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Let F be a finite extension of Qp, for p an odd prime. Given an automorphism θ of G = GLn(F) of finite

order, any irreducible, θ-stable representation π of G may be extended to an irreducible representation π+

of G+ =Go〈θ〉. If π is supercuspidal, we obtain a Harish-Chandra-type integral formula for the character

Θπ+ of π+, expressed on sufficiently regular elements of G+. In the case that π is a depth-zero supercuspi-

dal representation of G, we use this integral formula to compare values of Θπ+ on a neighbourhood of θ in

G+ to a (finite) linear combination of characters of depth-zero supercuspidal representations of the group

Gθ of θ-fixed points in G. Then, using properties of the characters in this linear combination, we compare

Θπ+ to a linear combination of Fourier transforms of orbital integrals on the Lie algebra Lie(Gθ) of Gθ .
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0. INTRODUCTION

Let F be a finite extension of Qp, for p an odd prime. Let OF be the ring of integers in F, and PF its

prime ideal. Let G be the group of F-rational points of a connected, reductive linear algebraic group which

is defined over F. Let C∞
c (G) be the space of complex-valued functions on G which are locally constant

and compactly supported. Let (π,V ) be a smooth (complex) representation of G. For any f ∈ C∞
c (G),

define an operator π( f ) on V by π( f )v =
∫

G f (g)π(g)v d g, v ∈V , where dg is Haar measure on G. Suppose

π is admissible. That is, for any compact, open subgroup K ⊂ G, the subspace V K ⊂ V of vectors fixed

by all elements of K is finite-dimensional. Then each operator π( f ) is of trace class, and we define the

character of π to be the distribution on G (i.e., the linear functional on C∞
c (G)) given by Θπ( f ) = tr

(
π( f )

)
,

for f ∈ C∞
c (G). By a result of Harish-Chandra ([21]), Θπ is represented by a function on G, also denoted

Θπ, which is locally constant on the dense, open subset of regular elements Greg ⊂G and locally integrable

on G. That is, Θπ( f )=
∫

G f (g)Θπ(g)d g for any f ∈ C∞
c (G).

Let g be the Lie algebra of G, and let b be an AdG-invariant, symmetric, bilinear form on g. Fix a non-

trivial additive character Λ of F with conductor PF . The Fourier transform of an element f ∈ C∞
c (g) is

defined by f̂ (X ) =
∫g f (Y )Λ

(b(X ,Y )
)
dY , X ∈ g. For any X ∈ g, the homogeneous space G/CG (X ) carries a

unique (up to a constant) invariant measure dẋ. The orbital integral associated to the G-orbit of X in g
is the distribution defined by µX ( f )=

∫
G/CG (X ) f (xX )dẋ, f ∈ C∞

c (g). Define the Fourier transform of µX by

µ̂X ( f )=µX ( f̂ ). Harish-Chandra also showed that the distribution µ̂X is represented by a locally integrable

function on g ([20]), also denoted µ̂X .

In the early 1970s, Harish-Chandra ([20]) proved a local character expansion, given as follows. Let γ be a

semisimple element of G. Let Gγ be the centralizer of γ in G, and let gγ be the Lie algebra of Gγ. Then for

all regular elements X ∈ gγ which are sufficiently near 0,

(0.0.1) Θπ

(
γ(exp X )

)
=

∑O∈Oγ(0) cO(π) µ̂O(X ).

Here, exp is the exponential map or a suitable replacement (such as a truncated exponential map), Oγ(0)

is the set of nilpotent Gγ-orbits in gγ, each cO(π) is a complex number, and µ̂O is the Fourier transform

(relative to gγ) of the orbital integral over O. This expansion was a generalization of a result of Howe ([23]),

who proved (0.0.1) in the case that G =GLn(F) and γ= 1. Later, Clozel extended Harish-Chandra’s result

to non-connected groups in [10]. When γ= 1, the results of DeBacker in [11] give an explicit neighbourhood

of 0 in g (which depends on the depth of the representation π) on which (0.0.1) is valid. Here, DeBacker

works in the connected case, but remarks that his results are also valid in the non-connected case. In [2],

Adler and Korman generalize DeBacker’s result, providing an explicit domain on which (0.0.1) is valid for

more general semisimple γ ∈G, and explicitly allowing the non-connected case.

It is currently not possible to obtain an explicit relation between characters and orbital integrals from

(0.0.1), as it is not known in general how to compute the coefficients cO(π). However, for some represen-

tations, it is possible to express the values of Θπ ◦exp near 0 as an explicit linear combination of Fourier

transforms of orbital integrals involving regular G-orbits in g which depend on intrinsic properties of the

data used in the construction of the representation π. For example, in the 1990s, it was discovered (see

1



CHAPTER 0. INTRODUCTION 2

Murnaghan’s work in [31, 32, 33, 34]) that the characters of many irreducible, supercuspidal represen-

tations of classical p-adic groups exhibit the following behaviour. There exists a regular elliptic G-orbitOπ in g such that, sufficiently near 0, Θπ ◦ exp coincides with d(π) µ̂Oπ
. Here, d(π) is the formal degree

of π, and the orbit Oπ depends on the specific K-types which are contained in π (that is, the pairs (σ,K)

where σ is an irreducible representation of a compact, open subgroup K of G such that π|K contains σ).

More recently, Adler and DeBacker ([1]) have determined explicit neighbourhoods of 0 on which such a

relation holds for supercuspidal representations of general linear groups, and also for tame, very super-

cuspidal representations of more general reductive groups. In [26] and [27], subject to some hypotheses

on G, Kim and Murnaghan obtain similar results for many irreducible, admissible representations. They

express Θπ ◦ exp as a linear combination of Fourier transforms of regular orbital integrals on a specific

neighbourhood of 0, where the orbital integrals which appear are again determined by the K-types which

occur in π. As such, expressions for Θπ of this type can be used to distinguish properties of individual

representations, in ways in which the local character expansion generally cannot be used.

In recent work ([13]), DeBacker and Reeder explicitly construct depth-zero supercuspidal “L-packets” for

connected, reductive groups which are quasi-split over F and split over an unramified extension of F.

Each L-packet corresponds to a tame Langlands parameter which is in “general position”, and each repre-

sentation in a given L-packet is induced from a Deligne-Lusztig representation associated to a depth-zero

character of an unramified, elliptic maximal torus in G. By making extensive use of Deligne-Lusztig the-

ory, they derive expressions for the characters of the depth-zero supercuspidal representations in their

L-packets on various large G-domains. Each such expression is an explicit linear combination of Fourier

transforms of orbital integrals. Obtaining such character formulas was an essential step in proving the

stability of a certain sum of the characters of the representations in the depth-zero L-packets they con-

struct, an important conjectured property of L-packets.

Apart from the papers of Clozel ([10]), DeBacker ([11]), and Adler and Korman ([2]), the above mentioned

results deal with the connected case. Suppose that G is a non-connected, reductive p-adic group, π is an

irreducible, admissible representation of G whose restriction to the identity component of G is irreducible

and supercuspidal, and γ is a semisimple element of G which does not lie in the identity component of G.

In this thesis, we ask whether the restriction of Θπ to a neighbourhood of γ can be expressed as an explicit

linear combination of Fourier transforms of orbital integrals, where the associated orbits lie in the Lie

algebra of the centralizer of γ in G and are defined in terms of specific data related to the representation

π. In particular, we consider the case of G = GLn(F)o 〈θ〉, for θ a finite-order automorphism of GLn(F).

We prove such a relation on elements of the form goθ, near 1oθ, under certain hypotheses on θ and the

structure of GLn(F) relative to θ. In general, if G = G0o 〈θ〉, for G0 the group of F-rational points of a

connected, reductive F-group, and θ a finite-order automorphism of G0, then the distribution Θπ can be

expressed as a sum of the (θi ,1)-twisted characters of π|G0 (see [28]), 0≤ i ≤ |〈θ〉|−1. Here, the 1 in “(θi ,1)-

twisted” represents the trivial quasi-character of G0. In light of this, the type of relation between Θπ and

Fourier transforms of orbital integrals developed here is of interest for the theory of twisted endoscopy,

which studies those representations π0 of G0 which satisfy π0 ◦ θ ≃ ω⊗π0, for some quasi-character ω

of π0. In analogue with the theory of standard endoscopy, there are expected identities between twisted

characters of G0 and stable characters of an endoscopic group for (G0,θ,ω).
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We will assume in this thesis that θ may be realized as the restriction to G(F0) of an F0-automorphism of

the restriction of scalars G = RF/F0 GLn, where F0 is a subfield of F such that F/F0 is cyclic. Under this

assumption, we may (and do) identify G(F0) with GLn(F). We note here one important complication that

arises in the non-connected case. The existence of a θ-stable pair B ⊃ T consisting of a Borel subgroup B

and a maximal, unramified, F0-minisotropic F0-torus T of G is essential to our constructions. In particular,

our main result concerns the character Θπ, where π|GLn(F) is a depth-zero supercuspidal representation

which is compactly induced from a Deligne-Lusztig representation associated to a depth-zero character

of T = T(F0), for such a θ-stable torus T. Before relating Θπ to Fourier transforms of orbital integrals,

we first express it as a linear combination of characters of representations of the group of fixed points Gθ

in G. These representations are compactly induced from Deligne-Lusztig representations associated to

depth-zero characters of G-conjugates of the group of fixed points Tθ in T. However, this construction fails

if any of the associated G-conjugates of T are not contained in θ-stable Borel subgroups, as then each such

conjugate of Tθ is not the group of F0-points of a maximal torus of Gθ (see Corollary 1.3.3).

It should be possible to extend the arguments of this thesis to obtain similar results for twisted characters

more generally. In particular, the Deligne-Lusztig theory of Digne and Michel ([14]) used in Chapter 2 is

developed for general non-connected, reductive groups over finite fields. As noted in [7], the arguments of

Chapter 3 should be applicable to groups other than general linear groups. As well, the proofs of the main

results in §§4.4–4.6 are largely independent of the fact that we are working in a general linear group, once

the hypotheses of the preceding sections and chapters are assumed. Finally, it may be possible to modify

the current proofs to remove the reliance on some of the hypotheses.

Statement of results

Rather than state the general results of this thesis, we illustrate them by giving here an outline of a

specific case. The details of this case appear in §5.1.

Suppose F0 is a subfield of F of finite index d such that F/F0 is unramified. Let θ be a generator of

Gal(F/F0). Letting θ act on the entries of elements of G =GLn(F) defines an automorphism of G. We may

realize this automorphism as the restriction to G(F0) of an F0-automorphism of the restriction of scalars

G = RF/F0 GLn, identifying G(F0) with G. The subgroups K0 = GLn(OF ) and K1 = 1+Mn(PF ) of G are

θ-stable, so θ induces an automorphism of G= K0/K1 ≃GLn(kF ), where kF is the residue field of F. This

automorphism is given by letting θ, as an element of Gal(kF /kF0 ), act on the entries of elements of G.

Suppose π is a θ-stable, irreducible, supercuspidal representation of G. By choosing an intertwining

operator Aπ ∈ HomG(π,π ◦θ) with Ad
π = 1, we may extend π to an irreducible representation π+ of G+ =

Go 〈θ〉 by setting π+(θ) = Aπ. We first show (Corollary 3.5.5) that for elements g ∈ G+ which commute

with θ and satisfy a regularity condition, the value of the character Θπ+ of π+ at g can be expressed by the

Harish-Chandra-type integral formula

(0.0.2) Θπ+ (g) = [F : F0]
d(π+)

ϕ(1)

∫

Zθ\G

∫

K0

ϕ(xkg)dk dẋ.

Here, dk is normalized Haar measure on K0, Zθ is the group of θ-fixed points in the centre Z of G, dẋ is

invariant measure on Zθ\G, d(π+) is the formal degree of π+ relative to dẋ, and ϕ is a matrix coefficient
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of π+ satisfying ϕ(1) 6= 0.

Suppose π = c-IndG
ZK0

σ, for σ a θ-stable, irreducible (hence finite-dimensional) representation of ZK0

which is trivial on K1 and whose restriction to K0 is cuspidal as a representation of G. Then π is an irre-

ducible, admissible, θ-stable, depth-zero supercuspidal representation of G. If we choose an intertwining

operator Aσ ∈ HomZK0 (σ,σ ◦θ) in a compatible way, then π+ is equivalent to c-IndG+

(ZK0)+ σ
+ (Proposition

1.5.4).

Assume that the character χσ+ of σ+ satisfies

χσ+ (kθ) = ε
(RG+T+ λ+)

(k̄θ),
(
k ∈ K0

)
,

where k̄ is the image of k in G, ε =±1, T is the group of kF0 -points of a θ-stable, kF0 -minisotropic maximal

torus T of G= RkF /kF0
GLn, λ+ is a one-dimensional character of T+= To 〈θ〉 such that λ+|T is in general

position, and RG+T+ λ+ is the Deligne-Lusztig virtual character of G+ =Go 〈θ〉 defined by Digne and Michel

([14]). If γ ∈ K0 is θ-fixed and topologically unipotent, then using a formula of [14] we show (Theorem

2.2.9) that

(0.0.3)
(RG+T+ λ+)

(γ̄θ) =λ+(θ)QGθTθ

(
γ̄
)
,

where Gθ is the group of θ-fixed points in G, Tθ=T∩Gθ, and QGθTθ
is a Green function associated to Tθ⊂Gθ .

In this way, we may compare the character χσ+ on such elements γθ to the character of a representation

σθ of Zθ(K0)θ which is cuspidal as a representation of Gθ. Let χ̇σ+ be the extension by zero of χσ+ to all of

G+. Then, taking ϕ= χ̇σ+ in (0.0.2), we use (0.0.3) to show that

(0.0.4) Θπ+ (γθ)= [F : F0] ε+λ+(θ)
deg(σθ)

deg(σ)

d(π)

d(πθ)
Θπθ

(γ),

where πθ = c-IndGθ

Zθ(K0)θ
σθ , and ε+ =±1 (see Theorem 4.4.2 and §4.6 for the general statement). Finally, we

may use a result of [12] to obtain a θ-fixed, regular semisimple element Xθ ∈ Mn(OF ) such that Θπθ
(γ) =

d(πθ) µ̂Xθ
(γ− 1), where µXθ

is the orbital integral on Lie(Gθ) associated to Xθ , and µ̂Xθ
is its Fourier

transform. Thus, (0.0.4) becomes

(0.0.5) Θπ+ (γθ)= [F : F0] ε+λ+(θ)
deg(σθ)

deg(σ)
d(π) µ̂Xθ

(γ−1)

(see Theorem 4.5.2 and §4.6 for the general result).

For other types of automorphisms, we follow the same basic procedure as above. However, the situation

is complicated by the fact that the integral formula analogous to (0.0.2) may not converge. In such cases,

we work around this by first restricting π+ to an appropriate subgroup H+ of G+. This restriction is

not irreducible, and each irreducible component may make a contribution to Θπ+ . Therefore, in general

the result analogous to (0.0.5) will involve a (finite) linear combination of Fourier transforms of orbital

integrals.

Outline

Chapter 1 is devoted to setting up notation and discussing basic concepts. By a p-adic field, we will always

mean a non-archimedean local field of characteristic zero. In §1.2, we discuss the concrete realization
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of restriction of the ground field that we use. In §1.3, we discuss some properties of quasi-semisimple

automorphisms of a connected reductive group G, defined over any perfect field F. In our discussion of

regular elements, after Lemma 1.3.12 we restrict to the case that G=RF/F0 GLn for F/F0 a finite, abelian

extension of p-adic fields. In §1.4, we state O’Meara’s classification of the automorphisms of GLn(F) (as

given in [17]), and based on it give a preliminary restriction on the types of automorphisms of RF/F0 GLn

which we will consider. In §1.5, we discuss representations of a totally disconnected, locally compact

group G which are stable under some finite-order automorphism θ of G. For such a representation π

of G, we describe how to extend π to G+ = Go 〈θ〉, and state some properties of this extension. In our

discussion of unitary twists of stable representations in §1.5.3, we restrict to considering only certain

types of automorphisms of G =GLn(F), for F a p-adic field.

Chapter 2 discusses the Deligne-Lusztig theory for non-connected, reductive algebraic groups over a finite

field, as developed by Digne and Michel ([14]). In particular, for a non-connected group whose quotient

modulo its identity component is cyclic and consists of semisimple elements, we extract from this theory

simplified formulas for Deligne-Lusztig characters on certain types of elements in the set of rational points

of connected components away from the identity.

In Chapter 3, we follow the method used by Bushnell and Henniart ([7]) to develop a Harish-Chandra-

type integral formula for the character Θπ+ of a representation π+ of G+ = Go 〈θ〉. From this point on,

we only consider the case that G = GLn(F), for F a p-adic field, and the automorphism θ is of a certain

form relative to the classification in §1.4. We consider π+ to be the extension to G+ (as defined in §1.5) of

an irreducible, admissible representation π of G. In §3.1, we make some preliminary hypotheses on the

automorphism θ and the structure of G = RF/F0 GLn and G = GLn(F) relative to θ. As well, based on the

form of θ that we consider, we may (and do) assume that F/F0 is a finite, cyclic extension. We devote §3.2

and §3.3 to finding a family of operators on the space of π+, indexed by the elements of a set of sufficiently

regular elements of G+, whose trace is equal to the value of Θπ+ on those elements. In the case that θ

sends scalar elements in G to either their inverse or some Galois conjugate of their inverse, it is necessary

to restrict π+ to an appropriate open, closed, normal subgroup H+ of G+ to ensure convergence of our

integral formula. This is discussed in §3.4, and we give a decomposition for such a restriction. In §3.5, we

are finally able to give the integral formula for Θπ+ .

In Chapter 4, we specialize the integral formula from Chapter 3 to the case that π+ is the extension to

G+ of an irreducible, depth-zero supercuspidal representation π of G. We then use this formula to find a

relation between Θπ+ , evaluated near θ, and a linear combination of Fourier transforms of orbital integrals

on the Lie algebra of Gθ . Here, Gθ is the subgroup of G consisting of elements fixed by θ. In general, it is

known that irreducible, depth-zero representations of connected, reductive p-adic groups are induced from

representations of normalizers of maximal parahoric subgroups. In G = GLn(F), there is one conjugacy

class of maximal parahoric subgroup. Let K be a maximal parahoric subgroup of G, and let Z be the centre

of G. Then the normalizer of K in G is ZK . Up to equivalence, an irreducible, depth-zero supercuspidal

representation π of G is induced from an irreducible, smooth representation σ of ZK which is trivial on the

pro-unipotent radical K ′ of K , and factors to an irreducible, cuspidal representation of K /K ′ ≃GLn(kF ).

Here, kF is the residue field of F. We assume that both K and σ are θ-stable, so that π is then also

θ-stable. We discuss the details of the construction of such representations in §4.1, and add a sharpened
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version of one of the hypotheses from §3.1. In §4.2, we analyze the decomposition of the restriction of

π+ to the subgroup H+ from §3.4 in more detail, given the nature of π, and use this extra information

to simplify the integral formula from §3.5. We give some further hypotheses in §4.3 that will allow us

to use the results of Chapter 2 to relate Θπ+ , near θ, to a linear combination of characters of depth-zero,

supercuspidal representations of Gθ . This relation is obtained in §4.4. In §4.5, we use the general results

of DeBacker and Reeder ([13]) to express these characters on Gθ in terms of Fourier transforms of orbital

integrals on its Lie algebra.

In Chapter 5, we apply the results of Chapter 4 to several specific cases. In particular, we show that our

many hypotheses are lax enough as to be satisfied in a number of cases of interest. Note that the inner

case is intentionally not considered specifically (though it is allowed for in our general results), as this

case is effectively handled by DeBacker and Reeder in [13], without our many restrictions.



1. PRELIMINARIES

1.1 Notation and basic facts

1.1.1 p-Adic fields. Let Qp be the field of p-adic numbers, for p an odd prime, with p-adic absolute

value |·|p. If q is a power of p, let Fq be the finite field with q elements. For any rational number a, let

‖a‖p = |a|−1
p be the p-part of a and ‖a‖p′ = a/‖a‖p the p′-part of a. If A is a finite set, let ‖A‖p (resp. ‖A‖p′ )

be the p-part (resp. p′-part) of the cardinality of A. Let Q̄p be the algebraic closure of Qp. By a p-adic field,

we mean a finite extension F ⊇Qp. For such a field, let |·|F be the absolute value and valF the valuation

on F. Let OF ⊃ PF be the ring of integers in F and its maximal ideal, respectively, with uniformizer ̟F .

For α ∈ F×, let intF (α) = α/̟valF (α)
F ∈ O

×
F . Let kF = OF /PF be the residue field of F, and denote its size by

qF = |kF |. The residue field of Qp is Fp. For any element α (resp. subset A) of OF , let ᾱ (resp. Ā) be its

image in kF under the natural projection. If X is a matrix with entries in OF , let X̄ be the matrix with

entries in kF obtained by applying the mod PF map to each entry of X .

If F ⊂ L is any finite, unramified extension, we may (and do) take a common uniformizer ̟ =̟L =̟F for

the valuations of F and L, and the inclusion OF ,→OL induces an injection kF ,→ kL . Considering kF as a

subfield of kL, if α lies in OF then its projections modulo PF and PL coincide. In this way, we obtain an

isomorphism Gal(L/F)≃Gal(kL/kF ) by τ 7→ τ̄, where, given τ ∈Gal(L/F) and α ∈OL , τ̄(ᾱ)= τ(α). Therefore,

Gal(L/F) is cyclic, and the generator which induces the Frobenius automorphism of kL /kF is called the

Frobenius automorphism of L/F.

Lemma 1.1.1. A subset B⊂OL is an OF -basis for OL if and only if B̄ is a kF -basis for kL .

Proof. The reverse direction is [9, Ch. 7, Lemma 5.4], so consider the forward direction. Let n = [L : F],

and suppose B = {ξ1, . . . ,ξn} is an OF -basis for OL . Choose a subset D= {α1, . . . ,αn} ⊂ OL such that D̄ is a

kF -basis for kL . Then by the reverse direction,D is an OF -basis for OL . Let A be the element of EndOF (OL)

such that Aαi = ξi for each i. Clearly A is invertible, so that A ∈ AutOF (OL). If Ā is the image of A in

AutOF (OL)/(1+̟EndOF (OL))≃ GLkF (kL), we have Āᾱi = Aαi = ξ̄i for each i, and hence B̄= {ξ̄1, . . . , ξ̄n} is a

kF -basis for kL .

IfB= {ξ1, . . . ,ξn} is as in the lemma, then each ξi lies in O
×
L , since otherwise B̄would be linearly dependent.

Via our common uniformizer ̟, we see that B is also an F-basis for L.

1.1.2 Linear algebra. For any positive integer n, let 0n and 1n denote the n× n zero and identity

matrices, respectively. If A1, . . . , Am is a collection of square matrices, with Ai of dimension mi , let

diag(A1, . . . , Am) be the square matrix of dimension
∑

i mi in which the Ai appear as blocks down the

diagonal, with zero in all other entries.

If R is an integral domain and M is an R-module, let M∗ be the linear dual of M. If M is free of rank n

and B is a basis of M, let [·]B : M → Rn be the coordinate transformation with respect to B. Given another

basisD of M, let [·]DB : EndR(M)→Mn(R) be the transformation which sends an R-linear endomorphism

7
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of M to the matrix which represents it relative to B and D. That is,

[Am]D = [A]DB [m]B ,
(
A ∈EndR(M), m ∈ M

)
.

IfD=B, write [A]B for [A]BB. If f : M×M → R is a bilinear form on M, let [f]B =
(f(ξi,ξ j)

)
, whereB= {ξi}.

1.1.3 Groups and automorphisms. Let G be a group. Let Z(G) denote its centre. For x, y ∈G, denote

left- and right-conjugation by xy = xyx−1 and yx = x−1 yx, respectively, and let IntL x and IntR x denote

the corresponding inner automorphisms of G. If G is an algebraic group and g is its Lie algebra, denote

(Ad g)(X ) by gX for g ∈G and X ∈ g, and for an automorphism µ of G, let dµ be its differential on g. If γ

is an element and A a subset of G, let Aγ = CA(γ) be the centralizer of γ in A. More generally, if θ is an

automorphism of G, let G+ =Go〈θ〉 and let Aθ =G+
θ
∩A be the subset of elements in A which are fixed by

θ. As a subgroup, G is normal in G+. For any integer i let G i denote the coset Gθi . Let A+ be the subgroup

of G+ generated by A and θ, and let Ai = A+∩G i . If A is a θ-stable subgroup of G then A+ = Ao 〈θ〉 and

Ai = Aθi . Considering the automorphism θ of G as the restriction to G of the inner automorphism of G+

associated to θ, we may write θ(x)= θx for x in G. The centre Z(G+) of G+ is easy to compute, and we omit

the proof of the following lemma.

Lemma 1.1.2.

(1) Z(G+)∩G = Z(G)θ .

(2) For i 6= 0, if Z(G+)∩G i 6= ;, then there exists g ∈ Gθ with θi = IntR g as an element of Aut(G), and

Z(G+)∩G i = gθi Z(G)θ .

Remark. The hypothesis of (2) is satisfied for some i > 0, for example, when θ is a non-trivial inner

automorphism of G.

Let 1−θ : G → G denote the map x 7→ x(θx−1), so that Gθ is precisely the set of elements of G which are

sent to 1. The map 1−θ differentiates the cosets of Gθ in G, since for x, y ∈ G we have xGθ = yGθ (resp.

Gθx = Gθ y) if and only if (1−θ)(x) = (1−θ)(y) (resp. (1−θ)(x−1) = (1−θ)(y−1)). If θ has finite order d, let

Nθ : G →G denote the map x 7→ xθ(x) · · ·θd−1(x). The image Nθ(x) is called the θ-norm of x. Considering G

as a subgroup of G+, we may write Nθ(x) = (xθ)d . Note that Nθ maps every element of (1−θ)(G) to 1. If

G is abelian, then both maps 1−θ and Nθ are homomorphisms, and Nθ(G) ⊆Gθ = ker(1−θ). If G is finite

abelian and one of the maps 1−θ : G → kerNθ, Nθ : G →Gθ is surjective, then so is the other.

If H is a subgroup of G, let NG (H) be the normalizer of H in G, and let WG(H) = NG (H)/H. If G is an

algebraic group defined over a field F and H is a closed F-subgroup of G, let WG (H)F = NG(F)(H)/H(F). Let

Ĥ be the dual group of (complex) characters of H. If G is a topological group and H is a closed subgroup,

we take Ĥ to be only the continuous characters of H. Every element x ∈ G induces a bijection Ĥ → (xH)̂

by λ 7→ xλ, for λ ∈ Ĥ. Here, xλ is defined by xλ(g) = λ(gx), for g ∈ xH. This defines an action of N = NG (H)

on Ĥ which factors to an action of W =WG (H) on Ĥ. Suppose H is stable under some automorphism θ of

G. Then N is also θ-stable, with N+ = NG+ (H). Moreover, θ|NG (H) factors to an automorphism of W , with

W+ = N+/H. Therefore, we may extend the action of W on Ĥ to W+ by setting θλ=λ◦θ−1, for λ ∈ Ĥ.
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1.1.4 Algebraic geometry and algebraic groups. We will assume all varieties to be affine. If X is a

variety defined over a field F, let X (F) be the set of F-rational points of X . The variety X will be identified

with X (F̄), where F̄ is the algebraic closure of F.

For most of this thesis, we will use a boldface Roman font for an algebraic group defined over a p-adic

field and an italic font for the corresponding group of rational points. For an algebraic group defined over

a finite field, we will use a boldface Euler font, and the corresponding group of rational points will be

denoted using a normal Euler font. For example, for G defined over Qp, we write G = G(Qp), while forG defined over Fp, we write G=G(Fp). One notable exception to this rule occurs in §1.3, where, for part

of that section, G is taken to be an algebraic group defined over any perfect field. We will write Gm for

GL1 when the field of definition is understood. Elements of either (Gm)n or its embedding in GLn as the

diagonal torus will often be written as n-tuples, sometimes prefixed with diag in the latter case. We will

often identify Gm with Z(GLn), without comment.

Suppose G is a connected linear algebraic group, defined over a perfect field F. Subgroups B⊃T consisting

of a Borel subgroup B and a maximal torus T of G will be referred to as a pair in G. A pair will be called

F-split if the torus T is defined and split over F. If G is a torus, it contains a unique maximal F-split

subtorus Gs = Gs,F . The F-rank of G is defined to be rkGs, and is denoted rkF G. If G is a quasi-split

F-group, define rkF G to be rkF T, for B ⊃ T any pair in G which is defined over F. In either case, define

the F-sign of G (denoted εG,F = εG) to be (−1)rkF G. A maximal F-torus T⊂G is called F-minisotropic if its

F-rank is minimal over all maximal F-tori of G. Suppose that G is reductive. Since Z(G) is contained in

every maximal torus of G, a sufficient condition for a maximal F-torus T ⊆G to be F-minisotropic is that

Ts ⊆ Z(G). If G is also F-split, then this condition is both sufficient and necessary.

1.1.5 Totally disconnected groups and their representations. Let (π,V ) be a (complex) represen-

tation of a group G. If A and W are subsets of G and V , respectively, let A ·W =Span{π(a)w |a ∈ A, w ∈W }.

For v ∈ V , write A ·v for A · {v}. If H is a subgroup of G, let V H be the subspace of H-fixed vectors of V . If

(σ,W) is a representation of H and g ∈G, let gσ (resp. σg) be the representation of gH (resp. H g) induced

by IntR g (resp. IntL g). Let 〈 ·, · 〉 : V∗×V →C be the obvious pairing, and let (π∗,V∗) be the representation

of G defined by

〈
π∗(x)λ, v

〉
=

〈
λ, π(x−1)v

〉
,

(
x ∈G, λ ∈V∗, v ∈V

)
.

Suppose that G is a totally disconnected, locally compact group. Let Vsm be the subspace of V consist-

ing of vectors with open stabilizer in G. If Vsm = V , then π is called a smooth representation of G. A

one-dimensional, smooth representation of G will be referred to as a quasi-character of G. A smooth rep-

resentation π is called admissible if V K is finite-dimensional for every compact, open subgroup K of G.

Let Ṽ = (V∗)sm, and define the contragredient π̃ of π to be π∗|Ṽ . For any v ∈V and ṽ ∈ Ṽ , the function

ϕv,ṽ : G →C, x 7→ 〈 ṽ, π(g)v 〉 ,

is called a matrix coefficient of π. A smooth representation π is called supercuspidal if every matrix

coefficient of π is compactly supported modulo the centre of G. Let H be a closed subgroup of G. If (σ,W)

is a smooth representation of H, let IndG
H W be the space of functions f : G →W which are invariant under
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right-translation by the elements of some compact, open subgroup of G, and which satisfy f (hg) =σ(h) f (g)

for all h ∈ H, g ∈ G. Further, let c-IndG
H W be the subspace of IndG

H W consisting of those functions which

have compact support modulo H. The representation IndG
H σ : G → GL(IndG

H W), where G acts on the

elements of IndG
H W by right translation, is called the representation of G induced from σ, and c-IndG

H σ=
IndG

H σ|c-IndG
H W is called the representation of G compactly induced from σ. It is well known that if H is

an open, closed, compact modulo centre subgroup of G, and π= c-IndG
H σ is irreducible, then π is admissible

and supercuspidal.

1.1.6 Miscellany. If B is a subset of a set A, let chB : A → {0,1} be the characteristic function on A with

respect to B.

1.2 Restriction of the ground field

In this section, we review a concrete realization of the restriction of the ground field RE/F X of an affine

E-variety X , for E a finite extension of F. Here, we allow F to be any perfect field. Let F̄ be the algebraic

closure of F, and for a positive integer m, let Am be m-dimensional affine space over F̄. Recall that we

assume all varieties to be affine. To simplify the discussion, we also assume that E/F is Galois, since we

will only be concerned with that case.

