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Let F be a finite extension of Qp, for p an odd prime. Given an automorphism 6 of G = GL,(F) of finite
order, any irreducible, 0-stable representation 7 of G may be extended to an irreducible representation 7t
of Gt =G % (0). If 7 is supercuspidal, we obtain a Harish-Chandra-type integral formula for the character
©,+ of 17, expressed on sufficiently regular elements of G*. In the case that 7 is a depth-zero supercuspi-
dal representation of G, we use this integral formula to compare values of ©,+ on a neighbourhood of 0 in
G™ to a (finite) linear combination of characters of depth-zero supercuspidal representations of the group
Gy of O-fixed points in G. Then, using properties of the characters in this linear combination, we compare

O,+ to a linear combination of Fourier transforms of orbital integrals on the Lie algebra Lie(Gg) of Gg.
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0. INTRODUCTION

Let F be a finite extension of Q,, for p an odd prime. Let Gr be the ring of integers in F, and % its
prime ideal. Let G be the group of F-rational points of a connected, reductive linear algebraic group which
is defined over F. Let C2°(G) be the space of complex-valued functions on G which are locally constant
and compactly supported. Let (7,V) be a smooth (complex) representation of G. For any f € C*(G),
define an operator n(f) on V by n(f)v = [ f(g)n(g)vd g, veV, where dg is Haar measure on G. Suppose
7 is admissible. That is, for any compact, open subgroup K c G, the subspace VX c V of vectors fixed
by all elements of K is finite-dimensional. Then each operator 7(f) is of trace class, and we define the
character of 7 to be the distribution on G (i.e., the linear functional on C°(®)) given by O,(f) = tr(n(f )),
for f € C°(G). By a result of Harish-Chandra ([21]), O is represented by a function on G, also denoted
Oy, which is locally constant on the dense, open subset of regular elements Grez = G and locally integrable
on G. That is, O,(f) = J; [()Ox(g)d g for any f € CX(G).

Let g be the Lie algebra of G, and let b be an AdG-invariant, symmetric, bilinear form on g. Fix a non-
trivial additive character A of F with conductor Zr. The Fourier transform of an element f € C2°(g) is
defined by f(X) = fg f(Y)A(b(X,Y)) dY, X € g. For any X € g, the homogeneous space G/Cg(X) carries a
unique (up to a constant) invariant measure dx. The orbital integral associated to the G-orbit of X in g
is the distribution defined by ux(f) = [g/c,x) f(X)d%, f € C°(g). Define the Fourier transform of ux by
0x(f) = ux(f). Harish-Chandra also showed that the distribution fix is represented by a locally integrable
function on g ([20]), also denoted [1x.

In the early 1970s, Harish-Chandra ([20]) proved a local character expansion, given as follows. Let y be a
semisimple element of G. Let Gy be the centralizer of y in G, and let g, be the Lie algebra of Gy. Then for

all regular elements X € g, which are sufficiently near 0,

(0.0.1) O (y(expX)) = ZOEOY(O) co(m) foX).

Here, exp is the exponential map or a suitable replacement (such as a truncated exponential map), O,(0)
is the set of nilpotent G-orbits in g,, each c9(x) is a complex number, and fiy is the Fourier transform
(relative to g,) of the orbital integral over O. This expansion was a generalization of a result of Howe ([23]),
who proved (0.0.1) in the case that G = GL,(F) and y = 1. Later, Clozel extended Harish-Chandra’s result
to non-connected groups in [10]. When y = 1, the results of DeBacker in [11] give an explicit neighbourhood
of 0 in g (which depends on the depth of the representation x) on which (0.0.1) is valid. Here, DeBacker
works in the connected case, but remarks that his results are also valid in the non-connected case. In [2],
Adler and Korman generalize DeBacker’s result, providing an explicit domain on which (0.0.1) is valid for

more general semisimple y € G, and explicitly allowing the non-connected case.

It is currently not possible to obtain an explicit relation between characters and orbital integrals from
(0.0.1), as it is not known in general how to compute the coefficients ¢« (7). However, for some represen-
tations, it is possible to express the values of ©, o exp near 0 as an explicit linear combination of Fourier
transforms of orbital integrals involving regular G-orbits in g which depend on intrinsic properties of the

data used in the construction of the representation 7#. For example, in the 1990s, it was discovered (see
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Murnaghan’s work in [31, 32, 33, 34]) that the characters of many irreducible, supercuspidal represen-
tations of classical p-adic groups exhibit the following behaviour. There exists a regular elliptic G-orbit
Oy in g such that, sufficiently near 0, ©, oexp coincides with d(7)¢, . Here, d(n) is the formal degree
of m, and the orbit O, depends on the specific K-types which are contained in 7 (that is, the pairs (g,K)
where o is an irreducible representation of a compact, open subgroup K of G such that 7|K contains o).
More recently, Adler and DeBacker ([1]) have determined explicit neighbourhoods of 0 on which such a
relation holds for supercuspidal representations of general linear groups, and also for tame, very super-
cuspidal representations of more general reductive groups. In [26] and [27], subject to some hypotheses
on G, Kim and Murnaghan obtain similar results for many irreducible, admissible representations. They
express O, oexp as a linear combination of Fourier transforms of regular orbital integrals on a specific
neighbourhood of 0, where the orbital integrals which appear are again determined by the K-types which
occur in 7. As such, expressions for @, of this type can be used to distinguish properties of individual

representations, in ways in which the local character expansion generally cannot be used.

In recent work ([13]), DeBacker and Reeder explicitly construct depth-zero supercuspidal “L-packets” for
connected, reductive groups which are quasi-split over F and split over an unramified extension of F'.
Each L-packet corresponds to a tame Langlands parameter which is in “general position”, and each repre-
sentation in a given L-packet is induced from a Deligne-Lusztig representation associated to a depth-zero
character of an unramified, elliptic maximal torus in G. By making extensive use of Deligne-Lusztig the-
ory, they derive expressions for the characters of the depth-zero supercuspidal representations in their
L-packets on various large G-domains. Each such expression is an explicit linear combination of Fourier
transforms of orbital integrals. Obtaining such character formulas was an essential step in proving the
stability of a certain sum of the characters of the representations in the depth-zero L-packets they con-

struct, an important conjectured property of L-packets.

Apart from the papers of Clozel ([10]), DeBacker ([11]), and Adler and Korman ([2]), the above mentioned
results deal with the connected case. Suppose that G is a non-connected, reductive p-adic group, 7 is an
irreducible, admissible representation of G whose restriction to the identity component of G is irreducible
and supercuspidal, and y is a semisimple element of G which does not lie in the identity component of G.
In this thesis, we ask whether the restriction of @, to a neighbourhood of y can be expressed as an explicit
linear combination of Fourier transforms of orbital integrals, where the associated orbits lie in the Lie
algebra of the centralizer of y in G and are defined in terms of specific data related to the representation
7. In particular, we consider the case of G = GL,(F) x (0), for 6 a finite-order automorphism of GL, (F).
We prove such a relation on elements of the form g x 6, near 1 x 6, under certain hypotheses on 6 and the
structure of GL,(F) relative to . In general, if G = G° x (8), for G° the group of F-rational points of a
connected, reductive F-group, and 6 a finite-order automorphism of G°, then the distribution ©®, can be
expressed as a sum of the (6%, 1)-twisted characters of 7|G° (see [28]), 0 < i < [(0)|—1. Here, the 1 in “(#?,1)-
twisted” represents the trivial quasi-character of G°. In light of this, the type of relation between O, and
Fourier transforms of orbital integrals developed here is of interest for the theory of twisted endoscopy,
which studies those representations 7° of G° which satisfy 7°08 = w ® 7°, for some quasi-character w
of 79. In analogue with the theory of standard endoscopy, there are expected identities between twisted

characters of G and stable characters of an endoscopic group for (G°,0,w).
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We will assume in this thesis that  may be realized as the restriction to G(Fy) of an Fy-automorphism of
the restriction of scalars G = Rp/r, GL,, where Fy is a subfield of F' such that F/F is cyclic. Under this
assumption, we may (and do) identify G(Fy) with GL,,(F'). We note here one important complication that
arises in the non-connected case. The existence of a 6-stable pair B o T consisting of a Borel subgroup B
and a maximal, unramified, Fo-minisotropic F-torus T of G is essential to our constructions. In particular,
our main result concerns the character ©,, where 7|GL, (F) is a depth-zero supercuspidal representation
which is compactly induced from a Deligne-Lusztig representation associated to a depth-zero character
of T'=T(Fy), for such a 0-stable torus T. Before relating ©, to Fourier transforms of orbital integrals,
we first express it as a linear combination of characters of representations of the group of fixed points Gg
in G. These representations are compactly induced from Deligne-Lusztig representations associated to
depth-zero characters of G-conjugates of the group of fixed points Tg in T'. However, this construction fails
if any of the associated G-conjugates of T are not contained in 0-stable Borel subgroups, as then each such

conjugate of Ty is not the group of Fy-points of a maximal torus of Gy (see Corollary 1.3.3).

