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Abstract. We introduce and study a filtration on the representation ring R(G) of an
affine algebraic group G over a field. This filtration, which we call Chow filtration, is an
analogue of the coniveau filtration on the Grothendieck ring of a smooth variety. We
compare it with the other known filtrations on R(G) and show that all three define on
R(G) the same topology. For any n ≥ 1, we compute the Chow filtration on R(G) for
the special orthogonal group G := O+(2n + 1). In particular, we show that the graded
group associated with the filtration is torsion-free. On the other hand, the Chow ring
of the classifying space of G over any field of characteristic ̸= 2 is known to contain
non-zero torsion elements. As a consequence, any sufficiently good approximation of the
classifying space yields an example of a smooth quasi-projective variety X such that its
Chow ring is generated by Chern classes and at the same time contains non-zero elements
vanishing under the canonical homomorphism onto the graded ring associated with the
coniveau filtration on the Grothendieck ring of X.
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1. Introduction

Let G be an affine group scheme of finite type over a field and let R(G) be its rep-
resentation ring (the Grothendieck ring of the category of finite-dimensional linear G-
representations). In this paper we introduce and study a ring filtration on R(G) which is
an analogue of the coniveau filtration on the Grothendieck ring of a smooth variety. We
call it Chow filtration because of a close relation with the Chow ring of the classifying
space of G. In topology, for finite groups, a similar filtration has been considered by
Atiyah in [1].
The ring R(G) is an augmented λ-ring and therefore has two other important filtrations:

the filtration by powers of the augmentation ideal and Grothendieck’s γ-filtration. The
latter can be defined via Chern classes and for this reason we call it Chern filtration in
the paper. It has been shown by Totaro (see [21, proof of Theorem 3.1]) that the Chern
filtration is equivalent to the augmentation filtration in the sense that they define on
R(G) the same topology. We show that the Chow filtration is also equivalent to them
(see Corollary 4.8).

Our initial motivation came from following conjecture raised in [11]:

Conjecture 1.1. Let G be a split semisimple algebraic group over a field, let P be a
special parabolic subgroup of G (i.e., all P -torsors over all extension fields of the base
field are trivial), let E be a standard generic G-torsor, and let X be the quotient variety
E/P . Then the canonical homomorphism of the Chow ring CH(X) onto the graded ring
associated with the coniveau filtration on the Grothendieck ring of X is an isomorphism.

Using computations of Chow rings of classifying spaces of special parabolic subgroups,
it has been shown in [12] that for X as above the ring CH(X) is generated by Chern
classes (of vector bundles). It was not immediately clear to the authors of the present
paper that this condition alone is insufficient for the conclusion of the conjecture to hold.
Examples showing that it indeed is are produced here (see Theorem 5.5). Unexpectedly,
they are also related to computations of Chow rings for classifying spaces of algebraic
groups. In fact, analogous examples are first obtained with a classifying space in place
of X. Then one takes for X a variety which is (in a certain specific sense) its sufficiently
good approximation.
Before we can construct the example with a classifying space of an algebraic group G,

we need to introduce the Chow filtration on the ring R(G) (which can be viewed as the
Grothendieck ring of the classifying space of G). This is done in §4, where we also study
some basic properties of the filtration introduced and relate it to the other two filtrations
on R(G) in various ways.
Proving Theorem 5.5, we are using a computation of the Chow ring for the classifying

space of the orthogonal group O+(2n + 1) made first by B. Totaro over C and then by
L. A. Molina Rojas and A. Vistoli over an arbitrary field of characteristic ̸= 2. For the
sake of completeness, we do the corresponding computation over a field of characteristic
2 in Appendix O. It turns out that the answer in characteristic 2 differs from the an-
swer in other characteristics. In particular, examples of Theorem 5.5 do not extend to
characteristic 2.
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By a variety we mean an integral separated scheme of finite type over a field. An alge-
braic group is an affine group scheme of finite type over a field (not necessarily connected,
not necessarily smooth).

2. Chern classes

Let R be λ-ring (see [6]). We say that R is an augmented λ-ring if there is given
an (augmentation) homomorphism of λ-rings rk : R → Z (where Z is considered with

its standard λ-ring structure), that is rk(λi(a)) =
(
rk(a)

i

)
. An augmented λ-ring R is an

enhanced λ-ring, if an involution (duality automorphism) R → R, a 7→ a∨ is given such
that rk(a∨) = rk(a) for all a ∈ R.

Example 2.1. LetX be a smooth variety over a field F and R = K(X), the Grothendieck
ring K0(X) of classes of locally-free sheaves on X. Exterior powers of locally-free sheaves
yield structure of a λ-ring on R. The rank map R → Z is an augmentation and duality
on R is given by dual sheaves. Thus, R is an enhanced λ-ring.

Example 2.2. Let G be an algebraic group over F and R = R(G), the representation ring
of G. Exterior powers of representations yield structure of a λ-ring on R. The dimension
map R → Z is an augmentation and duality on R is given by dual representations. Thus,
R is an enhanced λ-ring.

Let R be a λ-ring. Recall that the total λ-operation

λt : R → R[[t]],

where t is a variable, is defined by λt(a) =
∑

i≥0 λ
i(a)ti and the total γ-operation

γt : R → R[[t]]

satisfies γt := λt/(1−t). We have γ0 = 1, γ1 = id and γn =
∑n

i=1

(
n−1
i−1

)
λi for all n ≥ 1.

If R is an enhanced λ-ring, we define Chern classes cRi : R → R for all i ≥ 0 by

cRi (a) := γi(rk(a)− a∨).

The total Chern class cRt satisfies cRt (a + b) = cRt (a)c
R
t (b). We have cR0 = 1 and cR1 (a) =

rk(a)− a∨.
We define Chern filtration

R = R[0] ⊃ R[1] ⊃ . . .

where R[i] is the subgroup generated by all products

cRi1(a1) · · · c
R
in(an)

with n ≥ 0, a1, . . . , an ∈ R, and i1 + · · ·+ in ≥ i. (Note that since cRi (a) = cRi (a− rk(a))
for every a ∈ R(G), it suffices to take ai with rk(ai) = 0.) In other words, Chern filtration
is the smallest ring filtration with the property that cRi (a) ∈ R[i] for any a ∈ R and any
i ≥ 0 (cf., [9, Definition 2.6]).