1.2.1 Construction. Set Γ=Gal(F̄/F) and Γ
′ =Gal(F̄/E)⊂Γ. An element σ ∈ Γ induces a map σ :Am →

Am by σ((xi)) = (σ(xi)). For a polynomial map f : Am → Aℓ, let σf = σ f σ−1, so that σf is the polynomial

map obtained from f by allowing σ to act on the coefficients.

Let X be an E-variety. Setting Σ=Γ/Γ′ ≃Gal(E/F), we can construct an E-variety

XΣ =
∏

σ∈Σσ(X ).

Given σ ∈Γ, let ρσ = ρX ,σ : XΣ →σ(X ) be the natural projection. Any element τ ∈ Γ permutes the elements

of Σ by left-multiplication, so we also have an induced linear map ψτ =ψX ,τ given by

ψτ : XΣ → τ(XΣ), ψτ(x)= (xτσ),
(
x = (xσ) ∈ XΣ

)
.

Restriction of the ground field is a construction whereby, given an E-variety X , we obtain an F-variety

RX = RE/F X and an E-isomorphism f : RX → XΣ such that RX (F) maps bijectively onto X (E) under

f̃ = ρid f . Before we make this construction concrete, we cite the following abstract result.

Theorem 1.2.1 ([38, 11.4.16]). Let X be an E-variety. There exists an F-variety RX together with a

surjective E-morphism f̃ : RX → X with the following universal property. For any F-variety Y together

with an E-morphism ϕ : Y → X there is a unique F-morphism Φ : Y → RX such that ϕ = f̃ Φ. The pair

(RX , f̃ ) is unique up to canonical isomorphism.

Following [37, §3.3], we may realize RX concretely as follows. Let [E : F] = n, and let {σ1, . . . ,σn} be a set

of representatives for Σ, with σ1 the identity automorphism, so that Gal(E/F)= {σi |E}. For any variety Y ,

take the product YΣ to have the same ordering as our set of representatives of Σ, and write ρi = ρY ,i for

ρY ,σi .
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If X =A1, then XΣ is just An, and so take RX =An as well. Any choice of F-basis B= {e i} of E affords an

E-morphism

fB : An →An, fB(x)=
(∑

k xkσi(ek)
)
,

(
x = (xi) ∈An)

.

This map is linear with matrix (σi(e j)). By Dedekind’s theorem on the linear independence of field auto-

morphisms, this matrix, and hence the map fB, is invertible. Notice that

f̃B(x)= (ρ1 fB)(x)=
∑

i xi e i ,

which clearly maps RX (F) bijectively onto X (E). Also, a simple calculation shows σfB = ψσ fB for any

σ ∈ Γ.

Now proceed inductively. If X is a product of E-varieties Y and Z for which RY and RZ are defined,

set RX = RY ×RZ. This is clearly defined over F. We have XΣ =
∏

i
(
σi(Y )×σi(Z)

)
, and so, choosing

appropriate E-isomorphisms fY : RY →YΣ and fZ : RZ → ZΣ, we may take f : RX → XΣ by

f (y, z)=
((

(ρY ,i fY )(y), (ρZ,i fZ)(z)
))

,
(
y ∈RY , z ∈RZ

)
.

Assume that f̃Y (resp. f̃Z) maps RY (F) (resp. RZ(F)) bijectively onto Y (E) (resp. Z(E)). Then since f̃ =
f̃Y × f̃Z , we also have that f̃ maps RX (F) bijectively onto X (E). For any σ ∈Γ, both RY and RZ are σ-stable

since they are defined over F. By the first case, we may further assume inductively that σfY = ψY ,σ fY

and σfZ =ψZ,σ fZ . Since each ρY ,i , ρZ,i is defined over F, they each commute with σ, from which we may

conclude that σf =ψX ,σ f holds in this case as well.

Finally, we define RX relatively. Suppose X is a subvariety of an E-variety Y for which RY is defined, and

let fY : RY →YΣ be a suitable E-isomorphism. Then XΣ is a subset of YΣ, and we may take RX = f −1
Y (XΣ)

and f = fY |RX . Let σ ∈ Γ. By the previous cases, we may assume σfY =ψY ,σ fY , so that

σ(RX ) = σf −1
Y

(
σ(XΣ)

)
=

(
f −1
Y ψ−1

Y ,σ

)(
σ(XΣ)

)
= f −1

Y (XΣ)= RX .

Since this holds for any σ, RX is defined over F. Note that σf =ψX ,σ f also holds in this case. We may also

assume that f̃Y maps RY (F) bijectively onto Y (E). Since f̃ = f̃Y |RX , the map f̃ gives a bijection between

RX (F) and X (E).

Example. For X = Am, the above induction process yields RX = (RA1)m = (An)m. Enumerate the coordi-

nates of an element x ∈ RX by x = (xi j |1 ≤ i ≤ m, 1 ≤ j ≤ n). We also have XΣ =
∏

i σi(Am) = (Am)n, so

enumerate the coordinates of an element x′ ∈ XΣ by x′ = (x′i j |1 ≤ i ≤ n, 1≤ j ≤ m). Any family B= {Bi}m
i=1 of

F-bases of E, with Bi = {e i j }n
j=1, determines an E-isomorphism fB : RX → XΣ as follows. For x ∈ RX , let

x′ = fB(x), so that

x′i j =
∑

k x jk σi(e jk).

1.2.2 Properties. If f : X → Y is a morphism of E-varieties, we have an induced E-morphism f Σ =
∏

i
σi f from XΣ to YΣ. Choosing E-isomorphisms fX : RX → XΣ and fY : RY → YΣ, we can construct a

morphism R f : RX →RY by setting R f = f −1
Y f Σ fX . Then, for any σ ∈Γ,

σ(R f )= (σf −1
Y )(σf Σ)(σfX )= f −1

Y ψ−1
Y ,σ (σf Σ)ψX ,σ fX .
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However, it is easy to check that ψ−1
Y ,σ (σf Σ)ψX ,σ = f Σ. Therefore, σ(R f )=R f for any σ ∈ Γ, from which we

conclude that R f is defined over F. Moreover, one can check that ρY ,i f Σ = (σi f )ρX ,i , for 1≤ i ≤ n, so that

f̃Y R f = (ρY ,1 fY )( f −1
Y f Σ fX )= f ρX ,1 fX = f f̃X .

Now suppose that X is an L-variety, where L/E is a finite Galois extension, and let Y = RL/E X . Let

Γ
′′ = Gal(F̄/L), Σ′ =Γ

′/Γ′′, and Σ
′′ =Γ/Γ′′. We have Y ≃ XΣ

′
and RL/F X ≃ XΣ

′′
over L, and RE/F Y ≃YΣ over

E. But since Σ is isomorphic to Σ
′′/Σ′, YΣ ≃ (XΣ

′
)Σ is equal to XΣ

′′
, after reordering the factors if necessary.

The universal property of restriction of the ground field allows us to conclude that RE/F Y is isomorphic

over F to RL/F X .

1.2.3 Group structure. Suppose that X = G is an algebraic group defined over E. Choose an E-

isomorphism f : RG → GΣ. Considering (G×G)Σ ≃ GΣ ×GΣ and R(G×G) = RG×RG, let f 2 denote the

E-isomorphism f × f : RG×RG → GΣ×GΣ. Multiplication µ : G×G → G and inversion ι : G → G are E-

morphisms, so we have induced maps µΣ, ιΣ, Rµ, and Rι, the latter two defined using f and f 2. We

may then give each of GΣ and RG group structure via these induced maps, respectively. Since ρi µ
Σ =

(σiµ)(ρi ×ρi), for 1 ≤ i ≤ n, it follows that f̃ is a homomorphism of algebraic groups which restricts to a

group isomorphism mapping RG(F) onto G(E). We will make frequent use of the following example.

Example. Consider G = Gm as the algebraic subset { (x,x−1) | x 6= 0 } of A2. Since G is defined over F,

GΣ = G× ·· · ×G (n copies). Choose an F-basis B = {e i}n
i=1 of E, and let AB =

(
σi(e j)

)
∈ GLn(E). Take

fB : (An)2 → (A2)n by

fB(
(xk),(yk)

)
=

((∑
j x j σk(e j),

∑
j yj σk(e j)

))
.

Following our construction, we set RG= f −1B (GΣ), so that

RG=
{ (

(xk),(yk)
)
∈ (An)2 ∣∣

(∑
j x jσk(e j)

)(∑
j yjσk(e j)

)
= 1, 1≤ k ≤ n

}
.

Let {ci jh} be the elements of F such that e i e j =
∑

h ci jh ek, for 1≤ i, j ≤ n. Then

(1.2.1) RG=
{ (

(xk),(yk)
) ∣∣ ∑

h,i, j xi yj ci jh σk(eh)= 1, 1≤ k ≤ n
}

,

with multiplication given by

(
(xk),(yk)

)(
(x′k),(y′k)

)
=

((∑
i, j xi x′j ci jk

)
,
(∑

i, j yi y′j ci jk

))
.

The map fB|RG defines an E-isomorphism of RG onto GΣ, so that RG is an n-dimensional F-torus which

splits over E. The basis B affords an embedding of RG into GLn as follows. For x =
(
(xk),(yk)

)
∈ RG, let

ϕ(x) be the n×n matrix
(∑

k xk ck ji
)
. View the equations that determine RG in (1.2.1) as a linear system in

the indeterminates {yk}, with coefficient matrix AB ϕ(x). Since fB is invertible, (yk) is the unique solution

to the system for a given x ∈ RG, and so ϕ(x) is invertible. Therefore, ϕ maps RG into GLn. For any

integers 1 ≤ i, j,k ≤ n, the identity e i e j ek = ek e j e i yields relations ci ja cakb = ck ja caib, for 1 ≤ a,b ≤ n.

Using these relations, one can check that ϕ is a group homomorphism. Finally, let f = fB|RG, as per

our construction. Notice that for any α ∈ E×,
(
ϕ f̃ −1)(α) = [mult(α, ·)]B, so that ker(ϕ|RG(F)) is trivial.

The equation ϕ(x)= 1n determines a system of linear equations with coefficients in F. The existence of a

unique solution over F allows us to conclude that kerϕ is trivial and ϕ is injective. The image ϕ(RG) is

given by ϕ(RG)=DAB , where D≃GΣ is the diagonal torus in GLn.
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We now record some connections between the structures of G and RG. The following statements are

obvious.

Lemma 1.2.2.

(1) Z(GΣ)= Z(G)Σ and Z(RG)= f −1(
Z(G)Σ

)
≃ R

(
Z(G)

)
.

(2) If G is connected, then so is RG. If G is also reductive, then so is RG.

Now assume that G is a connected, reductive E-group.

Lemma 1.2.3.

(1) If G is E-quasi-split, then RG is F-quasi-split.

(2) If T is a maximal E-torus of G, then RT is a maximal F-torus of RG, (RT)s,F =
(
R(Ts,E)

)
s,F , and

rkF RT= rkE T.

(3) If G is E-split and T is an E-minisotropic torus of G, then RT is an F-minisotropic torus of RG.

Proof. For (1), it is clear that if B ⊃ T is a pair in G which is defined over E, then RB ⊃ RT is a pair in

RG which is defined over F. Statement (2) is discussed in [38, 16.2.6–7]. Now let T⊆G be as in (3). Then

Ts,E ⊆ Z(G), so by Lemma 1.2.2(1) we have R(Ts,E) ⊆ Z(RG). Now (2) implies that (RT)s,F ⊆ Z(RG), and it

follows that RT is F-minisotropic.

1.2.4 Galois action. Suppose X ⊂ Am is defined over F. Following the example of §1.2.1, but sim-

plifying using the single F-basis B = {e i} of E, let fB : (An)m → (Am)n by fB(xi j) =
(∑

k x jkσi(ek)
)
, where

n = [E : F]. Since X is defined over F, XΣ is just n factors of X sitting inside (Am)n, and ψσ is an F-

automorphism of XΣ for any σ ∈ Γ. Take RX = RE/F X = f −1B (XΣ), and set fX = fB|RX . Let θ be an

element in the centre of Γ. The action of θ on X , restricted to X (E), coincides with restriction to RX (F) of

an F-automorphism ηθ of RX as follows. Take ηθ = f −1
X ψθ fX . For any σ ∈ Γ,

σηθ = σ( f −1
X )σψθ

σfX = f −1
X ψ−1

σ ψθψσ fX = f −1
X ψσθσ−1 fX .

However, since θ is central, ψσθσ−1 = ψθ . Therefore, σηθ = ηθ , and so ηθ is defined over F. Recall that

f̃X = ρ1 fX maps RX (F) bijectively onto X (E). In particular, for x = (αi) ∈ X (E), we may write x = f̃X (xi j)

for {xi j} the elements of F such that αi =
∑

j xi j e j . Then, using the fact that f̃X ηθ = ρ1
θfX , we have

(
f̃X ηθ

)
(xi j)=

(∑
j xi j θ(e j )

)
= (θ(αi)),

so that f̃X ηθ |RX (F) induces θ|X (E).

If X is a linear algebraic group, defined over F, then it is straightforward to check that ηθ is also a group

homomorphism.

1.3 Quasi-semisimple automorphisms

In this section, we introduce the necessary background on quasi-semisimple automorphisms of a reductive

algebraic group G, and discuss two notions of regularity of elements in G+.
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1.3.1 Definitions and basic facts. Let G be a connected reductive linear algebraic group defined over

a perfect field F, and let G = G(F). We do not make any assumption on the characteristic of F at this

point. Let θ be a quasi-semisimple automorphism of G which is defined over F. By quasi-semisimple, we

mean that there exists a pair in G which is θ-stable. We cite some facts from [14].

Theorem 1.3.1 ([14, Theorem 1.8]).

(1) The connected component, G0
θ
, of the subgroup Gθ of θ-fixed elements of G is reductive.

(2) Suppose B ⊃ T is a θ-stable pair in G, and set B0
θ
= B∩G0

θ
and T0

θ
= T∩G0

θ
. Then B0

θ
⊃ T0

θ
is a pair

in G0
θ
.

(3) For any pair C⊃S in G0
θ

there exists a θ-stable pair B⊃T in G such that C=B∩G0
θ

and S=T∩G0
θ
.

In particular, T= CG(T0
θ
)= CG(Tθ).

Note that since θ is defined over F, G0
θ

is as well. Let G0
θ
= G0

θ
(F). We add the following observations, all

of which are known.

Corollary 1.3.2. Every element of G0
θ

lies in a θ-stable Borel subgroup of G. Every semisimple element of

G0
θ

lies in a θ-stable pair of G.

Proof. Let γ be an element of G0
θ
. Every element of G0

θ
lies in a Borel subgroup of G0

θ
; let C be a Borel

subgroup of G0
θ

containing γ. Choose a maximal torus S of C and apply (3) from the theorem to obtain a

θ-stable pair B⊃T of G with C, hence γ, contained in B. Every semisimple element of G0
θ

is contained in

a maximal torus of G0
θ
; if γ is semisimple, we may choose S containing γ, so that γ lies in T as well.

Corollary 1.3.3. Let T be a θ-stable maximal torus of G. Then T is contained in a θ-stable Borel subgroup

of G if and only if T∩G0
θ

is a maximal torus of G0
θ
.

Proof. One direction is already provided by the theorem, so let us prove the other. If T∩G0
θ

is a maximal

torus of G0
θ
, choose a Borel subgroup of G0

θ
containing T∩G0

θ
and apply (3) of the theorem to obtain a

θ-stable pair B ⊃ T′ of G such that T′∩G0
θ
= T∩G0

θ
. But then T′ = CG(T∩G0

θ
) ⊇ CG(T) = T. Since T and

T′ are both maximal tori of G, we must have equality throughout, and B is the required Borel subgroup

of G.

Corollary 1.3.4. Let B⊃T be a θ-stable pair of G.

(1) NG(T)θ = NGθ
(Tθ)= NGθ

(T0
θ
).

(2) NG0
θ
(T0

θ
)= NG(T)∩G0

θ
.

(3) The inclusion NG0
θ
(T0

θ
) ,→ NG(T) induces an embedding WG0

θ
(T0

θ
) ,→WG(T)θ.

(4) If T is defined over F, then the inclusion NG0
θ
(T0

θ
) ,→ NG (T) induces an embedding WG0

θ
(T0

θ
)F

,→
(WG(T)F )θ.

Proof. We prove NG(T)θ = NGθ
(Tθ) and NG(T)θ = NGθ

(T0
θ
) simultaneously. If g is any element of NG(T)θ,

then gTθ and g(T0
θ
) are contained in Tθ. Moreover, g(T0

θ
) is connected and contains the identity, so it must
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be contained in T0
θ
. Since NG(T)θ is closed under inverses, the same inclusions hold for g−1, and we have

gTθ =Tθ and g(T0
θ
)=T0

θ
. Therefore, NG(T)θ is contained in both NGθ

(Tθ) and NGθ
(T0

θ
).

Now suppose g0 and g1 lie in NGθ
(T0

θ
) and NGθ

(Tθ), respectively, and let i be either 0 or 1. Statement

(3) of Theorem 1.3.1 gives T = CG(T0
θ
), so we will show that for elements x ∈ T and t ∈ T0

θ
, g ix commutes

with t. Indeed, tg i lies in Tθ and thus commutes with x, hence
gi xt = g i x(tg i ) = t. Therefore, g iT ⊆ T. As

before, since NGθ
(T0

θ
) and NGθ

(Tθ) are closed under inverses, we must have g iT = T. Thus, both NGθ
(T0

θ
)

and NGθ
(Tθ) are contained in NG(T)θ, and we have shown (1). Statement (2) now follows from (1).

Let α : NG0
θ
(T0

θ
) → WG(T) be the composition of inclusion NG0

θ
(T0

θ
) ,→ NG(T) (afforded by (2)) and the nat-

ural projection NG(T) → WG(T). Since θ acts on WG(T) by acting on coset representatives, α has image

in WG(T)θ. The kernel of α is T∩G0
θ
= T0

θ
, so α factors to an embedding WG0

θ
(T0

θ
) ,→ WG(T)θ, giving (3).

Similarly, let αF : NG0
θ
(T0

θ
) → WG(T)F be the composition of inclusion NG0

θ
(T0

θ
) ,→ NG (T) and the natural

projection NG (T) → WG(T)F . Then αF has kernel T(F)∩G0
θ
= T0

θ
(F) and image in (WG(T)F )θ, where θ

factors to an automorphism of WG (T)F in the natural way. This proves (4).

We add some results over F.

Proposition 1.3.5. If G contains an F-split, θ-stable pair B⊃T, then G0
θ

is F-split.

Proof. This is clear from Theorem 1.3.1(2) and the fact that any subtorus of an F-split torus is defined and

splits over F.

Lemma 1.3.6. Suppose B⊃T is a θ-stable pair in G, with T defined over F, such that Ts ⊆ Z(G). Then T0
θ

is an F-minisotropic F-torus of G0
θ
.

Proof. Note that the condition on T implies that it is F-minisotropic in G. Since T lies in a θ-stable

Borel subgroup of G, we have that T0
θ

is a maximal F-torus of G0
θ
. It suffices to show that (T0

θ
)s ⊆ Z(G0

θ
).

Now, (T0
θ
)s is an F-split subtorus of T, so we have (T0

θ
)s ⊆ (Ts)θ ⊆ Z(G)θ ⊆ Z(Gθ). But then since (T0

θ
)s is

connected, we have (T0
θ
)s ⊆ Z(Gθ)0 ⊆ Z(G0

θ
).

The following is the situation we will later find ourselves in.

Corollary 1.3.7. Suppose G = RE/F H, where E is a finite, Galois extension of F, and H is a connected,

reductive, E-split E-group. Let S be an E-minisotropic torus of H such that T = RE/F S is θ-stable and is

contained in a θ-stable Borel subgroup of G. Then T0
θ

is F-minisotropic in G0
θ
.

Proof. By Lemma 1.2.3(3), T is F-minisotropic in G. From the proof of this lemma, we have Ts,F ⊆ Z(G).

We may now apply Lemma 1.3.6.

Suppose B⊃T is a pair in G, with T θ-stable. The following will help us keep track of those G-conjugates

of this pair which are θ-stable. Define the set-valued functions XT and XT on NG(T)×NG(T) byXT(n1,n2)=
{

x ∈G | x−1n2 (n1θx) ∈T
}

,XT(n1,n2)=XT(n1,n2)∩G,
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for n1,n2 ∈ NG(T). Notice that XT(n1,n2) is a union of right-cosets of Gn2n1θ . Let X̃T(n1,n2) be the image

of XT(n1,n2) in Gn2n1θ\G under the natural projection. If Gn2n1θ is defined over F, let X̃T(n1,n2) be the

image of XT(n1,n2) in Gn2n1θ\G, where Gn2n1θ =Gn2n1θ(F).

Now, θB ⊃ T is also a pair in G, and so there exists no ∈ NG(T), with unique image in WG(T), such that
noθB=B.

Lemma 1.3.8. Let B ⊃ T and no be as above. Then for n ∈ NG(T) and x ∈ G, we have x ∈ XT(no,n)

if and only if the pair xB ⊃ xT is stable under the automorphism IntL(nno) ◦ θ of G. For x ∈XT(no,n),

(xT)nnoθ = xTnoθ .

Proof. The forward direction is straightforward computation. For the reverse implication, suppose x ∈ G

such that the pair xB⊃ xT is stable under IntL(nno)◦θ. Since the pair B⊃T is stable under IntL(no)◦θ, it

follows that x−1n(noθx) ∈ NG(B)∩NG(T). However, NG(B) = B and B∩NG(T)= T, and thus x ∈XT(no,n).

The second assertion is easily verified.

Corollary 1.3.9. There exists a θ-stable G-conjugate of the pair B⊃T if and only if XT(no,n−1
o ) 6= ;.

Now assume θ is of finite order, say dθ . The group G+ is also defined over F, and G+ = G+(F). For non-

trivial θ, G+ is non-connected with components {Gi}dθ−1
i=0 . Moreover, G+ is linear, since any embedding ρ

of G into GLn induces an embedding ρ+ of G+ into GLndθ
as follows. For g ∈G and 0≤ m < dθ , the (i, j)th

n×n block ρ+(gθm)i, j of ρ+(gθm) is given by

ρ+(gθm)i, j =




ρ(θi−1(g)), j = (m+ i−1 mod n)+1,

0, otherwise.

Note that if ρ is an F-embedding, then so is ρ+. The image of θ under this embedding is the element




0n 1n

. . .
. . .

. . . 1n

1n 0n




∈GLndθ
.

If gcd(dθ ,char F)= 1, then this image of θ is semisimple, so that θ is a semisimple automorphism of G.

1.3.2 Regular elements. In this section, we discuss two notions of “regular elements” of G+. First, we

examine how the familiar notion of regularity in G behaves relative to θ. For the first two results, F is

any perfect field, G is any connected, reductive F-group, and θ is any quasi-semisimple F-automorphism

of G. After Corollary 1.3.11, we assume that θ has finite order. Following the example concerning Lemma

1.3.12, we change the setup, and take θ to be a finite-order F0-automorphism of G = RF/F0 GLn, for F/F0

a finite, abelian extension of p-adic fields. Of particular importance is Lemma 1.3.12, which states that if

g ∈G is θ-fixed and gθi satisfies a regularity condition in G+, then g is regular in G.

It is most convenient for us to define γ ∈G to be regular in G if G0
γ = CG(γ)0 is a maximal torus of G. Let

Greg denote the set of regular elements in G. For a subset A⊆G, let Areg =A∩Greg.
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Lemma 1.3.10. Any element of G0
θ

which is regular in G is regular in G0
θ
.

Proof. Suppose γ is θ-fixed and regular in G. Since γ is semisimple, by Corollary 1.3.2 there exists a

θ-stable pair B ⊃ T of G containing γ. Since γ is regular, we must have T = G0
γ. Then, S = G0

γ∩G0
θ

is a

maximal torus in G0
θ

by (2) of Theorem 1.3.1. Since γ ∈ S and S is connected, we have S ⊆ (G0
θ
)0
γ. On the

other hand, since (G0
θ
)0
γ is connected we have (G0

θ
)0
γ ⊆ T, and so (G0

θ
)0
γ ⊆ T∩G0

θ
= S. Therefore, we have

(G0
θ
)0
γ =S, and so γ is regular in G0

θ
.

For a given θ-stable maximal torus T, we obtain a condition for T0
θ
= T∩G0

θ
to be a maximal torus in

G0
θ

(see also Corollary 1.3.3), based on the existence of θ-fixed regular elements in T. This condition is

necessary and sufficient under the assumption that Greg ∩G0
θ

is non-empty.

Corollary 1.3.11. Let T be a θ-stable maximal torus of G.

(1) If Greg ∩T0
θ

is non-empty, then T is contained in a θ-stable Borel subgroup of G.

(2) Assume Greg ∩G0
θ

is non-empty. If T is contained in a θ-stable Borel subgroup of G, then Greg ∩T0
θ

is

non-empty.

Proof. Suppose γ ∈Greg ∩T0
θ
. Again, we apply Corollary 1.3.2 to obtain a θ-stable pair B⊃S of G contain-

ing γ. Since γ is regular in G, we must have S =T, and so B is the Borel subgroup of G required to prove

(1). For (2), take γ ∈Greg∩G0
θ
. Then by Lemma 1.3.10, γ is regular in G0

θ
and S= (G0

θ
)0
γ is a maximal torus

in G0
θ
. Since T is contained in a θ-stable Borel subgroup of G, T0

θ
is also a maximal torus of G0

θ
, and we

may choose g ∈G0
θ

such that T0
θ
= gS= (G0

θ
)0

gγ
. Therefore, gγ is the required element of Greg ∩T0

θ
.

Now we assume that θ is of finite order dθ . As usual, write G = G(F). Let x ∈ Gi , and let ℓ be the order

of θi . Then ℓ is the smallest positive integer such that xℓ ∈ G. Call x G-regular (or sometimes G-regular

if x ∈ G i) if xℓ is regular in G. For any subset A of G+ (resp. G+), let AG-reg (resp. AG-reg) denote the set

of elements of A which are G-regular (resp. G-regular). Obviously, GG-reg is just Greg, the set of regular

elements in G. If x ∈ Gi for some 1 ≤ i < dθ , then ℓ is the least common multiple of i and dθ . Writing

x = x0θ
i for some x0 ∈G, we have that x is G-regular precisely when Nθi (x0) is regular in G.

Lemma 1.3.12. Let g ∈Gθ . There exists an integer i such that gθi ∈Gi
G-reg if and only if g ∈Greg.

Proof. If g ∈ Greg, take i = 0. For the other direction, choose an integer 0 ≤ i < dθ such that gθi ∈ Gi
G-reg,

and let ℓ be the order of θi . Then gℓ, and hence g, is regular in G.

Example. It is not true for g ∈ (Greg)θ that gθi ∈ Gi
G-reg for all i. For example, let F0 be a p-adic field

in which −1 is not a square. Choose ı ∈ F̄0 such that ı2 = −1, and let F = F0(ı). For x ∈ GL4, define

θ(x)= J−1 tx−1 J, where

J =




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0




.

Then g = diag(ı,2,−ı,1/2) is regular and θ-fixed, but (gθ)2 = g2 = diag(−1,4,−1,1/4) is not regular.
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For the remainder, we take θ to be a finite-order F0-automorphism of G = RF/F0 GLn, where F/F0 is a

finite, abelian extension of p-adic fields (see §1.4). Here, we allow the possibility that F0 = F. Identify

the groups G(F0) and G =GLn(F) (see §1.2.3). Via this identification, θ|G(F0) induces an (abstract group)

automorphism of G, which we also denote θ. We may then also identify G+(F0) with G+. Using the

characterization that an element in GLn is regular if and only if its eigenvalues are distinct, it is easy to

see that an element of G(F0) is regular in G if and only if the corresponding element in GLn(F) is regular.

Lemma 1.3.13. For 0≤ i < dθ , (G i)G-reg is dense in G i .

Proof. Since θ is defined over F0, G-regularity of elements in Gi(F0) = Gi ∩G+(F0) can be characterized

by the non-vanishing of a certain polynomial function with coefficients in F0. Therefore,
(
Gi(F0)

)
G-reg is

dense in Gi(F0) in the F0-topology. Since the map G(F0)→G corresponding to the identification G(F0)≃G

is continuous, (G i)G-reg is dense in G i in the F-topology.

Let g=Lie(G)=RF/F0 Mn, and identify g(F0) with g=Mn(F). As an element of G+, θ acts on g by

(Adθ)(X ) = θX = dθ(X ),
(
X ∈ g).

Following [7, Appendix A], we make the following definition. Let x ∈ G+ be called quasi-regular if it

satisfies either of the following equivalent conditions:

(i) kx = ker(Adx−1) contains no non-zero nilpotent element of g;

(ii) if U is the unipotent radical of a parabolic subgroup of G and u ⊂ g is the Lie algebra of U, thenkx ∩u= {0}.

Let G+
qr denote the set of quasi-regular elements of G+. For A ⊆G+, let Aqr = A∩G+

qr. Since dθ preserves

nilpotency, so does Ad y for any y ∈G+. From this, we may conclude that for any x, y ∈G+, yx lies in G+
qr if

and only if x does.

Example. Let n= 2 and θ(x)= J−1(tx−1)J, for J =
(

0 1
−1 0

)
. Let g =

(
1 1
0 −1

)
and consider x = gθ in G1. Then kx

is the linear subspace of g spanned by g. Since g2 = 1, x is quasi-regular.

Lemma 1.3.14. For 0≤ i < dθ , (G i)G-reg ⊆ (G i)qr.

Proof. Let x ∈ (G i)G-reg and let ℓ be the order of θi . Since Greg ⊆ Gqr, ker(Adxℓ−1) contains no non-zero

nilpotent elements of g. But then we must have x ∈ (G i)qr, since ker(Adx−1)⊆ ker(Adxℓ−1).

Proposition 1.3.15. For 0≤ i < dθ , the set (G i)qr is open and dense in G i in the F-topology.

Proof. Combining Lemmas 1.3.13 and 1.3.14, we have that (G i)qr is dense in G i . To show that (G i)qr is

open, we copy the proof of [7, (A.3)]. For a matrix X = (x jk) ∈ g, define ‖X‖ = max j,k
∣∣x jk

∣∣
F . Let S = { X ∈g | ‖X‖ = 1 }. Then S is compact in g, and the subset Snilp of nilpotent elements of S is closed and hence

compact.

Let {gm}m≥1 ⊂ G i r (G i)qr be a convergent sequence with limit g ∈ G i . For each m ≥ 1, gm not quasi-

regular implies that there exists a non-zero, nilpotent Xm ∈ ker(Ad g−1). Scaling if necessary, we may

assume each Xm is in Snilp. Since Snilp is compact, there exists a convergent subsequence {Xmk }k≥1 and

an element X ∈Snilp such that Xm → X as k →∞. But then also gmk Xmk → X , and so gX = X . This implies

g ∉ (G i)qr, and so G ir (G i)qr is closed. Therefore, (G i)qr is open in G i .
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Corollary 1.3.16. G+
qr is open and dense in G+.

1.4 Automorphisms of GLn(F)

In this section, we examine certain automorphisms of G =GLn(F). Identify Z(G) with F×.

1.4.1 Arbitrary fields. For any field F, O’Meara has classified the automorphisms of G. From [17,

Theorem 21], we have the following.

Theorem 1.4.1 (O’Meara). Suppose n≥ 3. For any θ ∈Aut(G), there exist a group homomorphism χ : G →
F×, a field automorphism τ ∈Aut(F), and an element J ∈G such that

θ(g) =χ(g) J−1 τ
(
θ0(g)

)
J,

(
g ∈G

)
,(1.4.1)

where θ0 is either the identity map or the map g 7→ tg−1 on G, and τ acts on an element of G by acting on

its entries.