It should be possible to extend the arguments of this thesis to obtain similar results for twisted characters
more generally. In particular, the Deligne-Lusztig theory of Digne and Michel ([14]) used in Chapter 2 is
developed for general non-connected, reductive groups over finite fields. As noted in [7], the arguments of
Chapter 3 should be applicable to groups other than general linear groups. As well, the proofs of the main
results in §§4.4-4.6 are largely independent of the fact that we are working in a general linear group, once
the hypotheses of the preceding sections and chapters are assumed. Finally, it may be possible to modify

the current proofs to remove the reliance on some of the hypotheses.

Statement of results

Rather than state the general results of this thesis, we illustrate them by giving here an outline of a

specific case. The details of this case appear in §5.1.

Suppose Fy is a subfield of F' of finite index d such that F/Fy is unramified. Let 6 be a generator of
Gal(F/Fy). Letting 0 act on the entries of elements of G = GL,(F') defines an automorphism of G. We may
realize this automorphism as the restriction to G(Fy) of an Fy-automorphism of the restriction of scalars
G = Rp/r, GL,, identifying G(Fo) with G. The subgroups Ko = GL,(0Of) and K1 = 1+ M,(Zr) of G are
O-stable, so 0 induces an automorphism of G = Ko/K1 = GL,,(kFr), where kp is the residue field of F. This

automorphism is given by letting 0, as an element of Gal(kr/kF,), act on the entries of elements of G.

Suppose 7 is a O-stable, irreducible, supercuspidal representation of G. By choosing an intertwining
operator A, € Homg (7,7 0 0) with Ag =1, we may extend 7 to an irreducible representation nt of Gt =
G % (0) by setting 7*(0) = A,. We first show (Corollary 3.5.5) that for elements g € G* which commute
with 0 and satisfy a regularity condition, the value of the character ©,+ of 7t at g can be expressed by the

Harish-Chandra-type integral formula

d(x™) xk .
(0.0.2) ®,-(g) = [F: Fo] f o(tg)dkds.
o(1) Jz\6 Ik,

Here, d% is normalized Haar measure on Ky, Zy is the group of 0-fixed points in the centre Z of G, dx is

invariant measure on Zy\G, d(n*) is the formal degree of n* relative to d:x, and ¢ is a matrix coefficient
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of m* satisfying (1) # 0.

Suppose 7 = c-IndgKO o, for 0 a O-stable, irreducible (hence finite-dimensional) representation of ZK
which is trivial on K; and whose restriction to Ky is cuspidal as a representation of G. Then x is an irre-
ducible, admissible, 0-stable, depth-zero supercuspidal representation of G. If we choose an intertwining
operator A, € Homzg, (0,0 00) in a compatible way, then n* is equivalent to c-Ind(GZ+KO)+ o* (Proposition
1.5.4).

Assume that the character y,+ of o* satisfies
Yo+ (k) = £ (RS AY)(%0), (k € Ko),

where £ is the image of £ in G, ¢ = +1, T is the group of kp,-points of a 6-stable, k,-minisotropic maximal
torus T of G = Ripikr, GL,, A* is a one-dimensional character of T* =T x (0) such that A*|T is in general
position, and R1@:/1+ is the Deligne-Lusztig virtual character of Gt = G x (0) defined by Digne and Michel
([14]). If y € Ky is 0-fixed and topologically unipotent, then using a formula of [14] we show (Theorem
2.2.9) that

0.0.3) RE )G =2*0)Q5" (7),

where Gy is the group of 0-fixed points in G, Tg =T NGy, and QTC; % is a Green function associated to Ty < Gg.
In this way, we may compare the character y,+ on such elements y6 to the character of a representation
og of Zg(Kp)y which is cuspidal as a representation of Gg. Let y,+ be the extension by zero of y,+ to all of
G*. Then, taking ¢ = y,+ in (0.0.2), we use (0.0.3) to show that

deg(og) d(m)

_ . + -
(0.0.4) On+(y0) =[F: Fol e+ 17(0) deg(o) d(mg)

®7[9 (Y);

where g = c-Inng(KO)g g, and €, = +1 (see Theorem 4.4.2 and §4.6 for the general statement). Finally, we
may use a result of [12] to obtain a 6-fixed, regular semisimple element Xy € M, (OF) such that ©,(y) =
d(mg) fix,(y — 1), where ux, is the orbital integral on Lie(Gg) associated to Xy, and fix, is its Fourier

transform. Thus, (0.0.4) becomes

_ . + deg(Cfe) ~ _
(0.0.5) O,+(y0)=[F: Foles A (9)—deg(a) d(m) x,(y—1)

(see Theorem 4.5.2 and §4.6 for the general result).

For other types of automorphisms, we follow the same basic procedure as above. However, the situation
is complicated by the fact that the integral formula analogous to (0.0.2) may not converge. In such cases,
we work around this by first restricting n* to an appropriate subgroup H* of G*. This restriction is
not irreducible, and each irreducible component may make a contribution to ©,+. Therefore, in general
the result analogous to (0.0.5) will involve a (finite) linear combination of Fourier transforms of orbital

integrals.

Outline

Chapter 1 is devoted to setting up notation and discussing basic concepts. By a p-adic field, we will always

mean a non-archimedean local field of characteristic zero. In §1.2, we discuss the concrete realization
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of restriction of the ground field that we use. In §1.3, we discuss some properties of quasi-semisimple
automorphisms of a connected reductive group G, defined over any perfect field F. In our discussion of
regular elements, after Lemma 1.3.12 we restrict to the case that G = Rp/r, GL, for F/Fy a finite, abelian
extension of p-adic fields. In §1.4, we state O’Meara’s classification of the automorphisms of GL,(F) (as
given in [17]), and based on it give a preliminary restriction on the types of automorphisms of R/, GL,
which we will consider. In §1.5, we discuss representations of a totally disconnected, locally compact
group G which are stable under some finite-order automorphism 6 of G. For such a representation 7
of G, we describe how to extend 7 to G* = G x (0), and state some properties of this extension. In our
discussion of unitary twists of stable representations in §1.5.3, we restrict to considering only certain

types of automorphisms of G = GL,(F), for F' a p-adic field.

Chapter 2 discusses the Deligne-Lusztig theory for non-connected, reductive algebraic groups over a finite
field, as developed by Digne and Michel ([14]). In particular, for a non-connected group whose quotient
modulo its identity component is cyclic and consists of semisimple elements, we extract from this theory
simplified formulas for Deligne-Lusztig characters on certain types of elements in the set of rational points

of connected components away from the identity.