We write ChernR =
⊕

i≥0Chern
iR for the graded ring associated with the Chern

filtration.
Let I = Ker(rk) ⊂ R be the augmentation ideal. For any a ∈ I, we have

a = γ1(a) = −γ1(rk(a)− a) = −cR1 (a
∨) ∈ R[1].
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It follows that I ⊂ R[1] and hence I i ⊂ R[i] for all i.
Note that both filtrations on R we introduced are determined by augmented λ-ring

structure of R and do not depend on the duality automorphism.

Example 2.3. If X is a smooth variety over a field F , the Chern classes on R = K(X)
coincide with the K-theoretic Chern classes as defined in [18, Example 3.6.1]. We write
cKi for cRi . In particular, cK1 (x) = 1− x−1, where x is the class of a line bundle on X.

3. The Grothendieck ring of a smooth variety

We recall that a variety is an integral separated scheme of finite type over a field. Let
X be a smooth variety over a field F . We write K(X) for the Grothendieck ring K0(X)
of classes of locally-free sheaves on X. We introduce three filtrations on K(X).

The augmentation ideal I(X) ⊂ K(X) is the kernel of the (augmentation) ring ho-
momorphism K(X) → Z given by the rank of locally-free sheaves. The augmentation
filtration on K(X) is given by powers I(X)i, i ≥ 0 of the augmentation ideal.

By Example 2.1, the ring K(X) is an enhanced λ-ring. In particular, it has the Chern
filtration (the same as Grothendieck’s γ-filtration, see [6])

K(X) = K(X)[0] ⊃ K(X)[1] ⊃ . . .

The class in K(X) of any coherent sheaf on X is obtained by taking the alternating sum
of the terms of any its finite locally free resolution. For any i ≥ 0, let K(X)(i) ⊂ K(X) be
the subgroup generated by the classes of coherent sheaves whose support has codimension
at least i. The finite filtration

K(X) = K(X)(0) ⊃ K(X)(1) ⊃ · · · ⊃ K(X)(dimX+1) = 0

thus obtained is a ring filtration known under various names in the literature: the filtration
by codimension of support, topological filtration, geometric filtration, coniveau filtration.
We call it Chow filtration because of its close relation to the Chow ring CH(X) (see below).

By [6, Theorem 3.9 of Chapter V], cKi (a) ∈ K(X)(i) for all a ∈ K(X) and all i. It
follows that the three filtrations are related by the inclusions:

I(X)i ⊂ K(X)[i] ⊂ K(X)(i) for any i.

Remark 3.1. Some of these inclusions are equalities: I(X) = K(X)[1] = K(X)(1) and
K(X)[2] = K(X)(2) for allX, [9, Proposition 2.14(2)]. The inclusion of the Chern filtration
into Chow filtration yields a graded ring homomorphism ChernK(X) → ChowK(X) of
the associated graded rings that is neither injective nor surjective in general, but becomes
an isomorphism after tensoring with Q, [6, Proposition 5.5 of Chapter VI]. In particular,
the kernel and cokernel of ChernK(X) → ChowK(X) are torsion groups.

There is a well defined surjective graded ring homomorphism

φ : CH(X) → ChowK(X)

taking the class of a closed subvariety Z ⊂ X of codimension i to the class of its struc-
ture sheaf OZ in ChowiK(X). The kernel of φi : CHi(X) → ChowiK(X) is killed by
multiplication by (i − 1)! (see [5, Example 15.3.6]). In particular, φi is an isomorphism
for i ≤ 2.
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Proposition 3.2. The homomorphism φ commutes with Chern classes, that is φ(ci(a)) =
cKi (a) modulo K(X)(i+1) for every a ∈ K(X).

Proof. In view of the splitting principle (see [6, Lemma 3.8 of Chapter V]) it suffices to
consider the case i = 1 and a = [L(Z)] for an irreducible divisor j : Z ↪→ X, where L(Z)
is the locally-free sheaf on X associated with Z. We have an exact sequence of sheaves
on X:

0 → L(−Z) → OX → j∗OZ → 0.

It follows that

φ(ci(a)) = φ([Z]) = [j∗OZ ] = [OX ]− [L(−Z)] = 1− a−1 = cK1 (a). �

Proposition 3.3. The following holds for any integer i ≥ 0.

(1) If K(X) is generated by classes of line bundles, then I(X)i = K(X)[i].
(2) If CH(X) is generated by Chern classes, then K(X)[i] = K(X)(i).
(3) If the group ChernK(X) is torsion-free, then K(X)[i] = K(X)(i).

Proof. (1) If l ∈ K(X) is the class of a line bundle, then cK1 (l) = 1 − l−1 ∈ I(X) and
cKi (−l) = (l−1 − 1)i ∈ I(X)i for any i. If a, b ∈ K(X) are such that cKi (a), c

K
i (b) ∈ I(X)i

for all i, then cKi (a+ b) =
∑

j c
K
j (a)c

K
i−j(b) ∈ I(X)i.

(2) By Proposition 3.2, for any i, the surjective ring homomorphism φ : CH(X) →
ChowK(X) takes the Chow-theoretical Chern class ci(a) ∈ CHi(X) with a ∈ K(X) to
the class modulo K(X)(i+1) of the K-theoretical Chern class cKi (a). It follows that the
ring ChowK(X) is generated by Chern classes. By descending induction on i, we see that
K(X)[i] = K(X)(i).

(3) If ChernK(X) is torsion-free, the homomorphism ChernK(X) → ChowK(X) is
injective. The equality K(X)[i] = K(X)(i) follows by ascending induction on i. �

Corollary 3.4. If CH(X) is generated by CH1(X), then I(X)i = K(X)[i] = K(X)(i).

Proof. By descending induction on i, we see that the subring of K(X) generated by line
bundles contains K(X)(i). Therefore K(X) is generated by line bundles. The statement
under proof follows then from Proposition 3.3 (1) and (2). �

Note that the graded ring ChernK(X), associated with the Chern filtration, is always
generated by Chern classes. So, if the Chern and Chow filtrations on K(X) coincide, the
ring ChowK(X) is generated by Chern classes. This however does not imply that the
Chow ring CH(X) is generated by Chern classes:

Example 3.5. Let L/F be a biquadratic field extension with charF ̸= 2 and let T be
the corresponding (3-dimensional) torus of elements of norm 1. Denote by Ei, i = 1, 2, 3
all quadratic subextensions, by Ti the subtorus in T of norm 1 elements in the extension
L/Ei and by ξi the class of the sheaf OTi

in K0(T ). Then by [15, Example 9.15(2)],

K(T )(i) =


⨿3

k=1 Z/2Z · ξk, if i = 1;
Z/2Z · (ξ1 + ξ2 + ξ3), if i = 2;
0, if i = 3.
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In particular, K(T ) is generated by the classes of line bundles, K(T )[i] = K(T )(i) for all
i, CH1(T ) is a group of order 4 generated by the three elements αk := c1(ξk) of order 2
(with the relation α1 + α2 + α3 = 0). The group CH2(T ) is cyclic of order 2 generated
by α1α2 = α1α3 = α2α3 and α2

k = 0 for all k. Therefore, all polynomials in Chern classes
in CH3(T ) are trivial. On the other hand, by [13, Proposition 5.3], the order of the class
of the identity in CH3(T ) is equal to 2, hence CH3(T ) ̸= 0 and Chow ring CH(T ) is not
generated by Chern classes.