In this thesis, we will ignore the automorphisms of G that are not of the form of (1.4.1) in the case that

n = 2. In particular, we restrict our attention to automorphisms of finite order that are of the given form,

regardless of the value of n.

Remark. An automorphism of G may have several expressions of the form of (1.4.1). Obviously, we may

replace J by any element of F×J. For another example, consider n= 2 and J =
(

0 1
−1 0

)
. Then the automor-

phism g 7→ J−1 tg−1 J may also be written g 7→ (det g)−1 g.

We will also only consider certain automorphisms which are induced by restricting an F0-automorphism

of G = RF/F0 GLn to G(F0) ≃ G, where F/F0 is some finite, Galois extension. Fix such a subfield F0 ⊆ F,

allowing the possibility that F0 = F, and for convenience write R= RF/F0 . Let d = [F : F0] and, as in §1.2.1,

set Σ=Gal(F̄/F0)/Gal(F̄/F)≃Gal(F/F0).

Proposition 1.4.2.

(1) Let χ : G → Z(G) ≃ RGm be any F0-homomorphism. Then the map G → F× induced by χ|G(F0) is of

the form

g 7→
∏

σ∈Σσ(det g)mσ ,
(
g ∈G

)
,(1.4.2)

for some collection of integers {mσ}σ∈Σ.

(2) Assume that F/F0 is an abelian extension. Let θ0 : GLn →GLn be either the identity map or transpose-

inverse. Suppose J ∈ GLn(F), τ ∈ Gal(F/F0), and χ : G → F× is as in (1.4.2) for some {mσ} ⊂Z. Then

the automorphism of G given by (1.4.1) coincides with that induced by the restriction to G(F0) of some

F0-automorphism of G.

Proof. Recall that Gm =GL1. Since GLm is defined over F0 for any m, we have that GLΣ
m is just a direct

product of d copies of GLm, for either m = 1 or m = n. Write fm = fGLm : RGLm →GLΣ
m. Identify Gm with

Z(GLn). We may assume that we have constructed RGm and G = RGLn such that f −1
1 = f −1

n |GΣ
m. Now

suppose χ : G → RGm is an F0-homomorphism. Then, composing the restriction of f1 ◦χ ◦ f −1
m to the ith
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factor of GLΣ
n with the projection onto the jth factor of GΣ

m, we obtain an F-homomorphism GLn → Gm.

Since any such map must be of the form x 7→ (det x)ki j for some ki j ∈ Z, (1) follows. Now consider (2).

For σ ∈ Gal(F/F0) and m ≥ 1, let ησ,m be the F0-automorphism of RGLm as constructed in §1.2.4. Then

the required F0-automorphism of G is the product of the morphisms in the collection {ησ,1 ◦R(detmσ )}σ∈Σ

(whose images lie in the centre of G), and the morphism R(IntR J)◦ητ,n ◦Rθ0.

Accordingly, we will only consider automorphisms of G which have the form considered in Proposition

1.4.2(2). Let θ be such an element of Aut(G). Lift τ to an element of Gal(F̄/F0), and consider θ as an

automorphism of the abstract group GLn =GLn(F̄). We will also use θ to denote the F0-automorphism of

RGLn from the proof of Proposition 1.4.2(2). The following is easily verified.

Lemma 1.4.3. Suppose H is a closed F-subgroup of GLn which is θ-stable. Then RH is an θ-stable F0-

subgroup of G.

1.4.2 p-Adic fields. Now consider the case that F is a p-adic field, and let θ be of the form of (1.4.1),

with χ of the form of (1.4.2). For this section, we need only assume that F/F0 is a finite, Galois extension;

we do not assume that Gal(F/F0) is abelian. The first properties to note are that θ stabilizes O
×
F , and it

stabilizes K0 = GLn(OF ) if and only if J ∈ NG (K0) = F×K0. Define the valuation of θ, denoted valθ, by

valθ = valF
(
θ(̟F )

)
. For the given form of θ, it is easy to see that

valθ = valθ0 +n
∑

σ∈Σ mσ,

and valF
(
detθ(x)

)
= (valθ)

(
valF (det x)

)
for any x ∈ G. If θ has finite order, then we must have valθ = ±1,

and in the case valθ =−1, θ must have even order. The following is immediate from the above formula for

valθ, showing that if θ has finite order, then the possible values for the mσ are not completely arbitrary.

Lemma 1.4.4. Write S =
∑

σ∈Σ mσ.

(1) If valθ = valθ0, then S = 0.

(2) If valθ =−valθ0, then either n= 1 and S = 2valθ, or n= 2 and S = valθ.

Matters of convergence of certain integrals will be affected by the value of valθ, due to the following (see

§3.4).

Lemma 1.4.5. Suppose valθ =±1. The quotient F×/(F×)θ is compact if and only if valθ = 1.

Proof. If valθ = −1, then we must have (F×)θ ⊆ O
×
F , and F×/O×

F is not compact. So suppose valθ = 1.

Then Lemma 1.4.4 implies that in either case of valθ0 =±1, we have F×
0 ⊆ (F×)θ. Therefore, it suffices to

show that F×/F×
0 is compact. However, this is immediate from the property

∣∣̟F0

∣∣
F = |̟F |eF , where e is the

ramification index of F/F0, since this implies F× ⊆ωF×
0 for ω the compact set ∪e

i=0̟
i
FO

×
F .

1.5 Stable representations

In this section, we explore the relationship between a representation π of G and a fixed finite-order auto-

morphism θ ∈Aut(G), in particular in the case where π is induced from a θ-stable subgroup of G. In §1.5.1

and §1.5.2, we take G to be any totally disconnected, locally compact group. In §1.5.3, we take G =GLn(F),

for F a p-adic field, and assume θ is of the form of (1.4.1), with χ of the form of (1.4.2).
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1.5.1 Definitions and basic facts. To begin, suppose G is any abstract group, θ ∈ Aut(G) is of finite

order dθ , and (π,V ) is a (complex) representation of G. If π∼=π◦θ, then π is called θ-stable. In this case, if

there exists an intertwining operator Aπ ∈HomG(π,π◦θ) with the property Adθ
π = 1, then we may extend

π to a representation (π+,V ) of G+ by setting

π+(gθi)=π(g)Ai
π,

(
g ∈G, 0≤ i < dθ

)
.

Note that such an operator Aπ will always exist for any pair (G,π) to which Schur’s Lemma applies.

Now assume that G is a totally disconnected, locally compact group. Let (π,V ) be an admissible, irre-

ducible, θ-stable representation of G, and fix a choice of Aπ with Adθ
π = 1. Then π+ is also admissible

and irreducible. Note that since G is open in G+, the subspaces of elements of V∗ which are smooth with

respect to π∗ and (π+)∗, respectively, coincide.

Proposition 1.5.1. There exist the following relationships between the properties of π and π+.

(1) The extension π+ is unitary if and only if π is unitary.

(2) The extension π+ is supercuspidal if and only if π is supercuspidal and Z(G)/Z(G)θ is compact.

Proof. First suppose π+ is unitary. Then any G+-invariant, positive definite, Hermitian inner product

on V is also G-invariant. On the other hand, if π is unitary, let 〈 ·, · 〉 be a G-invariant, positive definite,

Hermitian inner product on V . For v,w ∈ V , set 〈v, w 〉+ =
∑dθ−1

i=0

〈
Ai

πv, Ai
πw

〉
. It is straightforward to

verify that this defines a G+-invariant, positive definite, Hermitian inner product on V . This proves (1).

Now suppose π+ is supercuspidal. Choose elements v ∈ V , ṽ ∈ Ṽ , and let ϕ = ϕv,ṽ be the corresponding

matrix coefficient of π. Then the pair v, ṽ also determine a matrix coefficient of π+ which is an extension of

ϕ to G+. Denote this extension by ϕ+. Since π+ is supercuspidal, suppϕ+ is compact modulo Z(G+). Let ω

be a compact subset of G+ such that suppϕ+ ⊆ωZ(G+). Then suppϕ⊆
(
ωZ(G+)

)
∩G. Recall that Z(G)θ =

Z(G+)∩G (Lemma 1.1.2(1)). Set g0 = 1, let Λ= {0 ≤ i < dθ | Z(G+)∩G i 6= ; }, and for each i ∈Λ with i 6= 0,

let gi ∈Gθ as in Lemma 1.1.2(2). Note that giθ
i ∈ Z(G+) for each i ∈Λ. Let ∆=⋃

i∈Λ giθ
i
(
ω∩Gdθ−i

)
⊆G.

We may assume that ω was chosen with ω∩G 6= ;, so that ∆ 6= ;. Then

suppϕ⊆
(
ωZ(G+)

)
∩G =

⋃dθ−1
i=0

(
ω∩Gdθ−i)(Z(G+)∩G i)=∆Z(G)θ ⊆∆Z(G).

Since ∆ is compact, it follows that π is supercuspidal. To see that Z(G)/Z(G)θ must be compact, notice

that Z(G) acts on V by (non-zero) scalars, since π is irreducible. Therefore, if v and ṽ are chosen such that

〈 ṽ, v 〉 6= 0, then, as above, Z(G) ⊆ suppϕ⊆∆Z(G)θ .

Finally, assume Z(G)/Z(G)θ is compact and π is supercuspidal. Again, choose elements v ∈ V and ṽ ∈ Ṽ ,

and let ϕ+ be the corresponding matrix coefficient of π+. For 0≤ i < dθ , define

ϕi : G →C, g 7→ϕ+(gθi).

Then each ϕi is the matrix coefficient of π corresponding to the elements Ai
πv ∈V and ṽ ∈ Ṽ , and therefore

has compact support modulo Z(G). For each i, we may choose a compact subset ωi ⊆G such that

supp(ϕ+|G i)= (suppϕi)θi ⊆ωiZ(G)θi .
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Since Z(G)/Z(G)θ is compact, we may also choose a compact subset ∆⊂G such that Z(G) ⊆∆Z(G)θ . There-

fore, suppϕ+ ⊆ ωZ(G+), where ω is the compact set ω =
⋃d−1

i=0 ωi∆θ
i . It follows that π+ is supercuspidal,

completing the proof of (2).

1.5.2 Induced θ-stable representations. Let (σ,W) be a smooth, irreducible representation of an

open, closed, θ-stable subgroup H ⊂ G, and consider the representation (π,V ) of G with π = c-IndG
H σ.

Since H is open, we may embed W in V as follows. For w ∈W , let fw be the element of V defined by

fw(x)=




σ(x)w, x ∈ H,

0, x ∉ H.

Proposition 1.5.2. There exist an injection and surjection, respectively,

Φ : HomH(σ,σ◦θ) ,→HomG(π,π◦θ),

Ψ : HomG(π,π◦θ)�HomH(σ,σ◦θ),

such that Φ preserves invertibility, and Ψ◦Φ= id.

Proof. First, define

(
Φ(A) f

)
(x)= Af (xθ),

(
A ∈HomH(σ,σ◦θ), f ∈V , x ∈G

)
.

This map is clearly linear. Take elements A ∈ HomH(σ,σ◦θ), f ∈ V , and x ∈ G. The function Φ(A) f has

compact support modulo H, since suppΦ(A) f ⊆ θ(supp f ). For h ∈ H, we have

(Φ(A) f )(hx) = Af ((hx)θ)=σ(h)Af (xθ)=σ(h)
(
Φ(A) f

)
(x),

so Φ(A) f transforms properly under left-translation by elements of H. If f is right K-invariant for some

compact, open subgroup K ⊂ G, then Φ(A) f is right θK -invariant. We have now shown that the image of

Φ(A) is contained in V . For any g ∈G, we have

(
Φ(A)π(g) f

)
(x)= Af

((
x θg

)θ)=
(
π(θg)Φ(A) f

)
(x),

hence Φ(A) is an element of HomG(π,π ◦θ). Now suppose Φ(A) = 0. Then Af (xθ) = 0 for all x ∈ G and

f ∈V . Taking x = 1 and f = fw for any w ∈W , we see that Aw = 0 for all w ∈W , and therefore A is the zero

endomorphism of W . This shows that Φ is injective. Finally, suppose A is invertible. Then Φ(A) is also

invertible, with inverse

(
Φ(A)−1 f

)
(x)= A−1 f (θx),

(
f ∈V , x ∈G

)
,

where similar arguments to those above show that Φ(A)−1 ∈HomG (π◦θ,π).

Now define

Ψ(B)w= (Bfw)(1),
(
B ∈HomG (π,π◦θ), w ∈W

)
.

Again, this map is clearly linear. Take elements B ∈HomG(π,π◦θ), w ∈W , and h ∈ H. Then,

Ψ(B)σ(h)w = (Bfσ(h)w)(1)=
(
π(θh)Bfw

)
(1)= (Bfw)(θh)=σ(θh)Ψ(A)w,
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so that Ψ(B)∈HomH(σ,σ◦θ).

For any A ∈HomH (σ,σ◦θ) and w ∈W ,

(Ψ◦Φ)(A)w =
(
Φ(A) fw

)
(1)= Afw(1)= Aw,

so that (Ψ◦Φ)(A) = A. Note that this also shows that Ψ is surjective.

Corollary 1.5.3. If σ is θ-stable, then so is π.

Assume that σ is θ-stable. Fix an intertwining operator Aσ ∈ HomH(σ,σ ◦ θ) and let Aπ = Φ(Aσ) ∈
HomG(π,π ◦θ), where Φ is as in Proposition 1.5.2. Note that if Aσ is normalized so that Adθ

σ = 1, then

also Adθ
π = 1. Using these operators we may define representations π+ and σ+ of G+ and H+, respectively,

as in §1.5.1.

Proposition 1.5.4. The extension π+ is equivalent to c-IndG+

H+ σ
+.

Proof. Let U be the space of τ= c-IndG+

H+ σ
+. Define Aτ : V →U by

(Aτ f )(xθi)= (Ai
π f )(x)= Ai

σ f (xθ
i
),

(
f ∈V , x ∈G, i ∈Z

)
.

Take elements f ∈ V , x ∈G, h ∈ H, and i, j ∈ Z. The function Aτ f has compact support modulo H+, since

supp Aτ f =⋃dθ−1
ℓ=0 θℓ ·supp f . We have

(Aτ f )(hθi · xθ j)= Ai+ j
σ f (hθi+ j

xθ
j
)=σ(h)Ai+ j

σ f (xθ
j
)=σ+(hθi )(Aτ f )(xθ j),

so Aτ f transforms properly under left-translation by elements of H+. If f is right K-invariant for some

compact, open subgroup K of G, then so is Aτ f , and K is a compact, open subgroup of G+. Thus the image

of Aτ is indeed contained in Vτ. For any g ∈G, we have

(Aτπ
+(gθi) f )(xθ j)=

(
Ai+ j

π f
)
(x · θ

j
g)= (Aτ f )(xθ j gθi )= (τ(gθi)Aτ f )(xθ j).

Therefore, Aτ ∈ HomG (π+,τ), and it remains to show that Aτ is invertible. Suppose Aτ f ≡ 0. Then f =
Aτ f |G ≡ 0, and so Aτ is injective. Now let f ′ ∈U and f = f ′|G. Let ω⊂G+ be a compact subset such that

supp f ′ ⊆ωH+, and let ω′ =⋃dθ−1
ℓ=0 (ω∩Gℓ)θ−ℓ. Then ω′ is a compact subset of G, and

supp f = supp f ′∩G ⊆ωH+∩G =ω′H.

Also, since f ′ transforms properly under left-translation by elements of H, so does f . And if f ′ is right

K-invariant for some compact, open subgroup K of G+, then f is right (K∩G)-invariant. Therefore, f ∈V ,

and furthermore,

(Aτ f )(xθi)= Ai
σ f

(
xθ

i)
=σ+(θi) f ′

(
xθ

i )
= f ′(xθi),

since θ ∈ H+. Thus, Aτ is surjective.

1.5.3 Unitary twists. We now take G = GLn(F), for F a p-adic field, and assume θ is of the form of

(1.4.1), with χ of the form of (1.4.2). In this section, we show that for any irreducible, supercuspidal,

θ-stable representation π of G, there exists a twist of π which is unitary and θ-stable.
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Lemma 1.5.5. If π is an irreducible, smooth, θ-stable representation of G, then there exists a θ-fixed quasi-

character ν of G such that π⊗ν has unitary central character.

Proof. Let ωπ be the central character of π. Since π is irreducible and θ-stable, ωπ must be θ-fixed. If

valθ =−1, then (1−θ)(̟F ) ∈̟2
FO

×
F . Then, from the relation ωπ

(
θ(̟F )

)
=ωπ(̟F ), we see that |ωπ(̟F )|2∞ =

1. Therefore, we may take ν ≡ 1. Now suppose valθ = 1. Then, as in §1.4.2, we have valF
(
detθ(x)

)
=

valF (det x) for any x ∈ G. Let s ∈ C such that ωπ(z) = |z|sF ωπ

(
intF (z)

)
for any z ∈ Z. Then if we set ν(x) =

|det x|−s/n
F , the twist π⊗ν has unitary central character, and clearly ν is θ-fixed in the present case.

Corollary 1.5.6. If π is an irreducible, supercuspidal, θ-stable representation of G, then there exists a

quasi-character ν of G such that π⊗ν is irreducible, supercuspidal, θ-stable, and unitary.

Proof. Let ν be as in the lemma. Then π⊗ν is unitary, and since ν is θ-fixed, we have

HomG
(
π⊗ν,(π⊗ν)◦θ

)
=HomG(π,π◦θ).



2. A CHARACTER FORMULA OVER THE RESIDUE FIELD

The θ-stable representations of G =GLn(F), for F a p-adic field, which we will consider will be constructed

from θ-stable, cuspidal representations ofG=GLn(kF ), where θ ∈Aut(G) is induced from the restriction of

θ ∈ Aut(G) to an appropriate θ-stable, maximal parahoric subgroup of G. These cuspidal representations

of G will in turn be constructed using Deligne-Lusztig induction from characters of θ-stable tori of G.

Extending these θ-stable representations to G+ and G+, respectively, the associated characters of G+ will

figure into our character formula at the level of G+. In [14], Digne and Michel develop a Deligne-Lusztig

theory for non-connected, reductive algebraic groups over a finite field. In this section, we use their results

to obtain a character formula over kF which allows us to reduce to Green functions on the set of unitary

elements in the group of fixed points Gθ.

2.1 Definitions and basic facts

Let G be a connected, reductive algebraic group defined over a finite field k = Fq, for q a power of p, and

let θ be a quasi-semisimple automorphism of G which is defined over k and of finite order dθ . Assume

that gcd(dθ , p) = 1. We make the following definitions, as in [14, Definition 1.2]. A Borel subgroup of G+

is one of the form B′ = NG+ (B) for some Borel subgroup B of G. A torus of G+ is a subgroup of the formT′ = NG+ (T,B) for some pair B⊃T in G.

Fix a pair B ⊃ T in G, with T defined over k and θ-stable. Then θB ⊃ T is also a pair in G, and so there

exists a unique wo ∈WG(T) such that woθB=B ([38, 6.4.12]). Fix a choice of representative no ∈G of wo,

and set ϑ = noθ. The automorphism IntLϑ of G+ restricts to a quasi-semisimple automorphism of G, as

it stabilizes the pair B ⊃ T. This automorphism is defined over k if no ∈G(k). Let T′ be the torus of G+

corresponding to the pair B ⊃T. Notice that T′ is not necessarily defined over k; however, if B is defined

over k then clearly T′ is as well.

Proposition 2.1.1.

(1) The element woθ of WG(T)+ has order dθ .

(2)
[T′ : T]

= dθ , with T′∩Gi =Tϑi for 0≤ i < dθ .

(3) If wo ∈WG(T)θ, then θ normalizes T′.

(4) If wo = 1 (that is, if B is θ-stable), then T′ =T+ and T′ is defined over k.

Proof. Let y = (woθ)dθ = Nθ(wo) ∈ WG(T). Since woθ stabilizes B, so does y. Therefore, y must be trivial,

proving (1). Fix an integer 0 ≤ i < dθ . Since ϑ normalizes B, we have that for any x ∈Gi , x ∈ NG+ (B) if

and only if xϑ−i ∈ NG(B) =B. Thus, NG+ (B)∩Gi =Bϑi . But ϑ also normalizes T, so that for any b ∈B,

bϑi ∈ NG+ (T) if and only if b ∈ NB(T). Since G is reductive, NB(T) = T, and (2) follows. If wo ∈ WG(T)θ ,

then there exists t ∈T such that θϑ= tϑ. Since T is θ-stable, we have (tϑ)iϑ−i ∈T, and so

θ(T′∩Gi)=T θ(ϑi)=T(tϑ)i ϑ−i ϑi =Tϑi =T′∩Gi .

25
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This proves (3). Finally, if B is θ-stable, then no lies in T, hence ϑiθ−i does as well. Therefore,T′∩Gi =Tϑiθ−iθi =Tθi =T+∩Gi ,

and we have (4).

2.2 Deligne-Lusztig induction

2.2.1 On the identity component. Let G=G(k). Assume that T=T(k) is non-degenerate in the sense

that T= CG(T)0 (see [8, §3.6]). In this case, WG(T)k is isomorphic to W =WG(T) ([8, 3.6.5]). For λ ∈ Irr(T),

let RGT λ be the corresponding Deligne-Lusztig (virtual) character of G. Let QGT be the Green function

associated to T, defined on the unipotent set in G by QGT (u) = (RGT 1)(u), for unipotent u ∈G.

Proposition 2.2.1. For any λ ∈ Irr(T), we have RGT (
θλ

)
=

(RGT λ
)
◦θ−1.

Proof. Let g ∈G have Jordan decomposition g = su so that gθ has Jordan decomposition gθ = rv, where

r = sθ , v = uθ . Then [8, 7.2.8] gives

(RGT λ)
(
gθ

)
=

∣∣G0
r

∣∣−1 ∑

x∈G
r∈xTQG0

r
xT (v) λ

(
rx).

Since T is θ-stable, we may make the change of variables y = θ(x) in the sum to obtain

(RGT λ)
(
gθ

)
=

∣∣∣
(G0

s

)θ∣∣∣
−1 ∑

y∈G
s∈yTQ (G0

s )
θ

(yT)θ
(v) λ

(
syθ)

=
∣∣G0

s

∣∣−1 ∑

y∈G
s∈yTQG0

s
yT (u) θλ(sy)

=
(RGT (

θλ
))

(g).

Recall that λ ∈ Irr(T) is said to be in general position if its stabilizer in W is trivial. In this case, one of

±RGT λ is an irreducible character of G ([8, 7.3.5]). If RGT λ is θ-stable, then from Proposition 2.2.1 we haveRGT λ=RGT (
θλ

)
. Therefore, there exists a unique element wλ ∈W =WG(T) such that wλ θλ=λ ([8, 7.3.4]).

Proposition 2.2.2. Let λ ∈ Irr(T) be in general position. If RGT λ is θ-stable, then the element wλθ of W+

has order dividing dθ .

Proof. Since wλθ stabilizes λ, so does (wλθ)dθ . However, (wλθ)dθ lies in W , and therefore λ in general

position implies (wλθ)dθ = 1.

Let T ′ be the finite group T′∩G+.

Lemma 2.2.3. Suppose no can be chosen to be an element of G, and λ ∈ Irr(T) is the restriction to T of some

irreducible character of T′. If λ is in general position, then λ is ϑ-stable and RGT λ is θ-stable.

Proof. If no is k-rational then, as in Proposition 2.1.1(2), T ′ is the union of the cosets Tϑi, 0 ≤ i ≤ dθ −1.

Therefore, for any element t ∈ T, t and tϑ are T ′-conjugate, and so λ must be ϑ-stable. Thus, wθλ = λ, for

w the image of no in W . Since λ is in general position, w is the unique element of W with this property.

Therefore, we have wλ = w, and RGT λ is θ-stable.
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2.2.2 Extension to G+. Let λ′ ∈ Irr(T ′). Using [14], we obtain a (virtual) character RG+T ′ λ′ of G+ (see

[14, Definition 2.2 (i)]), which satisfies a reduction formula similar to that for Deligne-Lusztig characters

in the connected case.

Theorem 2.2.4 (Digne-Michel). Let g ∈G+ with Jordan decomposition g = su. If u ∈ (G+)0
s , then

(2.2.1) (RG+T ′ λ′)(g)=
∣∣T ′∣∣−1 ∣∣(G+)0

s

∣∣−1 ∑

x∈G+

s∈xT ′

∣∣(xT ′)0
s

∣∣Q (G+)0s
(xT ′)0s

(u) xλ′(s).

Otherwise, (RG+T ′ λ′)(g)= 0.

Remark. There is a minor typographical error in the formula given in [14, Proposition 2.6 (i)]. The correct

formula should appear similarly as in the connected case (see [15, Proposition 12.2 (i)]).

Proof. This is [14, Proposition 2.6 (i)], combined with the following observations. For any x ∈ G+ such

that s ∈ xT ′, let Ys,x be the Deligne-Lusztig variety corresponding to R (G+)0s
(xT ′)0s

. Then, as in loc. cit., for any

unipotent elements v ∈ (G+)s and w ∈ (xT′)s, defineQ (G+)0s
(xT ′)0s

(v,w)=





tr
(
(v,w)

∣∣H ∗
c (Ys,x)

)
, vw ∈ (G+)0

s ,

0, otherwise.

Since G+/G≃ 〈θ〉 consists of semisimple elements, the unipotent elements of G+ all lie in G ([14, Remark

2.7]). Hence, for any x ∈G+, the only unipotent element in (xT ′)s is the identity, and so the inner sum in

the formula given in [14, Proposition 2.6 (i)] is trivial. Now, if u ∉ (G+)0
s , then for each x ∈G+ such that

s ∈ xT ′, we have Q (G+)0s
(xT ′)0s

(u,1) = 0, and so (RG+T ′ λ′)(g)= 0. On the other hand, if u ∈ (G+)0
s , thenQ (G+)0s

(xT ′)0s
(u,1) =

(R (G+)0s
(xT ′)0s

1
)
(u) =Q (G+)0s

(xT ′)0s
(u) .

We now consider the above formula on specific elements of G+ which will be of interest later. Recall that

no is any representative of the unique element wo ∈ WG(T) such that woθB = B, for B our fixed Borel

subgroup of G. In all of the cases we will consider, we will be able to choose no = 1. Therefore, to simplify

questions of rationality and Jordan decomposition in the current general discussion, it is reasonable to

assume for the remainder of Chapter 2 that we at least may choose no to lie in G. Under this assumption,T′ is defined over k, with T ′ = T′(k) = ⊔
iTϑi. We are particularly interested in the values of RG+T ′ λ′ on

elements of G1 with semisimple part nϑ for some n ∈ NG(T). For any x ∈G+, let (G0
x)unip =G0

x ∩Gunip,

where Gunip is the set of unipotent elements in G.

Corollary 2.2.5. Let n ∈ NG(T) such that nθ ∈G+ is semisimple. For u ∈ (G0
nθ)unip,

(2.2.2) (RG+T ′ λ′)(unθ) =
∣∣T/T0

ϑ

∣∣−1 ∑

x∈X̃T(no,nn−1
o )

xλ′(nθ)
∑

y∈G0
nθ\Gnθ

QG0
nθ

xT0
ϑ

(
uy) .

Remark. See §1.3.1 for the definition of X̃T(no,nn−1
o ).

Proof. Setting m = nn−1
o , we prove the equivalent formula

(2.2.3) (RG+T ′ λ′)(umϑ) =
∣∣T/T0

ϑ

∣∣−1 ∑

x∈Gmϑ\G
x−1mϑx∈T xλ′(mϑ)

∑

y∈G0
mϑ

\Gmϑ

QG0
mϑ

xT0
ϑ

(
uy) ,
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which follows from (2.2.1) and the following. First, clearly (G+)0
mϑ

= G0
mϑ

, and since conjugation in G+

preserves connected components, also (xT ′)0
mϑ

= (xT)0
mϑ

for any x ∈G+. Choose {ϑ j}dθ−1
j=0 as a set of repre-

sentatives for G\G+, and convert the sum in (2.2.1) to a double sum as

(RG+T ′ λ′)(umϑ) =
∣∣T ′∣∣−1 ∣∣G0

mϑ

∣∣−1 ∑

x∈G
mϑ∈x(Tϑ)

∣∣(xT)0
mϑ

∣∣QG0
mϑ

(xT)0mϑ

(u)
dθ−1∑

j=0

xϑ j
λ′(mϑ),

using the fact that ϑ normalizes T. For x ∈G, we have mϑ ∈ x(Tϑ) if and only if x−1mϑx ∈ T. Suppose x

satisfies this condition. Then xB ⊃ xT is an mϑ-stable pair in G. By Theorem 1.3.1, (xT)0
mϑ

is indeed a

maximal torus of G0
mϑ

, and the Green function QG0
mϑ

(xT)0mϑ

is defined. It is easy to check that (xT)mϑ = xTϑ, so

that (xT)0
mϑ

= xT0
ϑ
. The cardinality of this last set is equal to

∣∣T0
ϑ

∣∣. Moreover, λ′ is a class function on T ′, so
xϑ j

λ′(mϑ) = xλ′(mϑ) for each j. Noting that
[T ′ : T]

= dθ , we now have

(RG+T ′ λ′)(umϑ) =
∣∣T/T0

ϑ

∣∣−1 ∣∣G0
mϑ

∣∣−1 ∑

x∈G
x−1mϑx∈TQG0

mϑ
xT0

ϑ

(u) xλ′(mϑ),

Finally, the map x 7→ (mϑ)x is constant on right-cosets of Gmϑ, so

(RG+T ′ λ′)(umϑ) =
∣∣T/T0

ϑ

∣∣−1 ∣∣G0
mϑ

∣∣−1 ∑

x∈Gmϑ\G
x−1mϑx∈T xλ′(mϑ)

∑

y∈Gmϑ

QG0
mϑ

yxT0
ϑ

(u)

=
∣∣T/T0

ϑ

∣∣−1 ∣∣G0
mϑ

∣∣−1 ∑

x∈Gmϑ\G
x−1mϑx∈T xλ′(mϑ)

∑

y∈G0
mϑ

\Gmϑ

∑

y0∈G0
mϑ

QG0
mϑ

y0 yxT0
ϑ

(u)

=
∣∣T/T0

ϑ

∣∣−1 ∑

x∈Gmϑ\G
x−1mϑx∈T xλ′(mϑ)

∑

y∈G0
mϑ

\Gmϑ

QG0
mϑ

yxT0
ϑ

(u) ,

where the last manipulation follows from the fact that Green functions associated to conjugate tori are

equal. Formula (2.2.3) is now obtained by noting that for any y ∈Gmϑ, the associated inner automorphism

of Gmϑ normalizes G0
mϑ, so that QG0

mϑ
yxT0

ϑ

(u) =Q yG0
mϑ

yxT0
ϑ

(y(uy)
)
=QG0

mϑ
xT0

ϑ

(
uy) .

Corollary 2.2.6. Let n be as in Corollary 2.2.5. If there does not exist an
(
IntL(n)◦θ

)
-stable G-conjugate

of the pair B⊃T, then (RG+T ′ λ′)(unθ) = 0 for all unipotent elements u ∈Gnθ.

Proof. If u ∈GnθrG0
nθ, then from Theorem 2.2.4 we have (RG+T ′ λ′)(unθ) = 0, regardless of the existence

or non-existence of such a G-conjugate of B⊃T. On the other hand, if u ∈G0
nθ, then by Lemma 1.3.9, the

outer sum of (2.2.2) is void under the given hypothesis.