In Chapter 3, we follow the method used by Bushnell and Henniart ([7]) to develop a Harish-Chandra-
type integral formula for the character ©,+ of a representation n* of G* = G % (0). From this point on,
we only consider the case that G = GL,(F), for F a p-adic field, and the automorphism 6 is of a certain
form relative to the classification in §1.4. We consider 7" to be the extension to G* (as defined in §1.5) of
an irreducible, admissible representation 7 of G. In §3.1, we make some preliminary hypotheses on the
automorphism 6 and the structure of G = Rp/r, GL, and G = GL,(F) relative to 6. As well, based on the
form of 6 that we consider, we may (and do) assume that F/F is a finite, cyclic extension. We devote §3.2
and §3.3 to finding a family of operators on the space of 7, indexed by the elements of a set of sufficiently
regular elements of G*, whose trace is equal to the value of ®,+ on those elements. In the case that 0
sends scalar elements in G to either their inverse or some Galois conjugate of their inverse, it is necessary
to restrict 77 to an appropriate open, closed, normal subgroup H* of G to ensure convergence of our
integral formula. This is discussed in §3.4, and we give a decomposition for such a restriction. In §3.5, we

are finally able to give the integral formula for ©,+.

In Chapter 4, we specialize the integral formula from Chapter 3 to the case that 7" is the extension to
G™ of an irreducible, depth-zero supercuspidal representation 7 of G. We then use this formula to find a
relation between O+, evaluated near 0, and a linear combination of Fourier transforms of orbital integrals
on the Lie algebra of Gg. Here, Gy is the subgroup of G consisting of elements fixed by 6. In general, it is
known that irreducible, depth-zero representations of connected, reductive p-adic groups are induced from
representations of normalizers of maximal parahoric subgroups. In G = GL,(F), there is one conjugacy
class of maximal parahoric subgroup. Let K be a maximal parahoric subgroup of G, and let Z be the centre
of G. Then the normalizer of K in G is ZK. Up to equivalence, an irreducible, depth-zero supercuspidal
representation 7 of G is induced from an irreducible, smooth representation o of ZK which is trivial on the
pro-unipotent radical K’ of K, and factors to an irreducible, cuspidal representation of K/K' ~ GL, (k).
Here, kf is the residue field of F. We assume that both K and o are 6-stable, so that 7 is then also

O-stable. We discuss the details of the construction of such representations in §4.1, and add a sharpened
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version of one of the hypotheses from §3.1. In §4.2, we analyze the decomposition of the restriction of
1t to the subgroup H* from §3.4 in more detail, given the nature of 7, and use this extra information
to simplify the integral formula from §3.5. We give some further hypotheses in §4.3 that will allow us
to use the results of Chapter 2 to relate ©,+, near 6, to a linear combination of characters of depth-zero,
supercuspidal representations of Gy. This relation is obtained in §4.4. In §4.5, we use the general results
of DeBacker and Reeder ([13]) to express these characters on Gg in terms of Fourier transforms of orbital

integrals on its Lie algebra.

In Chapter 5, we apply the results of Chapter 4 to several specific cases. In particular, we show that our
many hypotheses are lax enough as to be satisfied in a number of cases of interest. Note that the inner
case is intentionally not considered specifically (though it is allowed for in our general results), as this

case is effectively handled by DeBacker and Reeder in [13], without our many restrictions.



1. PRELIMINARIES

1.1 Notation and basic facts

1.1.1 p-Adic fields. Let Q, be the field of p-adic numbers, for p an odd prime, with p-adic absolute
value |-|,. If q is a power of p, let F; be the finite field with g elements. For any rational number a, let
lal, = |0t|,_,1 be the p-part of a and |all, = a/llall, the p’-part of a. If A is a finite set, let [ A, (resp. |All,)
be the p-part (resp. p’-part) of the cardinality of A. Let @, be the algebraic closure of Q,. By a p-adic field,
we mean a finite extension F 2 Q,. For such a field, let |-|r be the absolute value and valr the valuation
on F. Let Or o Pr be the ring of integers in F' and its maximal ideal, respectively, with uniformizer @z.
For a € F*, let intp(a) = a/a);alF @ ¢ Op. Let kp = Op/%Pr be the residue field of F, and denote its size by
gr = lkr|. The residue field of Q, is F,. For any element a (resp. subset A) of O, let @ (resp. A) be its
image in kr under the natural projection. If X is a matrix with entries in Gr, let X be the matrix with

entries in kz obtained by applying the mod 22 map to each entry of X.

If F c L is any finite, unramified extension, we may (and do) take a common uniformizer @ = @y, = @F for
the valuations of F and L, and the inclusion Or — Oy, induces an injection kr — k7. Considering kz as a
subfield of k7, if a lies in OF then its projections modulo 2z and Z7;, coincide. In this way, we obtain an
isomorphism Gal(L/F) = Gal(ky/kr) by T — T, where, given 7 € Gal(L/F) and a € 0yr,, (@) = 7(). Therefore,
Gal(L/F) is cyclic, and the generator which induces the Frobenius automorphism of %7 /kF is called the

Frobenius automorphism of L/F.
Lemma 1.1.1. A subset B c 0y, is an Op-basis for Oy, if and only if B is a kg-basis for k..

Proof. The reverse direction is [9, Ch. 7, Lemma 5.4], so consider the forward direction. Let n =[L: F],
and suppose B = {¢1,...,&,) is an Gp-basis for 67. Choose a subset D = {ay,...,a,} € 6, such that D is a
kp-basis for k1. Then by the reverse direction, D is an O-basis for 0r,. Let A be the element of Endg,(0r,)
such that Aa; = ¢; for each i. Clearly A is invertible, so that A € Aute,.(0r). If A is the image of A in
Autg, (O1)(1+@Endg,(0L)) = GLy,(kL), we have A@; = Aa; =§&; for each i, and hence B = {¢1,...,&,} is a
kp-basis for kj,. O

If B ={¢1,...,{n} is as in the lemma, then each ¢; lies in 07, since otherwise B would be linearly dependent.

Via our common uniformizer @, we see that B is also an F-basis for L.

1.1.2 Linear algebra. For any positive integer n, let 0, and 1, denote the n x n zero and identity
matrices, respectively. If Aj,...,A, is a collection of square matrices, with A; of dimension m;, let
diag(Ai,...,A,) be the square matrix of dimension Y ; m; in which the A; appear as blocks down the

diagonal, with zero in all other entries.

If R is an integral domain and M is an R-module, let M* be the linear dual of M. If M is free of rank n
and B is a basis of M, let [-]5 : M — R" be the coordinate transformation with respect to B. Given another

basis D of M, let [-1pg : Endg (M) — M, (R) be the transformation which sends an R-linear endomorphism
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of M to the matrix which represents it relative to B and D. That is,
[Am]lp =[Alpg[mlz, (A € Endg(M), me M).

If D = B, write [A]p for [A]lgg. If f: MxM — R is a bilinear form on M, let [flg = (f(¢;,¢;)), where B = {¢;}.

1.1.3 Groups and automorphisms. Let G be a group. Let Z(G) denote its centre. For x,y € G, denote
left- and right-conjugation by *y = xyx~! and y* = x lyx, respectively, and let Int;,x and Intgx denote
the corresponding inner automorphisms of G. If G is an algebraic group and g is its Lie algebra, denote
(Adg)(X) by 8X for g€ G and X € g, and for an automorphism u of G, let du be its differential on g. If y
is an element and A a subset of G, let A, = C4(y) be the centralizer of y in A. More generally, if 0 is an
automorphism of G, let G* =G x (0) and let Ag = Gg NA be the subset of elements in A which are fixed by
6. As a subgroup, G is normal in G*. For any integer i let G denote the coset GO’. Let A* be the subgroup
of G* generated by A and 0, and let A’ = A* nG®. If A is a O-stable subgroup of G then A* = A x (9) and
A’ = A@'. Considering the automorphism 6 of G as the restriction to G of the inner automorphism of G*
associated to 0, we may write 0(x) = % for x in G. The centre Z(G*) of G is easy to compute, and we omit

the proof of the following lemma.
Lemma 1.1.2.
(1) Z(G*)nG =Z(G)y.

(2) For i #0, if ZGT)NG' # @, then there exists g € Gg with 0' = Intg g as an element of Aut(@), and
Z(GHNG = g0 Z(G)y.

Remark. The hypothesis of (2) is satisfied for some i > 0, for example, when 0 is a non-trivial inner

automorphism of G.

