Tits index
of G is its Dynkin diagram DG, endowed with the action of the absolute Galois group of
F , together with the subset D0

G of distinguished vertices. A vertex of DG is distinguished
if it is contained in a Galois orbit τ such that the projective homogeneous variety XG,τ

has a rational point.
For any subset τ of DG, let us consider the minimal subextension Fτ/F in F̄ /F such

that τ is Gal(F̄ /Fτ )-invariant. The F -motive MG,τ := M(XGFτ ,τ
)F is called the standard

motive of G of type τ . Up to isomorphism, the motive MG,τ does not depend on the
choice of the separable closure F̄ /F . If τ is Gal(F̄ /F )-invariant, it is simply the motive
of the projective G-homogeneous variety XG,τ .
We now introduce a set of integers describing motivic decompositions. Let G be a Dp-

inner reductive group, E/F a Dp-extension such that GE is of inner type, X a projective
G-homogeneous variety, and M a direct summand in M(X). For any A-upper F -motive
UA(Y ) and any integer n, we write lA,Y,n(M) for the number of indecomposable summands
isomorphic to UA(Y ){n} in a complete decomposition of M .

Theorem 10.3. Let G and G′ be Dp-inner reductive groups over a field F which are
inner forms of each other. Let τ0 be a invariant subset in DG. The equivalent conditions
of Proposition 10.2 are satisfied if and only if for any subset τ ⊂ DG containing τ0, the
motives MG,τ and MG′,φ(τ) are isomorphic.

Proof. The “if” part is clear: if the motives MG,τ and MG′,φ(τ) are isomorphic, then for
any intermediate field L of a minimal field extension E/F such that GE and G′

E are of
inner type, the varieties XF

GL,τ
and XF

G′
L,φ(τ)

are equivalent. Hence, by Theorem 9.2, G

and G′ satisfy condition ii) of Proposition 10.2.
We prove the opposite implication by induction on the (common) semisimple rank of G

and G′. More concretely, assuming the conditions of Proposition 10.2, we will prove that
for every τ ⊃ τ0 the motives MG,τ andMG′,φ(τ) are isomorphic. For τ = ∅ the isomorphism
trivially holds. This covers the rank zero case, which is the base of the induction. Below
we assume that τ 6= ∅.
We first show that MG,τ and MG′,φ(τ) are isomorphic if τ and ϕ(τ) are Gal(E/F )-

invariant and the associated varieties both have a rational point (hence the reductive
algebraic groups G and G′ are isotropic).



20 C. DE CLERCQ, N. KARPENKO, AND A. QUÉGUINER-MATHIEU

Let G̃ be the semisimple part of a parabolic subgroup in G of type τ . The Dynkin
diagram DG̃ of G̃ is obtained by removing the subset τ from DG, and G̃E is of inner type.
By [1, Theorem 4.2], there is a motivic decomposition

MG,τ '
⊕
i∈I

MF
G̃Li

,τi
{ni}

with some field extensions Li/F contained in E and some Gal(E/Li)-invariant τi ⊂ DG̃.

Note that the fields Li, the projective G̃Li
-homogeneous varieties XG̃Li

,τi
, and the shifting

numbers ni in this decomposition are completely determined by the underlying combina-
torics of G. The isomorphism ϕ : DG −→ DG′ from Proposition 10.2 yields an analogous
decomposition of MG′,φ(τ) with respect to its semisimple part G̃′ of a parabolic subgroup
in G′ of type ϕ(τ) with the same I, Li, τi, and ni:

MG′,φ(τ) '
⊕
i∈I

MF
G̃′

Li
,φ(τi)

{ni}

Since G and G′ are inner forms of each other and satisfy condition i) of Proposition 10.2, so
do G̃ and G̃′. Indeed, for any field extension K/F , we have disjoint union decompositions

Dp
GK

= Dp

G̃K
t τ and Dp

G′
K
= Dp

G̃′
K
t ϕ(τ).

Condition i) of Proposition 10.2 for G and G′ gives that Dp
G′

K
= ϕ(Dp

GK
) and hence

Dp

G̃′
K

= ϕ(Dp

G̃K
). It follows that for any any i ∈ I and any field extension Li/F , the

reductive groups G̃Li
and G̃′

Li
satisfy condition i) of Proposition 10.2 with respect to the

restriction of ϕ and the subset τ0 = ∅. By induction, the motives MG̃Li
,τi

and MG̃′
Li

,φ(τi)

are thus isomorphic. Therefore, the motives MF
G̃Li

,τi
and MF

G̃′
Li

,φ(τi)
are isomorphic as well

and so MG,τ ' MG′,φ(τ).
We now treat the case of arbitrary Gal(E/F )-invariant subsets τ and ϕ(τ). Assume

that the motives of XG,τ and XG′,φ(τ) are not isomorphic. By Theorem 7.1, since G and
G′ satisfy conditions of Proposition 10.2, this means that lA,Y,n(MG,τ ) 6= lA,Y,n(MG′,φ(τ))
for some indecomposable Artin motive A and some projective homogeneous variety Y
defined over a field extension contained in E. Consider the minimal integer n for which
such a non-equality occurs.