Remark. If one is interested in the values of RG+T ′ λ′ on elements uθ, for u a unipotent element of Gθ , then

the only interesting situation is when some G-conjugate of B ⊃ T is θ-stable. If gB ⊃ gT is such a pair,

for some g ∈ G, then (1− θ)(g−1) ≡ n0 mod T. Using this, it is not hard to show that (RG+
g(T ′)

g(λ′))(uθ) =
(RG+T ′ λ′)(uθ). Therefore, one may as well assume that B⊃T is θ-stable, and take no = 1.
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2.2.3 A specific situation. As before, fix λ′ ∈ Irr(T′). We are interested, in particular, in the situa-

tion that ResG+G εRG+T ′ λ′ is the character of an irreducible, θ-stable Deligne-Lusztig representation σ ofG attached to T, for some sign ε = ±1, and εRG+T ′ λ′ is the character of σ+ for some choice of normalized

intertwining operator Aσ ∈Hom(σ,σ◦θ). This will restrict the choice of λ′.

Lemma 2.2.7. ResG+G RG+T ′ =RGT ResT ′T .

Proof. This is [14, Corollary 2.4 (i)], where in the present case T ′G=G+.

Corollary 2.2.8. Let χ′ = εG εTRG+T ′ λ′ and χ= ResG+G χ′. Then both χ and χ′ are irreducible if and only if

the character λ=ResT ′T λ′ of T is irreducible and in general position.

Remark. See [14, Corollary 2.5] for the sign εG εT.

Proof. The reverse implication is immediate from Lemma 2.2.7, so suppose χ and χ′ are both irreducible.

Express λ as a (non-negative) integral combination
∑

ψ∈Irr(T ) cψψ. Using the lemma,

1= 〈ResG+G χ, ResG+G χ〉G
= 〈RGT λ, RGT λ〉G
=

∑

φ,ψ∈Irr(T )
cφcψ〈RGT φ,RGT ψ〉G.

Since 〈RGT φ,RGT ψ〉G =
∣∣{ w ∈WG(T) | wφ=ψ }

∣∣ ([8, Theorem 7.3.4]), the above sum must reduce to a single

term c2
ψ〈RGT ψ, RGT ψ〉G, for some ψ ∈ Irr(T). Conclude that λ=ψ is in general position.

In light of the corollary, we wish to analyze (2.2.2) under the assumption that our fixed character λ′ ∈
Irr(T ′) is the extension of some λ ∈ Irr(T) in general position. In particular, λ′ is then 1-dimensional, hence

multiplicative. Also, combining this assumption with Lemma 2.2.3 implies that λ is ϑ-stable and RGT λ is

θ-stable. So it is possible to simplify (2.2.2), in the case that n = no, under a mild condition on (1−ϑ)|T.

By Proposition 2.1.1(1), the automorphism t 7→ ϑt of T has finite order dθ , so we may consider the ϑ-norm

homomorphism Nϑ : T→T.

Theorem 2.2.9. Suppose ResT ′T λ′ is irreducible and in general position, and let u ∈ (G0
ϑ
)unip. If (1−ϑ) : T→

kerNϑ is surjective, then the natural mapTϑ\T→ X̃T(no,1) =Gϑ\XT(no,1)

is a bijection, and

(RG+T ′ λ′)(uϑ) =λ′(ϑ)
∣∣Tϑ/T0

ϑ

∣∣−1 ∑

y∈G0
ϑ

\Gϑ

QG0
ϑ

yT0
ϑ

(u) .(2.2.4)

If, in addition, Gϑ is connected, then

(RG+T ′ λ′)(uϑ) =λ′(ϑ)QGϑTϑ
(u) .(2.2.5)
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Proof. Since T is ϑ-stable, it is contained in XT(no,1). Given t ∈T, the cosets Tϑt⊆ T and Gϑt⊆G are both

uniquely determined by the element t−1(ϑt). Therefore, the map Tϑ\T→ X̃T(no,1) induced by inclusionT ,→XT(no,1) is both well-defined and injective. For x ∈G, the coset Gϑx is uniquely determined by the

element x′ = x−1(ϑx). If x ∈XT(no,1), then x′ ∈ T, and in fact x′ ∈ kerNϑ. If we assume (1−ϑ)(T)= kerNϑ,

then there exists t ∈ T such that x′ = t−1(ϑt), so that Gϑx =Gϑt. Thus Gϑx is the image of Tϑt under the

given map, showing surjectivity.

Using this bijection in formula (2.2.2), in the case n= no, gives

(RG+T ′ λ′)(uϑ) =λ′(ϑ)
∣∣T/T0

ϑ

∣∣−1 ∑

t∈Tϑ\Tλ(t−1 ϑt)
∑

y∈G0
ϑ

\Gϑ

QG0
ϑ

ytT0
ϑ

(u) .

But obviously ytT0
ϑ
= yT0

ϑ
for any t ∈ T. Also, since λ is ϑ-stable, it is trivial on (1−ϑ)(T). Formula (2.2.4)

now follows, and (2.2.5) is immediate if we also assume that Gϑ is connected.
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In an appendix of [7], Bushnell and Henniart provide a detailed survey of the development of an explicit

character formula for supercuspidal representations of GLn(F)o 〈θ〉, in the case where θ is a generator of

the Galois group of a finite, cyclic field extension F/F0. In this section, we follow this development very

closely to obtain a character formula in the case of a more general automorphism θ. The main difference

here is the need to work around an issue with convergence to be able to handle certain classical cases (see

§3.4), as the representations of GLn(F)o〈θ〉 we consider will not always be supercuspidal (see Proposition

1.5.1(2)).

3.1 Preliminary hypotheses

Let F be a p-adic field, and let G = GLn(F). Let F0 ⊃Qp be a (not necessarily proper) subfield of F such

that F/F0 is a finite, abelian extension. Fix θ ∈ Aut(G) of finite order dθ . It is necessary to make several

assumptions on θ. We first restrict to the form of θ to which all of the cases we consider conform.

Hypothesis H1. The automorphism θ ∈ Aut(G) is of the form of (1.4.1), with χ trivial. We allow the

possibilities that J = 1 and/or F0 = F.

Remark. There should be little difficulty in extending the results of this thesis to the cases where θ is

of the form of (1.4.1), but with χ non-trivial and of the form of (1.4.2). Two possible issues might be

determining when such an automorphism has finite order, and finding a suitable replacement for b, the

AdG+-invariant, non-degenerate, symmetric, bilinear form on g= Lie(G) to be introduced in §3.2.

Since χ is trivial, we may as well take F0 to be the fixed field of τ, so that Gal(F/F0) is cyclic and generated

by τ. The two possibilities of θ0 are now distinguished by valθ. For all g ∈G, we have

detθ(g) = τ(det g)valθ,

det
(
(1−θ)(g)

)
= (det g) τ(det g)−valθ .

Write Z = Z(G). As usual, we identify Z with F×. Based on the assumption that θ has finite order, we

have the following. First, [F : F0] must divide dθ . For valθ = 1, we must have Nτ(J−1)dθ /[F : F0] ∈ Z. For

valθ =−1, dθ must be even, and Nτ◦θ0 (J−1)dθ / lcm(2,[F : F0]) ∈ Z.

Fix a kF0 -basis B̄F/F0 for kF , and let B̂F/F0 be any lift of B̄F/F0 into OF . Then BF/F0 = ⋃e−1
i=0 ̟i

F B̂F/F0

is an OF0 -basis for OF , hence an F0-basis for F, where e is the ramification index of F/F0. Also, as

in §1.4.1, lift τ to an element of Gal(F̄/F0), and take {id,τ, . . . ,τ[F : F0]−1} as a set of representatives of

Σ = Gal(F̄/F0)/Gal(F̄/F). Let G = RF/F0 GLn, constructed using Σ and the single basis BF/F0 (see §1.2).

Then G is a connected, reductive algebraic group defined over F0 such that G(F0) ≃ G. We identify G

with G(F0) via the isomorphism afforded by BF/F0 . By Lemma 1.4.2(2), θ is the restriction to G of some

F0-automorphism of G, which we will also denote by θ. From the proof of loc. cit., we may take this

θ ∈AutF0 (G) to have finite order dθ . Recall that θ is then semisimple. Let g=RF/F0 Mn be the Lie algebra

of G, and identify g(F0) with g = Mn(F). Let dθ : g→ g be the differential of θ. The action of dθ on g is

31
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easy to compute in either case. For X ∈ g, we have

dθ(X ) =





J−1 τ(X ) J, valθ = 1,

−J−1 τ(tX ) J, valθ =−1.

Note that dθ is an F0-linear operator on g, but not an F-linear operator if τ is non-trivial.

We continue with a restriction on the order dθ of θ.

Hypothesis H2. The residual characteristic p does not divide dθ .

We make the following hypothesis to significantly reduce notational complexity, and because it is satisfied

in all the cases we will consider.

Hypothesis H3. The subgroup Gθ of θ-fixed points of G is connected.

Remark. One obvious example where Gθ fails to be connected is when Gθ is an orthogonal group.

Let K0 = GLn(OF ). In the cases we will consider, we will choose θ so that K0 is θ-stable. For now, it is

enough to assume the following.

Hypothesis H4. There exists a G-conjugate L0 of K0 such that L+
0 is compact.

Remark. This holds if there exists a θ-stable G-conjugate of K0.

We fix now an irreducible, admissible, θ-stable representation (π,Vπ) of G. By Schur’s Lemma, there exists

an intertwining operator Aπ ∈ HomG(π,π◦θ) with Adθ
π = 1. As in §1.5.1, use Aπ to construct the extended

representation (π+,Vπ) of G+. The remainder of Chapter 3 will be concerned with the analysis of Θπ+ .

3.2 Harish-Chandra’s submersion principle

In this section, we verify the analogues of two results of [22] in the present setting. Let b be the AdG-

invariant, non-degenerate, symmetric, F0-bilinear form on g given byb(X ,Y ) = TrF/F0 tr(XY ),
(
X ,Y ∈ g).(3.2.1)

It is easy to check that b is dθ-invariant in both cases of valθ = ±1, under Hypothesis H1, and so is

AdG+-invariant. Let P be a parabolic subgroup of G.

Theorem 3.2.1. For g in G+
qr, the map

φg : G+×P →G+, (x, p) 7→ (xg)p

is submersive.

Proof. Here we follow the proof of [7, Theorem (A.4)]. Observe that

φg(xy, pq) =φyg(x, p)q,
(
x, y ∈G+, p, q ∈ P

)
,

so it suffices to verify that φg is submersive at (x, p)= (1,1).
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The map φg is the composition of the following three maps,

G+×P →G+×P, G+×P →G+×P, G+×P →G+,

(x, p) 7→ (xgx−1 g−1, p), (x, p) 7→ (xg, p), (x, p) 7→ xp,

with respective differentials

T1G+⊕T1P →T1G+⊕T1P, T1G+⊕T1P →TgG+⊕T1P, TgG+⊕T1P →TgG+,

(X ,Y ) 7→ ((1−Ad g)X ,Y ), (X ,Y ) 7→ (X g,Y ), (X ,Y ) 7→ X + gY .

Thus,
(
d(1,1)φg

)
(X ,Y ) = X g− gX + gY = g(Ad g−1 ·X − X +Y ).

So d(1,1)φg is surjective if and only if (Ad g−1 −1)g+p= g, where p= Lie(P). The orthogonal complement

of p with respect to b is u = Lie(U), where U is the unipotent radical of P. On the other hand, a sim-

ple calculation using the AdG+-invariance of b gives that the orthogonal complement of (Ad g−1 −1)g is

ker(Ad g−1). But since g ∈ G+
qr, we have ker(Ad g−1)∩u = {0}. Taking orthogonal complements of both

sides now yields the result.

Choose a Haar measure dx on G+ and a left Haar measure dl x on P.

Theorem 3.2.2 (Harish-Chandra [21, Theorem 11]). Fix g in G+
qr. There exists an embedding

C∞
c

(
G+×P

)
,→ C∞

c
(
G+)

, α 7→ fα,g,

such that
∫

G+×P
α(x, p)Φ

(
φg(x, p)

)
dx dl p =

∫

G+
fα,g(x)Φ(x)dx,

(
Φ ∈C∞

c

(
G+))

.

Lemma 3.2.3. For fixed α ∈C∞
c

(
G+×P

)
, the mapping

G+
qr → C∞

c

(
G+)

, g 7→ fα,g,

is locally constant.

Proof. We use the method of proof of [22, Lemma 1]. It follows from Theorem 3.2.1 that the map

G+
qr ×G+×P →G+

qr ×G+, (g,x, p) 7→ (g,φg(x, p)),

is submersive. Thus we have a mapping

C∞
c

(
G+

qr ×G+×P
)
→C∞

c

(
G+

qr ×G+
)
, β 7→ψβ,

such that ∫

G+
qr

∫

G+

∫

P
β(g,x, p) Φ(g,φg(x, p))dl pdx d g =

∫

G+
qr

∫

G+
ψβ(g,x) Φ(g,x)dx d g,

for any Φ ∈C∞
c

(
G+

qr ×G+
)
. Now, C∞

c

(
G+

qr ×G+
)
= C∞

c

(
G+

qr

)
⊗C∞

c

(
G+)

, so we may write Φ=λ⊗ρ for some

λ ∈C∞
c

(
G+

qr

)
, ρ ∈ C∞

c

(
G+)

. Thus,

∫

G+
qr

λ(g)
∫

G+

∫

P
β(g,x, p) ρ(φg(x, p))dl pdx d g =

∫

G+
qr

λ(g)
∫

G+
ψβ(g,x) ρ(x)dx d g.
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Since this is true for any λ, conclude that
∫

G+

∫

P
β(g,x, p) ρ(φg(x, p))dl pdx =

∫

G+
ψβ(g,x) ρ(x)dx,

(
g ∈G+

qr, ρ ∈C∞
c

(
G+))

.

Fix g0 ∈ G+
qr. We also have C∞

c

(
G+

qr ×G+×P
)
= C∞

c

(
G+

qr

)
⊗C∞

c

(
G+×P

)
, so take β to be µ⊗α for some

µ ∈ C∞
c

(
G+

qr

)
with µ(g0)= 1. Since µ is locally constant, there exists a neighbourhood ωo of g0 in G+

qr such

that µ≡ 1 on ωo. Hence β(g,x, p) =α(x, p) for g ∈ωo, x ∈G+, and p ∈ P, and therefore,

∫

G+
ψβ(g,x) ρ(x)dx =

∫

G+

∫

P
β(g,x, p) ρ(φg(x, p))dl pdx

=
∫

G+

∫

P
α(x, p) ρ(φg(x, p))dl pdx =

∫

G+
fα,g(x) ρ(x)dx.

Since this is true for all ρ ∈ C∞
c

(
G+)

and g ∈ωo, we conclude that fα,g(x)=ψβ(g,x) for g ∈ωo, x ∈G+. The

result now follows.

3.3 A representative for Θπ+

Following [7], for each g ∈G+
qr we construct an operator on Vπ whose trace is equal to Θπ+ (g).

Let End0(Vπ)⊂EndC(Vπ) be the space of linear maps T : Vπ →Vπ such that the maps G+ →EndC(Vπ) given

by g 7→ π+(g)T, g 7→ Tπ+(g) are both locally constant. For each integer m ≥ 1, let Km = 1+Mn(P m
F ). For

any G-conjugate L0 of K0 as in H4 and open subgroup K ⊂ L+
0 , define

Υ
L0
K : G+

qr →EndC(Vπ), g 7→
∫

K
π+(kg)dk,

where dk is normalized Haar measure on K . For the remainder of this section, fix a choice of L0 and

K ⊂ L+
0 as above, and to simplify notation write Υ = Υ

L0
K . Note that L+

0 is open. We have a Cartan

decomposition of both G and G+ associated to L0 as follows. Let D be the maximal torus of diagonal

matrices in G, and set

A =
{

ae = diag(̟e1
F ,̟e2

F , . . . ,̟en
F )

∣∣ e = (e1, ..., en ) ∈Zn, e1 ≤ e2 ≤ ·· · ≤ en
}
⊂ D.

Let g0 be an element of G such that L0 = g0K0. Then, from the usual Cartan decomposition G = K0 AK0,

we immediately get G = L0 A′L0 and G+ = L0 A′L+
0 , where A′ = g0A. Let B ⊃ D be the standard Borel

subgroup of G consisting of invertible, upper-triangular matrices, and take P = g0B.

Theorem 3.3.1. The map Υ is locally constant with image in End0(Vπ).

Proof. For the most part, we follow the proof of [7, Theorem (A.8)] quite closely. The group K contains an

open subgroup K ′, necessarily of finite index, which is normal in L+
0 . We obtain normalized Haar measure

on K ′ by taking dk restricted to K and renormalizing. Then,

Υ(g) =
[
K : K ′]−1 ∑

k∈K /K ′
π+(k)ΥL0

K ′ (g)π+(k)−1,
(
g ∈G+

qr
)
.

Therefore, without loss of generality, we may assume that K itself is normal in L+
0 . Let C1,C2, . . . ,Cr be

the distinct cosets of K in L+
0 , with K = C1. For 1≤ j ≤ r, define Υ j : G+

qr →C by

Υ j(g)=
∫

C j

π+(k+
g)dk+,

(
g ∈G+

qr
)
,
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where dk+ is the extension of dk to L+
0 . Then for g ∈G+

qr and l ∈ L+
0 ,

π+(l)Υ j(g)=
∫

C j

π+(lk+g(k+)−1)dk+ =
∫

lC j

π+(k′g(k′)−1l)dk′ ,

using the change of variables k′ = lk+. Choosing j = j(l) such that lC j = K , we have

π+(l)Υ j(g)=Υ(g)π+(l).

Since π+ is irreducible, Vπ = G+ · v0 for some v0 ∈ Vπ. Fix an open, normal subgroup L of L+
0 such that

v0 ∈V L
π . Then Vπ is generated as a G+-module by V L

π , which is finite-dimensional by admissibility of π+.

We may choose an integer m ≥ 1 such that L contains the open subgroup g0Km. Let Bm = B∩Km and

Pm = g0Bm. Then Pm is a compact, open subgroup of P such that (Pm)a ⊂ g0Km ⊂ L for any a ∈ A′. For

1≤ j ≤ r, let α j ∈ C∞
c

(
G+×P

)
be the characteristic function of C j ×Pm. By Theorem 3.2.2, for any g ∈G+

qr

there exists a unique function fα j ,g ∈C∞
c

(
G+)

such that

∫

C j×Pm

Φ(kgk−1 p)dk dl p =
∫

G+
fα j ,g(x)Φ(x)dx,

(
Φ ∈C∞

c

(
G+))

,

for 1 ≤ j ≤ r. Since π+ is smooth, we may apply this formula to the coefficients of π+ (see the Corollary of

[21, Part V, §2]). Therefore, for g ∈G+
qr, v ∈Vπ, and ṽ ∈ Ṽπ, we have

〈
ṽ, π+( fα j ,g) v

〉
=

∫

G+
fα j ,g(x)

〈
ṽ, π+(x)v

〉
dx

=
∫

C j×Pm

〈
ṽ, π+(kgk−1 p)v

〉
dk dl p=

〈
ṽ,

∫

Pm

Υ j(g) π(p)dl p v
〉

.

Since this is true for all v and ṽ, conclude that

π+( fα j ,g)=
∫

Pm

Υ j(g)π(p)dl p,
(
g ∈G+

qr
)
.

Fix x0 ∈G+
qr. By Lemma 3.2.3, there exist a neighbourhood ω of x0 in G+

qr and an open, normal subgroup

K̃ of L+
0 , contained in K , such that fα j ,g is K̃-bi-invariant for each 1 ≤ j ≤ r and g ∈ω. Consider elements

l ∈ L0, a ∈ A′, and v ∈V L
π . From above, we have

Υ(g)π(la)v =π(l)Υ j(g)π(a)v,
(
g ∈ω, j = j(l)

)
.

We also have

π+( fα j ,g)π(a) v =
∫

Pm

Υ j(g)π(p)π(a)v dl p=Υ j(g)π(a)
∫

Pm

π(pa)v dl p= c j(a)Υ j(g)π(a)v,

for some c j(a)> 0, since pa ∈ L for all p ∈ Pm. Thus,

Υ(g)π(la)v =π(l)Υ j(g)π(a)v = c j(a)−1π(l)π+( fα j ,g)π(a)v.

Let eK̃ =meas(K̃)−1 chK̃ . Then,

π+(eK̃ )Υ(g)π(la)v = c j(a)−1π+(eK̃ )π(l)π+( fα j ,g)π(a)v

= c j(a)−1π(l)π+(eK̃ ∗ fα j ,g)π(a)v,
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where π+(eK̃ ) and π(l) commute since K̃ is normal in L+
0 . Furthermore, since fα j ,g is K̃-bi-invariant for

g ∈ω, we have eK̃ ∗ fα j ,g = fα j ,g , and so

π+(eK̃ )Υ(g)π(la)v = c j(a)−1π(l)π+( fα j ,g)π(a)v =Υ(g)π(la)v.

Therefore, π+(eK̃ )Υ(g) acts as Υ(g) on L0 A′ ·V L
π . Recall that Vπ =G+ ·V L

π = (L0 A′L+
0 ) ·V L

π . However, since

L is normal in L+
0 , V L

π is L+
0 -invariant, and so Vπ = (L0 A′) ·V L

π . Hence π+(eK̃ )Υ(g) =Υ(g) on all of Vπ, for

any g ∈ω.

From the definition of Υ(g), it is clear that since K̃ ⊂ K , π+(k) commutes with Υ(g) for any k ∈ K̃ . It follows

that π+(eK̃ ) commutes with ΥK (g) as well. Thus,

Υ(g) =π+(eK̃ )Υ(g)=Υ(g) π+(eK̃ ),

and so since K̃ is normal in K , one may calculate that Υ(kgk′) = Υ(g) for k,k′ ∈ K̃ and g ∈ ω. Hence

g 7→Υ(g) is a locally constant mapping of G+
qr into EndC(Vπ).

To see that the maps

x 7→ π+(x)ΥK (g), x 7→ΥK (g)π+(x),
(
x ∈G+)

.

are locally constant, consider that for k ∈ K̃ , we have

π+(xk)Υ(g) =π+(xk)π+(eK̃ )Υ(g) =π+(x)π+(eK̃ )Υ(g) =π+(x)Υ(g),

and similarly Υ(g)π+(kx) =Υ(g)π+(x) using Υ(g) =Υ(g) π+(eK̃ ). Thus, we have shown Υ(g) ∈End0(Vπ).

Notice that for g ∈G+
qr, the existence of a compact, open subgroup K̃ ⊂G+ such that

Υ(g) =π+ (
eK̃

)
Υ(g)

implies that the image of Υ(g) lies in the space V K̃
π , which is finite-dimensional by admissibility of π+.

Therefore, each Υ(g) has finite rank.

Corollary 3.3.2. The character of π+ is represented on G+
qr by

Θπ+ : G+
qr →C, g 7→ tr

(
Υ(g)

)
.

In other words, for f ∈C∞
c

(
G+

qr

)
, we have Θπ+ ( f )= tr(π+( f ))=

∫
G+ f (g)Θπ+ (g)d g.

Proof. For f ∈ C∞
c

(
G+)

, set f 0(x) =
∫

K f (xk)dk, x ∈ G+. Then supp f 0 ⊂ K (supp f )K , so f 0 has compact

support. Also, if f is left-invariant under some open, normal subgroup of K , then f 0 has the same property.

Thus, f 0 ∈ C∞
c

(
G+)

. Moreover, tr(π+( f 0))= tr(π+( f )).

Now, suppose f ∈ C∞
c

(
G+

qr

)
, and let x ∈G+ such that f 0(x) 6= 0. Then there exists k ∈ K such that f (xk) 6= 0,

so xk ∈G+
qr. Therefore, x ∈G+

qr, and so f 0 ∈C∞
c

(
G+

qr

)
. Since x 7→Υ(x) is locally constant, the map

G+
qr →C, x 7→ f (x)tr

(
Υ(x)

)
,
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lies in C∞
c

(
G+

qr

)
. Therefore,

∫

G+
f (x)tr

(
Υ(x)

)
dx = tr

(∫

G+
f (x)Υ(x)dx

)
= tr

(∫

G+

∫

K
f (x)π+(kx)dk dx

)

= tr
(∫

G+×K
f (xk)π+(x)dk dx

)
= tr

(∫

G+
f 0(x)π+(x)dx

)

= tr(π+( f 0))= tr(π+( f )).

Corollary 3.3.3. For Υ=Υ
L0
K , the map

G+
qr →C, g 7→ tr

(
Υ(g)

)

is independent of the choice of conjugate L0 of K0 and open subgroup K of L+
0 .

3.4 Restriction to an appropriate subgroup to ensure convergence

We now assume that π is also supercuspidal. We have the familiar Harish-Chandra character formula

([21])

Θπ(g)=
d(π)

ϕ(1)

∫

Z′\G

∫

K
ϕ

(xkg
)
dk dẋ,

(
g ∈Greg

)
,

for Z′ any closed subgroup of Z(G) such that Z(G)/Z′ is compact, K any compact, open subgroup of G with

normalized Haar measure dk, and ϕ any sum of matrix coefficients of π with ϕ(1) 6= 0. However, this does

not generalize to G+, as in some cases the centre Z(G+) is too small and the integral
∫

Z′\G+
∫

K ϕ
(

xkg
)
dk dẋ

(for appropriate Z′ ⊂ Z(G+), K , dk, and sum of matrix coefficients ϕ of π+) may not converge for certain

quasi-regular g ∈ G+. Proposition 1.5.1(2) and Lemma 1.4.5 suggest that we should not have such a

problem when valθ = 1. However, we are also interested in cases with valθ = −1, even though π+ will

not be supercuspidal. To demonstrate that what follows is necessary, a detailed example of this failure to

converge for a specific case with valθ =−1 is provided in the appendix. We will work around this problem

by restricting π to an appropriate θ-stable subgroup H ⊂G such that Z(H)/Z(H)θ is compact and πo =π|H
has finite length. For g ∈ H+

qr, we will then arrive at an integral formula for Θπ+ (g) by summing the trace

of the operator Υ
L0
K (g) restricted to each irreducible component of π+

o = π+|H+, for appropriate L0 and K

as in the previous section.

Set

H =





G, valθ = 1,
{

g ∈G | det g ∈O
×
F

}
, valθ =−1,

and let Z0 = Z(H)∩G0
θ
⊆ Zθ . Then H is an open, closed, normal, θ-stable subgroup of G such that

(i) πo is supercuspidal,

(ii) Z(H)/Z0 is compact,

(iii) Gθ ⊆ Hθ ,

(iv) G/ZH is finite and cyclic, and
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(v) H contains every G-conjugate of K0.

It will be necessary to determine how π+
o decomposes. Clifford theory tells us that πo should decompose

with multiplicity one.

Lemma 3.4.1 ([3, Lemma 2.1]). If A is a normal subgroup of a group B such that B/Z(B)A is finite and

cyclic, then any irreducible representation of B decomposes with multiplicity one when restricted to A.

Corollary 3.4.2.

(1) As an H-space, Vπ decomposes into a direct sum Vπ = U1 ⊕·· ·⊕UM of irreducible, inequivalent sub-

spaces. The length M of the decomposition is equal to the number of one-dimensional (continuous)

characters of G in the collection

XZH (π)=
{
ν ∈ Ĝ

∣∣ ν|ZH ≡ 1 and π⊗ν∼=π
}

.

(2) As an H+-space, Vπ decomposes with multiplicity one.

Proof. Statement (1) is a direct consequence of Lemma 3.4.1 and [16, Lemma 2.1]. The subgroup ZH+ is

normal in G+, and by Lemma 1.1.2 and the fact that Gθ ⊆ Hθ , we have Z(G+)ZH+ = ZH+. Since π+ is

irreducible and G+/Z(G+)ZH+ =G+/ZH+ ≃G/ZH, (2) also follows from Lemma 3.4.1.

We may use the above decomposition of πo to obtain the decomposition of π+
o . For 1 ≤ i ≤ M, write U+

i =
∑dθ−1

j=0 A j
πUi.

Lemma 3.4.3. Let W be a non-zero subspace of Vπ. Then W is H+-irreducible if and only if W = U+
i for

some integer 1≤ i ≤ M.

Proof. First, suppose W ⊆ Vπ is a non-zero H+-irreducible subspace. Since the quotient H+/Z(H+)H has

order at most 2, we may apply Lemma 3.4.1 to see that W decomposes with multiplicity one as an H-space.

Let W ′ ⊆W be a non-zero H-irreducible subspace of W . Since πo decomposes with multiplicity one, W ′ =Ui

for some i. Then W also contains, hence is equal to, the non-trivial H+-invariant subspace U+
i .

Now fix 1≤ i ≤ M. Let Vπ =W1⊕·· ·⊕WM′ be the decomposition of π+
o afforded by Corollary 3.4.2(2). Using

Lemma 3.4.1 to decompose each summand Wj with multiplicity one into H-irreducible spaces, we see that

we must have Ui ⊆Wj for some 1 ≤ j ≤ M′. As before, H+-irreducibility of Wj implies U+
i =Wj .

The lemma shows that to obtain the decomposition of π+
o , we need only group together those summands

in the decomposition of πo that lie in the same Aπ-orbit.

Proposition 3.4.4. After reordering the Ui, if necessary, there exists an integer 1 ≤ M′ ≤ M such that Vπ

decomposes as an H+-space into a direct sum Vπ =U+
1 ⊕·· ·⊕U+

M′ of irreducible, inequivalent subspaces.

Finally, we obtain a little more information about the summands in the above decomposition of π+
o , by

examining how the intertwining operator Aπ interacts with decomposition of πo.

Lemma 3.4.5.

(1) The operator Aπ permutes the summands in the decomposition in Corollary 3.4.2(1).
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(2) For each integer 1 ≤ i ≤ M, let mi be the smallest positive integer such that Ami
π Ui = Ui. Then mi

divides dθ , and U+
i is equal to the direct sum

⊕mi−1
j=0 A j

πUi .

Proof. Fix an integer 1 ≤ i ≤ M. Since H is θ-stable, AπUi is H-irreducible. Statement (1) is then imme-

diate from the fact that πo decomposes with multiplicity one. Now consider (2). Since Adθ
π Ui = Ui , such

a smallest positive integer mi exists and must satisfy mi ≤ dθ . Then we also have Adθ−ℓmi
π Ui = Ui, for

any ℓ ∈ Z. If mi does not divide dθ , then there exists ℓ ∈Z with 0 < dθ −ℓmi < mi , which contradicts the

minimality of mi . The equality U+
i =

∑mi−1
j=0 A j

πUi is obvious from the definition of mi . By (1), the only way

that this sum could fail to be direct is if there is a repeated summand. That is, there exist 0≤ j < k ≤ mi−1

such that Ak
πUi = A j

πUi. But this again contradicts the minimality of mi .

The preceding lemma gives us a convenient way to order the constituents in the decomposition of Propo-

sition 3.4.4. For the rest of Chapter 3, assume that m1 ≤ m2 ≤ ·· · ≤ mM′ .

3.5 An integral formula

As in §3.3, choose a G-conjugate L0 of K0 such that L+
0 is compact, and an open subgroup K ⊆ L+

0 . In this

section, we develop an integral formula for the character of π+ on elements of H+
qr by examining the trace

of the operator Υ=Υ
L0
K on each constituent in the decomposition of Proposition 3.4.4. First, we show that

in most cases, there is no contribution from constituents whose H-decomposition has length greater than

one.

Lemma 3.5.1. Fix integers 1 ≤ ℓ≤ M and 1 ≤ i < dθ such that mℓ is greater than 1 and does not divide i.

Let h ∈ H such that h+ = hθi ∈ H i
qr. Then tr

(
Υ(h+)|U+

ℓ

)
= 0.