Let 1-0: G — G denote the map x — x(%x™1), so that Gy is precisely the set of elements of G which are
sent to 1. The map 1 -6 differentiates the cosets of Gg in G, since for x,y € G we have xGy = yGg (resp.
Gox = Gyy) if and only if (1 - 0)(x) = (1 - 0)(y) (resp. (1 —-0)(x~1) = (1 -0)(y~1)). If @ has finite order d, let
Ng: G — G denote the map x — x0(x)---0%~1(x). The image Ny(x) is called the 0-norm of x. Considering G
as a subgroup of G*, we may write Ny(x) = (x0)¢. Note that Ny maps every element of (1-6)G) to 1. If
G is abelian, then both maps 1 -6 and Ny are homomorphisms, and Ny(G) € Gy = ker(1—0). If G is finite

abelian and one of the maps 1-0: G — kerNy, Ng: G — Gy is surjective, then so is the other.

If H is a subgroup of G, let Ng(H) be the normalizer of H in G, and let Wg(H) = Ng(H)/H. If G is an
algebraic group defined over a field F and H is a closed F-subgroup of G, let Wg(H)¥ = Ng ) (H)/H(F). Let
H be the dual group of (complex) characters of H. If G is a topological group and H is a closed subgroup,
we take H to be only the continuous characters of H. Every element x € G induces a bijection H — (*H) "
by A— %A, for A € H. Here, *A is defined by “A(g) = Mg®), for g € “H. This defines an action of N = N (H)
on H which factors to an action of W = W (H) on H. Suppose H is stable under some automorphism 6 of
G. Then N is also O-stable, with N* = Ng+(H). Moreover, 0| Ng(H) factors to an automorphism of W, with
W+ = N*/H. Therefore, we may extend the action of W on H to W* by setting A = 10071, for A e H.
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1.1.4 Algebraic geometry and algebraic groups. We will assume all varieties to be affine. If X is a
variety defined over a field F, let X(F') be the set of F-rational points of X. The variety X will be identified
with X (F), where F is the algebraic closure of F.

For most of this thesis, we will use a boldface Roman font for an algebraic group defined over a p-adic
field and an italic font for the corresponding group of rational points. For an algebraic group defined over
a finite field, we will use a boldface Euler font, and the corresponding group of rational points will be
denoted using a normal Euler font. For example, for G defined over Q,, we write G = G(Q,), while for
G defined over Fj, we write G = G(F,). One notable exception to this rule occurs in §1.3, where, for part
of that section, G is taken to be an algebraic group defined over any perfect field. We will write Gy, for
GL; when the field of definition is understood. Elements of either (G,,)" or its embedding in GL,, as the
diagonal torus will often be written as n-tuples, sometimes prefixed with diag in the latter case. We will

often identify G, with Z(GL,,), without comment.

Suppose G is a connected linear algebraic group, defined over a perfect field F. Subgroups B o T consisting
of a Borel subgroup B and a maximal torus T of G will be referred to as a pair in G. A pair will be called
F-split if the torus T is defined and split over F. If G is a torus, it contains a unique maximal F-split
subtorus Gs = Gsr. The F-rank of G is defined to be rkGs, and is denoted rkr G. If G is a quasi-split
F-group, define rkg G to be rkz T, for B> T any pair in G which is defined over F. In either case, define
the F-sign of G (denoted g r = £g) to be (-1)"# G A maximal F-torus T c G is called F-minisotropic if its
F-rank is minimal over all maximal F-tori of G. Suppose that G is reductive. Since Z(G) is contained in
every maximal torus of G, a sufficient condition for a maximal F-torus T < G to be F-minisotropic is that
Ts € Z(G). If G is also F-split, then this condition is both sufficient and necessary.

1.1.5 Totally disconnected groups and their representations. Let (;,V) be a (complex) represen-
tation of a group G. If A and W are subsets of G and V, respectively, let A-W = Span{n(a)w|a€ A, we W}.
For v eV, write A-v for A-{v}. If H is a subgroup of G, let V¥ be the subspace of H-fixed vectors of V. If
(0,W) is a representation of H and g € G, let 80 (resp. %) be the representation of 8H (resp. H8) induced
by Intg g (resp. Inty, g). Let (-,-) : V* xV — C be the obvious pairing, and let (7*,V *) be the representation
of G defined by

(m* @A, v )= (A, 7)), (xeG,AeV*, veV).

Suppose that G is a totally disconnected, locally compact group. Let Vi, be the subspace of V consist-
ing of vectors with open stabilizer in G. If Vi, =V, then 7 is called a smooth representation of G. A
one-dimensional, smooth representation of G will be referred to as a quasi-character of G. A smooth rep-
resentation 7 is called admissible if VX is finite-dimensional for every compact, open subgroup K of G.

Let V = (V*)¢m, and define the contragredient 7 of 7 to be 7*|V. For any v eV and 7 € V, the function
Y5 G—C, x— (U, n(gv),

is called a matrix coefficient of m. A smooth representation 7 is called supercuspidal if every matrix
coefficient of 7 is compactly supported modulo the centre of G. Let H be a closed subgroup of G. If (o, W)

is a smooth representation of H, let Indg W be the space of functions f: G — W which are invariant under
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right-translation by the elements of some compact, open subgroup of G, and which satisfy f(hg) = o(h)f(g)
for all h € H, g € G. Further, let c-Indg W be the subspace of Indg W consisting of those functions which
have compact support modulo H. The representation Indga: G — GL(Indg W), where G acts on the
elements of Indi by right translation, is called the representation of G induced from o, and c-Inde o=
Indg ol c-Indg W is called the representation of G compactly induced from o. It is well known that if H is
an open, closed, compact modulo centre subgroup of G, and 7 = c-Indg o is irreducible, then 7 is admissible

and supercuspidal.

1.1.6 Miscellany. If B is a subsetofaset A, let chg: A — {0,1} be the characteristic function on A with
respect to B.

1.2 Restriction of the ground field

In this section, we review a concrete realization of the restriction of the ground field Rg/r X of an affine
E-variety X, for E a finite extension of F. Here, we allow F to be any perfect field. Let F be the algebraic
closure of F, and for a positive integer m, let A™ be m-dimensional affine space over F. Recall that we
assume all varieties to be affine. To simplify the discussion, we also assume that E/F is Galois, since we

will only be concerned with that case.

1.2.1 Construction. SetI = Gal(¥/F)and I" = Gal(F/E) cT. An element o € I' induces a map o : A™ —
A™ by o((x;)) = (o(x;)). For a polynomial map f: A™ — A’  let °f = gfo~1, so that ?f is the polynomial

map obtained from f by allowing o to act on the coefficients.

Let X be an E-variety. Setting =~ =I'/I" =~ Gal(E/F), we can construct an E-variety
Xz = HJEZ U(X)

Givenoel,let ps =pxo: X 2 _ g(X) be the natural projection. Any element 7 € I permutes the elements

of X by left-multiplication, so we also have an induced linear map v, = ¥x ; given by
v XT - 1(X5), W (x) = (xr0), (x = (x5) € XF).

Restriction of the ground field is a construction whereby, given an E-variety X, we obtain an F-variety
RX = Rgr X and an E-isomorphism f: RX — X% such that RX(F) maps bijectively onto X(E) under

f = pia f . Before we make this construction concrete, we cite the following abstract result.

Theorem 1.2.1 ([38, 11.4.16]). Let X be an E-variety. There exists an F-variety RX together with a
surjective E-morphism f: RX — X with the following universal property. For any F-variety Y together
with an E-morphism ¢:Y — X there is a unique F-morphism ®:Y — RX such that ¢ = f ®. The pair

(RX, f) is unique up to canonical isomorphism.

Following [37, §3.3], we may realize RX concretely as follows. Let [E: F]=n, and let {01,...,0,} be a set
of representatives for X, with o1 the identity automorphism, so that Gal(E/F) = {o;|E}. For any variety Y,
take the product Y to have the same ordering as our set of representatives of £, and write p; = py,; for

pY,O'i .
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If X = AL, then X7 is just A", and so take RX = A" as well. Any choice of F-basis B = {e;} of E affords an

E-morphism
fp: A" — A", fg(x)Z(zkkai(ek)), (xz(xi)EA”).