The following statement will be used in the next section:

Lemma 3.6. Let f : X → Y be a flat morphism of smooth varieties such that the pull-
back homomorphisms K(Y ) → K(X) and CH(Y ) → CH(X) are isomorphisms. Then the
induced monomorphisms K(Y )(i) → K(X)(i) and K(Y )[i] → K(X)[i] are isomorphisms.

Proof. To prove the statement on the Chow filtration, we proceed by descending induction
on i. Looking at the commutative diagram

CHi(Y )

����

∼ // CHi(X)

����

ChowiK(Y ) // ChowiK(X)

we see that the bottom map is surjective. By the induction hypothesis, the map

K(Y )(i+1) → K(X)(i+1)

is an isomorphism, hence K(Y )(i) → K(X)(i) is surjective. This proves the statement on
the Chow filtration.

The statement on the Chern filtration does not require the assumption on CH(Y ) →
CH(X). It follows from the fact that flat pull-backs respect enhanced λ-ring structures.

�

4. Representation rings of algebraic groups

We recall that by an algebraic group we mean an affine group scheme of finite type over
a field. Let G be an algebraic group over a field F and let R(G) be its representation ring –
the Grothendieck ring of the category of finite-dimensional linear G-representations. The
augmentaion ideal I(G) ⊂ R(G) is the kernel of the (augmentation) ring homomorphism
R(G) → Z given by dimension of G-representations. The augmentation filtration on R(G)
is given by powers I(G)i, i ≥ 0 of the augmentation ideal.
The ring R(G) is an enhanced λ-ring by Example 2.2. We simply write cRi for the Chern

classes c
R(G)
i . Recall that we have the Chern filtration

R(G) = R(G)[0] ⊃ R(G)[1] ⊃ . . .

with the property that cRi (x) ∈ R(G)[i] for all x ∈ R(G) and any i ≥ 0. As usual, we
write ChernR(G) for the associated graded ring.

Our next goal is to define the Chow filtration on R(G). Let V be a generically free G-
representation over F . By [2, Exposé V, Théorème 8.1], there is a nonempty G-invariant
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open subset U ⊂ V and a G-torsor U → U/G for some variety U/G over F . We say that
U/G is an n-approximation of BG if codimV (V \ U) ≥ n.

Example 4.1 (cf., [21, Remark 1.4]). Embed G ↪→ GL(m) with m > 0 and choose an
integer N ≥ 0. Let U be the open subset of all injective linear maps Fm → Fm+N in
the vector space V of all linear maps Fm → Fm+N . We have codimV (V \ U) = N + 1.
The group GL(m + N) acts linearly on V and acts transitively on U with the stabilizer(
1 ∗
0 GL(N)

)
of the canonical inclusion Fm ↪→ Fm ⊕ FN = Fm+N . The group G acts on

U via GL(m) and

U/G = GL(m+N)/

(
G ∗
0 GL(N)

)
.

Thus, U/G is an (N +1)-approximation of BG. Note that U/GL(m) is naturally isomor-
phic to the Grassmannian variety Gr(m,m+N).

Let U/G be an n-approximation of BG. In [21], Totaro defined graded Chow ring
CH(BG) by

CHi(BG) = CHi(U/G)

for i < n. This is independent of the choice of approximation.
Note that CH(BG) coincides with the G-equivariant Chow ring of SpecF , [3].
Let E → X be a G-torsor, where X is a smooth variety. We have a canonical ring

homomorphism

αE : R(G) → K(X),

taking the class of a G-representation W to the class of the vector bundle

(W × E)/G → X.

Since αE is a homomorphism of enhanced λ-rings, αE commutes with Chern classes cRi
and cKi respectively.
If U/G is an approximation of BG, we have a ring homomorphism

αU : R(G) → K(U/G)

given by the G-torsor U → U/G. The map αU is the composition of the homotopy
invariance isomorphism

R(G) = KG(SpecF )
∼→ KG(V )

in equivariant K-theory and the surjective restriction homomorphism

KG(V ) → KG(U) = K(U/G)

(see [20, Theorems 2.7 and 4.1]). Thus, αU is surjective.
Composing αU with (classical) Chern classes on U/G yields Chern classes

ci : R(G) → CHi(BG).

Lemma 4.2. Let E → X be a G-torsor and U/G an n-approximation of BG. Then

α−1
U (K(U/G)(n)) ⊂ α−1

E (K(X)(n)).
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Proof. In the commutative diagram

(4.3) R(G)
αU

wwnnn
nnn

nnn
nnn

αU×E

��

αV ×E

))RRR
RRR

RRR
RRR

RRR αE

**
K(U/G)

β // K((U × E)/G) K((V × E)/G)
εoooo K(X)∼

δoo

the map δ is the pull-back with respect to the vector bundle (V × E)/G → X so that δ
is an isomorphism of groups with Chow filtrations by Lemma 3.6. In particular,

α−1
E (K(X)(n)) = α−1

V×E(K((V × E)/G)(n)).

The homomorphism ε is the restriction to the open subset (U ×E)/G ⊂ (V ×E)/G with
complement of codimension at least n. Therefore ε is surjective on the terms of Chow
filtrations and the kernel of ε is contained in K((V × E)/G)(n) by localization property
in K-theory. It follows that

α−1
V×E(K((V × E)/G)(n)) = α−1

U×E(K((U × E)/G)(n)).

As β respects Chow filtrations, we have

α−1
U (K(U/G)(n)) ⊂ α−1

U×E(K((U × E)/G)(n)).