Proof. The condition mℓ > 1 says that U+
ℓ
6= Uℓ. By the proof of Theorem 3.3.1, there exists an open,

normal subgroup K̃ ⊂ K ⊂ L+
0 such that

Υ(h+)=Υ(h+)π+ (
eK̃

)
=π+ (

eK̃

)
Υ(h+).

Let L = K̃ ∩L0. Then L is a compact, open subgroup of H+ contained in L0, with dim(U+
ℓ

)L <∞, and

Υ(h+)U+
ℓ ⊆ (U+

ℓ )K̃ ⊆ (U+
ℓ )L.

By the H-invariance of the summands in the definition of U+
ℓ

, we have

(U+
ℓ )L =

⊕mℓ−1
j=0

(
A j

πUℓ

)L
.

Now,

Υ(h+)=
∫

K
π+(kh+)

dk =
∫

K
π+(

θi (kh)θ
i

k−1)
dk = Ai

π

∫

K
π
(
(kh)θ

i
k−1)

dk,

where (kh)θ
i

k−1 ∈ H for any k ∈ K . Therefore, for each j, Υ(h+)
(
A j

πUℓ

)
⊂ Ai+ j

π Uℓ. The result now follows

from the fact that since mℓ - i, we have Ai+ j
π Uℓ 6= A j

πUℓ, and so the projection of Υ(h+) (A j
πUℓ)L onto

(A j
πUℓ)L is trivial.

Corollary 3.5.2. If h ∈ H such that hθ ∈ H i
qr, then tr

(
Υ(hθ)|U+

ℓ

)
= 0 for any 1 ≤ ℓ≤ M with mℓ > 1.
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Fix 1 ≤ j ≤ M, and let π+
j = π+

o |U+
j . Recall that we have assumed that π is supercuspidal. The following

compactness lemma will ensure that the pieces of our integral formula will all converge.

Lemma 3.5.3. Assume that π is unitary. Then π+ is also unitary, so let 〈 ·, · 〉 be a G+-invariant Hermitian

inner product on Vπ. Let ϕ be a matrix coefficient of π+
j of the form

ϕ(x)= 〈π+
j (x)u, v 〉,

(
x ∈ H+)

,

for some u,v ∈ U+
j . Suppose C is a compact subset of H+

qr. Then, there exists a subset ∆ ⊂ H+ which is

compact modulo Z0 and satisfies the following. For g ∈ C and x ∈ H+,

∫

K
ϕ(xkg)dk = 0,

unless x ∈∆.

Proof. Consider C as a compact subset of G+
qr. From the proof of Theorem 3.3.1, for any g ∈ C there exist

a neighbourhood ω(g) ⊂ G+
qr of g and a compact, open subgroup K̃(g) of G+ such that Υ(x) = π(eK̃(g))Υ(x),

for all x ∈ ω(g). Since C is compact, there exists a finite collection {gi} ⊂ C such that C ⊆ ⋃
i ω(gi). Set

K̃ =
(⋂

i K̃(gi)
)
∩H+. Then K̃ is a compact, open subgroup of H+. For x ∈C ⊂ H+, U+

j is Υ(x)-invariant. Let

x ∈ C. Following through the details of the proof of Theorem 3.3.1, and noting that π+ (
eK̃

)
|U+

j = π+
j

(
eK̃

)
,

we see that Υ(x)|U+
j = π+

j

(
eK̃

)
Υ(x)|U+

j . Therefore, the image of Υ(x)|U+
j lies in (U+

j )K̃ , which has finite

dimension by admissibility of π+. Let {v1, . . . ,vr} be an orthonormal basis of (U+
j )K̃ . Then,

Υ(x)w=
∑

ℓ,m 〈Υ(x)vℓ, vm 〉〈w, vℓ 〉vm,
(
w ∈U+

j

)
.

Thus, for g ∈C,

∫

K
ϕ(xkg)dk =

∫

K

〈
π+

j (kg)π+
j (x−1)u, π+

j (x−1)v
〉

dk =
〈
Υ(g)π+

j (x−1)u, π+
j (x−1)v

〉

=
∑

ℓ,m 〈Υ(g)vℓ, vm 〉〈π+
j (x−1)u, vℓ 〉〈vm, π+

j (x−1)v 〉

=
∑

ℓ,m 〈Υ(g)vℓ, vm 〉〈π+
j (x)vℓ, u〉〈π+

j (x)vm, v 〉.

Now, for 1≤ m ≤ r, the function

ψm : H+ →C, x 7→ 〈π+
j (x)vm, v 〉,

restricted to the component Hθi , can be considered a matrix coefficient of πo. Since πo is supercuspidal,

there exists a collection of compact sets {ωm,i}
dθ−1
i=0 , with each ωm,i ⊂ H, such that suppψm ⊆⋃

i ωm,iZ(H)θi .

But Z(H)/Z0 is compact, so there exists a compact subset ∆o ⊂ H such that Z(H) ⊂∆oZ0, and

suppψm ⊆
⋃

i ωm,i(∆oZ0)θi =
(⋃

i ωm,i∆oθ
i
)

Z0.

Therefore,
∫

K ϕ(xkg)dk = 0 unless

x ∈
⋃

m suppψm ⊆
(⋃

m,i ωm,i∆oθ
i
)
Z0,

so take ∆ to be this last set.
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We may now state a Harish-Chandra-type integral formula on U+
j .

Theorem 3.5.4. Let ϕ be a matrix coefficient of π+
j , and let d(π+

j ) be the formal degree of π+
j relative to the

Haar measure dẋ on Z0\H+. Then for g ∈ H+
qr,

(3.5.1) ϕ(1)tr
(
Υ(g)|U+

j

)
= d(π+

j )
∫

Z0\H+

∫

K
ϕ(xkg)dk dẋ.

Proof. Note that Z0 has finite index in Z(H+). First, assume that π is unitary. Let 〈·, · 〉 be as in Lemma

3.5.3. In this case, it suffices to consider ϕ of the form ϕ(x) = 〈π+
j (x)u, v 〉, for some u,v ∈ U+

j . As in the

proof of the Lemma 3.5.3, let {v1, . . . ,vr} be an orthonormal basis of (U+
j )K̃ . Using Schur orthogonality,

d(π+
j )

∫

Z0\H+

∫

K
ϕ(xkg)dk dẋ

=
∑

ℓ,m 〈Υ(g)vℓ, vm 〉 d(π+
j )

∫

Z0\H+
〈π+

j (x)vℓ, u〉〈π+
j (x)vm, v 〉dẋ

=
∑

ℓ,m 〈Υ(g)vℓ, vm 〉〈u, v 〉〈vm, vℓ 〉 =ϕ(1)
∑

m 〈Υ(g)vm, vm 〉 =ϕ(1)tr
(
Υ(g)|U+

j

)
.

Note that convergence of the integral is guaranteed by Lemma 3.5.3, since the inner integral has compact

support mod Z0.

Now we drop the assumption that π is unitary. By Corollary 1.5.6, there exists a θ-fixed quasi-character

ν of G such that the twist π′ = π⊗ν is θ-stable and unitary. Using the same intertwining operator Aπ

to define an extension (π′)+ to G+, we have (π′)+ = π+⊗ν+, where ν+ is the extension to G+ defined by

ν+(θ) = 1. The restriction (π′)+o = (π′)+|H+ has the same decomposition as π+
o . Let (π′)+j be the restriction

of (π′)+o to U+
j . Then (π′)+j =π+

j ⊗ν+o , where ν+o = ν+|H+, and so d
(
(π′)+j

)
= d(π+

j ) by definition.

Let u ∈ U+
j and ũ ∈ Ũ+

j such that ϕ(h) = 〈 ũ, π+(h)u〉, for any h ∈ H+. Since kerν+o is open, the linear

functional ũ is also smooth with respect to (π′)+j . Therefore, the function ϕ′(h) = ν+(h)ϕ(h), for h ∈ H+, is a

matrix coefficient of (π′)+j . Moreover, ϕ′(1)=ϕ(1), and ϕ′(xkg)= ν+(g)ϕ(xkg), for any x, g ∈ H+ and k ∈ K .

Finally, define Υ
′ = (Υ′)L0

K with respect to (π′)+, as in §3.3. Then Υ
′(g) = ν+(g)Υ(g), for any g ∈ G+

qr.

Applying (3.5.1) to (π′)+j , Υ′, and ϕ′, we have

ϕ(1)tr
(
Υ(g)|U+

j

)
= ν+(g)−1ϕ′(1)tr

(
Υ

′(g)|U+
j

)

= ν+(g)−1d
(
(π′)+j

)∫

Z0\H+

∫

K
ϕ′(xkg)dk dẋ = d(π+

j )
∫

Z0\H+

∫

K
ϕ(xkg)dk dẋ,

for any g ∈ H+
qr.

Assuming we have ordered the U j as in Proposition 3.4.4, the theorem allows us to obtain an integral

formula for

Θπ+ (g)= tr
(
Υ(g)

)
=

∑M′

j=1 tr
(
Υ(g)|U+

j

)
,

(
g ∈ H+

qr
)
,

by applying (3.5.1) to each term in the sum.

Corollary 3.5.5. Fix an integer 1≤ i < dθ , and set

J = J(i)=
{

1 ≤ j ≤ M′ ∣∣ m j divides i
}
.

For each index j ∈ J, take
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L j , a conjugate of K0 such that L+
j is compact;

M j , an open subgroup of L+
j ;

d j m, normalized Haar measure on M j ; and

ϕ j , a matrix coefficient of π+
j with ϕ j(1) 6= 0.

Then, for g ∈ H i
qr,

(3.5.2) Θπ+ (g)=
∑

j∈J

d(π+
j )

ϕ j(1)

∫

Z0\H+

∫

M j

ϕ j(
xmg)d j mdẋ.

If each subgroup M j is chosen so that θ ∈ NH+ (M j), then for g ∈ (H i
θ
)qr,

(3.5.3) Θπ+ (g)= |〈θ〉|
∑

j∈J

d(π+
j )

ϕ j(1)

∫

Z0\H

∫

M j

ϕ j(
xmg)d j mdẋ.

The formulas in the corollary do not follow immediately from (3.5.1), as they compare Θπ+ (g) to a sum

involving terms tr
(
Υ

L j

M j
(g)|U+

j

)
, where the compact, open subgroup M j ⊆ L+

j may vary from term to term.

To justify this, we first need the following lemma.

Lemma 3.5.6. For 1≤ j ≤ M, the function

H+
qr →C, g 7→ tr

(
Υ

L0
K (g)|U+

j

)

is independent of the choice of conjugate L0 of K0 and open subgroup K ⊆ L+
0 .

Proof. Fix g ∈ H+
qr. Let L′

0 be another G-conjugate of K0 such that (L′
0)+ is compact, and let K ′ be an open

subgroup of (L′
0)+. We wish to show that tr

(
Υ

L0
K (g)|U+

j

)
= tr

(
Υ

L′
0

K ′ (g)|U+
j

)
. Consider the following cases.

Case 1. K ′ = K ⊆ L+
0 ∩ (L′

0)+.

Clearly, the definition of ΥL0
K does not depend on the choice of L0, and its properties depend only on the

existence of some such G-conjugate of K0 such that K ⊆ L+
0 . Therefore, tr

(
Υ

L0
K (g)|U j

)
= tr

(
Υ

L′
0

K (g)|U j
)
.

Case 2. L′
0 = L0, K ′ a normal subgroup of K .

As in the proof of Theorem 3.3.1, we have

Υ
L0
K (g) =

[
K : K ′]−1 ∑

k∈K /K ′
π+(k)ΥL0

K ′ (g)π+(k)−1.

Now, U+
j is K-invariant, since K ⊆ L+

0 ⊂ H+. Therefore,

tr
(
Υ

L0
K (g)|U+

j

)
=

[
K : K ′]−1 ∑

k∈K /K ′
tr

(
π+(k)

(
Υ

L0
K ′ (g)|U+

j

)
π+(k)−1

)

=
[
K : K ′]−1 ∑

k∈K /K ′
tr

(
Υ

L0
K ′ (g)|U+

j

)
= tr

(
Υ

L0
K ′ (g)|U+

j

)
.

Case 3. L′
0 = L0, K ′ arbitrary.

There exists an open subgroup K ′′ ⊆ K∩K ′ which is normal in L+
0 , hence normal in both K and K ′. By the

previous case, tr
(
Υ

L0
K (g)|U+

j

)
= tr

(
Υ

L0
K ′′ (g)|U+

j

)
= tr

(
Υ

L0
K ′ (g)|U+

j

)
.
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Case 4. The general case.

Let K ′′ = K ∩K ′. Then K ′′ ⊆ L+
0 ∩ (L′

0)+, so cases 1 and 3 give

tr
(
Υ

L0
K (g)|U+

j

)
= tr

(
Υ

L0
K ′′ (g)|U+

j

)
= tr

(
Υ

L′
0

K ′′ (g)|U+
j

)
= tr

(
Υ

L′
0

K ′ (g)|U+
j

)
.

We are now in a position to verify (3.5.2) and (3.5.3).

Proof of Corollary 3.5.5. Let g ∈ H i
qr. Then Θπ+ (g) = tr

(
Υ

L0
K (g)

)
=

∑M′

j=1 tr
(
Υ

L0
K (g)|U+

j

)
, by Corollary 3.3.2.

But from Lemmas 3.5.6 and 3.5.1, we have

tr
(
Υ

L0
K (g)|U+

j

)
=





tr
(
Υ

L j

M j
(g)|U+

j

)
, j ∈ J,

0, j ∉ J.

Equation (3.5.2) then follows from (3.5.1).

Now assume θg = g and θ ∈⋂
j∈J NH+ (M j). Then for each j ∈ J, we have

ϕ j(1)tr
(
Υ

L j

M j
(g)|U+

j

)
= d(π+

j )
∫

Z0\H+

∫

M j

ϕ(xmg)d j mdẋ

= d(π+
j )

dθ−1∑

ℓ=0

∫

Z0\H

∫

M j

ϕ(xθℓmg)d j mdẋ

= d(π+
j )

dθ−1∑

ℓ=0

∫

Z0\H

∫

M j

ϕ(xθℓmθ−ℓg)d j mdẋ

= dθ d(π+
j )

∫

Z0\H

∫

M j

ϕ(xkg)d jmdẋ,

where the last equation is achieved using the change of variables m 7→ θℓm.

We are really only interested in the values of Θπ+ at points in H1
qr, since at points in Hqr we have just the

character of π, while, for 1 < i < dθ , at points in H i
qr we may restrict π+ to Go 〈θi〉, effectively replacing θ

by θi .

Recall that we have ordered the constituents in the decomposition of π+
o so that m1 ≤ m2 ≤ ·· · ≤ mM′ . Let

j0 be the largest index such that m j0 = 1. If j0 does not exist, Corollary 3.5.2 says that Θπ+ ≡ 0 on H1
qr. So

suppose j0 does exist. Note that the constituents U+
1 ,U+

2 , . . . ,U+
j0

are precisely those such that U+
j = U j .

Using the notation of Corollary 3.5.5, we have J(1) = {1≤ j ≤ s | m j = 1 }, and so

Θπ+ (g)=
j0∑

j=1

d(π+
j )

ϕ j(1)

∫

Z0\H+

∫

M j

ϕ j(
xmg)d j mdẋ,

(
g ∈ H1

qr
)
.(3.5.4)

If θ ∈⋂
j∈J NH+ (M j), then

Θπ+ (g)= |〈θ〉|
j0∑

j=1

d(π+
j )

ϕ j(1)

∫

Z0\H

∫

M j

ϕ j(
xmg)d j mdẋ,

(
g ∈ (H1

θ)qr
)
.(3.5.5)



4. DEPTH-ZERO SUPERCUSPIDAL REPRESENTATIONS

In this section we analyze (3.5.4) and (3.5.5) in the case that π is induced from a representation σ of ZK0

which is trivial on K1 and cuspidal as a representation of K0/K1.

4.1 The inducing data

We are interested in those supercuspidal representations of G which are obtained using a special case of

Howe’s construction as follows. For a complete account of Howe’s construction of the tame supercuspidal

representations of G, see [24]. Let Z = Z(G) ≃ F×. Let E be a degree n, unramified extension of F, and

let λ be an admissible quasi-character of E× which is trivial on 1+PE . In this case, the property of

admissibility is equivalent to the regularity condition that (λ ◦ηi)|O×
E , i = 1,2, are distinct for all pairs

η1 6= η2 of elements of Gal(E/F). Choose an F-basis B of E, and identify E× with a subgroup of G via the

embedding α 7→ [mult(α, ·)]B, α ∈ E×. Let K be a maximal parahoric subgroup of G such that E×∩K =O
×
E .

Such a subgroup K exists, as we may take it to be the conjugate of K0 afforded by the change of basis

matrix betweenB and some fixed integral F-basis of E. Then T= (E×∩K)/K ′ is a torus in K /K ′ ≃GLn(kF ),

where K ′ is the pro-unipotent radical of K . The restriction of λ to O
×
E induces a character of T. By the

admissibility of λ, this character is in general position, as the Galois groups Gal(E/F) and Gal(kE /kF )

are canonically isomorphic. Therefore, we may associate to λ a cuspidal representation (σ,W) of K /K ′

via Deligne-Lusztig induction. Inflate σ to K . Since ZK = 〈̟F〉 K , we may extend σ to an irreducible

representation of NG (K)= ZK by letting ̟F act on W by the scalar operator associated to λ(̟F ) ∈C×. Note

that (σ,W) is necessarily finite-dimensional. If we let π= c-IndG
ZK σ, then π is an irreducible, admissible,

supercuspidal representation of G. The representation π is depth-zero in the sense that it has non-zero

K ′-fixed vectors. To make use of Corollary 1.5.3, we would like our inducing data σ and K to both be

θ-stable (note that Z is always θ-stable).

Hypothesis H5. There exists a θ-stable maximal parahoric subgroup K ⊂G.

Remark. Based on H1, in either of the cases of valθ = ±1, we have that the maximal parahoric K0 is

θ-stable if and only if J ∈ NG (K0)= ZK0, since it is always (τ◦θ0)-stable. In general, H5 is satisfied if and

only if there exists g ∈G such that τ
(
θ0(g)

)−1J g ∈ ZK0. For example, H5 fails to be true when θ0 is trivial

and J = diag(1, . . . ,1,̟F ).

Let G act on AutF0 (G) by (g ·η)(x) = g
(
η(xg)

)
, for η ∈ AutF0 (G), g ∈G, and x ∈ G. Then, replacing θ by g ·θ

for a suitable choice of g ∈G, we may assume that K = K0. Note that this allows us to choose L0 = K0 to

satisfy H4, so that H4 is essentially replaced by H5. Since the pro-unipotent radical K1 ⊂ K0 is unique,

we must also have θ(K1)= K1. For any automorphism η of K0, write K0,η = (K0)η and K1,η = (K1)η.

If we further assume that σ is θ-stable, then Corollary 1.5.3 tells us that π is θ-stable as well. Use the

notation of §1.5.2, and choose an intertwining operator Aσ ∈Hom(σ,σ◦θ) with Adθ
σ = 1. Let Aπ =Φ(Aσ) ∈

Hom(π,π◦θ), where Φ is as in Proposition 1.5.2. Then Adθ
π = 1 as well. Use Aσ and Aπ to define σ+ and

π+, respectively.

44
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4.2 Some integral formulas

We now analyze (3.5.4) and (3.5.5) for π as in §4.1.

4.2.1 In the case valθ = 1. The property that Z(H)/Z0 is compact is essential for Lemma 3.5.3 and

Theorem 3.5.4. Our choice of H is then guided by Lemma 1.4.5. For valθ = 1, we have chosen H =G, and

there will be only one term in the expressions for Θπ+ in Corollary 3.5.5. Let χ̇σ+ be the extension by zero

of χσ+ to all of G+. From Proposition 1.5.4, we have π+ ∼= c-IndG+

(ZK0)+ σ
+, and therefore χ̇σ+ is a sum of

matrix coefficients of π+. Using this in (3.5.4), we now have

Θπ+ (g)=
d(π+)

deg(σ)

∫

Z0\G+

∫

K
χ̇σ+ (xkg)dk dẋ,(4.2.1)

for any g ∈G1
qr. If g commutes with θ, then (3.5.5) gives

Θπ+ (g)= |〈θ〉|
d(π+)

deg(σ)

∫

Z0\G

∫

K
χ̇σ+ (xkg)dk dẋ.(4.2.2)

4.2.2 In the case valθ =−1. In this case, we have had to restrict to a large subgroup H(G to ensure

convergence of our integral formulas (see §3.4). The subgroup H was chosen precisely so that Z(H)/Z0 is

compact and π|H has finite length. To find suitable matrix coefficients to use in these formulas in this

case, let us analyze the irreducible constituents of π+
o = π+|H+, given the above construction of π. As in

§3.4, we should first decompose πo =π|H. The following lemma will let us make use of [30, Lemma 3.4].

Lemma 4.2.1. ZH = E×H = E×SLn(F).

Proof. Clearly E×SLn(F) is contained in E×H. Now, E×SLn(F) = { g ∈ G | det g ∈ NE/F E× }. Let e ∈ E×

and h ∈ H. Then det e ∈ NE/F E× and deth ∈ O
×
F . But since E/F is unramified, NE/F O

×
E = O

×
F , and so

det eh ∈ NE/F E×. This proves the second equality.

Since Z ∼= F×, to show the first equality it suffices to show that E× is contained in ZH. Let e ∈ E×, and

let r = valF (det e). Now, det e ∈ NE/F E×, and so since E/F is unramified, we have r ≡ 0 mod n. If we set

z = diag(̟r/n
F , . . . ,̟r/n

F )∈ Z, then det z−1e ∈O
×
F , so that z−1e ∈ H. Thus, e = z(z−1e) lies in ZH.

Lemma 4.2.2 (Moy-Sally). π|ZH has n irreducible, inequivalent components.

Proof. This is [30, Lemma 3.4], noting that in the present unramified case

∣∣F×/NE/F E×∣∣= [E : F]= n.

Remark. In [30], Moy and Sally restrict to the case that (p,n) = 1 to ensure tame ramification. However,

the cited result holds even without this restriction.

Let Vσ be the image of W in Vπ under the usual embedding (see §1.5.2). We may characterize Vσ as

precisely those elements of Vπ whose support is contained in ZK0. We now show that each irreducible

component of πo is induced, and moreover is generated by the image of Vσ under a fixed element of G.

Recall that gH ·Vσ = Span{π(gh)v | h ∈ H, v ∈ Vσ }. Since H is normal in G, gH ·Vσ is an H-invariant

subspace of Vπ.
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Proposition 4.2.3. For any g ∈G, gH ·Vσ
∼= c-IndH

gK0
(gσo) as H-spaces, where gσo(gx)=σo(x) for x ∈ K0.

Proof. Fix g ∈ G. Let T : gH ·Vσ → c-IndH
gK0

(gσo) be the linear map defined by (T f )(h) = f (g−1h), for

f ∈ gH ·Vσ and h ∈ H. First, we show that the image of T is contained in c-IndH
gK0

(gσo). Let f ∈ gH ·Vσ

be non-zero. Then f = π(gh1) f1 +·· ·+π(ghr) fr for some h j ∈ H, f j ∈ Vσ, and r ∈ Z>0. For h ∈ H, we have

(T f )(h) 6= 0 only if f j(g−1hgh j ) 6= 0 for at least one j. Since supp f j ⊂ ZK0 for each j, we have

suppT f ⊂ H∩
(⋃r

j=1
g(K0h−1

j )Z
)
=

⋃r
j=1

g(K0h−1
j ),

where the set on the right is compact, hence compact modulo gK0. Furthermore, since f transforms

appropriately under left multiplication by elements of K0, we have

(T f )(gkh) = f (kg−1h) =σo(k) f (g−1h) = gσo(gk) (T f )(h),

for any k ∈ K0. Finally, if f is right K-invariant for some compact, open subgroup K ⊂G, then T f is right

(K ∩H)-invariant. Thus, T f ∈ c-IndH
gK0

(gσo).

Suppose T f ≡ 0 for some f ∈ gH ·Vσ. This says f |g−1H ≡ 0. Since H is normal in G, we have f |H g−1 ≡ 0.

Let f =
∑r

j=1π(gh j) f j as before. Then, supp f ⊂ ⋃r
j=1 ZK0h−1

j g−1 ⊂ ZH g−1. But for z ∈ Z and h ∈ H,

f (zhg−1)=σ(z) f (hg−1)= 0, so in fact f |ZH g−1 ≡ 0. Therefore, f ≡ 0 and kerT = {0}, so T is injective.

Finally, it is clear that T is an H-map, and thus embeds gH ·Vσ in c-IndH
gK0

(gσo) as a non-zero H-invariant

subspace. By the irreducibility of c-IndH
gK0

(gσo), we must have that this subspace is the whole space.

Corollary 4.2.4. Let g1, g2, . . . , gn be a set of representatives for G/ZH. Then the irreducible components

of πo are g jH ·Vσ
∼= c-IndH

g jK0
(g jσo), j = 1,2, . . . ,n.

As in §3.4, to decompose π+
o , we need only investigate the action of Aπ on the constituents of πo.

Lemma 4.2.5. The subspace Vσ is Aπ-invariant.

Proof. Let f ∈ Vσ. Then (Aπ f )(x) 6= 0 only if θ(x) ∈ supp f ⊂ ZK0. Since ZK0 is θ-stable, conclude that

supp Aπ f ⊂ ZK0, and so Aπ f ∈Vσ.

Corollary 4.2.6. Let g ∈G. Then gH ·Vσ is Aπ-invariant if and only if θ(g) ≡ g mod ZH.

Proof. For g = 1, the result follows from Lemma 4.2.5 and the fact that H is θ-stable. Otherwise, we have

Aπ·(gH·Vσ)= θ(g)H·Vσ . Suppose θ(g) = gzh for some z ∈ Z, h ∈ H. Then θ(g)H·Vσ = gH·Vσ , since z acts as

a scalar. On the other hand, if we assume gH ·Vσ is Aπ-invariant, then again we have θ(g)H ·Vσ = gH ·Vσ .

Therefore, θ(g) ≡ g mod ZH, by the inequivalence of the components in Corollary 4.2.4.

From Corollary 3.5.2, the constituents of πo in which we are interested are the Aπ-invariant ones. How-

ever, we would also like the inducing data for such constituents to be θ-stable, a property not guaranteed

by the previous result.

Proposition 4.2.7. Let g ∈ G. Then gK0 is θ-stable if and only if θ(g) ≡ g mod ZK0. In this case, gσo is

also θ-stable, and gH ·Vσ
∼= c-IndH+

(gK0)+ (gσo)+ as H+-spaces.
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Proof. Since NG (K0) = ZK0, it is immediate that gK0 is θ-stable if and only if θ(g) ≡ g mod ZK0. Write

θ(g) = gzk0 for some z ∈ Z and k0 ∈ K0. It is not hard to check that A′
σ =σ(zk0)Aσ ∈HomgK0 (gσo, gσo◦θ), so

that gσo is θ-stable. Define (gσo)+ via A′
σ. Let κ= c-IndH

gK0

gσo, and set Aκ =Φ(A′
σ) ∈HomH(κ,κ◦θ), where

Φ is as in Proposition 1.5.2. Use Aκ to define κ+ as usual. Then κ+ ∼= c-IndH+

(gK0)+ (gσo)+, by Proposition

1.5.4. We will show gH ·Vσ
∼= κ+. Let Vκ be the space of κ (and also of κ+), and let T : gH ·Vσ →Vκ be the

H-isomorphism given in the proof of Proposition 4.2.3. An easy calculation shows that T commutes with

the action of θ on the respective spaces, that is, T Aπ = AκT. So T is in fact an H+-isomorphism.

Proposition 4.2.8. Let g1, g2, . . . , gn be a set of representatives for G/ZH, and set U j = g jH ·Vσ, 1 ≤ j ≤ n.

Then we may re-order this set such that, as a H+-space, Vπ =U+
1 ⊕U+

2 ⊕·· ·⊕U+
n′ , for some n′ ≤ n. Here, each

U+
j is defined as in §3.4. Furthermore, mk | dθ and mk ≤ mk+1 for each k.

Proof. Arrange the elements of G/ZH into 〈θ〉-conjugacy classes. That is, consider gZH ∼ g′ZH if there

exists an integer j such that θ j
(gZH) = g′ZH. Let n′ be the number of such conjugacy classes. For

each 1 ≤ k ≤ n′, choose a ZH-representative gk that represents each 〈θ〉-conjugacy class in order of car-

dinality of the classes from smallest to largest. Let mk be the corresponding cardinality. The class of

gk is {gkZH,θ(gk )ZH, . . . ,θmk−1(gk)ZH}. In this arrangement we have mk ≤ mk+1 for each k, and it is

straightforward to show that each mk must divide the order of θ. Choose n−n′ more ZH-representatives

gn′+1, . . . , gn to round out the set. As an H-space, Vπ decomposes as Vπ =
⊕

k Uk, and for each k and any

integer i we have Ai
π · (gkH) ·Vσ = θi(gk)H ·Vσ. The result now follows from Proposition 3.4.4.

Let g1, . . . , gn and U1, . . . ,Un be as in the proposition, in the given ordering. Corollaries 3.5.2 and 4.2.6 say

that only the pieces which correspond to a representative gk with θ(gk)≡ gk mod ZH make a contribution

to Θπ+ . We will always choose g1 = 1. Using the determinant map to induce a bijection between G/ZH and

F×/NE/F E×, we have the following easy lemma.

Lemma 4.2.9. The only representatives in the collection {g1, . . . , gn} which satisfy θ(gk)≡ gk mod ZH are

(i) g1, if n is odd, or

(ii) g1 and g2, if n is even, with det g2 ∈̟n/2
F NE/F E×.

Proof. Fix 1 ≤ k ≤ n. Suppose det gk ∈ ̟i
F NE/F E×, for some 0 ≤ i ≤ n−1. Then detθ(gk) ∈ ̟n−i

F NE/F E×,

and the result follows.

It remains to specify appropriate matrix coefficients to use in (3.5.4) and (3.5.5). Use the notation of §3.5,

recalling that for 1 ≤ j ≤ n′, we set π+
j = π+

o |U+
j . Having chosen g1 = 1, we have U1 = H ·Vσ

∼= c-IndH+

K+
0
σ+

o .

Take K = K0. Let χσ+
o

be the character of σ+
o = σ+|K+

0 , and let χ̇σ+
o

be its extension by zero to all of H+.

Then χ̇σ+
o

is a sum of matrix coefficients of π+
1 , with χ̇σ+

o
(1) = deg(σ) 6= 0. By Lemma 4.2.9, this is all we

need in the case that n is odd.

If n is even, consider the contragredient spaces Ũ1,Ũ2 ⊂ Ṽπ+
o
⊂ V∗

π . We have Ũ2 = π∗(g2)Ũ1. Therefore, if

ϕ1 is any matrix coefficient of π+
1 , the function ϕ2 : H+ → C given by ϕ2(x) = ϕ1(xg2), x ∈ H+, is a matrix

coefficient of π+
2 . Therefore, the function x 7→ χ̇σ+

o
(xg2) is a sum of matrix coefficients of π+

2 . Collect all of

this in the following result.
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Corollary 4.2.10. Let s be 1 if n is odd, and 2 if n is even. Then,

(4.2.3) Θπ+ (g)=
1

deg(σ)

∑s
j=1 d(π+

j )
∫

Z0\H+

∫

K0

χ̇σ+
o
(g−1

j xkg)dk dẋ,

for g ∈ H1
qr. If g commutes with θ, then

(4.2.4) Θπ+ (g) =
|〈θ〉|

deg(σ)

∑s
j=1 d(π+

j )
∫

Z0\H

∫

K0

χ̇σ+
o
(g−1

j xkg)dk dẋ.

Remark. Since H = G for valθ = 1, in the notation of §3.5 we really have π+
1 = π+. Therefore, if we write

σo =σ and use s= 1 and g1 = 1 in this case, then we may use (4.2.4) for both cases valθ =±1.