This map is linear with matrix (o;(e;)). By Dedekind’s theorem on the linear independence of field auto-

morphisms, this matrix, and hence the map f3, is invertible. Notice that

fe@) =(p1fp)x)=) . xie;,

which clearly maps RX(F') bijectively onto X(E). Also, a simple calculation shows ?fg = ¥, f3 for any

ogel.

Now proceed inductively. If X is a product of E-varieties Y and Z for which RY and RZ are defined,
set RX = RY x RZ. This is clearly defined over F. We have X* = []; (0i(Y) x 04(Z)), and so, choosing
appropriate E-isomorphisms fy : RY — YZ and fz: RZ — Z*, we may take f: RX — X* by

fly,z)= (((PY,i W), (pz,i fz)(z))), (yeRY, z€eRZ).

Assume that fy (resp. fz) maps RY(F) (resp. RZ(F)) bijectively onto Y (E) (resp. Z(E)). Then since f =
fy x fz, we also have that / maps RX(F) bijectively onto X(E). For any o € ', both RY and RZ are o-stable
since they are defined over F. By the first case, we may further assume inductively that “fy = vy ; fy
and °fz = vz, fz. Since each py ;, pz,; is defined over F, they each commute with o, from which we may

conclude that ?f = wx ; f holds in this case as well.

Finally, we define RX relatively. Suppose X is a subvariety of an E-variety Y for which RY is defined, and
let fy : RY — Y* be a suitable E-isomorphism. Then X7 is a subset of Y, and we may take RX = f;l(X )

and f = fy|RX. Let o € I'. By the previous cases, we may assume ’fy = ¢y ; fy, so that
oRX) =7 (0(X) = (7 vy, ) (0(X™) = f7 (X*) = RX.

Since this holds for any o, RX is defined over F'. Note that “f = ¢x ; f also holds in this case. We may also
assume that fy maps RY (F) bijectively onto Y (E). Since f = fy|RX, the map f gives a bijection between
RX(F) and X(E).

Example. For X = A™, the above induction process yields RX = (RAl)™ = (A")". Enumerate the coordi-
nates of an element x € RX by x = (x;j|]1 <i <m, 1< j=<n). We also have X% =TI, 0;,(A™) = (A™)", so
enumerate the coordinates of an element x' € X* by x’ = (x;jll <i<n,1<j<m). Any family B ={B;}7? | of
F-bases of E, with B; = {e; J'};'L:l’ determines an E-isomorphism fg: RX — X Z as follows. For x € RX, let
x' = fp(x), so that

/
xijzzkxjkai(ejk)- O

1.2.2 Properties. If f: X — Y is a morphism of E-varieties, we have an induced E-morphism f* =
[1;%f from X* to Y*. Choosing E-isomorphisms fx: RX — XZ and fy: RY — Y%, we can construct a
morphism Rf: RX — RY by setting Rf = f;lfzfx. Then, for any o €T,

R =IO = 7 vy OO wx o fx.
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However, it is easy to check that 1//;,10 ©“f Z)wX,U = fZ. Therefore, °(Rf) = Rf for any ¢ € T, from which we

conclude that Rf is defined over F'. Moreover, one can check that py ; fz =("f)px,;, for 1<i<n, sothat
fr Rf =(oy 1 iy fy Fofx)=fpxifx=fFx.

Now suppose that X is an L-variety, where L/E is a finite Galois extension, and let Y = Rz X. Let
I =Gal(F/L), ' =T"/T", and =" = T/T". We have Y = X* and Ry/p X = X*" over L, and Rg/p Y =Y~ over
E. But since ¥ is isomorphic to £/%/, Y = (X)X is equal to X', after reordering the factors if necessary.
The universal property of restriction of the ground field allows us to conclude that Rg/zY is isomorphic

over F to Ry X.

1.2.3 Group structure. Suppose that X = G is an algebraic group defined over E. Choose an E-
isomorphism f: RG — G*. Considering (G x G)* = G* x G* and R(G x G) = RG x RG, let f2 denote the
E-isomorphism f x f: RG x RG — G* x G*. Multiplication y: G x G — G and inversion :: G — G are E-
morphisms, so we have induced maps p*, 1*, Ry, and Ry, the latter two defined using f and f2. We
may then give each of G* and RG group structure via these induced maps, respectively. Since p; y* =
(%ip)(p; x p;), for 1 <i < n, it follows that f is a homomorphism of algebraic groups which restricts to a

group isomorphism mapping RG(F) onto G(E). We will make frequent use of the following example.

Example. Consider G = Gy, as the algebraic subset {(x,x™1) | x # 0} of A2. Since G is defined over F,
G* =G x---x G (n copies). Choose an F-basis B = {e;}?_, of E, and let A = (0;(e;)) € GL,(E). Take
f5: (A™)? = (A%)" by

fa((xr),(yp)) = ((ijj orlej), ) ;v O’k(ej))).

Following our construction, we set RG = fél(Gz), so that

RG ={ (Gon), () € (A2 | (X, 550006 )) (¥, vjonte)) =1, 1<k <n}.
Let {c;;z} be the elements of F such that e;e;j =3 c;jn e, for 1 <i,j<n. Then
(1.2.1) RG ={ (w),00) | Xy, %095 cijnonlen) =1, 1<k <nf,

with multiplication given by

(Ger), ) (23, (7)) = (( i %X Cijk),(zi,jyi y}cijk))-
The map f5|RG defines an E-isomorphism of RG onto GZ, so that RG is an n-dimensional F-torus which
splits over E. The basis B affords an embedding of RG into GL,, as follows. For x = ((xz),(yz)) € RG, let
¢(x) be the n xn matrix (Z BXECE ji)- View the equations that determine RG in (1.2.1) as a linear system in
the indeterminates {y;}, with coefficient matrix Ag ¢(x). Since f is invertible, (y;) is the unique solution
to the system for a given x € RG, and so ¢(x) is invertible. Therefore, ¢ maps RG into GL,. For any
integers 1 <1i,j,k <n, the identity e;e e}, = ereje; yields relations c;jq Carp = Chja Cain, for 1 <a,b < n.
Using these relations, one can check that ¢ is a group homomorphism. Finally, let f = f5|RG, as per
our construction. Notice that for any a € E*, ((p f _1)(04) = [mult(a, )], so that ker(p| RG(F)) is trivial.
The equation ¢(x) = 1, determines a system of linear equations with coefficients in F'. The existence of a
unique solution over F' allows us to conclude that ker is trivial and ¢ is injective. The image ¢p(RG) is
given by ¢(RG) = D43 where D =~ G¥ is the diagonal torus in GL,. O
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We now record some connections between the structures of G and RG. The following statements are

obvious.
Lemma 1.2.2.
(1) Z(G*)=Z(G)* and ZRG) = f1(Z(G)*) =R(Z(G)).
(2) If G is connected, then so is RG. If G is also reductive, then so is RG.
Now assume that G is a connected, reductive E-group.
Lemma 1.2.3.
(1) If G is E-quasi-split, then RG is F-quasi-split.

(2) If T is a maximal E-torus of G, then RT is a maximal F-torus of RG, RT)sr = (R(TS,E))SFJ and
I‘kF RT = I‘kE T.

(3) If G is E-split and T is an E-minisotropic torus of G, then RT is an F-minisotropic torus of RG.