The result follows. �
It follows from Lemma 4.2 that the subgroup (αU)

−1(K(U/G)(n)) of R(G) does not
depend on the choice of an n-approximation U/G. We set

R(G)(n) := (αU)
−1(K(U/G)(n))

for any n-approximation U/G of BG. This way we get the Chow filtration

R(G) = R(G)(0) ⊃ R(G)(1) ⊃ . . .

on R(G).
It also follows from Lemma 4.2 that for a G-torsor E → X, the map αE : R(G) → K(X)

takes R(G)(n) into K(X)(n), i.e., αE respects Chow filtrations.
As in Section 3, we have

I(G)n ⊂ R(G)[n] ⊂ R(G)(n)

for all n. (However none of the filtrations is finite in general.) The second inclusion
induces a ring homomorphism ChernR(G) → ChowR(G) which is neither injective nor
surjective in general.

Let U/G be an (n+ 1)-approximation of BG. The composition

CHn(BG) = CHn(U/G)
φn

−→ ChownK(U/G) = ChownR(G)

yields a surjective graded ring homomorphism

φ : CH(BG) →→ ChowR(G).

The kernel of φi : CHi(BG) → ChowiR(G) is killed by multiplication by (i − 1)!. In
particular, the maps φi are isomorphisms for i ≤ 2. By Proposition 3.2, φ(ci(a)) = cRi (a)
modulo R(G)(i+1) for every a ∈ R(G).
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Remark 4.4. For any approximation X of BG, the homomorphism R(G) → K(X) maps
I(G)n onto I(X)n, R(G)[n] onto K(X)[n], and R(G)(n) onto K(X)(n) for any n. The state-
ment on the Chern filtration holds because the homomorphism R(G) → K(X) commutes
with Chern classes. For the statement on R(G)(n) consider the diagram (4.3) in the proof
of Lemma 4.2 with X = E/G being an approximation and U/G a k-approximation of
BG for some k > dim(X) and ≥ n. Then the homomorphism K(X) → K((U × E)/G)
is an isomorphism of rings with Chow filtrations. The map R(G) → K(U/G) maps
R(G)(n) onto K(U/G)(n) by the definition of R(G)(n) and K(U/G)(n) is mapped onto
K((U × E)/G)(n) = K(X)(n).

Remark 4.5. By the very definition of Chow filtration on R(G), for any n-approximation
X of BG, the kernel of R(G) → K(X) is contained in R(G)(n). This statement can be
partially inverted: if X is any approximation of BG such that Ker(R(G) → K(X)) ⊂
R(G)(n) for some n, then R(G)(n) is the inverse image of K(X)(n). (This does not mean
that X is an n-approximation but does mean that X – like a n-approximation – can be
used for computation of the Chow filtration on R(G) in codimensions up to n.) Indeed,
by Remark 4.4, the inverse image of K(X)(n) is

R(G)(n) +Ker(R(G) → K(X)).

Similarly, the inverse image of K(X)[n] is R(G)[n] if the kernel is contained in R(G)[n] and
the inverse image of I(X)n is I(G)n if the kernel is contained in I(G)n.

Lemma 4.6. For any G-torsor E → X (with X a smooth variety), the kernel of αE

contains R(G)(n) for some n.

Proof. Let n = dim(X) + 1. Since αE respects Chow filtration, we have

αE(R(G)(n)) ⊂ K(X)(n) = 0. �

Lemma 4.7 (cf. the beginning of Remark 4.5). For any n, k and any G, there exists a
k-approximation X of BG such that the kernel of the surjective homomorphism R(G) →
K(X) is contained in I(G)n.

Proof. Let us fix an embedding G ↪→ GL(m) for some m. For any N , consider an (N+1)-

approximation U/G = GL(m+N)/H of BG as in Example 4.1, whereH =

(
G ∗
0 GL(N)

)
.

Note that R(H) = R(G × GL(N)) since the unipotent radical of H acts trivially on all
simple representations of H. Moreover, R(G × GL(N)) = R(G) ⊗ R(GL(N)) as follows
from Propositions R.2 and R.5.

By [14, Theorem 41],

K(U/G) = K(GL(m+N)/H)

= Z⊗R(GL(m+N)) R(H) = Z⊗R(GL(m+N)) [R(G)⊗R(GL(N))].

Under this identification, the homomorphism αU : R(G) → K(U/G) (which we denote
below by αG) coincides with the natural (surjective) homomorphism

R(G) → Z⊗R(GL(m+N)) [R(G)⊗R(GL(N))].
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It follows that
αG = αGL(m) ⊗R(GL(m)) R(G)

and therefore, the natural homomorphism

Ker(αGL(m))⊗R(GL(m)) R(G) → Ker(αG)

is surjective.
Since U/GL(m) = Gr(m,m + N), as computed in Example G.2, the kernel of αGL(m)

is generated by some polynomials (namely, by the polynomials dRi , i ≥ N + 1) of degree
at least N +1 in the Chern classes cR1 , . . . , c

R
m ∈ R(GL(m)) of the standard representation

of GL(m), where cRi is of degree i. Therefore, Ker(αG) is generated by polynomials in the
images of cR1 , . . . , c

R
m (these images are the Chern classes of the G-representation given

by the fixed embedding G ↪→ GL(m)) of degree > N and will indeed contain I(G)n for
sufficiently large N (say, for N ≥ mn). �
Corollary 4.8. For any group G and any n, we have I(G)n ⊃ R(G)(N) for some N . In
particular, the three filtrations define the same topology on R(G).

Proof. By Lemma 4.7, we find an approximation X of BG such that

I(G)n ⊃ Ker(R(G) → K(X)).

By Lemma 4.6, the kernel contains R(G)(N) for some N . �
As follows from the proof, in Corollary 4.8 one can actually take

N = m2(n+ 1)− dimG+ 1,

where m is such that G can be embedded in GL(m). This formula for N is linear in n.

Corollary 4.9. We have I(G) = R(G)[1] = R(G)(1) and R(G)[2] = R(G)(2). The map
ChernR(G) → ChowR(G) becomes an isomorphism after tensoring with Q.

Proof. Let X be an approximation of BG such that the kernel of R(G) → K(X) is
contained in I(G)n+1. By Remark 4.5, for i ≤ n+1, R(G)(i) and R(G)[i] are inverse images
of K(X)(i) and K(X)[i], respectively. As a consequence, CherniR(G) = CherniK(X) and
ChowiR(G) = ChowiK(X) for i ≤ n. The statements follow from Remark 3.1. �
Now we compute the groups Cherni(G) for i ≤ 1. Clearly, Chern0(G) = R(G)/I(G) =

Z.