4.3 Further hypotheses

Recall that an element γ ∈G is called topologically unipotent if γpℓ → 1 as ℓ→∞. If γ ∈ K0 is topologically

unipotent, then its image in K0/K1 is unipotent. In light of this, we wish to use Chapter 2 to analyze

(4.2.4) in the case that σ is Deligne-Lusztig as a representation of K0/K1, and g is of the form γθ, for some

topologically unipotent element γ ∈ K0,θ . We now make some hypotheses on the structure of G and K0/K1

relative to θ to facilitate this analysis.

Recall that in the case that n is even and valθ = −1, the sum in (4.2.4) has two terms, with the second

corresponding to a representative g2 of G/ZH such that det g2 ∈ ̟n/2
F NE/F E×. We need some notation to

be able to make statements which apply simultaneously to both cases. Set

IθG/ZH =





{1,2}, n even and valθ =−1,

{1}, otherwise.

Hypothesis H6.

(1) For each i ∈ IθG/ZH , we may choose the representative gi so that θ(gi)≡ gi mod Z.

(2) Fix i ∈ IθG/ZH , and suppose x ∈ g−1
i H. If (1−θ)(x) ∈ ZK0, then x ∈ K0 g−1

i Gθ .

Remarks.

(1) To ensure that the inducing data of the irreducible subrepresentation of π|H associated to the coset

gi ZH is θ-stable, we only need to assume that each gi satisfies θ(gi) ≡ gi mod ZK0 (see Proposi-

tion 4.2.7). However, in the cases we consider, we may go further by assuming H6(1), significantly

simplifying the general formulas to follow. For i = 1, H6(1) is always satisfied, since we always take

g1 = 1.

(2) Note that H6(1) can fail to be true. For example, suppose n= 2 and [F : F0]= 2, with F/F0 ramified.

Let τ be the non-trivial element of Gal(F/F0), and let θ(x) = tτ(x)−1, for x ∈ G. Let g2 = diag(̟F ,1),

so that det g2 ∈ ̟FNE/F E×. If −1 is not a square in kF , then there does not exist h ∈ H such that

(gh)−1θ(gh) ∈ Z.

Using H6(1), we may apply Proposition 4.2.7 to the case that n is even and valθ =−1 to see that d(π+
2 ) =

d(π+
1 ). Indeed, we have deg

(
(g2σo)+

)
= deg(σ+

o ) and the measures of Z0\(g2K0)+ and Z0\K+
0 relative to
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dẋ are equal as well. Also using H6(1), it is straightforward to check that each gi , for i ∈ IθG/ZH , must

normalize both Gθ and Gθ .

The following lemma approximates H6(2) near θ.

Lemma 4.3.1. Fix i ∈ IθG/ZH , and suppose γ ∈ K0,θ is topologically unipotent. If y ∈ g−1
i H such that y(γθ) ∈

(ZK0)+, then y ∈ K0 g−1
i Gθ .

Proof. We will show that (1−θ)(y) ∈ ZK0, from which H6(2) will give the result.

By H6(1), (1− θ)(g−1
i ) ∈ Z. If we set ℓi = valF

(
g−1

i θ(gi)
)
, then (1− θ)(g−1

i ) ∈ ̟
ℓi
F K0. By assumption,

yγθ(y−1) ∈ ZK0. Then, since det yγθ(y−1) ∈ ̟
nℓi
F O

×
F , we have w = ̟

−ℓi
F

(
y(γθ)

)
∈ K+

0 . By H2, there exists

a positive integer ℓθ satisfying pℓθ ≡ 1 mod dθ , so that θpmℓθ = θ for any integer m > 0. Consider cases

based on i, starting with i = 1. Now, ℓ1 = 0, and since γ is θ-fixed and topologically unipotent, we have

wpmℓθ = y(γpmℓθ
θ
)
→ yθ as m →∞.

Therefore, since K+
0 is closed and each element of the sequence {wpmℓθ }m∈Z>0 lies therein, we must have

yθ ∈ K+
0 and (1−θ)(y) ∈ K0, and we have finished the proof in this case. Now suppose n is even, valθ =−1,

and i = 2. Set β = Nθ̟
−1
F . Since valθ = −1, ̟Fθ(̟F ) = αθ , for some αθ ∈ O

×
F , and it follows that β =

Nθ2(α−1
θ

) ∈O
×
F . Now, wdθ = βℓ2 y(γθ)dθ , so wrdθ+1 =̟

−ℓ2
F βrℓ2 y(γθ)rdθ+1 for any integer r ≥ 0. Therefore,

wpmℓθ = ̟
−ℓ2
F βrmℓ2 y(γpmℓθ

θ),
(
m ∈Z>0

)
,

where rm = (pmℓθ −1)/dθ . Since β ∈O
×
F , the sequence {βrm }m∈Z>0 has a convergent subsequence. If {m j} is

a set of indices such that the sequence {βrm j } converges to β∞ ∈O
×
F , then

wpm jℓθ →̟
−ℓ2
F βℓ2

∞
yθ as j →∞.

As in the previous case, we conclude that ̟−ℓ2
F β

ℓ2
∞

yθ ∈ K+
0 , hence (1−θ)(y) ∈̟

ℓ2
F K0.

We now assume that the necessary structure exists for it to be possible for σ to be Deligne-Lusztig and

θ-stable. Recall that we have chosen a degree n, unramified extension E/F. Any choice of F-basis for E

affords an embedding of the torus RE/F Gm onto a maximal F-torus of GLn (see the example of §1.2.3),

and the images of all such embeddings are G-conjugate by the appropriate change of basis matrices. If

S⊂GLn is the image of such an embedding, then S(F)≃ E×. As in §1.4.1, lift τ to an element of Gal(F̄/F0),

and consider θ as an automorphism of the abstract group GLn =GLn(F̄).

Hypothesis H7. There exists an OF -basis for OE such that the image S of the corresponding embedding

RE/F Gm ,→GLn is θ-stable.

Let T be the maximal F0-torus RF/F0 S ≃ RE/F0 Gm of G. By Lemma 1.4.3, T is θ-stable. Under the identi-

fication of G with G(F0), we have T =T(F0) identified with S(F).

Turn now to the structure over the residue fields. We have assumed that K0 is θ-stable, so we may also

assume that J ∈ K0. Identify K0/K1 with G=GLn(kF ). We will also use θ to denote the automorphism ofG which is induced by θ|K0. This automorphism is also of the form of (1.4.1), with χ trivial, J replaced by

J̄, and τ replaced by the induced element τ̄ ∈Gal(kF /kF0 ).



CHAPTER 4. DEPTH-ZERO SUPERCUSPIDAL REPRESENTATIONS 50

Let Fun be the unramified closure of F. Then k(Fun) is the algebraic closure k̄F . Lift τ̄ to the element of

Gal(k̄F /kF0 ) induced by τ|Fun. Then we may let θ also denote the automorphism of the abstract groupGLn =GLn(k̄F ) of the form (1.4.1) with respect to J̄ and τ̄, and with χ trivial. Let B̄F/F0 be the fixed kF0 -

basis for kF from §3.1, and take {id, τ̄, . . . , τ̄e−1} as a set of representatives of Σ̄= Gal(k̄F /kF0 )/Gal(k̄F /kF ),

where e is the ramification index of F/F0. Let G= RkF /kF0
GLn, constructed using Σ̄ and B̄F/F0 (see §1.2).

ThenG is a connected, reductive algebraic group defined over kF0 such thatG(kF0 )≃GLn(kF ). As over the

local fields, we identifyG(kF0 ) andGLn(kF ) via the isomorphism afforded by B̄F/F0 , and also identify these

two groups with K0/K1. Let θ also denote the semisimple element of AutkF0
(G) provided by Proposition

1.4.2(2), from θ as an automorphism of GLn. Let d̄θ be the order of θ in AutkF0
(G). Note that d̄θ divides

dθ .

Let S =
(
S(F)∩K0

)
/K1. Then S is the set of kF -rational points of a maximal, kF -minisotropic torus S ofGLn. The torus S is the image of the embedding RkE /kF Gm ,→GLn afforded by the kF -basis of kE induced

by the basis from H7. Now, since S≃ k×
E , the eigenvalues of any element of S are precisely its Gal(kE /kF )-

conjugates. Therefore, S is non-degenerate in the sense of property (iii) of [8, Proposition 3.6.1]. By loc. cit.,

we then have that S is the unique torus of GLn containing S. But since S is θ-stable, it is also contained

in θ(S). Therefore, S is θ-stable. Let T be the maximal kF0 -torus RkF /kF0
S of G. Again by Lemma 1.4.3,T is θ-stable. As well, Lemma 1.2.3(3) says that T is kF0 -minisotropic. Under the identification of G withG(kF0 ), we have T=T(kF0 ) identified with S(kF )≃ k×

E , and T= (T ∩K0)/K1.

The following sets up the necessary structure to use Chapter 2.

Hypothesis H8.

(1) There exists a θ-stable Borel subgroup B of G which contains T.

(2) There exists a θ-stable character λ of T in general position.

Remark. We will be interested in values of the Deligne-Lusztig characters of G+ examined in Chapter 2

on elements of the form uθ, for u a θ-fixed, unipotent element of K0/K1. In light of Corollary 2.2.6, in order

that these character values are not zero, we have assumed in H8(1) that we have an appropriate θ-stable

pair, rather than just an appropriate θ-stable torus.

Since it is true in the cases we will consider, we make the following hypothesis to avoid overly burdensome

complications in our general statements.

Hypothesis H9. The subgroup Gθ of θ-fixed points of G is connected.

Remark. Again, Gθ will fail to be connected, for example, when it is an orthogonal group.

Combining H8(1) with H9, we have that Tθ is a maximal kF0 -torus of Gθ . By Corollary 1.3.7, it is kF0 -

minisotropic. Write X̃ = X̃T(1,1). For each x ∈ X̃, the maximal torus xTθ of Gθ is also kF0 -minisotropic,

as x ∈G implies that xTθ is isomorphic over kF0 to Tθ . We would like to be able to construct irreducible,

cuspidal representations of Gθ using Deligne-Lusztig induction from each xTθ.
Hypothesis H10. For each x ∈ X̃, there exists a character λx of xTθ which is in general position with

respect to WGθ
(xTθ)kF0 .
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We also need to be able to lift these cuspidal representations of Gθ to K0,θ, and induce from the normalizer

of K0,θ to obtain irreducible, supercuspidal representations of Gθ .

Hypothesis H11. The subgroup K0,θ is a maximal parahoric subgroup of Gθ whose normalizer in Gθ is

Z(Gθ)K0,θ, and K0,θ /K1,θ is naturally isomorphic to Gθ.

The following hypothesis will allow us to apply the general results of [21] to the supercuspidal represen-

tations of Gθ mentioned above.

Hypothesis H12. The quotient Z(Gθ)/Z0 is compact.

Remark. This quotient can fail to be compact, for example, in the case that θ is the inner automorphism

of G corresponding to an element which is regular but not elliptic.

Finally, we would also like to use the results of [13, §12.4]. Let (Gθ)0+ (resp. (gθ)0+ ) be the subset of

topologically unipotent (resp. topologically nilpotent) elements of Gθ (resp. gθ).

Hypothesis H13.

(1) For each x ∈ X̃, there exists an element X̄x ∈Lie(xTθ) whose centralizer in Gθ is precisely xTθ.
(2) There exists a Gθ-equivariant map log: (Gθ)0+ → (gθ)0+ whose restriction to K0 ∩ (Gθ)0+ induces aGθ-equivariant map log: (Gθ)unip → (Lie(G)θ)nilp.

Remark. Both of these hold in the case that θ is Galois. In other cases, if we assume that Gθ splits over

the maximal unramified extension of F0, then H13 holds whenever [13, Restrictions 12.4.1] hold (see [13,

Lemma 12.4.2]).

4.4 Descent to Gθ

For the remainder, assume that

χσ+
o
|K+

0 = ε+RG+T+ λ+,

where the righthand-side is lifted to K+
0 , λ+ is some extension of λ to T+, and we have adjusted the sign by

ε+ = εG εT using [14, Corollary 2.5]. We now use Chapter 2 to express Θπ+ , on elements of K+
0 near θ, as

a linear combination of characters of representations of Gθ . It is necessary here to restrict our attention

to G-regular elements, rather than quasi-regular elements. Recall that every G-regular element of G+ is

quasi-regular (Lemma 1.3.14). We first analyze the inner integrals of (4.2.4).

For each pair (i,x), consisting of an integer i ∈ IθG/ZH and an element x ∈ X̃, construct an irreducible, su-

percuspidal representation πθ(i,x) of Gθ as follows. We have assumed in H10 that there exists a character

λx of xTθ which is in general position with respect to WGθ
(xTθ)kF0 . Choose such a character λx. SincexTθ and Tθ are G-conjugate, they have the same kF0 -rank. Therefore, using εθ = εGθ

· εTθ
to adjust the

sign ([15, Proposition 12.9]), there exists an irreducible, cuspidal representation σx of Gθ with character

χx = εθRGθxTθ
λx. Using the natural isomorphism Gθ ≃ K0,θ /K1,θ of H11, lift σx to a representation of K0,θ ,
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and extend this to a representation of Z(Gθ)K0,θ. Let χx also denote the character of this representation.

Let Mi = Z(Gθ)(g iK0,θ). Since gi normalizes Gθ , H11 implies that Mi = NGθ
(g iK0,θ), and so

πθ(i,x)= c-IndGθ

Mi
(g iσx)

is an irreducible, supercuspidal representation of Gθ . Let χ̇θ(i,x) be the extension of g iχx by zero to Gθ .

For certain g ∈ (H1
θ
)G-reg, we can use Chapter 2 to relate the inner integral of (4.2.4) to integrals of χ̇θ(i,x)

over K0,θ .

Lemma 4.4.1. Let γ be a topologically unipotent element of K0,θ such that γθ ∈ (H1
θ
)G-reg. Let dk′ be

normalized Haar measure on K0,θ. For i ∈ IθG/ZH , define

fγ,i : H →C, x 7→
∫

K0,θ

χ̇σ+
o
(g−1

i xk′
(γθ))dk′ .

Fix i.

(1) The function fγ,i is locally constant and invariant under left-translation by elements of g iK0. Its

support is contained in
(

g iK0
)
Gθ .

(2) For x ∈Gθ ,

fγ,i(x)=σ
(
g−1

i θ(gi)
)
ε+ εθ |T/Tθ|−1 ∑x∈X̃ xλ+(θ)

∫

K0,θ

(
χ̇θ(i,x)

)
(xk′

γ)dk′.

(3) The support of fγ,i is compact modulo Z0.

Remark. Recall that we have assumed g−1
i θ(gi) ∈ Z for each i ∈ IθG/ZH (H6(1)). Since σ is irreducible,

σ
(
g−1

i θ(gi)
)

is a scalar operator on W , by Schur’s Lemma. In the formula of (2), and throughout the rest

of this chapter, we abuse notation and use σ
(
g−1

i θ(gi)
)

to also denote the element of C× associated to the

scalar operator σ
(
g−1

i θ(gi)
)
.

Proof. The integrand in the definition of fγ,i is invariant under K+
0 -conjugation of its argument, so in

particular fγ,i is invariant under left-translation by elements of g iK0. This also implies that fγ,i is locally

constant. Fix x ∈ H. For k′ ∈ K0,θ , χ̇σ+
o

is zero on g−1
i xk′

(γθ) unless this element lies in (ZK0)+. Suppose

there exists k′ ∈ K0,θ that satisfies this condition. Then applying Lemma 4.3.1, we have g−1
i xk′ ∈ K0 g−1

i Gθ ,

hence x ∈
(

g iK0
)
Gθ . This completes the proof of (1).

Now let x ∈Gθ . Let k′ be any element of K0,θ, and set w = g−1
i xk′. For convenience, write zi = g−1

i θ(gi) ∈ Z.

Since x and k′ are θ-fixed, we have wθ = ziθ. Therefore, w(γθ) ∈ (ZK0)+ if and only if wγ ∈ ZK0. However,

detwγ= detγ∈O
×
F , so we have wγ ∈ ZK0 = 〈̟F〉K0 if and only if wγ ∈ K0. Thus,

χ̇σ+
o

(g−1
i xk′

(γθ)
)
= χ̇σ+

o

(
zi(

wγ)θ
)

=




σ(zi)ε+

(RG+T+ λ+)(
(wγ)θ

)
, wγ ∈ K0,

0, otherwise.

Since gi normalizes Gθ , we have wγ ∈ K0 if and only if wγ ∈ K0,θ . Also, wγ is topologically unipotent, so if

it lies in K0 we may apply (2.2.2) with n= 1 and ϑ= θ to get

(RG+T+ λ+)
(
(wγ)θ

)
= |T/Tθ|−1

∑x∈X̃ xλ+(θ)QGθxTθ

(
(wγ)

)
.
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However, for each x ∈ X̃, we have QGθxTθ
(v) =

(RGθxTθ
λx)(v), for any v ∈ (Gθ)unip (recall from §2.2 that Gunip is

the set of unipotent elements of G and (Gθ)unip =Gθ∩Gunip). Therefore, if wγ ∈ K0,θ, then

χ̇σ+
o

(
zi(

wγ)θ
)
=σ(zi)ε+ εθ |T/Tθ|−1

∑x∈X̃ xλ+(θ) g iχx(xk′
γ).

Now, wγ ∈ K0,θ if and only if xk′
γ∈ g iK0,θ , hence we may write

χ̇σ+
o
(ziuθ) =σ(zi)ε+ εθ |T/Tθ|−1

∑x∈X̃xλ+(θ)
(
χ̇θ(i,x)

)
(xk′

γ).

Substituting this expression as the integrand in the definition of fγ,i gives (2).

For (3), note that K0,θ is a compact, open subgroup of Gθ , and each χ̇θ(i,x) is a sum of matrix coefficients of

the irreducible, supercuspidal representation πθ(i,x) of Gθ . Furthermore, by Lemma 1.3.12, γ is regular

in G, hence regular in Gθ by Lemma 1.3.10. Therefore, we may apply [21, Part V, §4, Lemma 23] to see

that the functions

Gθ →C, x 7→
∫

K0,θ

(
χ̇θ(i,x)

)
(xk′

γ)dk′,

each have compact support mod Z(Gθ). By (2), fγ,i |Gθ is a (finite) linear combination of such functions,

so there exists a compact set ω⊂Gθ such that supp
(
fγ,i |Gθ

)
⊆ωZ(Gθ). It follows from (1) that supp fγ,i ⊆

(g iK0)ωZ(Gθ), and statement (3) is now a consequence of H12.

The lemma allows us to express Θπ+ (γθ) as a linear combination of the values Θπθ(i,x)(γ), for i ∈ IθG/ZH andx ∈ X̃. Note that the representations in the collection {σx} all have the same degree. Write deg(σθ) for this

common degree. As well, the representations in the collection {πθ(i,x)} all have the same formal degree.

Write d(πθ) for this common formal degree.

Theorem 4.4.2. Let γ be as in Lemma 4.4.1. Then,

Θπ+ (γθ)= |〈θ〉| ε+ εθ |T/Tθ|−1 deg(σθ)

deg(σ)

d(π+
1 )

d(πθ)

∑

i∈IθG/ZH

∑x∈X̃xλ+(θ)σ
(
g−1

i θ(gi)
)
Θπθ(i,x)(γ).

Proof. Let i ∈ IθG/ZH . The integral
∫

Z0\H fγ,i(x)dẋ converges, by Lemma 4.4.1(3). By invariance of the

measure dẋ, we have
∫

Z0\H fγ,i(x)dẋ =
∫

Z0\H fγ,i(xk)dẋ, for any k ∈ K0. Thus, using normalized Haar

measure dk on K0, we have

(4.4.1)
∫

Z0\H
fγ,i(x)dẋ =

∫

K0

∫

Z0\H
fγ,i(xk)dẋ dk =

∫

Z0\H

∫

K0

fγ,i(xk)dk dẋ

=
∫

Z0\H

∫

K0

χ̇σ+
o
(g−1

i xk(γθ))dk dẋ,

where the last integral manipulation is achieved by absorbing the integral over K0,θ from the definition of

fγ,i into the integral over K0, using invariance of dk. From (4.2.4), we have

Θπ+ (γθ)=
|〈θ〉|

deg(σ)

∑

i∈IθG/ZH

d(π+
i )

∫

Z0\H

∫

K0

χ̇σ+
o
(g−1

i xk(γθ))dk dẋ.

Recall that for n even and valθ = −1, d(π+
2 ) = d(π+

1 ). For all other cases, IθG/ZH = {1}. Substituting (4.4.1)

into the above equation, we have

(4.4.2) Θπ+ (γθ)= |〈θ〉|
d(π+

1 )

deg(σ)

∑

i∈IθG/ZH

∫

Z0\H
fγ,i(x)dẋ.
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Assume that the invariant measure dẋ has been normalized so that the image of K0 in Z0\H has volume

1. Similarly, let dẋ′ be invariant measure on Z0\Gθ , normalized so that the image of K0,θ in Z0\Gθ has

volume 1. Then Lemma 4.4.1(1), the invariance of fγ,i under left-translation by elements of g iK0, and our

choice of normalization of measures dẋ and dẋ′ allows us to write
∫

Z0\H
fγ,i(x)dẋ =

∫

Z0\(giK0)Gθ

fγ,i(x)dẋ =
∫

Z0\Gθ

fγ,i(x
′)dẋ′.

Note that in the proof of Lemma 4.4.1(3), we have shown that the support of fγ,i |Gθ is compact modulo Z0,

so that this last integral converges. Now apply Lemma 4.4.1(2) to get

∫

Z0\H
fγ,i(x)dẋ =σ

(
g−1

i θ(gi)
)
ε+ εθ |T/Tθ|−1

∑x∈X̃ xλ+(θ)
∫

Z0\Gθ

∫

K0,θ

(
χ̇θ(i,x)

)
(xθk′

γ)dk′ dẋθ

=σ
(
g−1

i θ(gi)
)
ε+ εθ |T/Tθ|−1

∑x∈X̃ xλ+(θ)
deg(σx)

d
(
πθ(i,x)

) Θπθ (i,x)(γ).

Substituting this into (4.4.2) and pulling out the common degrees deg(σθ) and d(πθ) completes the proof.

4.5 Transfer to the Lie algebra

We may use [13] to express each Θπθ(i,x) in terms of the Fourier transform of an orbital integral on gθ ,

giving us an expression for Θπ+ as a linear combination of such Fourier transforms.

For X ∈ g, write dNθ(X ) = X +dθ(X )+·· ·+dθd−1(X ). Let g′
θ
= ker(dNθ). Then g= gθ⊕g′θ as an F0-space.

Let b be as in (3.2.1). Since b is non-degenerate and dθ-invariant, it follows that g′
θ

is the orthogonal

complement of gθ with respect to b. Therefore, the restriction of b to gθ remains non-degenerate. Fix a

non-trivial additive character Λ of F0 with conductor PF0 . For f ∈ C∞
c (gθ), the Fourier transform of f is

defined by

f̂ (X ) =
∫gθ f (Y )Λ

(b(X ,Y )
)
dY ,

(
X ∈ gθ).

Given an element X ∈ gθ, let dẋθ be the unique (up to a constant) invariant measure on the homogeneous

space Gθ /CGθ
(X ). The orbital integral associated to the Gθ-orbit of X in gθ is the distribution

µX ( f )=
∫

Gθ /CGθ
(X )

f (xX )dẋθ ,
(
f ∈ C∞

c (gθ)
)
.

Define the Fourier transform of µX by µ̂X ( f ) = µX ( f̂ ). The distribution µ̂X is represented by a locally

integrable function on gθ ([20]), which we also denote µ̂X .

Set k0 =Mn(OF ) and k1 =Mn(PF ), and let k0,θ and k1,θ be the respective subsets of dθ-fixed points.

Theorem 4.5.1. For each x ∈ X̃, there exists a regular semisimple element Xx ∈ k0,θr k1,θ satisfying the

following. The image of Xx in Lie(G)θ under the mod PF map is the element X̄x ∈Lie(xTθ) of H13(1). Also,

for each regular element g ∈ (Gθ)0+ , we have

Θπθ(i,x)(g)= d(πθ) µ̂(gi Xx)(log g),

where log is as in H13(2).
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Proof. This is [13, Lemma 12.4.3], noting that in loc. cit., the measures have been normalized in such a

way as to eliminate the d(πθ) factor.

We now combine Theorems 4.4.2 and 4.5.1.

Theorem 4.5.2. For any g ∈G and any topologically unipotent element γ ∈ K0,θ such that γθ is G-regular

in G+, we have

Θπ+
(g(γθ)

)
= |〈θ〉| ε+ εx |T/Tθ|−1 d(π+

1 )
deg(σθ)

deg(σ)

∑

i∈IθG/ZH

∑x∈X̃xλ+(θ)σ
(
g−1

i θ(gi)
)
µ̂(gi Xx)(logγ).

Note that the set of all elements of the form g(γθ), for g and γ as in the theorem, forms an open neighbour-

hood of θ in G+.

4.6 A special case

In all of the cases we will consider, we will be able to apply Hilbert’s Theorem 90 in one way or another to

show that (1−θ) : T→kerNθ is surjective. We will now restate the results of §§4.4–4.5 in this case.

Theorem 2.2.9 says that the reduction formula for RG+T+ λ+, on elements uθ with u ∈ (Gθ)unip, is now re-

duced to a single term. Therefore, we may simplify the construction of the supercuspidal representations

{πθ(i,x) | i ∈ IG/ZH , x ∈ X̃} of Gθ in §4.4 as follows. First, we may replace H10 by the assumption that there

exists an irreducible character λθ of Tθ which is in general position. Choose such a character λθ , and from

it obtain a cuspidal representation σθ of Gθ. Then construct only one or two (depending on valθ and n)

representations {πθ(i) | i ∈ IG/ZH }, similarly to §4.4. Again, write d(πθ) for their common formal degree.

Using (2.2.5) instead of (2.2.2), Lemma 4.4.1(2) then becomes

fγ,i(x)= ε+ εθ λ
+(θ)σ

(
g−1

i θ(gi)
)∫

K0,θ

(
χ̇θ(i)

)
(xk′

γ)dk′ ,
(
i ∈ IθG/ZH , x ∈Gθ

)
,

where each χ̇θ(i) is defined similarly to the functions χ̇θ(i,x) in §4.4. Theorem 4.4.2 becomes

Θπ+ (γθ)= |〈θ〉| ε+ εθ λ
+(θ)

deg(σθ)

deg(σ)

d(π+
1 )

d(π)

∑

i∈IθG/ZH

σ
(
g−1

i θ(gi)
)
Θπθ(i)(γ).

We may also replace H13(1) by the assumption that there exists an element X̄θ ∈Lie(Tθ) whose centralizer

in Gθ is precisely Tθ. Now Theorem 4.5.2 simplifies to

(4.6.1) Θπ+
(g(γθ)

)
= |〈θ〉| ε+ εθ λ

+(θ) d(π+
1 )

deg(σθ)

deg(σ)

∑

i∈IθG/ZH

σ
(
g−1

i θ(gi)
)
µ̂(gi Xθ)(logγ),

choosing a single regular semisimple element Xθ ∈ k0,θr k1,θ whose image in Lie(G)θ under the mod PF

map is X̄θ .



5. EXAMINATION OF SOME CASES

We now apply the general results of the previous sections to several cases of particular interest.

5.1 The unramified Galois case

In this section, we examine the case of valθ = 1, J = 1 and F/F0 unramified.

5.1.1 Definition of θ. Use the general setup of §3.1 and §4.3. Assume that F/F0 is unramified, with

1 < d = [F : F0] < ∞ relatively prime to p. To ensure the existence of a stable elliptic torus, we also

assume that d is relatively prime to n. As in §1.2.4, τ induces a semisimple F0-automorphism θ = ητ of

G = RF/F0 GLn. Since F/F0 is unramified, we have Gal(kF /kF0 ) = 〈τ̄〉. On G = RkF /kF0
GLn, we also have

θ = ητ̄.

5.1.2 Verification of hypotheses.

H1, page 31. This is satisfied by the definition of θ above.

H2, page 32. We have dθ = d = [F : F0], and we have assumed that gcd(d, p) = 1.

H3, page 32. The set (GLn)Σψτ
of ψτ-fixed points of (GLn)Σ is just the image of GLn under the diagonal

embedding, and therefore is connected. Hence, Gθ is also connected.

H4, page 32 / H5, page 44. The maximal parahoric subgroup K0 =GLn(OF ) is θ-stable.

H6(1), page 48. There is nothing to verify, since valθ = 1 implies IθG/ZH = {1}, and g1 = 1.

H9, page 50. By the same argument as for H3, Gθ is connected.

H11, page 51. We have K0,θ = GLn(OF0 ) and K1,θ = 1+Mn(PF0 ), so K0,θ /K1,θ is naturally isomorphic toGθ =GLn(kF0 ). Also, NGθ
(K0,θ)= F×

0 K0,θ = Z(Gθ)K0,θ.

H12, page 51. Since valθ = 1, we choose H = G, and so Z0 = Z(G)θ = F×
0 . Since Gθ = GLn(F0), the

quotient Z(Gθ)/Z0 is trivial.

H13(2), page 51. Let b1 be the subset of k0 consisting of elements whose (i, j)th entries lie in PF for i ≥ j,

and let B1 = 1+b1. Write b1,θ = (b1)θ and B1,θ = (B1)θ . Then (gθ)0+ =Gθ(b1,θ) and (Gθ)0+ =Gθ(B1,θ). Clearly,

it suffices to take log: x 7→ x−1, the inverse of the truncated exponential map exp: X 7→ 1+ X .

Remaining hypotheses. We leave H6(2), H7, H8, H10, and H13(1) to be verified below.

5.1.3 A factorization result. In this section (and this section only), we may drop the assumption that

d and n are relatively prime. Our aim is to prove the following factorization result, which is equivalent to

H6(2) (page 48) for the present case.

56
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Lemma 5.1.1. For any g ∈ G such that gθ(g−1) ∈ K0, there exists an element k ∈ K0 such that gθ(g−1) =
kθ(k−1).

First, we verify a variant of the additive version of Hilbert’s Theorem 90.

Lemma 5.1.2. For any α ∈OF such that TrF/F0α= 0, there exists an element β ∈OF such that α=β−τ(β).

Proof. Since gcd(d, p) = 1, d lies in O
×
F . Take β= d−1 ∑d−2

j=0 (d− j−1)τ j(α).

Note that any α ∈ OF ∩ (1− τ)F satisfies the hypothesis of Lemma 5.1.2. Considering θ acting on Fn

coordinatewise, we may extend this result to elements of O
n
F ∩ (1−θ)Fn.

Proof of Lemma 5.1.1. Suppose g ∈ G with gθ(g−1) ∈ K0. Let U be the unipotent radical of the upper-

triangular Borel subgroup of G. We first consider the case that g ∈ U, proceeding by induction on n. If

n = 1, then take k = g = 1. For n > 1, write g =
( g0 C

0 1

)
, for some C ∈ Fn−1 and some upper-triangular

unipotent g0 ∈GLn−1(F). Then

gθ(g−1)=
(

g0τ(g−1
0 ) C− g0τ(g−1

0 )τ(C)

0 1

)
.

Now, g0τ(g−1
0 ) must lie in GLn−1(OF ), so by induction there exists k0 ∈ GLn−1(OF ) such that g0τ(g−1

0 ) =
k0τ(k−1

0 ). We must also have Y −τ(Y ) ∈O
n−1
F , for Y = k−1

0 C, so by Lemma 5.1.2 there exists Y ′ ∈O
n−1
F such

that Y ′−τ(Y ′)=Y −τ(Y ). Therefore, we may take k =
(

k0 k0Y ′

0 1

)
.