Proof. For (1), it is clear that if B> T is a pair in G which is defined over E, then RB o RT is a pair in
RG which is defined over F. Statement (2) is discussed in [38, 16.2.6—7]. Now let T < G be as in (3). Then
Ts g € Z(G), so by Lemma 1.2.2(1) we have R(T g) € Z(RG). Now (2) implies that (RT)s r € Z(RG), and it
follows that RT is F-minisotropic. |

1.2.4 Galois action. Suppose X c A" is defined over F. Following the example of §1.2.1, but sim-
plifying using the single F-basis B = {e;} of E, let f: (A")™ — (A™)" by fp(xi;) = (X x;x 0i(er)), where
n =[E: F]. Since X is defined over F, X~ is just n factors of X sitting inside (A™)"*, and v, is an F-
automorphism of X* for any o € I'. Take RX = Rg/r X = f3'(X*), and set fx = fg|RX. Let 6 be an
element in the centre of I'. The action of 6 on X, restricted to X(E), coincides with restriction to RX(F') of

an F-automorphism 7y of RX as follows. Take ng = f)zvli,llg fx. Forany o €T,

o ="(fx) V0 fx = fx Vs WoVolx = fx Wopo1 fx-

However, since 0 is central, y,4,-1 = w5. Therefore, “ng = ng, and so 1y is defined over F. Recall that
fx = p1fx maps RX(F) bijectively onto X(E). In particular, for x = (a;) € X(E), we may write x = fX(xij)

for {x;;} the elements of F' such that a; =} ;x;;e;. Then, using the fact that Fx g = P1 efX, we have
(Fx o) (xij) = (ijij 9(ej)) = (0(a;)),
so that fx 79| RX(F) induces 0| X (E).

If X is a linear algebraic group, defined over F, then it is straightforward to check that 7y is also a group

homomorphism.

1.3 Quasi-semisimple automorphisms

In this section, we introduce the necessary background on quasi-semisimple automorphisms of a reductive

algebraic group G, and discuss two notions of regularity of elements in G*.
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1.3.1 Definitions and basic facts. Let G be a connected reductive linear algebraic group defined over
a perfect field F, and let G = G(F). We do not make any assumption on the characteristic of F' at this
point. Let 6 be a quasi-semisimple automorphism of G which is defined over F. By quasi-semisimple, we

mean that there exists a pair in G which is 6-stable. We cite some facts from [14].
Theorem 1.3.1 ([14, Theorem 1.8]).
(1) The connected component, GO, of the subgroup Gy of 0-fixed elements of G is reductive.

(2) Suppose Bo T is a 0-stable pair in G, and set Bg =Bn Gg and Tg =Tn Gg. Then Bg > Tg is a pair
in Gg.

(3) For any pair Co>Sin Gg there exists a 0-stable pair Bo T in G such that C=Bn Gg and S=Tn Gg.
In particular, T = CG(TS) = Cqa(Ty).

Note that since 6 is defined over F, Gg is as well. Let Gg = Gg(F). We add the following observations, all

of which are known.

Corollary 1.3.2. Every element of Gg lies in a 0-stable Borel subgroup of G. Every semisimple element of
Gg lies in a 0-stable pair of G.

Proof. Let y be an element of Gg. Every element of Gg lies in a Borel subgroup of Gg ; let C be a Borel
subgroup of Gg containing y. Choose a maximal torus S of C and apply (3) from the theorem to obtain a
0-stable pair B> T of G with C, hence y, contained in B. Every semisimple element of Gg is contained in

a maximal torus of Gg; if y is semisimple, we may choose S containing y, so that y lies in T as well. O

Corollary 1.3.3. Let T be a 6-stable maximal torus of G. Then T is contained in a 6-stable Borel subgroup
of G if and only if TN Gg is a maximal torus of Gg.

Proof. One direction is already provided by the theorem, so let us prove the other. If TN Gg is a maximal
torus of Gg, choose a Borel subgroup of Gg containing TN Gg and apply (3) of the theorem to obtain a
0-stable pair B> T’ of G such that T'NG) = TN G). But then T' = Cg(TNGY) 2 C(T) = T. Since T and
T’ are both maximal tori of G, we must have equality throughout, and B is the required Borel subgroup
of G. O

Corollary 1.3.4. Let Bo T be a 0-stable pair of G.
(1) Ng(T)g = Ng,(Tg) = Ng,(T)).
(2) Ngy(Tp)=Na(T)n Gy,
(3) The inclusion NGg(Tg) — N¢g(T) induces an embedding WGg (Tg) — Wa(T)e.

(4) If T is defined over F, then the inclusion NGg(Tg) — Ng(T) induces an embedding WGg(Tg)F .
(Wa(T)F)p.

Proof. We prove Ng(T)g = Ng,(Ty) and Ng(T)g = NGQ(Tg) simultaneously. If g is any element of Ng(T)g,

then 8Ty and g(Tg) are contained in Ty. Moreover, g(Tg) is connected and contains the identity, so it must



CHAPTER 1. PRELIMINARIES 15

be contained in Tg. Since Ng(T)y is closed under inverses, the same inclusions hold for g7, and we have
8Ty =Ty and &(T9) =T. Therefore, Ng(T)y is contained in both Ng,(Ty) and Ng, (T9).

Now suppose go and g; lie in NGQ(Tg) and Ng,(Ty), respectively, and let i be either 0 or 1. Statement
(3) of Theorem 1.3.1 gives T = C(;(Tg), so we will show that for elements x € T and ¢ € Tg, 8ix commutes
with ¢ Indeed, ¢8i lies in Ty and thus commutes with x, hence “'*¢ = 8i%(¢8i) = t. Therefore, &'T < T. As
before, since NGO(Tg) and Ng,(Ty) are closed under inverses, we must have &/T = T. Thus, both NGO(Tg)

and Ng,(Ty) are contained in Ng(T)g, and we have shown (1). Statement (2) now follows from (1).

Let a: NGg (Tg) — Wg(T) be the composition of inclusion NGg (Tg) — Ng(T) (afforded by (2)) and the nat-
ural projection Ng(T) — Wg(T). Since 0 acts on Wg(T) by acting on coset representatives, @ has image
in Wg(T)g. The kernel of a is TN G) = TY, so a factors to an embedding WGg(Tg) — Wg(T)g, giving (3).
Similarly, let af : NGg(Tg) — Wa(T)F be the composition of inclusion NGg(Tg) — Ng(T) and the natural
projection Ng(T) — Wg(T)*. Then o’ has kernel T(F)nGY = TY(F) and image in (Wg(T)")g, where 6

factors to an automorphism of W (T)F in the natural way. This proves (4). O
We add some results over F'.

Proposition 1.3.5. If G contains an F-split, 0-stable pair Bo T, then Gg is F-split.

Proof. This is clear from Theorem 1.3.1(2) and the fact that any subtorus of an F-split torus is defined and
splits over F'. O

Lemma 1.3.6. Suppose B> T is a 0-stable pair in G, with T defined over F, such that Ts € Z(G). Then Tg

is an F-minisotropic F-torus of Gg.

Proof. Note that the condition on T implies that it is F-minisotropic in G. Since T lies in a 0-stable
Borel subgroup of G, we have that Tg is a maximal F-torus of Gg. It suffices to show that (Tg)S c Z(Gg).
Now, (Tg)S is an F-split subtorus of T, so we have (Tg)S c (Ts)g € Z(GR)g < Z(Gy). But then since (Tg)S is
connected, we have (T9)s < Z(Gy)® < Z(G)). O

The following is the situation we will later find ourselves in.

Corollary 1.3.7. Suppose G = Rg/rH, where E is a finite, Galois extension of F, and H is a connected,
reductive, E-split E-group. Let S be an E-minisotropic torus of H such that T = Rg/r S is 0-stable and is

contained in a 0-stable Borel subgroup of G. Then Tg is F-minisotropic in Gg.

Proof. By Lemma 1.2.3(3), T is F-minisotropic in G. From the proof of this lemma, we have Ty r € Z(G).
We may now apply Lemma 1.3.6. O
Suppose B> T is a pair in G, with T 6-stable. The following will help us keep track of those G-conjugates

of this pair which are 0-stable. Define the set-valued functions Xt and X1 on Ng(T) x Ng(T) by

Xr(ni,n2)= { xeG| xtng(Mir)e T},

Xr(n1,n2)=Xr(n1,n2)NnG,
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for n1,n9 € Ng(T). Notice that X1(n1,n2) is a union of right-cosets of G, 6. Let .%T(nl,ng) be the image
of X1(n1,n2) in Gy,,,0\G under the natural projection. If Gy,,,s is defined over F, let %T(nl,ng) be the

image of X1(n1,n2) in Gpyn,0\G, Where Gpyn,0 = Gryn,o(F).

Now, ‘B> T is also a pair in G, and so there exists n, € Ng(T), with unique image in Wg(T), such that
nfB = B.