Lemma 4.10. We have
n∑

i=0

γi([V ]− n) = λn([V ]) in R(G)

for every G-representation V of dimension n.

Proof. Since γt(−1) = 1− t and λi([V ]) = 0 for i > n, we have

γt([V ]− n) = γt([V ])(1− t)n =
∞∑
i=0

λi([V ])
ti

(1− t)i
(1− t)n =

n∑
i=0

λi([V ])ti(1− t)n−i.

It follows that γi([V ]− n) = 0 for i > n. Finally, plug in t = 1. �
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Corollary 4.11. For every G-representation V of dimension n, we have

λn([V ])− [V ] + n− 1 ∈ R(G)[2].

Proof. Indeed, since γ0([V ]− n) = 1 and γ1([V ]− n) = [V ]− n, we have

λn([V ])− [V ] + n− 1 =
n∑

i=2

γi([V ]− n) =
n∑

i=2

cRi (−[V ∨]) ∈ R(G)[2]. �

Let G∗ = Hom(G,Gm) be the character group of G. Consider the homomorphism
det : R(G) → G∗ taking a representation V of dimension n to the character of the
1-dimensional representation ∧n(V ).

Lemma 4.12. det(R(G)[2]) = 1.

Proof. Recall thatR(G)[2] is generated by the products cRi1(a1) · · · c
R
in(an) with i1+· · ·+in ≥

2 and ai ∈ I(G). In view of the product formula det(ab) = det(a)rk(b) det(b)rk(a), it suffices
to show that det cRi (V ) = 1 for any representation ρ : G → GL(V ) and i ≥ 2. By
functoriality of the Chern classes with respect to ρ, it suffices to check the equality in the
case G = GL(V ) and V the standard representation of GL(V ).

Let T be a split maximal torus of G. Since G∗ restricts injectively to T ∗, it suffices to
prove the formula for T . But R(T ) is generated by the classes of 1-dimensional represen-
tations, hence R(T )[2] is generated by product of at least two (first) Chern classes. The
statement follows again from the product formula. �

By Lemma 4.12, the map det yields a homomorphism Chern1(G) → G∗.

Proposition 4.13. The homomorphism Chern1(G) → G∗ is an isomorphism.

Proof. We define a homomorphism G∗ → Chern1(G) by f 7→ [Lf ] − 1 modulo R(G)[2],
where Lf is a 1-dimensional representation of the character f . Both compositions of the
maps between Chern1(G) and G∗ are the identities, one of them – in view of Corollary
4.11. �
The next statement is an analogue of Proposition 3.3.

Proposition 4.14. The following holds for any integer i ≥ 0.

(1) If R(G) is generated by classes of 1-dimensional representations, then I(G)i =
R(G)[i].

(2) If CH(BG) is generated by Chern classes (of G-representaions), then R(G)[i] =
R(G)(i).

(3) If the group ChernR(G) is torsion-free, then R(G)[i] = R(G)(i).

Proof. The proof of (1) is literally the same as in Proposition 3.3. If l ∈ R(G) is the
class of a 1-dimensional representation, then cR1 (l) = 1 − l−1 ∈ I(G) and cRi (−l) =
(l−1 − 1)i ∈ I(G)i for any i. If a, b ∈ R(G) are such that cRi (a), c

R
i (b) ∈ I(G)i for all i,

then cRi (a+ b) =
∑

j c
R
j (a)c

R
i−j(b) ∈ I(G)i.

(2) For any i, the surjective ring homomorphism φ : CH(BG) → ChowR(G) takes the
Chow-theoretical Chern class ci(a) ∈ CHi(BG) with a ∈ R(G) to the class of cRi (a) ∈
R(G)[i] ⊂ R(G)(i) modulo R(G)(i+1). It follows that the ring ChowR(G) is generated
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by Chern classes. However, unlike the proof of Proposition 3.3(2), we are not able to
show R(G)[i] = R(G)(i) by descending induction on i as the filtrations in question can be
infinite. We use Lemma 4.7 instead.

For X as in Lemma 4.7 (with any given n and arbitrary k), since CH(BG) is generated
by Chern classes and CH(BG) → CH(X) is a surjective ring homomorphism mapping
Chern classes to Chern classes, the ring CH(X) is also generated by Chern classes. It
follows by Proposition 3.3(2) that K(X)[n] = K(X)(n). Therefore R(G)[n] = R(G)(n) by
Remark 4.5.

(3) If ChernR(G) is torsion-free, the homomorphism ChernR(G) → ChowR(G) is in-
jective. The equality R(G)[i] = R(G)(i) follows by ascending induction on i. �

Corollary 4.15. If CH(BG) is generated by CH1(BG), then I(G)i = R(G)[i] = R(G)(i).

Proof. If CH(BG) is generated by CH1(BG), then I(G)i + R(G)(i+1) = R(G)(i) for any i
so that I(G)i + R(G)(j) = R(G)(i) for any j > i. By Corollary 4.8, R(G)(j) ⊂ I(G)i for
some j, hence R(G)(i) ⊂ I(G)i. �

We finish this section by an example of G with the Chern filtration on R(G) different
from the Chow filtration:

Example 4.16. For G := O+(2n) with any n ≥ 3 over the field of complex numbers,
the Chern filtration on R(G) differs from the Chow filtration. Indeed, according to [4,
Corollary 2], the Chow ring CH(BG) is not generated by Chern classes. By [4, Theorem
1] (see also [17]), the Chern subring of CH(BG) (i.e., the subring of CH(BG) generated
by Chern classes) contains every element of finite order of the group CH(BG). Since the
kernel of the surjective ring homomorphism CH(BG) → ChowR(G) consists of elements
of finite order, the two above statements together imply that the ring ChowR(G) is not
generated by Chern classes. Since the ring ChernR(G) is generated by Chern classes (for
any G), the two filtrations (for G = O+(2n)) are not the same.