Now consider any g ∈ G such that gθ(g−1) ∈ K0. By multiplying g on the left by elementary matrices

in K0, we may row-reduce g to an upper-triangular matrix which has the same diagonal entries as x =
diag(̟ j1 , . . . ,̟ jn ), for some integers ji . Let k1 ∈ K0 be the product of these elementary matrices, so that

y = k1 gx−1 ∈U. But x ∈Gθ , so yθ(y−1) = k1 gθ(g−1)θ(k−1
1 ) ∈ K0. By the previous case, there exists ky ∈ K0

with kyθ(k−1
y )= yθ(y−1), so take k = k−1

1 ky.

5.1.4 A θ-stable elliptic torus. We now provide an OF -basis for OE to satisfy H7 (page 49), for E a

degree n unramified extension of F. As well, we will show that the resulting torus T of G satisfies the

hypothesis of §4.6, and verify H13(1). Let E0 be a degree n, unramified extension of F0, and let E be the

composite extension FE0 of F0. Since gcd(n,d) = 1, we have [E : E0] = d and [E : F] = n, so that we have

associated diagrams of p-adic fields (with all extensions unramified) and residue fields as below, where

also kE is the composite kF kE0 .

E

E0

d

F

n
BBBBBBBB

F0

dn

AAAAAAAA
kE

kE0

d

kF

n
CCCCCCCC

kF0

dn

CCCCCCCC
Since restriction to F defines an isomorphism of Gal(E/E0) onto Gal(F/F0), there exists a lift of τ to an

element of Gal(E/F0) such that E0 is the fixed field of 〈τ〉. Assume that we have chosen our lift of τ
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into Gal(F̄/F0), as in §1.4.1 and §4.3, so that τ|E is such a lift into Gal(E/F0). Choose any OF0 -basisB = {ν1, . . . ,νn} for OE0 . Then B is also an OF -basis for OE , and we claim that this basis will satisfy

H7. To simplify some technical details further on, choose ν1 = 1. Take {id,τd ,τ2d , . . . ,τ(n−1)d} as a set

of representatives for Σ
′ = Gal(F̄/F)/Gal(F̄/E). Using these representatives and F-basis B of E, follow

the example of §1.2.3 to form the F-torus S = RE/F Gm. But {τ(i−1)d} is also a set of representatives of

Σ
′
0 = Gal(F̄/F0)/Gal(F̄/E0), so in fact RE0 /F0 Gm, constructed using B as an F0-basis for E0, is equal to

S. Therefore, S is an F0-torus. Identify S with its image in GLn under the isomorphism given in the

cited example, using constants {ci jk} ⊂ F such that νiν j =
∑

k ci jk νk. Then elements of S have the form
(∑

k xk ck ji
)

for some (xk) ∈ F̄n. Now, our constants {ci jk} actually lie in F0, so the chosen embedding

S ,→ GLn is defined over F0. Therefore, S is τ-stable, and we have verified H7. As in §4.3, the torus

T= RF/F0 S⊂G is θ-stable, and T =T(F0)≃S(F) ≃ E×. The isomorphism f̃B induces an action of θ on E×,

given by

θ(α1ν1 +·· ·+αnνn)= τ(α1)ν1 +·· ·+τ(αn)νn,
(
(αi) ∈ Fn)

.

However, B is contained in E0, and so this induced action of θ on E× is given by τ.

Similarly, for T as in §4.3, we have T = T(kF0 ) ≃ S(kF ) ≃ k×
E , and the induced action of θ on k×

E is given

by τ̄. Identify T and k×
E , and note that restricted to T, we have Nθ = NkE /kE0

. Therefore, by Hilbert’s

Theorem 90 we have (1−θ)(T)= kerNθ. This puts us in the situation of §4.6. As discussed in loc. cit., to

satisfy H13(1), we only need to show that there exists an element X̄θ ∈ Lie(Tθ) whose centralizer in Gθ is

precisely Tθ. For this, it suffices to show that Tθ is non-degenerate in Gθ in the sense of [8, Proposition

3.6.1]. However, Gθ is isomorphic over kF toGLn, via the composition of the mapG→GLΣn which definesG with projection GLΣn →GLn onto the first component of GLΣn. Since this same map also induces the

isomorphism G(kF0 ) ≃GLn(kF ), to verify (iii) of [8, Proposition 3.6.1] it suffices to show that Tθ contains

an element with distinct eigenvalues as an element ofGLn(kF ). Using the identification T≃ k×
E , it suffices

to show that (k×
E)θ contains an element whose Gal(kE /kF )-conjugates are all distinct. Now, (k×

E)θ ≃ k×
E0

.

Write q = qF0 . If ζ is a generator of k×
E , then ζm is a generator of k×

E0
, for m = (qdn −1)/(qn −1). Since

gcd(n,d) = 1, it follows that ζm is the required element of (k×
E)θ.

5.1.5 A θ-stable Borel subgroup. In this section, we verify H8(1) (page 50). First, we will construct

a θ-stable Borel subgroup of G which contains our θ-stable torus T. Fortunately, such subgroups are

plentiful. Note that it suffices to find a ψτ-stable Borel subgroup of (GLn)Σ which contains SΣ.

Let C⊃D be the pair in GLn consisting of the Borel subgroup of upper-triangular matrices and the torus

of diagonal matrices. Both are defined over F0, so CΣ and DΣ are just the direct products of d copies of C

and D, respectively, and hence are ψτ-stable. As well, N(GLn)Σ (DΣ) is just the direct product of d copies

of NGLn (D), and so any Borel subgroup of (GLn)Σ containing DΣ is of the form (CΣ)x =
∏

j Cx j , where

x = (xk) for some {xk} ⊂ NGLn (D). Let AB be the invertible n×n matrix
(
τ(i−1)d(ν j)

)
, and let AΣB be the

element of (GLn)Σψθ
obtained by taking d copies of AB. Then S=DAB , as in the example of §1.2.3, and so

SΣ = (DΣ)AΣB . Therefore, any Borel subgroup B ⊂ (GLn)Σ containing SΣ is of the form (CΣ)xAΣB , for some

x ∈ N(GLn)Σ (DΣ). In particular, if we take x to be in the image of the diagonal embedding of NGLn (D) into

N(GLn)Σ(DΣ), then x is ψτ-fixed, and both (CΣ)x and B are ψτ-stable.
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Again, since all of our local field extensions are unramified, the Galois groups between corresponding local

and residue field extensions are isomorphic. Thus, the above argument may be repeated in GLn and G,

implying the existence of a θ-stable Borel subgroup ofG which contains T. This completes the verification

of H8(1).

5.1.6 Characters of T and Tθ. Here we verify H8(2) (page 50) and H10 (page 50). Write q = qF0 . Fix

a primitive (qdn −1)
th

root of unity η ∈ C× and a generator ζ of k×
E . Any character of k×

E ≃ T is of the form

λℓ(ζ)= ηℓ for some integer 0≤ ℓ≤ qdn−2. On the other hand, τ̄ is a generator of Gal(kE /kE0 ), so τ̄(ζ)= ζqmn

for some integer m, with 0 ≤ m ≤ d−1 and gcd(m,d) = 1. Therefore, since gcd(qmn −1, qdn −1) = qn −1, a

character λℓ is θ-stable if and only if ℓ= ℓ0(qdn −1)/(qn −1) for some 0 ≤ ℓ0 ≤ qn −2. To verify H8(2), we

would like to find such a θ-stable character λℓ which is in general position.

In particular, consider λ = λℓ, for ℓ =
∑d−1

j=0 q jn. Then ℓ is of the above form, with ℓ0 = 1, and so λ is θ-

stable. Now, Gal(kE /kF ) ≃WG(T) is generated by the Frobenius automorphism ζ 7→ ζqd
. Suppose we have

λ(ζq jd
) = λ(ζ) for some 1 ≤ j ≤ n. Then 1 = λ(ζ−1)λ(ζq jd

) = ηℓ(q jd−1), so qdn −1 divides ℓ(q jd −1). But then

qn −1 divides q jd −1, which is only possible if n| jd. Since n and d are relatively prime, we can only have

j = n, and thus λ is in general position.

As mentioned in §5.1.4, we are in the situation of §4.6. Therefore, instead of H10, we need only show that

there exists a character of Tθ which is in general position with respect to WGθ
(Tθ)kF0 . In §5.1.4, we also

showed that Tθ was non-degenerate in Gθ. Therefore, by [8, Corollary 3.6.5], WGθ
(Tθ)kF0 ≃ NGθ

(Tθ)/Tθ ≃
Gal(kE0 /kF0 ). If η0 ∈ C× is a primitive (qn −1)th root of unity and ζ0 is a generator of k×

E0
, then the

character ζ0 7→ η0 is in general position.

5.1.7 The result. As noted in §5.1.4, we are in the situation of §4.6. From (4.6.1), we have

Θπ+
(g(γθ)

)
= [F : F0] ε+ εθ λ

+(θ) d(π+)
deg(σθ)

deg(σ)
µ̂Xθ

(γ−1),

for any g ∈ G and any γ ∈ B1,θ such that γθ is G-regular in G+. Finally, from [15, Proposition 12.9], we

have
deg(σθ)

deg(σ)
=

∥∥∥∥
GGθ

∥∥∥∥
−1

p′

∣∣∣∣
TTθ ∣∣∣∣=

(∏n−1
i=1 Sgeom([F : F0] , qi

F0
)
)−1

where Sgeom(ℓ,x)= (xℓ−1)/(x−1) for ℓ ∈Z>0, x ∈R.

5.2 The symplectic case

In this section, we examine the case of valθ = −1, F0 = F, n = 2m for some m ∈ Z>0, and J a skew-

symmetric element of GLn(OF ).

5.2.1 Skew-symmetric bilinear forms on OF -modules. First we will verify that the familiar result

of equivalence of skew-symmetric bilinear forms on finite-dimensional vector spaces holds for the case of

finitely generated OF -modules. For the basic facts concerning forms on modules over rings, see [6].

Let M be a torsion-free, finitely generated OF -module. By [9, Ch. 7, Lemma 5.3], M is in fact a free
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OF -module. Let f : M × M → OF be a non-singular, skew-symmetric bilinear form on M. By [6, §5, no 1,

Théorème 1], M must be of even rank, say 2m.

Theorem 5.2.1. There exists a basis B of M such that

[f]B =




1

−1
. . .

1

−1




.

Proof. Choose any basis B′ = {x′1, . . . ,x′2m} of M and set x1 = x′1. Let J = [f]B′ . We have det J ∈O
×
F , since f is

non-singular. Therefore, there exists an index j0 such that J1 j0 = f(x1,x′j0
) ∈O

×
F . Note that J11 = f(x1,x1)=

0, so j0 > 1. Let x2 = f(x1,x′j0
)−1 x′j0

. Then f(x1,x2)= 1.

If m = 1, then we must have j0 = 2, and B= {x1,x2} is the required basis. For m ≥ 2, proceed by induction

on m. Let N be the OF -submodule of M generated by {x1,x2} and let N⊥ be the orthogonal complement to

N with respect to f. Suppose x ∈ N∩N⊥. Write x = a1x1+a2x2 for some a1,a2 ∈OF . Then f(x,x1)= a2 andf(x,x2)= a1. But then x ∈ N⊥ implies a1 = a2 = 0, so x = 0. Thus N ∩N⊥ = {0}. Now let x be any element of

M, and set x′ = f(x,x1) x2−f(x,x2) x1 and x′′ = x−x′. Then x′ ∈ N, x′′ ∈ N⊥, and clearly x = x′+x′′. Therefore

M = N ⊕N⊥.

Clearly N is free of rank 2. Since OF is a principal ideal domain, N⊥ is also free and must have rank ≤ 2n.

Since the ranks of N and N⊥ must sum to 2n, we have that N⊥ is of rank 2(n−1). Choose a basisD of N⊥

and let B′′ be the basis {x1,x2}∪D of M. Then

[f]B′′ =




1

−1
[f|N⊥]D

 ,

and so since [f]B′′ is skew-symmetric and invertible,
[f|N⊥]D must be as well. Therefore, f|N⊥ is non-

singular and skew-symmetric, and so applying our induction hypothesis we obtain a basis D′ of N⊥ such

that
[f|N⊥]D′ has the required form. Taking B= {x1,x2}∪D′ gives the required basis of M.

Corollary 5.2.2. For any non-singular, skew-symmetric bilinear form g on M there exists an invertible

element A ∈EndOF (M) such that g(x, y)= f(Ax, Ay) for all x, y ∈ M.

Proof. By the theorem, there exist bases B= {x1, . . . ,x2m} and B′ = {x′1, . . . ,x′2m} of M such thatf(xi,x j)=g(x′i,x
′
j)=





1, 1≤ i ≤ 2m−1, j = i+1,

0, 1≤ i ≤ j ≤ 2m, j 6= i+1.

So take A defined by Ax′i = xi, for i = 1,2, . . . ,2m, and extend linearly.

We now prove a factorization result for linear operators on M which are self-adjoint with respect to f,
to be used in verifying H6(2). Recall that given an element A ∈ EndOF (M), there exists a unique adjoint

operator fA ∈EndOF (M) such that f(Ax, y)= f(x,fAy), for all x, y ∈ M.
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Corollary 5.2.3. Let S ∈ EndOF (M) be invertible and self-adjoint with respect to f. Then there exists an

invertible element A ∈EndOF (M) such that S = fAA.

Proof. Let g : M × M → OF by g(x, y) = f(Sx, y). Then g is skew-symmetric and non-singular. By the

preceding corollary, there exists an invertible element A ∈ EndOF (M) such that g(x, y) = f(Ax, Ay) for all

x, y ∈ M. Therefore, f(Ax, y)=g(x, A−1 y)= f(x,SA−1 y), hence fA = SA−1.

5.2.2 Definition of θ. Let n= 2m for some m ∈Z>0, and set G=GLn and G =G(F). Let L be a degree

m unramified extension of F, and let f : L×L → F be the trace form, i.e.,f(α,β)= TrL/Fαβ,
(
α,β ∈ L

)
.

Then f is a non-singular, symmetric F-bilinear form on L. Clearly f(OL ×OL) ⊆ OF , and so the restriction

of f is a symmetric OF -bilinear form on OL . Choose an OF -basis B = {ξ1, . . . ,ξm} of OL , and let J0 be the

symmetric matrix [f]B ∈ Mm(OF ). By [9, Ch. 7, Theorem 6.1], |det J0| = 1, so J0 ∈ GLm(OF ). Hence the

restriction of f to OL is non-singular, and by [9, Ch. 7, Lemma 6.3], it induces a non-singular, symmetric

kF -bilinear form f̄ on kL . Note that f̄ is in fact just the trace form over kF .

Let θ be the involution of G given by

θ(x)= J−1 tx−1 J,
(
x ∈G

)
,

where J is the skew-symmetric element of GLn(OF ) defined in block form as

J =
(

0m J0

−J0 0m

)
.

Since J ∈GLn(OF ), we may proceed as in §4.3 to produce an automorphism ofG=GLn =GLn(k̄F ) induced

by θ. Clearly this map will be given by θ(x)= J̄−1 tx−1 J̄, where

J̄ =
(

0m J̄0

−J̄0 0m

)
.

Note that the projection B̄ is a kF -basis of kL, and so since f̄(ᾱ, β̄) = f(α,β) for any α,β ∈ OL, we have

J̄0 =
[f̄]B̄.

5.2.3 Verification of Hypotheses.

H1, page 31. This is satisfied by the definition of θ above.

H2, page 32. We have dθ = 2, and we have assumed that p is odd.

H3, page 32. The group Gθ is isomorphic over F to the connected group Spn.

H4, page 32 / H5, page 44. The maximal parahoric subgroup K0 =GLn(OF ) is θ-stable.

H6(1), page 48. Since valθ =−1 and n is even, we have IθG/ZH = {1,2}. Choose g1 = 1 and

g2 =
(
̟F1m 0m

0m 1m

)
.

Then θ(g2)=̟−1
F g2.
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H9, page 50. We also have Gθ ≃Spn over kF , so that Gθ is connected.

H11, page 51. We have K0,θ ≃Spn(OF0 ) and K1,θ is its pro-unipotent radical. Since the natural projection

K0,θ → K0,θ /K1,θ coincides with the mod PF map applied to the coefficients of the elements of K0,θ, the

quotient K0,θ /K1,θ is naturally isomorphic to Gθ. Also, NGθ
(K0,θ)= K0,θ = Z(Gθ)K0,θ.

H12, page 51. Since valθ = −1, we choose H as in §3.4. In this case, the groups Z(Gθ) and Z0 coincide

and are finite, and the quotient Z(Gθ)/Z0 is trivial.

H13, page 51. The group Spn is split over the prime subfield, hence Gθ is split over F. For this case, we

assume [13, Restrictions 12.4.1], so that [13, Lemma 12.4.2] provides H13(1) and H13(2).

Remaining hypotheses. We leave H6(2), H7, H8 and H10 to be verified below.

5.2.4 A factorization result. We now verify H6(2) (page 48). First, we prove a factorization result in

K0.

Lemma 5.2.4. For any element k ∈ K0 such that θ(k) = k−1, there exists k1 ∈ K0 such that k = k1θ(k−1
1 ).

Proof. Let M = O
n
F and let E be the standard basis of M. Let g be the OF -bilinear form on M such that

[g]E = J. Then g is non-singular and skew-symmetric. For any k ∈ K0, it is easy to check that gk = θ(k−1).

The condition θ(k) = k−1 is equivalent to k being self-adjoint with respect to g. By Corollary 5.2.3, for any

self-adjoint k ∈ K0 there exists k2 ∈ K0 such that k = gk2 k2 = θ(k−1
2 )k2. Take k1 = θ(k−1

2 ).

Verification of H6(2). Write z1 = 1 and z2 = ̟F , so that (1− θ)(gi) = zi for each i ∈ IθG/ZH . Fix i, and

suppose x ∈ g−1
i H such that y = (1−θ)(x) ∈ ZK0, as in H6(2). By considering det y, we see that k = zi y ∈ K0.

Moreover, since θ(y) = y−1, we also have θ(k) = k−1. Therefore, by the lemma there exists an element

k1 ∈ K0 such that k = (1−θ)(k1). This says that (1−θ)(k−1
1 x) = z−1

i . However, g−1
i Gθ is the unique coset

of Gθ in G consisting of all elements w ∈ G satisfying (1− θ)(w) = z−1
i . Therefore, k−1

1 x ∈ g−1
i Gθ , hence

x ∈ K0 g−1
i Gθ .

5.2.5 A θ-stable elliptic torus. We now provide an OF -basis for OE to satisfy H7 (page 49), for E

a degree n unramified extension of F. As well, we will show that the resulting torus T of G satisfies

the hypothesis of §4.6. Note that since F0 = F in this case, we will have T = S. Fix an element ǫ ∈ O
×
L

such that ǭ is non-square in kL. Then ǫ is non-square in L and the quadratic extension E = L(
p
ǫ) is

unramified. We may use the basis B from §5.2.2 to form an OF -basis C = {ξ1, . . . ,ξm,ξ1
p
ǫ, . . . ,ξm

p
ǫ} of

OE . Let ν be the Frobenius automorphism of E/F (see §1.1.1). Then Gal(E/L) = 〈νm〉 and Gal(L/F) =
〈ν|L〉. Lifting ν to an element of Gal(F̄/F), we may take {id,ν,ν2, . . . ,νn−1} as a set of representatives

of the quotient Σ = Gal(F̄/F)/Gal(F̄/E), and {id,ν,ν2, . . . ,νm−1} as a set of representatives of the quotient

Σ
′ =Gal(F̄/F)/Gal(F̄/L). Let AB be the m×m matrix

(
νi−1(ξ j)

)
. Then,

tABAB =
(∑

hν
h−1(ξi)ν

h−1(ξ j)
)
= (TrL/Fαiα j)= J0.
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Similarly, let AC be the n×n matrix whose (i, j)th coordinate is

(AC)i j =




νi−1(ξ j), 1≤ j ≤ m,

νi−1(ξ j−m
p
ǫ), m < j ≤ n.

Then we may express AC in block form as

AC =
(

AB AE
L AB

AB −AE
L AB)

,

where AE
L is the m×m diagonal matrix with νi−1(

p
ǫ) in the ith diagonal position. Let D be the diagonal

torus in G, and let wθ be the element

wθ =
(

0 2 AE
L

−2 AE
L 0

)
∈ NG(D).

Then, in fact, we have J = tACw−1
θ

AC. Consider the torus T=DAC ≃RE/F Gm, as in the example of §1.2.3.

Then for t ∈ T, we have x = wθ
(t(ACt)−1)

∈ D, and so θ(t) = xAC is back in T. Hence, T is θ-stable, and

we have verified H7. Notice that under the identification T ≃ RE/F Gm, θ|T is given by RE/F ι◦ηνm , where

ι is inversion on Gm and ηνm is as in §1.2.4. Thus, the action of θ on E× induced by the isomorphism

f̃C : T →Gm(E) is given by

θ(α)= νm(α)−1,
(
α ∈ E×)

.

Recall that ǭ is a non-square in kL. Therefore, kE = kL(
p
ǭ) and C̄ is a kF -basis for kE . For T as in §4.3, we

have T=T(kF )≃ k×
E , and the induced action of θ on k×

E is given by

θ(α) = ν̄m(α)−1 =α−qm
,

(
α ∈ k×

E

)
,

where q = qF . Consider 1−θ and Nθ restricted to T. Since ν̄m generates Gal(kE /kL), from above we have

1−θ =NkE /kL and Nθ = 1−ν̄m. By Hilbert’s Theorem 90, Nθ(T)= ker(1−θ), so that |T|= |kerNθ| |ker(1−θ)|.
This implies that (1−θ)(T)= kerNθ as well, so that we are now in the situation of §4.6.

5.2.6 A θ-stable Borel subgroup. In this section, we verify H8(1) (page 50). First, we will find a θ-

stable Borel subgroup of G which contains our θ-stable torus T. Let X = X∗(D) be the space of algebraic

characters on D. Denote the group of automorphisms of G which stabilize D by Aut(G/D), and let this

group act on X by

µα=α◦µ−1,
(
α ∈ X , µ ∈Aut(G/D)

)
.

This action preserves the set Φ⊂ X of roots of D. Indeed, take α ∈Φ and non-zero Y ∈ gα, for gα the root

space of α in g= Lie(G). For any x ∈G, we have dµ◦Adx =Adµ(x)◦dµ ([38, p. 73]), hence

x(dµ(Y )
)
= dµ

(
µ−1(x)Y

)
= dµ

(
α(µ−1(x))Y

)
= (µα)(x) dµ(Y ),

(
x ∈D

)
.

Therefore, dµ(Y ) 6= 0 lies in gµα, and so µ can be considered as an element of Aut(Φ). We have Aut(Φ) =
WG(D)o〈γo〉, where γo is the element of Aut(Φ) that sends each root to its negative. Let ∆ be the standard
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base of simple roots in Φ; that is, ∆ consists of all characters of D of the form (di) 7→ dk/dk+1, 1≤ k ≤ n−1.

Let wo ∈WG(D) be the element which sends (d1, . . . ,dn) ∈D to (dn, . . . ,d1). Then γ= woγo stabilizes ∆, and

any other base of simple roots is of the form w∆ for some w ∈WG(D), with stabilizer 〈wγw−1〉.

Let θ′ = IntL AC ◦θ◦IntR AC, so that θ′|D is induced by θ|T via conjugation by AC in G. For x ∈D, we have

θ′(x)= wθx−1. Since w2
θ
∈D, θ′|D is an involution.

Proposition 5.2.5. Φ has a base of simple roots which is stable under the action of θ′.

Proof. We need to find an element w ∈ WG(D) such that θ′ = wγw−1 as elements of Aut(Φ). Now, the

actions of γ and θ′ on D are given by

γ : (d1, . . . ,dn) 7→ (d−1
n , . . . ,d−1

1 ),

θ′ : (d1, . . . ,dn) 7→ (d−1
m+1, . . . ,d−1

n ,d−1
1 , . . . ,d−1

m ).

Therefore,

w : (d1, . . . ,dn) 7→ (dm, . . . ,d1,dm+1, . . . ,dn)

is the required element of WG(D).

Corollary 5.2.6. There exists a θ′-stable Borel subgroup B′ of G which contains D.

Proof. Let B′ = 〈D,1+gα〉α∈w∆
, with w as in the proof of the proposition. For any α ∈ w∆, we have

θ′
(
1+gα)

= 1+dθ′
(gα)

= 1+gθ′α,

where θ′α lies in w∆ as well. Thus B′ is θ′-stable.

Corollary 5.2.7. There exists a θ-stable Borel subgroup B of G which contains T.

Proof. Take B= (B′)AC .

We may repeat the above arguments for T and D = AC̄T in G to obtain a θ-stable Borel subgroup B ⊂G
which contains T. This completes the verification of H8(1).

5.2.7 Characters of T and Tθ. Here we verify H8(2) (page 50) and H10 (page 50). Again, write q = qF .

Fix a primitive (qn −1)th root of unity η ∈ C× and a generator ζ of k×
E . Any character of T ≃ k×

E is of the

form λℓ(ζ)= ηℓ for some integer 0≤ ℓ≤ qn −2. Since qn −1 factors as (qm +1)(qm −1), λℓ is θ-stable if and

only if ℓ= ℓ0(qm−1), for some 0≤ ℓ0 ≤ qm. To verify H8(2), we would like to find such a θ-stable character

λℓ which is in general position. Consider the case of ℓ0 = 1, so that ℓ= qm −1. Write λ= λℓ, and suppose

that j is an integer such that 1≤ j ≤ n and λ◦ ν̄ j =λ. Then,

1=λ(ζ)−1λ(ν̄ j(ζ))=λ(ζq j−1)= η(q j−1)(qm−1),

so we must have (qn −1)|(q j −1)(qm−1). Then (qm +1)|(q j −1), which is only possible for j = n. Therefore,

λ is in general position.

To verify H10, we have the following.
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Lemma 5.2.8. Let λ be a θ-stable element of Irr(T). If λ is in general position, then ResTTθ
λ is in general

position.

Proof. We shall prove the contrapositive instead. Write λ= λℓ with ℓ= ℓ0(qm −1), as above, and suppose

χℓ =ResTTθ
λℓ is not in general position. We may identify WGθ

(Tθ) with the subgroup

〈{ (i j)(n− i n− j) | 1≤ i < j ≤ m }∪ { (i n− i) | 1≤ i ≤ m }〉

of the symmetric group Sn. The only non-trivial element of this subgroup which commutes with (1 2 · · · n)

is (1 m+1)(2 m+2) · · · (m n), so we may identify WGθ
(Tθ)kF with 〈ν̄m〉. Now, (k×

E)θ = 〈ζqm−1〉. Therefore,

if χℓ is not in general position, we must have (ν̄
m
λℓ)(ζqm−1) = λℓ(ζqm−1), which can only occur if ℓ0 is 0 or

(qm +1)/2. Clearly λ0 is not in general position, and it is easy to show that every element of Gal(kE /kF )

stabilizes λℓ for ℓ= (qn −1)/2.

The following will be needed in the appendix.

Lemma 5.2.9. If λ ∈ Irr(T) is θ-stable, then λ|k×
L ≡ 1.

Proof. The element ζqm+1 ∈ k×
E is a generator of k×

L , and λ(ζqm+1)=λ(ζ)/λ(θ(ζ))−1 = 1.

5.2.8 The result. We may now apply the results of §4.6 to the present case. From (4.6.1), we have

Θπ+
(g(γθ)

)
= |〈θ〉| ε+ εθ λ

+(θ) d(π+
1 )

deg(σθ)

deg(σ)

(
µ̂Xθ

(logγ)+σ(̟F )−1 µ̂(g2Xθ)(logγ)
)
,

for any g ∈ G and any topologically unipotent element γ ∈ K0,θ such that γθ is G-regular in G+. Now, G
is kF -split and T is kF -minisotropic, so rkkF G = rkG = n and rkkF T = rk Z(G) = 1. Since n is even, we

have ε+ =−1. Similarly, Gθ also splits over kF and Tθ is also kF -minisotropic in Gθ. So rkkF Gθ = rkGθ =
m and rkkF Tθ = rk Z(Gθ)0. However, Z(Gθ)0 is trivial, so rkkF Tθ = 0. Therefore, we have εθ = (−1)m.

Substituting these and |〈θ〉| = 2 into the above expression, we have

Θπ+
(g(γθ)

)
= 2(−1)m+1λ+(θ) d(π+

1 )
deg(σθ)

deg(σ)

(
µ̂Xθ

(logγ)+σ(̟F )−1 µ̂(g2Xθ )(logγ)
)
.

Finally, from [15, Proposition 12.9], we have

deg(σθ)

deg(σ)
=

∥∥∥∥
GGθ

∥∥∥∥
−1

p′

∣∣∣∣
TTθ ∣∣∣∣=

qm −1
∏m

ℓ=1(q2ℓ−1 −1)
,

where q = qF .

We will now show that both terms in the above formula are necessary. That is, we will show that µ̂Xθ

and µ̂(g2Xθ) differ on (gθ)0+ . To do this, we will find a function f ∈ C∞
c (gθ) with supp f ⊆ (gθ)0+ such that

µ̂(gi Xθ )( f ) differ for i = 1,2 (recall that g1 = 1). For each i, let Oi =Gθ(g iXθ). Since µ̂(gi Xθ)( f )=µ(gi Xθ)( f̂ ) 6= 0

if and only if supp f̂ ∩Oi 6= ;, it suffices to find such an f such that supp f̂ ∩O1 6= ; but supp f̂ ∩O2 = ;.

In particular, consider f = ĉhk0,θ
. Then supp f ⊆ k1,θ ⊂ (gθ)0+ . Since we may assume that dY (see §4.5) is

normalized so that ˆ̂g(X ) = g(−X ) for any g ∈ C∞
c (gθ) and any X ∈ gθ, we have f̂ = chk0,θ

. We have now

reduced to showing that k0,θ∩O1 6= ; and k0,θ∩O2 =;.
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Because of the way that we have constructed T, we may embed t=Lie(T)≃ E in M2(L) by

α+β
p
ǫ 7→

(
α ǫβ

β α

)
,

(
α,β ∈ L,

)
.

To see how dθ acts on such an element, note that for α ∈ L×, we have θ(α) = α−1. From this, we may

conclude that J−1
0

tαJ0 = α for any α ∈ L, where we identify L with its image in Mm(F) afforded by the

F-basis B of L. Therefore,

dθ :

(
α ǫβ

β α

)
7→

(
−α ǫβ

β −α

)
,

and so tθ may be identified with the F-subspace L
p
ǫ of E. Choose β ∈ O

×
L such that β̄ generates k×

L , and

let Xθ ∈ tθ be the element corresponding to β
p
ǫ ∈ L

p
ǫ.

To proceed, we will need the language of buildings. In the interest of not burdening ourselves with a full

background discussion on the building of a connected, reductive, p-adic group, we refer the reader to the

survey in [39]. For details on Moy-Prasad filtrations, see [29]. Let B=B(G,F) and Bθ =B(Gθ ,F) be the

Bruhat-Tits buildings of G and Gθ , respectively. For x ∈B, Moy and Prasad define a filtration {gx,r}r∈R ofg, indexed by the real numbers. Each subset in the filtration is a lattice in g. For r ∈R and x ∈B, definegx,r+ =
⋃

s>r gx,s, gr =
⋃

x∈Bgx,r, gr+ =
⋃

s>r gs.