Lemma 1.3.8. Let B> T and n, be as above. Then for n € Ng(T) and x € G, we have x € Xp(n,,n)
if and only if the pair *B > *T is stable under the automorphism Inty,(nn,)o0 of G. For x € Xt(n,,n),
(xT)nnUG = xTnUH-

Proof. The forward direction is straightforward computation. For the reverse implication, suppose x € G
such that the pair *B o *T is stable under Inty,(nn,)o0. Since the pair B> T is stable under Inty (n,)08, it
follows that x 1n(*%) € Ne(B) n Ng(T). However, Ng(B) =B and BN Ng(T) =T, and thus x € X1(n,,n).

The second assertion is easily verified. |
Corollary 1.3.9. There exists a 0-stable G-conjugate of the pair B> T if and only if %T(no,ngl) # Q.

Now assume 0 is of finite order, say dg. The group G* is also defined over F', and G* = G*(F). For non-
trivial 0, G* is non-connected with components {Gi};i:"a L Moreover, G' is linear, since any embedding p
of G into GL, induces an embedding p* of G* into GL,4, as follows. For g € G and 0 <m < dy, the (i, N

n x n block p*(g0™); ; of p*(g6™) is given by

p0 1), j=(m+i-1 modn)+1,
+ m
o (g0™); ;=

0, otherwise.

Note that if p is an F-embedding, then so is p*. The image of § under this embedding is the element

If ged(dg,char F) = 1, then this image of 0 is semisimple, so that 6 is a semisimple automorphism of G.

1.3.2 Regular elements. In this section, we discuss two notions of “regular elements” of G*. First, we
examine how the familiar notion of regularity in G behaves relative to 6. For the first two results, F is
any perfect field, G is any connected, reductive F-group, and 0 is any quasi-semisimple F-automorphism
of G. After Corollary 1.3.11, we assume that 6 has finite order. Following the example concerning Lemma
1.3.12, we change the setup, and take 0 to be a finite-order Fy-automorphism of G = Rp/r, GLy, for F/Fg
a finite, abelian extension of p-adic fields. Of particular importance is Lemma 1.3.12, which states that if

g €@ is O-fixed and g0’ satisfies a regularity condition in G*, then g is regular in G.

It is most convenient for us to define y € G to be regular in G if Gg = Cg(y)? is a maximal torus of G. Let

Gieg denote the set of regular elements in G. For a subset A< G, let Apeg = AN Greg.
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Lemma 1.3.10. Any element of Gg which is regular in G is regular in Gg.

Proof. Suppose v is O-fixed and regular in G. Since y is semisimple, by Corollary 1.3.2 there exists a
O-stable pair B> T of G containing y. Since vy is regular, we must have T = G?,. Then, S = G?, N Gg is a
maximal torus in Gg by (2) of Theorem 1.3.1. Since y € S and S is connected, we have S ¢ (Gg)?,. On the
other hand, since (Gg)g is connected we have (Gg)g c T, and so (Gg)?, cTn Gg = S. Therefore, we have

(G9)) =, and so v is regular in G). O

For a given 6-stable maximal torus T, we obtain a condition for Tg =Tn Gg to be a maximal torus in
Gg (see also Corollary 1.3.3), based on the existence of 0-fixed regular elements in T. This condition is

necessary and sufficient under the assumption that Greg N Gg is non-empty.
Corollary 1.3.11. Let T be a 6-stable maximal torus of G.
(1) If Gregn Tg is non-empty, then T is contained in a 0-stable Borel subgroup of G.

(2) Assume GregN Gg is non-empty. If T is contained in a 0-stable Borel subgroup of G, then Gyeg N Tg is

non-empty.

Proof. Suppose y € Greg nTg. Again, we apply Corollary 1.3.2 to obtain a 8-stable pair B> S of G contain-
ing y. Since y is regular in G, we must have S =T, and so B is the Borel subgroup of G required to prove
(1). For (2), take y € Greg N GY). Then by Lemma 1.3.10, y is regular in G) and S = (Gg)g is a maximal torus
in Gg. Since T is contained in a 0-stable Borel subgroup of G, Tg is also a maximal torus of Gg, and we

may choose g € Gg such that Tg =88 = (Gg )gy. Therefore, 8y is the required element of Greg N Tg. O

Now we assume that 6 is of finite order dy. As usual, write G = G(F). Let x € G, and let ¢ be the order
of 6°. Then ¢ is the smallest positive integer such that x’ € G. Call x G-regular (or sometimes G-regular
if x € G') if x¢ is regular in G. For any subset A of G* (resp. G), let AG.reg (resp. Ag.reg) denote the set
of elements of A which are G-regular (resp. G-regular). Obviously, Gg.reg is just Greg, the set of regular
elements in G. If x € G for some 1 <i < dy, then ¢ is the least common multiple of i and dy. Writing

x = x00" for some x € G, we have that x is G-regular precisely when Nyi(xo) is regular in G.

Lemma 1.3.12. Let g € Gg. There exists an integer i such that g’ € Gé} if and only if g € Greg.

-reg
Proof. If g € Gyeg, take i = 0. For the other direction, choose an integer 0 < i < dg such that gbl e Gé}-reg’
and let ¢ be the order of 6. Then g, and hence g, is regular in G. O

Example. Tt is not true for g € (Greg)y that g0’ € GI, for all i. For example, let Fy be a p-adic field

G-reg
in which —1 is not a square. Choose i € Fy such that 12 = —1, and let F = Fo(z). For x € GL4, define

O(x) = J 1tx~1J, where

0 0 1 0
0 0 01
J= .
-1 0 0 O
0 -1 0 0

Then g = diag(:,2,—1,1/2) is regular and 0-fixed, but (g0)? = g2 = diag(—1,4, -1, 1/4) is not regular. O
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For the remainder, we take 6 to be a finite-order Fp-automorphism of G = Rg/r, GL,, where F/Fj is a
finite, abelian extension of p-adic fields (see §1.4). Here, we allow the possibility that Fy = F. Identify
the groups G(Fy) and G = GL,(F) (see §1.2.3). Via this identification, 8|G(F) induces an (abstract group)
automorphism of G, which we also denote §. We may then also identify G* () with G*. Using the
characterization that an element in GL, is regular if and only if its eigenvalues are distinct, it is easy to

see that an element of G(Fy) is regular in G if and only if the corresponding element in GL,,(F) is regular.
Lemma 1.3.13. For 0<i<dy, (Gi)G-reg is dense in G'.

Proof. Since 6 is defined over Fy, G-regularity of elements in Gi(Fy) = G nG*(Fy) can be characterized
by the non-vanishing of a certain polynomial function with coefficients in Fy. Therefore, (Gi(Fo))G_reg is
dense in G!(Fy) in the Fy-topology. Since the map G(F) — G corresponding to the identification G(Fg) = G

is continuous, (G")G_reg is dense in G* in the F-topology. |
Let g = Lie(G) = Rp/r, M., and identify g(Fo) with g =M, (F). As an element of G*, 6 acts on g by
(AdO)X) =X = dO(X), (Xeg).

Following [7, Appendix A], we make the following definition. Let x € G' be called quasi-regular if it

satisfies either of the following equivalent conditions:

(i) £y =ker(Adx —1) contains no non-zero nilpotent element of g;

(i) if U is the unipotent radical of a parabolic subgroup of G and u c g is the Lie algebra of U, then
€, Nnu=1{0}.

Let G, denote the set of quasi-regular elements of G*. For A cG*, let Aq; = ANGy,. Since d6 preserves
nilpotency, so does Ady for any y € G*. From this, we may conclude that for any x,y € G*, Yx lies in G, if

and only if x does.

Example. Letn=2and 0(x)=J 1t 1), for J = ( % {). Let g = (§ ) and consider x = g6 in G. Then &,

is the linear subspace of g spanned by g. Since g2 = 1, x is quasi-regular. O

Lemma 1.3.14. For 0<i <dg, (G')g.reg < (G)qgr-

Proof. Let x € (Gi)G_reg and let ¢ be the order of 6. Since Greg S Gqr, ker(Adx! — 1) contains no non-zero

nilpotent elements of g. But then we must have x € (Gi)qr, since ker(Adx — 1) c ker(Adx’ - 1). |

Proposition 1.3.15. For 0<i <djy, the set (Gi)qr is open and dense in G' in the F-topology.