A similar example can be given with G = T a quasi-split torus and, in particular, a
special algebraic group:

Example 4.17. LetK/F be a cyclic cubic field extension and let T be the Weil restriction
T = RK/F (Gm). The character lattice L = T ∗

K of TK has a basis a, b, c, cyclically permuted
by the Galois group Γ = Z/3Z of K/F . The homomorphism of graded rings CH(BT ) →
CH(BTK) is injective, its image is the subring of Γ-invariant elements, and the graded
ring CH(BTK) with Γ-action is identified with the symmetric ring S(L) = Z[a, b, c], see,
e.g., [10, §3]. The homomorphism R(T ) → R(TK) of the representation rings is also
injective with the image the subring of Γ-invariant elements, the ring R(TK) with Γ-
action is the group ring Z[L] = Z[x±1, y±1, z±1], where x := exp(a), y := exp(b), and
z := exp(c), see, e.g., [16, Theorem 12.30]. The elements a, b, c ∈ CH1(BTK) are the first
Chern classes of x, y, z ∈ R(TK) respectively. We claim that the Γ-symmetric polynomial
a2b + b2c + c2a ∈ CH3(BT ) is not in the Chern subring of CH(BT ). We prove the claim
by showing that every element of the Chern subring lying in CH3(BT ) is S-invariant
modulo 2, where S = S3 is the symmetric group permuting a, b, c. Note that CH1(BT )
and CH2(BT ) consist of S-invariant elements only. In remains to show that c3 of the
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Γ-symmetrizer of xiyjzk (for any integers i, j, k) is S-invariant modulo 2. This is done by
a direct calculation.

5. Orthogonal groups

Let G be a split reductive group (over an arbitrary field), T ⊂ G a split maximal torus,
W the Weyl group. We have a natural homomorphism of graded rings

CH(BG) → CH(BT )W = S(T ∗)W ,

where T ∗ is the character group of T and S(T ∗) is its symmetric ring. Similarly, we have
a ring homomorphism

R(G) → R(T )W = Z[T ∗]W .

Proposition 5.1 ([19, Théorème 4], see also [16, Theorem 22.38]). The homomorphism
R(G) → Z[T ∗]W is an isomorphism.

Recall that an algebraic group G is special, if all G-torsors over field extensions of the
base field are trivial.

Proposition 5.2 ([3, Proposition 6]). The homomorphism CH(BG) → S(T ∗)W is an
isomorphism provided that G is special.

Example 5.3 (cf. [21, §15], [17, §3]). For the special groups G = GL(n), SL(n), Sp(2n)
(over an arbitrary field), let ci ∈ CHi(BG) be the ith Chern class of the standard G-
representation. Then the following Chow rings are polynomial rings in the listed alge-
braically independent elements:

CH(BGL(n)) = Z[c1, c2, . . . , cn],

CH(BSL(n)) = Z[c2, . . . , cn], c1 = 0,

CH(BSp(2n)) = Z[c2, c4, . . . , c2n], codd = 0.

Let us fix an integer n ≥ 1 and consider the symplectic group H := Sp(2n) (over an
arbitrary field). By Example 5.3, the group CH(BH) is torsion-free. Since the kernel of
the surjective ring homomorphism CH(BH) → ChowR(H) consists of torsion elements
only, it follows that this map is an isomorphism. In particular, the group ChowR(H) is
torsion-free.
Since the ring CH(BH) is generated by Chern classes, we conclude by Proposition

4.14(2) that the Chow filtration on R(H) coincides with the Chern filtration. It follows
that the group ChernR(H) is torsion-free.

The Weyl groups and character groups of maximal tori (as modules over the Weyl
groups) of Sp(2n) and O+(2n+ 1) are isomorphic. Set G = O+(2n+ 1). By Proposition
5.1, there is an isomorphism of enhanced lambda rings R(H) ≃ R(G). It induces an
isomorphism ChernR(H) ≃ ChernR(G). In particular, the group ChernR(G) turns out
to be torsion-free. By Proposition 4.14(3), this implies that the Chern filtration on R(G)
coincides with the Chow filtration. We conclude that the group ChowR(G) is torsion-free.
The ring CH(BG) has been computed for G = O+(2n + 1) over the complex numbers

in [21, §16]; it has been then computed for an arbitrary base field of characteristic ̸= 2:
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Proposition 5.4 ([17, Theorem 5.1]). For G = O+(2n + 1) (with any n ≥ 1) over a
field of characteristic ̸= 2, the ring homomorphism Z[c1, . . . , c2n+1] → CH(BG) of the
polynomial ring, mapping ci to the ith Chern class of the standard G-representation, is
surjective; its kernel is generated by c1 and all 2ci with odd i.

It follows that for G as in Proposition 5.4, the kernel of the homomorphism CH3(BG) →
Chow3R(G) is non-zero.

Theorem 5.5. For any field F of charF ̸= 2, there exists a smooth quasi-projective
variety X over F such that its Chow ring is generated by Chern classes (of vector bundles
over X) and at the same time the kernel of the homomorphism CH(X) → ChowK(X) is
non-zero. Specifically, let X be any 4-approximation of O+(2n+1) (for any n ≥ 1). Then
the ring CH(X) is generated by Chern classes and Ker(CH3(X) →→ Chow3K(X)) ̸= 0.

Proof. We have a surjective ring homomorphism CH(BG) →→ CH(X) with G = O+(2n+1),
mapping Chern classes to Chern classes. Since CH(BG) is generated by Chern classes
(Proposition 5.4), the ring CH(X) is also generated by Chern classes.

Since X is a 4-approximation, the homomorphism CH3(BG) → CH3(X) is an isomor-
phism so that CH3(X) contains a non-trivial torsion by Proposition 5.4.

At the same time, we have a homomorphism ChowR(G) →→ ChowK(X) which is an
isomorphism in codimensions< 4. Since ChowR(G) is torsion-free, the group Chow3K(X)
is also torsion-free. �
Remark 5.6. If X is an r-approximation of BO+(2n + 1) with large enough n, then
CH(X) is generated by Chern classes and Ker(CHi(X) → ChowiK(X)) ̸= 0 for all i ̸= 4
with 3 ≤ i < r.

Remark 5.7. We do not know if there exists a projective variety X with the properties
as in Theorem 5.5.

Appendix G. General linear group

In this appendix, we provide some computations in the representation ring of a general
linear group needed in the main part.

Example G.1. Let G := GL(n), T ⊂ G the maximal torus of diagonal matrices. We
have R(T ) = Z[x±1

1 , x±1
2 , . . . , x±1

n ] a Laurent polynomial ring, where xi = exp (ti) and ti
are canonical generators of T ∗. The Weyl group W is the nth symmetric group permuting
the ti’s. It follows that

R(G) = R(T )W = Z[σ1, σ2, . . . , σn, σ
−1
n ],

where σk := σk(x) are standard symmetric functions in the xi’s. Note that σk = λk(x),
the kth exterior power of x, where x = x1 + x2 + · · · + xn is the class of the standard
representation of G.