We have similar definitions for gθ relative to Bθ . As in [36], θ induces an action on B, and we may identifyBθ with the fixed points in B under this action. According to the definition in [4, §5], our given choice

of Xθ is a Tθ-good element of depth 0 in tθ . Since Xθ is regular, and the building of a torus is a point,

[26, Theorem 2.3.1] implies that there exists a unique xθ ∈Bθ such that Xθ ∈ (gθ)xθ ,0r (gθ)xθ ,0+ . Because

of our choice of β, we have (gθ)xθ ,0 = k0,θ and (gθ)xθ ,0+ = k1,θ . For any g ∈ Gθ , x ∈Bθ , and r ∈ R, we have
g(gθ)x,r = (gθ)g·x,r. The uniqueness of xθ implies that

(5.2.1) Gθ · xθ =
{

x ∈Bθ | (gθ)x,0∩O1 6= ;
}

.

In particular, xθ ∈Gθ ·xθ , so that (gθ)xθ ,0∩O1 6= ;. Now, g2Xθ is a g2Tθ-good element of depth 0 in Lie(g2Tθ)=
g2tθ, and g2 ·xθ is the unique element of Bθ such that g2Xθ ∈ (gθ)g2·xθ ,0r (gθ)g2·xθ ,0+ . Since Xθ and g2Xθ lie

in distinct Gθ-orbits, g2 · xθ cannot lie in Gθ · xθ . From (5.2.1), we may conclude that (gθ)xθ ,0 ∩O2 =;.

5.3 The unitary case

In this section, we examine the case of valθ = −1, [F : F0] = 2, and J an element of GLn(F) which is

Hermitian with respect to the non-trivial element τ of Gal(F/F0).

5.3.1 Restriction to a sub-case. The following result allows us to restrict our attention to the case

that n is odd and F/F0 is unramified. Let θ be as above, and write N = NF/F0 . For any matrix X with

entries in F, let ∗X = τ(tX ). Recall that a square matrix X with entries in F is called Hermitian (with

respect to τ) if ∗X = X .

Proposition 5.3.1. If F/F0 is ramified or n is even, then the depth-zero supercuspidal representations of

G constructed in §4.1 cannot be θ-stable.
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Proof. Let E, λ, and π be as in §4.1. Suppose that π is θ-stable. By Corollary 1.5.6 and the proof of Lemma

1.5.5, π must be unitary. Since conjugation by J preserves equivalence, we also have that π is stable

under the involution x 7→ ∗x−1. By [35, Lemma 2.1], there exists an automorphism τ′ of E which fixes F0,

stabilizes but does not fix F, has order 2, and satisfies λ ◦τ′ = λ−1. Therefore, we may apply the results

of [18, §2]. Let Eτ′ be the fixed field of τ′ in E. A Howe factorization of λ consists of quasi-characters

λ0 and λ1 of F and E, respectively, such that λ1 is generic over F and λ = λ1 (λ0 ◦NE/F ). In the notation

of loc. cit., we have E′ = Eτ′ , r = 1, E0 = F, and E1 = E. Since E/F is unramified and λ1 is generic, the

conductoral exponent f1 of λ1 must be 1. First suppose F/F0 is ramified. Then since E/F is unramified, we

must also have E/E′ ramified. But then [18, Lemma 2.1(i)] says that we must have f1 > 1, a contradiction.

On the other hand, if F/F0 is unramified, then the hypotheses of [18, Lemma 2.1(iv)] are satisfied, and so

n= [E : F] is odd.

In light of this result, we will assume for the remainder of this examination of the unitary case that F/F0

is unramified. As usual, we take a common uniformizer ̟=̟F =̟F0 .

For g ∈G, replacing θ by g−1 ·θ (see §4.1) is equivalent to replacing J by ∗g J g. The orbit of the Hermitian

matrix J under the action J 7→ ∗g J g is uniquely determined by the class of det J in F×
0 /NF× ([25]).

The following result allows us to restrict our attention to Hermitian J with det J ∈ NF×. Since F/F0 is

unramified, we may take {1,̟} as a set of representatives for F×
0 /NF×.

Proposition 5.3.2. Suppose n is odd. For i = 0,1, choose a Hermitian matrix Ji ∈ G such that det Ji ∈
̟iNF×, and define θi : x 7→ Ji

∗x−1 J−1
i . Then there exists g ∈G such that g ·θ1 ≡ θ0.

Proof. There exists g0 ∈ G such that ∗g0 J0 g0 = 1. Since n is odd and F/F0 is unramified, there exists

g1 ∈G such that ∗g1 J1 g1 =̟. Then both g−1
0 ·θ0 and g−1

1 ·θ1 are given by x 7→ ∗x−1. Take g = g0 g−1
1 .

5.3.2 τ-Hermitian forms on OF -modules. In this section, we prove a factorization result for linear

operators on an OF -module M, similar to the symplectic case (§5.2.1). Let M be a torsion-free, finitely

generated OF -module. As in §5.2.1, M is in fact a free OF -module. Suppose that M is of rank n. For this

discussion, we do not need to restrict to the case that n is odd. View τ as an automorphism of the ring

OF . A form f : M×M →OF on M is called τ-sesquilinear (henceforth sesquilinear) if it is linear in the first

term, respects addition in the second term, and satisfies f(x,αy)= τ(α)f(x, y) for all x, y ∈ M and α ∈OF . A

sesquilinear form f is called τ-Hermitian (henceforth Hermitian) if f(y,x)= τ
(f(x, y)

)
for all x, y ∈ M. If f is

Hermitian andB is an basis of M, then [f]B ∈Mn(OF ) is necessarily Hermitian. Again, we refer the reader

to [6] for the basic facts concerning forms on modules over rings. We now show that the characterization of

GLn(OF )-orbits of Hermitian elements in GLn(F) given in [19, §3] implies that all non-singular, Hermitian

forms on M are equivalent. Fix such a form f.
Theorem 5.3.3. There exists a basis B of M such that [f]B = 1n.

Proof. Let C be any basis of M, and let J = [f]C ∈ GLn(OF ). When F/F0 is unramified, [19] says that

the GLn(OF )-orbit of J in GLn(F), under the action k · J = ∗kJk, contains an element of block form

diag(̟a11m1 , . . . ,̟as 1ms ), where m1 + ·· · + ms is a partition of n by integers, and a1 > ·· · > as is a de-

creasing sequence of integers. However, since GLn(OF ) is stable under the map k 7→ ∗k, the orbit of J is
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entirely contained in GLn(OF ). The only element of the above form which lies in GLn(OF ) is 1n. Therefore,

there exists k ∈ GLn(OF ) such that ∗kJk = 1n. Let B be the basis of M such that k is the change of basis

matrix [id]CB.

Corollary 5.3.4. For any non-singular, Hermitian form g on M, there exists an invertible element A ∈
EndOF (M) such that g(x, y)= f(Ax, Ay) for all x, y ∈ M.

Proof. By the theorem, there exist bases B= {x1, . . . ,xn} and B′ = {x′1, . . . ,x′n} of M such thatf(xi,x j)=g(x′i,x
′
j)=





1, i = j,

0, otherwise.

So take A defined by Ax′i = xi for i = 1,2, . . . ,n, and extend linearly.

As in the symplectic case, we use this result to prove a factorization result for self-adjoint, invertible linear

operators on M, which will in turn be used to verify H6(2). Recall that given an element A ∈ EndOF (M),

there exists a unique adjoint operator fA ∈EndOF (M) such that f(Ax, y) = f(x,fAy), for all x, y ∈ M.

Corollary 5.3.5. Let S ∈ EndOF (M) be invertible and self-adjoint with respect to f. Then there exists an

invertible element A ∈EndOF (M) such that S = fAA.

Proof. Argue precisely as in the proof of Corollary 5.2.3, replacing the term “skew-symmetric” by “Hermi-

tian”.

5.3.3 Definition of θ. In light of Proposition 5.3.1, assume that n is odd and F/F0 is unramified. Let

E0 be an unramified, degree n extension of F0. Similarly to §5.2.2, let f be the trace form on E0. Choose

an OF0 -basis B = {ξ1, . . . ,ξn} of OE0 , and let J be the symmetric matrix [f]B ∈ Mn(OF0 ). Then, in fact,

J ∈ GLn(OF0 ), and J is Hermitian with det J ∈ NF×. Let θ be the F0-automorphism of G = RF/F0 GLn

given in the proof of Proposition 1.4.2(2). Since the automorphism IntR J of GLn is defined over F0,

the automorphisms (IntR J)Σ and ψτ of (GLn)Σ commute, and we may write θ = ητ ◦RF/F0 θ1, where θ1

is the F0-involution x 7→ J−1tx−1J of GLn. As well, ητ and RF/F0 θ1 commute and are both of order 2,

so we have dθ = 2. Write θ2 for the involution ψτ ◦ θΣ1 of GLΣ
n. Since GLn is defined over F0, we have

(GLn)Σ =GLn ×GLn, and θ2 is given by θ2(x, y)=
(
θ1(y),θ1(x)

)
, for x, y ∈GLn.

The restriction of f to OE0 induces a non-singular, symmetric kF0 -bilinear form f̄ on kE0 . In fact, f̄ is

just the trace form over kF0 , and
[f̄]B̄ = J̄. Therefore, if we also write θ1 for the kF0 -automorphism

x 7→ J̄−1tx−1 J̄ of GLn, the automorphism θ of G is given by θ = ητ̄ ◦RkF /kF0
θ1.

5.3.4 Verification of hypotheses.

H1, page 31. This is satisfied by the definition of θ above.

H2, page 32. We have dθ = 2, and we have assumed that p is odd.

H3, page 32. The subgroup of θ2-fixed points of GLΣ
n is (GLn)Σ

θ2
= {

(
x,θ1(x)

)
| x ∈ GLn }. Therefore,

(GLn)Σ
θ2

≃GLn, and so both (GLn)Σ
θ2

and Gθ are connected.
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H4, page 32 / H5, page 44. The maximal parahoric subgroup K0 =GLn(OF ) is θ-stable.

H6(1), page 48. Since we have assumed that n is odd, we have IθG/ZH = {1} and g1 = 1, so there is nothing

to verify.

H9, page 50. The same argument which showed that Gθ is connected may be applied to show that Gθ is

connected.

H11, page 51. Let U ⊂G be the subgroup of matrices g ∈G such that ∗gg = 1. By [19, Proposition 1(a)],

the quotient Ū = (U ∩ K0)/(U ∩ K1) may also be described as the subgroup of G consisting of elements

g ∈G such that ∗gg = 1, where now the map g 7→ ∗g is defined using τ̄. By Theorem 5.3.3, there exists an

element k ∈ K0 such that ∗kJk = 1. But then Gθ = kU, and K0,θ /K1,θ = (kU∩K0)/(kU∩K1)= k̄Ū. Since also
∗k̄ J̄ k̄ = 1, we have k̄Ū =Gθ.

H12, page 51. Since valθ =−1, we choose H as in §3.4. The group Gθ is a unitary group, and in this case

the groups Z0 = Z(H)θ , Z(Gθ), and Z(G)θ all coincide and are equal to (kerNF/F0 )∩O
×
F . In particular, the

quotient Z(Gθ)/Z0 is trivial.

H13, page 51. The group Gθ is isomorphic over F to GLn, hence split over F. For this case, we assume

[13, Restrictions 12.4.1], so that [13, Lemma 12.4.2] provides H13(1) and H13(2).

Remaining hypotheses. We leave H6(2), H7, H8 and H10 to be verified below.

5.3.5 A factorization result. To verify H6(2) (page 48), we may argue exactly as in the symplectic

case (§5.2.4). First, we prove a factorization result in K0.

Lemma 5.3.6. For any element k ∈ K0 such that θ(k) = k−1, there exists k1 ∈ K0 such that k = k1θ(k−1
1 ).

Proof. Argue exactly as in the proof of Lemma 5.2.4, but replace the terms “OF -bilinear” and “skew-

symmetric” by “sesquilinear” and “Hermitian”, respectively, and appeal to Corollary 5.3.5 instead of Corol-

lary 5.2.3.

The verification of H6(2) now proceeds exactly as in the symplectic case (§5.2.4), though here we need only

consider g1 = z1 = 1, since IθG/ZH = {1}.

5.3.6 A θ-stable elliptic torus. We now provide an OF -basis for OE to satisfy H7 (page 49), for E a

degree n unramified extension of F. As well, we will show that the resulting torus T of G satisfies the

hypothesis of §4.6.

Let E be the composite field FE0. Then we have the same towers of p-adic and residue fields as in

the unramified Galois case with d = 2 (see the diagram of §5.1.4), where the p-adic extensions are all

unramified. We may regard the generator τ of Gal(F/F0) as the restriction to F of the unique element of

Gal(E/F0) of order 2. In this case, since E0 is the unique unramified extension of F0 of degree n inside

E, E0 must be the fixed field of τ. Our construction will be a mix of the arguments of the Galois and

symplectic cases. In §5.3.3, we chose an OF0 -basis B of OE0 . Since E0/F0 is unramified, it is also an F0-

basis for E0. Moreover, since n is odd, it is also an F-basis for E. Let ν be the Frobenius automorphism of
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Gal(E/F0) (see §1.1.1). Then τ= νn, Gal(E/F)= 〈ν2〉, and Gal(E0/F0)= 〈ν2|E0〉. Similarly to the symplectic

case (§5.2.2), if we set AB to be the n×n matrix
(
ν2(i−1)(ξ j)

)
, then tABAB = J. Let D be the diagonal

torus in GLn, and let S = DAB ≃ RE/F Gm. Here, S is precisely the torus (also denoted S) constructed in

the Galois case (§5.1.4), with d = 2. By the same argument, S is defined over F0, and thus is τ-stable.

An easy calculation using J = tABAB shows that for x ∈ D, θ1(xAB ) = (xAB )−1, so that S is not only θ1-

stable, but θ1-split. We have now verified H7. As in §4.3, the torus T = RF/F0 S ⊂G is θ-stable. Under the

identification of G(F0) with G, the torus T = T(F0) is identified with the θ-stable torus S(F) ⊂ G. Since

S(F) is isomorphic to E× =Gm(E) via f̃B, we also have T ≃ E×. Let ι be the inversion homomorphism of S

(S is abelian). Since θ1|S = ι, we have θ|T = ητ ◦RF/F0 ι. Then, just as in the symplectic case (§5.2.2), the

induced action of θ on E× is given by

θ(α)= τ(α)−1,
(
α ∈ E×)

.

In contrast to the symplectic case, however, note that here τ is not an element of Gal(E/F), but rather an

element of Gal(E/F0).

For T as in §4.3, we have T=T(kF )≃ k×
E , and the induced action of θ on k×

E is given by

θ(α) = τ̄(α)−1 =α−qn
,

(
α ∈ k×

E

)
,

where q = qF0 . The identical argument as in the symplectic case (§5.2.2), with kE0 playing the role of kL ,

shows that (1−θ)(T)= kerNθ. This will put us in the situation of §4.6.

5.3.7 A θ-stable Borel subgroup. In this section, we verify H8(1) (page 50). First, we construct a

θ-stable Borel subgroup of G which contains our θ-stable torus T. As in the Galois case, this is easy to do,

and it suffices to find a θ2-stable Borel subgroup of (GLn)Σ which contains SΣ.

Let C⊃D be the pair in X consisting of the Borel subgroup of upper-triangular matrices and the diagonal

torus. Arguing precisely as in the Galois case (§5.1.5), any Borel subgroup B⊂ (GLn)Σ containing SΣ is of

the form (CΣ)xAΣB =Cx1 AB×Cx2AB , for some x = (x1,x2) ∈ N(GLn)Σ (DΣ). Here, AΣB is the element (AB, AB) ∈
(GLn)Σ. Choose x1 = 1. Since S is θ1-stable, D is stable under the automorphism θ′1 = IntL AB◦θ1◦IntR AB.

Let x2 ∈ NGLn (D) such that θ1(C)=Cx2 . Then the resulting Borel subgroup is B=CAB ×θ1(CAB ). This is

clearly θ2-stable, since θ1 has order 2.

Once more, the identical argument over the residue fields yields a θ-stable Borel subgroup of G which

contains T, verifying H8(1).

5.3.8 Characters of T and Tθ. Here we verify H8(2) (page 50) and H10 (page 50). Again, write q = qF0 .

Fix a primitive
(
q2n −1

)th
root of unity η ∈ C× and a generator ζ of k×

E . Any character of T ≃ k×
E is of the

form λℓ(ζ) = ηℓ, for some integer 0 ≤ ℓ ≤ q2n −2. Comparing with the symplectic case (§5.2.7), we have

the same situation, where here the tower of fields kF0 ⊂ kE0 ⊂ kE takes the place of the tower of fields

kF ⊂ kL ⊂ kE in the symplectic case. Therefore, λℓ is θ-stable if and only if ℓ = ℓ0(qn − 1), for some

0≤ ℓ0 ≤ qn. To verify H8(2), we note that there exists at least one such θ-stable character which is also in

general position. In particular, as in the symplectic case, we may choose ℓ0 = 1.
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Before we verify H10, we will show that Tθ is non-degenerate in Gθ in the sense of [8, Proposition 3.6.1].

Now,Gθ is isomorphic over kF toGLn, via the composition of the mapG→GLΣn which definesGwith pro-

jection GLΣn →GLn onto the first component of GLΣn. Since this same map also induces the isomorphismG(kF0 ) ≃GLn(kF ), to verify (iii) of [8, Proposition 3.6.1] it suffices to show that Tθ contains an element

with distinct eigenvalues as an element of GLn(kF ). Under the identification T ≃ k×
E , it suffices to show

that (k×
E)θ contains an element whose Gal(kE /kF )-conjugates are all distinct. Given our generator ζ of k×

E ,

ζqn−1 is a generator of (k×
E)θ. Since gcd(n,2) = 1, it follows that ζqn−1 is the required element of Tθ.

As mentioned in §5.3.6, we are in the situation of §4.6. Therefore, instead of H10, we need only show

that there exists a character of Tθ which is in general position with respect to WGθ
(Tθ)kF0 . Since Tθ is

non-degenerate in Gθ, by [8, Corollary 3.6.5] we have WGθ
(Tθ)kF0 ≃ NGθ

(Tθ)/Tθ. However, this last group

is trivial, hence every character of Tθ is in general position.

5.3.9 The result. We are now in the situation of §4.6. Therefore, from (4.6.1) we have

Θπ+
(g(γθ)

)
= 2ε+ εθ λ

+(θ) d(π+
1 )

deg(σθ)

deg(σ)
µ̂Xθ

(logγ)

for any g ∈G and any topologically unipotent element γ ∈ K0,θ such that γθ is G-regular in G+. From [15,

Proposition 12.9], we have

deg(σθ)

deg(σ)
=

∥∥∥∥
GGθ

∥∥∥∥
−1

p′

∣∣∣∣
TTθ ∣∣∣∣=

(
qn −1

∏n
ℓ=1(qn+i −1)

)(∏(n+1)/2
ℓ=1

q2ℓ−1+1

q2ℓ−1−1

)
,

where q = qF0 .
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A. A convergence counterexample

As discussed in §3.4, there exist cases where

(A.1) Θ(ϕ, g)=
∫

Z′\G+

∫

K
ϕ

(xkg
)
dk dẋ

fails to converge for certain quasi-regular (even regular) g ∈ G+, where ϕ is a sum of matrix coefficients

of the extension to G+ of an irreducible, supercuspidal representation π of G, Z′ is an appropriate closed

subgroup of Z(G+), and K is a compact, open subgroup of G+ with normalized Haar measure dk. In this

appendix we provide such an example.

A.1 Definition of θ. Let p be a prime such that p ≡ 3 mod 4, and let F be a finite extension of Qp.

Assume that −1 is non-square in k×
F (for example, we could take F =Qp). Write q = qF = |kF |. Let G=GL2,

G = G(F), and Z = Z(G). Use the setup and notation of §5.2.2. Since L = F in the present case, we may

choose B = {1}, so that for x ∈ G, θ(x) = J−1 tx−1 J, where J is the skew-symmetric matrix
(

0 1
−1 0

)
. Notice

that θ(x) = (detx)−1x for any x ∈ G. It follows that Gθ = SL2 and Z(G+) = {±1}. It will make no difference

to the convergence (or lack thereof) of (A.1) whether we choose Z′ = Z(G+) or Z′ = {1}, so take the latter.

Recall that K0 =GL2(OF ) and K1 = 1+M2(PF ). These are θ-stable subgroups of G, and the automorphism

of G= K0/K1 ≃GL2(kF ) = GL(2, q) induced by θ (also denoted θ) has the same form as above. Identify G
and GL(2, q).

A.2 An elliptic θ-stable torus. Continuing as in §5.2.5, we may choose ǫ=−1. Then E = F(
p
−1), and

T=
{

γ(a,b) =
(
a −b

b a

) ∣∣∣∣∣ a,b ∈ F̄, detγ(a,b) 6= 0

}

is θ-stable. Let a,b ∈ F such that γ(a,b) ∈ T. Note that γ(a,b) is θ-fixed if and only if detγ(a,b) = a2+b2 = 1.

The isomorphism f̃C : T → E× is given by γ(a,b) 7→ a+b
p
−1, so that the induced action of θ on E× is

θ(a+b
p
−1)= (a−b

p
−1)−1.

We identify T and E× via f̃C. Now, ǭ = −1 and kE ≃ kF (
p
−1), and we have analogous definitions and

properties for kE and T over kF . Again, we identify T and k×
E via the map f̃C̄.

A.3 Regular elements. We refer to §1.3.2. Let g=M2(F). An element g ∈G is regular if and only if its

eigenvalues are distinct. Consider the notion of regular elements in G+ determined by the discriminant

functions D0,D1 of [10]. We have

D1(gθ) = 2D0(g), D0(gθ(g)) = (tr g)2(det g)−1 D0(g),
(
g ∈G

)
.

Therefore, for g ∈G, gθ is regular if and only if g is regular, and G-regular if and only if g is regular and

has non-zero trace. We will be interested in certain regular elements of our torus T. Suppose g = γ(a,b) ∈ T
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for some a,b ∈ F. The eigenvalues of g are a± b
p
−1, so g is regular if and only if b 6= 0. Suppose ab 6= 0.

Then tr g is also non-zero, and so gθ is regular and G-regular. By Lemma 1.3.14, gθ is then also quasi-

regular. Without appealing to this lemma, one can calculate directly that ker(Ad(gθ)−1) is spanned over

F by J in this case.

A.4 Conjugacy classes in G. There are q−1 central conjugacy classes in G. We may choose represen-

tatives for the non-central conjugacy classes of G as follows ([5]). There are q−1 classes represented by

the elements in the set
{ (

α 1
0 α

) ∣∣ α ∈ k×
F

}
, (q−1)(q−2)/2 classes doubly represented by the elements in the

set {diag(α,β) | α,β ∈ k×
F , α 6= β }, where diag(β,α) is in the same class as diag(α,β), and q(q−1)/2 classes

doubly represented by the non-central elements of T, where γ(α,β) is in the same class as γ(α,−β) for

α,β ∈ kF with β 6= 0. In total, there are q2 −1 classes.

We will also find it useful to parameterize non-central classes through the following easily verified propo-

sition.

Proposition A.7. The class of a non-central element x ∈G is uniquely determined by the pair (det x,tr x).

A.5 A character of T and Deligne-Lusztig induction. Moving now to §5.2.7, let ı =
p
−1 ∈ C×, and

take η= exp
(
2πı/(q2 −1)

)
. Let ζ be a generator of k×

E , and let λ= λq−1, so that λ(ζ)= ηq−1. Then λ is both

θ-stable and in general position. Let χ be the irreducible character −RGT λ ofG. We will be interested in the

values of χ on non-central elements of G with square determinant and zero trace. Examining our list of

conjugacy class representatives in §A.4, we see that the only classes of such elements are those containing

γ(0,β) for some β ∈ k×
F . Under the identification T≃ k×

E , we have γ(0,±β)↔±β
p
−1. Let c0 =λ(

p
−1). Then

by Lemma 5.2.9, λ(−1) = 1, and so c0 =±1. Moreover, λ(±β
p
−1) = c0 for any β ∈ k×

F . From the character

table given in [5, Chapter 16, Exercise 18], we now have χ
(
γ(0,±β)

)
=−2c0 for any β ∈ k×

F .

A.6 Definition of π. Let σ be a representation of G with character χ. Using Lemma 5.2.9, from the

character table given in [5, Chapter 16, Exercise 18] we see that Z(G) ⊆ kerσ. Since θ(x) = (det x)−1x for

any x ∈G, it follows that σ◦θ =σ. Inflate σ to K0 and extend to ZK0 by setting σ(̟F ) = 1. This extension

also satisfies σ◦θ =σ, so we may extend σ to a representation σ+ of (ZK0)+ by setting σ+(θ) = 1. Let χσ+

be the character of σ+, and let χ̇σ+ be its extension by zero to G+.

Let π= c-IndG
ZK0

σ, an irreducible, supercuspidal representation of G. Define π+ using Aπ =Φ(σ+(θ)), for

Φ as in Proposition 1.5.2. Then π+ ≃ c-IndG+

(ZK0)+ σ
+ (Proposition 1.5.4), and so χ̇σ+ is a sum of matrix

coefficients of π+.

A.7 The inner integral. In (A.1), we will take K = K0, and consider g 7→Θ(χ̇σ+ , gθ) as a function on

G. Fix g ∈G, and define

fg : G+ →C, x 7→
∫

K0

χ̇σ+
(xk(gθ)

)
dk.

Notice that fg is invariant under left-translation by elements of (ZK0)+ and under right-translation by

elements of K0. Since K0 is θ-stable, through a change of variables in the integral above we obtain

fg(xθ) = fθ(g)(x) for any x ∈ G, so we will concentrate on the properties of fg|G. Let G act on itself by
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θ-twisted conjugation. That is, for x, y ∈ G, let x · y = xyθ(x−1). Since σ+(hθ) = σ(h) for any h ∈ ZK0, we

have

fg(x)=
∫

K0

χ̇σ

(
(xk) · g

)
dk,

(
x ∈G

)
.(A.2)

The integrand above is zero unless its argument lies in ZK0. LetKg be the set-valued function on G given

by Kg(x)= { k ∈ K0 | (xk) · g ∈ ZK0 } ,
(
x ∈G

)
,

and write

suppKg = { x ∈G |Kg(x) 6= ; }.

Clearly, fg(x) = 0 for x ∈Gr suppKg, and fg is identically zero on G if suppKg is empty. So suppose it is

not empty. The following formulas will allow us to determine fg|G completely in some cases. We have

det
(
(xk) · g

)
= (detk)2(det x)2(det g)(A.3)

=̟
2valF (det x)
F ̟

valF (det g)
F (detk)2(

intF (det x)
)2(

intF (det g)
)
,

tr
(
(xk) · g

)
= (det x)(detk)(tr g)(A.4)

=̟
valF (det x)
F (detk)

(
intF (det x)

)
(tr g).

Lemma A.1. Let x ∈ suppKg, k ∈Kg(x), and write y= (xk) · g. Then,

(1) valF (det g) is even;

(2) y0 =̟ℓ
F y ∈ K0 for ℓ=−valF (det x)− 1

2 valF (det g);

(3) the image of (det y0)
(
intF (det g)

)−1 in k×
F is square;

(4) ̟
−valF (det g)/2
F tr g ∈OF ; and

(5) tr y0 ≡ 0 mod PF if and only if ̟−valF (det g)/2
F tr g ≡ 0 mod PF .

Proof. We prove (1) and (2) simultaneously. Since y ∈ ZK0, y0 = ̟ℓ
F y ∈ K0 for some integer ℓ. But from

(A.3) we must have

2ℓ+2valF (det x)+valF (det g)= 0,

which is only possible if valF (det g) is even and ℓ=−valF (det x)− 1
2 valF (det g). Again from (A.3), we now

have that (det y0)
(
intF (det g)

)−1 = (detk)2(
intF (det x)

)2, and (3) follows. Statements (4) and (5) are obvious

from (A.4) and the formula for ℓ in (2).

Proposition A.2. If the image of intF (det g) is square in k×
F and ̟

−valF (det g)/2
F (tr g)≡ 0 mod PF , then

fg(x)=−2 c0 meas(Kg(x),dk),
(
x ∈ suppKg

)
.

Proof. Let x, k, y and y0 be as in Lemma A.1. Combining our hypotheses on g with statements (3) and

(5) of Lemma A.1, we see that the image of y0 in G has square determinant and zero trace. From the

discussion in §A.5, we have χσ(y)=−2c0, and the result now follows.
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A.8 Divergence. Finally, we will exploit Proposition A.2 to make Θ(χ̇σ+ , gθ) diverge for certain g ∈G.

For the following, use the convention valF (0)=∞.

Lemma A.3. Suppose a,b are elements of F such that b 6= 0 and valF (a) ≥ valF (b). Then for g = γ(a,b),Kg(1)= K0.

Proof. We have det g = a2 + b2, and claim that valF (det g) = 2valF (b). If valF (a) > valF (b), this is imme-

diate. If valF (a) = valF (b) 6= ∞, then since −1 is non-square in k×
F , we must have intF (a)2 + intF (b)2 6≡ 0

mod PF . Therefore, there is no cancellation in the sum a2 + b2, so that valF (det g) = 2valF (b). Suppose

k ∈ K0, and set y0 =̟
−valF (b)
F (k · g). Then one may check directly that y0 ∈M2(OF ), and from (A.3) we have

det y0 ∈O
×
F .

Proposition A.4. Let a, b, and g be as in Lemma A.3, but assume that valF (a)	 valF (b). Then Θ(χ̇σ+ , gθ)

diverges. In particular, there exists a regular element g ∈ G for which gθ is regular, G-regular, and quasi-

regular in G+, and Θ(χ̇σ+ , gθ) diverges.

Proof. As in the proof of Lemma A.3, valF (det g) = 2valF (b). With the added restriction valF (a)	 valF (b),

we have intF (det g) ≡ (intF (b))2 mod PF , so that the image of intF (det g) in k×
F is square. We also have

valF (̟−valF (det g)/2
F tr g)= valF (a)−valF (b) > 0.

Since fg(xθ) = fθ(g)(x)= fg(x) for any x ∈G, fg is completely determined by Proposition A.2. In particular,

fg is real-valued and either non-negative or non-positive. It follows that Θ(χ̇σ+ , gθ) is also real-valued.

From Lemma A.3, Kg(1)= K0, so that fg(1)=−2c0. But fg is invariant under left-translation by elements

of (ZK0)+, so fg(x)=−2c0 for any x ∈ (ZK0)+. Recall that we have chosen Z′ = {1}. Let dx be Haar measure

on G+, normalized so that meas(K0,dx) = 1. Then,

∣∣Θ(χ̇σ+ , gθ)
∣∣
∞ =

∣∣∣∣
∫

G+
fg(x)dx

∣∣∣∣
∞

≥
∣∣∣∣
∫

G+
ch(ZK0)+ (x) fg(x)dx

∣∣∣∣
∞

= 2 meas((ZK0)+,dx),

where |·|∞ is absolute value on R. However, by the invariance of dx we have

meas((ZK0)+,dx) = 2 meas(ZK0,dx) = 2
∑

j∈Zmeas(̟ j
F K0,dx) = 2

∑
j∈Z1,

which proves the first assertion. Concerning the second assertion on existence, we only need add the

restriction that a 6= 0.

Remark. If we are interested in finding an element g ∈G as in Proposition A.4 that is also θ-fixed, we may

appeal to Hensel’s Lemma. Suppose a is a non-zero element of PF , and let f (X )= X2 +a2 −1. Then

∣∣ f (1+a′)
∣∣
F < 1=

∣∣ f ′(1+a′)
∣∣2
F ,

(
a′ ∈PF

)
,

where f ′ is the formal derivative of f . Therefore, by Hensel’s Lemma there exists a root b of f in OF . Note

that b must in fact lie in O
×
F , so that valF (a)	 valF (b). Now, f (b) = 0 says that detγ(a,b) = a2 + b2 = 1, so

that g = γ(a,b) is the required θ-fixed element of G.
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