Over the function field K/F of the product XG,τ ×XG′,φ(τ) both XG,τ and XG′,φ(τ) have
a rational point. The motive AK is indecomposable (see Corollary 7.8) and so we can
investigate the integer lAK ,YK ,n(MGK ,τ ). If UAK

(YK){n} is a direct summand of MGK ,τ ,
then by the Krull-Schmidt property and Theorem 7.1, it is a direct summand in the
K/F -restriction (UB(Z))K of an A-upper motive UB(Z) of G, shifted by some k ≤ n.

Note that (UB(Z))K ' UBK
(ZK) ⊕ N, where N is a direct sum of A-upper motives

with Tate shifts at least 1. Since XG,τ and XG′,φ(τ) are equivalent, any projective homoge-
neous variety which dominates XG,τ (or XG′,φ(τ)) dominates their product. In particular,
Proposition 10.1 implies that a direct summand UAK

(YK){k} of M(XGK ,τ ) may only arise
from a K/F -restriction (UB(Z){k})K (with the same shift) if B ' A and Z ≈ Y , that is
from the A-upper motive UA(Y ){k} (see Theorem 9.2).
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Write M for the direct summand of MG,τ given by the sum of all its indecomposable
summands with shifts strictly lower than n (in a fixed complete decomposition). Sepa-
rating the summands UAK

(YK){n} of MGK ,τ which arise from MK , we get thanks to the
previous discussion the equality

lAK ,YK ,n(MGK ,τ ) = lA,Y,n(MG,τ ) + lAK ,YK ,n(MK).

Since by assumption the A-upper motives of G and G′ are pairwise isomorphic, the same
reasoning with XG′,φ(τ) ensures that

lAK ,YK ,n(MG′
K ,φ(τ)) = lA,Y,n(MG′,φ(τ)) + lAK ,YK ,n(M

′
K),

where M ′ is the direct sum of the summands in a complete motivic decomposition of
XG′,φ(τ) with shifts strictly lower than n. By minimality of n, the motives M and M ′ are
isomorphic, hence MK and M ′

K are isomorphic as well and lAK ,YK ,n(MK) = lAK ,YK ,n(M
′
K).

As by assumption lA,Y,n(MG,τ ) 6= lA,Y,n(MG′,φ(τ)), it follows that lAK ,YK ,n(MGK ,τ ) and
lAK ,YK ,n(MG′

K ,φ(τ)) are not equal, a contradiction to the fact that the motives of XGK ,τ

and of XG′
K ,φ(τ) are isomorphic (recall that both of these varieties have a rational point).

We can now conclude: let τ be an arbitrary subset of DG. The reductive groups GFτ

and G′
Fτ

satisfy condition i) of Proposition 10.2. It follows from the Galois-invariant case
that MGFτ ,τ

and MG′
Fτ

,φ(τ) are isomorphic, hence so are MG,τ = MF
GFτ ,τ

and MG′,φ(τ) =

MF
G′

Fτ
,φ(τ). □

A field is called p-special if every its finite extension has a p-power degree. Let G and
G′ be two reductive algebraic groups, inner forms of each other. Similarly to [4, Definition
1], we say that G and G′ are motivic equivalent (with coefficients in F) with respect to a
Galois-equivariant isomorphism ϕ : DG −→ DG′ , if for any subset τ of DG, the motives
Mτ,G and Mφ(τ),G′ are isomorphic.

Corollary 10.4. Let G and G′ be reductive algebraic groups over F , inner forms of each
other, becoming of inner type over a Dp-extension E/F . Let ϕ be a Gal(E/F )-equivariant
isomorphism of their Dynkin diagrams. The groups G and G′ are motivic equivalent with
respect to ϕ if and only if for any p-special field extension K/F , ϕ identifies the Tits
indexes of GK and G′

K.

Proof. Theorem 10.3 with τ0 = ∅ states that G and G′ are motivic equivalent with respect
to ϕ if and only if for any field extension K/F , ϕ identifies the subsets of p-distinguished
vertices of GK and G′

K . Over p-special field K, this expresses as ϕ(D0
GK

) = D0
G′

K
(through

classical Tits indexes), since a variety is isotropic if and only it has a rational point over
a p-special closure of its base field [6, Proof of Lemma 4.11]. □
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