Since taking the dual a 7→ a∨ of a representation yields an automorphism of the rings
R(T ) and R(G) taking xi to x

−1
i , we have λi(x∨) = λn−i(x)λn(x)−1 and λn(x∨) = λn(x)−1.

Therefore,

R(G) = Z[λ1(x∨), λ2(x∨), . . . , λn(x∨), λn(x∨)
−1
].
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The Chern class cRi is the ith standard elementary symmetric function in the first Chern
classes cR1 (xj) = 1− x−1

j , j = 1, . . . , n. In particular, cRi is the sum of (−1)iλi(x∨) and an

integer linear combination of λj(x∨) with j < i.
We also have

σ−1
n =

∏
[1− (1− x−1

i )],

hence
σ−1
n = cR0 − cR1 + cR2 − · · ·+ (±1)ncRn .

It follows that
R(G) = Z[cR1 , cR2 , . . . , cRn , s−1

n ],

where cRi are algebraically independent and

sn =
n∑

i=0

(−1)icRi .

Example G.2. Consider the homomorphism

αGL(m) : R(GL(m)) → Z⊗R(GL(m+N)) [R(GL(m))⊗R(GL(N))] = K(Gr(m,m+N))

from the proof of Lemma 4.7. The target group is canonically isomorphic to(
R(GL(m))⊗R(GL(N))

)
/J,

where J is the ideal generated by the image of the augmentation ideal of R(GL(m+N))
under R(GL(m+N)) → R(GL(m))⊗R(GL(N)). Recall (see Example G.1) that

R(GL(m)) = Z[cR1 (x), cR2 (x), . . . , cRN(x), s−1
N (x)],

R(GL(N)) = Z[cR1 (y), cR2 (y), . . . , cRm(y), s−1
m (y)],

where x and y are the classes of the standard representations of GL(m) and GL(N)
respectively. Note that the class of the standard representation of GL(m+N) restricted to
GL(m)×GL(N) is the sum of x and y. Moreover, the augmentation ideal of R(GL(m+N))
is generated by cRi (x+ y) for i = 1, 2, . . . ,m+N . It follows that modding out J amounts
to imposing the relation

cRt (x+ y) = cRt (x) · cRt (y) = 1,

where cRt is the total Chern class.
Invert the polynomial cRt := cRt (x) formally:

(cRt )
−1 =:

∑
i≥0

dRi t
i,

where dRi is a homogeneous polynomial in cRj (x) of degree i. Then

K(Gr(m,m+N)) = Z[cR1 , cR2 , . . . , cRm]/(dRi , i ≥ N + 1).

(Note that the elements sm(x) and sN(y) are 1 plus nilpotents inK(Gr(m,m+N)), hence,
sm(x) and sN(y) are automatically invertible in K(Gr(m,m+N)).)

Remark G.3. The ideal (dRi , i ≥ N + 1) is generated by dRi for i = N + 1, · · · , N +m
only. Indeed, if j > 0, dRN+m+j is the negative of the linear combination cR1 d

R
N+m+j−1 +

· · ·+ cRmd
R
N+j and hence the statement follows by induction on j.
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It follows that the homomorphism

αGL(m) : R(GL(m)) → K(Gr(m,m+N))

is surjective, and its kernel is generated by polynomials in cR1 , c
R
2 , . . . , c

R
m of degree at least

N + 1.

Appendix O. Orthogonal groups in characteristic 2

In this appendix, we determine CH(BG) for G = O(2n+ 1) and G = O+(2n+ 1) over
a field F of characteristic 2. We start with some observations valid over a field of any
characteristic.
For any m ≥ 1, the factor variety GL(m)/O(m) is isomorphic to the variety of non-

degenerate quadratic forms of dimension m that is an open subset in the affine space of
all quadratic forms of dimension m (see, e.g., [8, §3]). Therefore, by [21, Proposition 14.2]
(see also [8, Proposition 5.1]), CH(BO(m)) is generated by Chern classes c1, c2, . . . , cm of
the standard representation of O(m).

For any n ≥ 1, we have O(2n+ 1) = µ2 ×O+(2n+ 1). Hence the restriction

CH(BO(2n+ 1)) → CH(BO+(2n+ 1))

is surjective. Therefore, the Chow ring CH(BO+(2n + 1)) of the classifying space of the
group O+(2n+ 1) is also generated by the Chern classes of the standard representation.
From now on assume that char(F ) = 2. We have the following group homomorphisms:

O(2n) → O+(2n+ 1) → Sp(2n) ↪→ GL(2n).

The first map takes an automorphism α of the standard (non-degenerate) 2n-dimensional
hyperbolic quadratic form (V, q) to the automorphism 1⊕α of (V ′, q′), where V ′ = F ⊕V
and q′(a+v) = a2+q(v). Note that the subspace F ⊂ V ′ coincides with the radical of the
bilinear form of q′. The second map takes an automorphism β of (V ′, q′) to the induced
automorphism of V = V ′/F that preserves the associated nondegenerate alternating
form on V . The first map and the composition O(2n) → Sp(2n) are the embeddings.
The second map is a (non-central) isogeny.

Let T be a split maximal torus in O(2n). Its isomorphic images in O+(2n + 1) and
Sp(2n) are also maximal tori. Consider the composition

(O.1) CH(BGL(2n)) → CH(BSp(2n)) → CH(BO+(2n+ 1)) → CH(BO(2n))

→ CH(BT ).

For any i, the Chern class ci in CH(BGL(2n)) clearly stays ci in CH(BSp(2n)) as well as
in CH(BO(2n)). We claim that the class ci in CH(BO+(2n + 1)) (which is defined via
the embedding of O+(2n+ 1) into GL(2n+ 1)) stays ci in CH(BO(2n)) (which is defined
via the embedding of O(2n) into GL(2n)). In other words, the classes ci in all groups
correspond to each other.
To prove the claim, we use [21, Theorem 1.3], identifying the elements of CH(BG) for

reductive G with assignments to every G-torsor over a smooth quasi-projective variety X
of an element in CH(X). So, let X be a smooth quasi-projective variety over F and let
us consider a vector bundle E → X of rank 2n + 1 with a quadratic form representing
an O+(2n + 1)-torsor. As O+(2n + 1) ⊂ SL(2n + 1), we have c1(E) = 0 (see Example
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5.3). The radical R ⊂ E of the associated bilinear form is a line sub-bundle of E.
The factor bundle E/R carries a non-degenerate alternating form, thus representing a
Sp(2n)-torsor, hence c1(E/R) = 0. It follows that c1(R) = 0 and therefore, ci(E) =
ci(E/R) + c1(R)ci−1(E/R) = ci(E/R). The claim is proved.
The composition CH(BSp(2n)) → CH(BT ) of the homomorphisms in the sequence

(O.1) is a monomorphism. The groups in the first line are generated by the Chern classes
ci, therefore, the maps in the first line are surjective. The odd Chern classes are trivial
in CH(BSp(2n)) and hence in CH(BO+(2n+ 1)) and in CH(BO(2n)). It follows that

CH(BSp(2n)) = CH(BO+(2n+ 1)) = CH(BO(2n)) = Z[c2, c4, . . . , c2n].
Recall that O(2n + 1) = µ2 × O+(2n + 1) and CH(Bµ2) = Z[c1]/(2c1). It follows (see

[21, §6]) that
CH(BO(2n+ 1)) = Z[c1, c2, c4, . . . , c2n]/(2c1).

Appendix R. Representation ring of a product

In this appendix, G and H are arbitrary algebraic groups over a field F . Recall that the
abelian group R(G) is free, the classes of all simple G-representations constitute a basis.
The classes of two simple G-representations coincide if and only if the representations are
isomorphic.

The ring homomorphisms

R(G), R(H) → R(G×H)

given by the projections G×H → G,H, yield a ring homomorphism

(R.1) R(G)⊗R(H) → R(G×H).

We say that an H-representation V is pure, if EndF (V ) = F .
The following statement has been used in the proof of Lemma 4.7:

Proposition R.2. The homomorphism (R.1) is an isomorphism provided that every sim-
ple H-representation is pure.

Proof. The classes of simple representations form a basis of the abelian group R(G×H).
Tensor products of the classes of simple representations form a basis of the abelian group
R(G)⊗R(H). It follows from the statements below that the homomorphism (O.1) yields
a bijection of the bases. �
Lemma R.3. Assume that we are given simple G-representations U,U ′ and simple H-
representations V, V ′. If the (G×H)-representations U ⊗U ′ and V ⊗ V ′ are isomorphic,
then U ≃ U ′ and V ≃ V ′.

Proof. The G-representation U⊗U ′ (resp., V ⊗V ′) is a direct sum of dimU ′ (resp., dimV ′)
copies of U (resp., V ). It follows that there is a non-zero G-equivariant map U → V and
consequently, U ≃ V . Similarly, U ′ ≃ V ′. �
Proposition R.4 ([16, Proposition 4.21]).

(1) For any simple G-representation U and any pure simple H-representation V , the
(G×H)-representation U ⊗ V is simple.
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(2) If every simple H-representation is pure, then every simple (G×H)-representation
is of the form U ⊗V , where U and V are simple G- and H-representations respec-
tively.

Proposition R.5 ([7, Proposition 2.8 of Part II]). For split reductive H, every simple
H-representation is pure.

Appendix S. Symplectic group

The statement of Lemma S.1 below has already been proved in §5 (and used in the
proof of Theorem 5.5). In this appendix we provide a more direct proof.

Let us fix some n ≥ 1 and consider the symplectic group G := Sp(2n) over an arbitrary
field. The representation ring R(T ) of the standard split maximal torus T = Gn

m is
identified with the Laurent polynomial ring Z[x±1

1 , . . . , x±1
n ] in variables x1, . . . , xn. The

Weyl group W of G with respect to T is a semidirect product of the symmetric group
Sn with a direct product Π of n copies of Z/2Z. The action of W on R(T ) is described
as follows: the subgroup Sn ⊂ W acts by permutations of the variables and the ith copy
of Z/2Z acts by exchanging xi and x−1

i . It follows that the ring R(T )Π of the elements
invariant under the action of Π (this ring can be viewed as the representation ring of the
product of n copies of SL(2), containing T and contained in G) is the polynomial ring
Z[y1, . . . , yn] with yi := xi+x−1

i . We prefer to view it as the polynomial ring Z[z1, . . . , zn]
with zi := 2 − yi. The ring R(T )W of W -invariant elements is the subring of symmetric
polynomials in Z[z1, . . . , zn]. So, R(G) = R(T )W = Z[σ1, . . . , σn], where σi is the ith
elementary symmetric polynomial in z1, . . . , zn.

Let us consider the Chern classes cR1 , . . . , c
R
2n ∈ R(G) of the standard representation. We

claim that the ring R(G) is generated by the even Chern classes cR2 , c
R
4 , . . . , c

R
2n. Indeed,

the class in R(G) of the standard representation of G equals y1 + · · · + yn. The total
Chern class of yi ∈ R(T )Π equals(

1 + (1− x−1
i )t

)(
1 + (1− xi)t

)
= 1 + zit+ zit

2 = 1 + zi(t+ t2) ∈ R(T )Π[t]

so that the total Chern class of y1 + · · ·+ yn equals

1 + σ1(t+ t2) + σ2(t+ t2)2 + · · ·+ σn(t+ t2)n ∈ R(G)[t].

It follows that cR2n = σn. More generally, cR2i for any i equals σi plus a polynomial in higher
sigmas so that a descending induction on i gives the claim.

Let us consider the filtration on R(G) given by the even Chern classes cR2 , . . . , c
R
2n:

its ith term is generated by monomials in these Chern classes of degree ≥ i, where
the degree of cRi is i. This filtration is contained in the Chern filtration on R(G) and
therefore also in the Chow filtration on R(G). Let C be the associated graded ring of this
filtration. We recall that CH(BG) is a polynomial ring in the even Chow Chern classes
c2, c4, . . . , c2n ∈ CH(BG). The homomorphism CH(BG) → C, mapping c2i to the class of
cR2i in C2i, is surjective. Composing it with the homomorphism C → ChowR(G), induced
by inclusion of filtrations, we get the standard homomorphism CH(BG) → ChowR(G)
which is an isomorphism because CH(BG) is torsion-free. It follows that C → ChowR(G)
(as well as CH(BG) → C) is an isomorphism so that the filtration on R(G), given by
cR2 , . . . , c

R
2n, coincides with the Chow filtration as well as with the Chern filtration. In

particular, we proved
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Lemma S.1. For G = Sp(2n), the group ChernR(G) is torsion-free. �
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