Proof. Combining Lemmas 1.3.13 and 1.3.14, we have that (G'),, is dense in G'. To show that (GV)y is
open, we copy the proof of [7, (A.3)]. For a matrix X = (x;;) € g, define | X|| = max;; |x;|p. Let & ={X €
g | Xl =1}. Then # is compact in g, and the subset .#;1, of nilpotent elements of .# is closed and hence

compact.

Let {gm}m=1 € G* ~ (Gi)qr be a convergent sequence with limit g € G*. For each m =1, g,, not quasi-
regular implies that there exists a non-zero, nilpotent X,, € ker(Adg — 1). Scaling if necessary, we may
assume each X, is in #jp. Since S, is compact, there exists a convergent subsequence {X,, };>1 and
an element X € %, such that X, — X as k£ — co. But then also ¥™: X,,, — X, and so #X = X. This implies
gé¢ (Gi)qr, and so G ~ (Gi)qr is closed. Therefore, (Gi)qr is open in G O
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Corollary 1.3.16. G, is open and dense in G™.

1.4 Automorphisms of GL, (F)

In this section, we examine certain automorphisms of G = GL, (F). Identify Z(G) with F*.

1.4.1 Arbitrary fields. For any field F', O’'Meara has classified the automorphisms of G. From [17,

Theorem 21], we have the following.

Theorem 1.4.1 (O’'Meara). Suppose n = 3. For any 0 € Aut(G), there exist a group homomorphism y: G —
F*, a field automorphism 1 € Aut(F), and an element J € G such that

(1.4.1) 0(g) = x(@J 1 1(00(2)) J, (g€q),

where 0y is either the identity map or the map g — 'g™! on G, and T acts on an element of G by acting on

its entries.

In this thesis, we will ignore the automorphisms of G that are not of the form of (1.4.1) in the case that
n = 2. In particular, we restrict our attention to automorphisms of finite order that are of the given form,

regardless of the value of n.

Remark. An automorphism of G may have several expressions of the form of (1.4.1). Obviously, we may
replace J by any element of F*<J. For another example, consider n =2 and J = (_01 (1)) Then the automor-

phism g — J~1tg~1J may also be written g — (detg) ! g.

We will also only consider certain automorphisms which are induced by restricting an Fy-automorphism
of G = Rp/r, GLy, to G(Fo) = G, where F/Fj is some finite, Galois extension. Fix such a subfield Fo € F,
allowing the possibility that Fo = F', and for convenience write R=Rp/r,. Let d = [F: Fo] and, as in §1.2.1,
set T = Gal(F/Fy)/ Gal(F/F) = Gal(F/Fy).

Proposition 1.4.2.

(1) Let y: G — Z(G) = RGy, be any Fo-homomorphism. Then the map G — F* induced by y|G(Fy) is of
the form

(1.4.2) g [1,es o(detg)™, (g€q),
for some collection of integers {mglges.

(2) Assume that F/Fis an abelian extension. Let 0y : GL,, — GL,, be either the identity map or transpose-
inverse. Suppose J € GL,(F), T € Gal(F/Fy), and y: G — F”* is as in (1.4.2) for some {ms} < Z. Then
the automorphism of G given by (1.4.1) coincides with that induced by the restriction to G(Fy) of some

Fy-automorphism of G.

Proof. Recall that G, = GL;. Since GL,, is defined over Fy for any m, we have that GL% is just a direct
product of d copies of GLy,, for either m =1 or m = n. Write f,, = fgoL,, : RGLy, — GLZ,. Identify Gy, with
Z(GL,). We may assume that we have constructed RGy and G = RGL,, such that f° 1= fn HGE. Now

suppose y: G — RGy, is an Fp-homomorphism. Then, composing the restriction of f1oyo f,;ll to the ith
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factor of GL,ZL with the projection onto the jt factor of GZ, we obtain an F-homomorphism GL, — Gp,.
Since any such map must be of the form x — (detx)*i for some k; ;i € Z, (1) follows. Now consider (2).
For o € Gal(F/Fy) and m = 1, let 14, be the Fy-automorphism of RGL,, as constructed in §1.2.4. Then
the required Fy-automorphism of G is the product of the morphisms in the collection {11 o R(det™)}ges

(whose images lie in the centre of G), and the morphism R(Intg JJ) o, , o Rfo. O

Accordingly, we will only consider automorphisms of G which have the form considered in Proposition
1.4.2(2). Let 6 be such an element of Aut(G). Lift 7 to an element of Gal(¥/Fy), and consider 6 as an
automorphism of the abstract group GL, = GL,(F). We will also use 6 to denote the Fy-automorphism of
RGL,, from the proof of Proposition 1.4.2(2). The following is easily verified.

Lemma 1.4.3. Suppose H is a closed F-subgroup of GL, which is 0-stable. Then RH is an 6-stable Fy-
subgroup of G.

1.4.2 p-Adic fields. Now consider the case that F is a p-adic field, and let 6 be of the form of (1.4.1),
with y of the form of (1.4.2). For this section, we need only assume that F/F is a finite, Galois extension;
we do not assume that Gal(F/Fy) is abelian. The first properties to note are that 0 stabilizes 0, and it
stabilizes Ko = GL,(0OF) if and only if J € Ng(K() = F*Ky. Define the valuation of 6, denoted valf, by
val = valp (0(@r)). For the given form of 6, it is easy to see that

valf =valf +nzgez meg,

and valp(det6(x)) = (valf)(valp(detx)) for any x € G. If 0 has finite order, then we must have valf = +1,
and in the case vald = —1, 6 must have even order. The following is immediate from the above formula for

valf, showing that if 0 has finite order, then the possible values for the m, are not completely arbitrary.
Lemma 1.4.4. Write S =) ;5 mo.

(1) If val@ =val0y, then S =0.

(2) If val@ = —val@y, then either n=1and S =2val0, or n =2 and S =val®.

Matters of convergence of certain integrals will be affected by the value of valf, due to the following (see
§3.4).

Lemma 1.4.5. Suppose val@ = £1. The quotient F*/(F*)g is compact if and only if valf = 1.

Proof. If val@ = -1, then we must have (F*)g € O, and F*/0O is not compact. So suppose val6 = 1.
Then Lemma 1.4.4 implies that in either case of valfy = +1, we have F; < (F*)y. Therefore, it suffices to
show that F*/F is compact. However, this is immediate from the property |¢D Fo | 7 = |®F |5, where e is the
ramification index of F/F, since this implies F'* € wF for w the compact set Ufzow;@;. |

1.5 Stable representations

In this section, we explore the relationship between a representation 7 of G and a fixed finite-order auto-
morphism 0 € Aut(G), in particular in the case where 7 is induced from a 8-stable subgroup of G. In §1.5.1
and §1.5.2, we take G to be any totally disconnected, locally compact group. In §1.5.3, we take G = GL,(F),
for F' a p-adic field, and assume 6 is of the form of (1.4.1), with y of the form of (1.4.2).
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1.5.1 Definitions and basic facts. To begin, suppose G is any abstract group, 6 € Aut(G) is of finite
order dg, and (7,V) is a (complex) representation of G. If 7 Z 100, then 7 is called 6-stable. In this case, if
there exists an intertwining operator A, € Homg (7,7 00) with the property Aﬁo =1, then we may extend

7 to a representation (n*,V) of G* by setting
7t (g0") = m(g)AL, (g€G,0<i<dy).

Note that such an operator A, will always exist for any pair (G, ) to which Schur’s Lemma applies.

Now assume that G is a totally disconnected, locally compact group. Let (;,V) be an admissible, irre-
ducible, 0-stable representation of G, and fix a choice of A, with Aﬁ" =1. Then n" is also admissible
and irreducible. Note that since G is open in G, the subspaces of elements of V* which are smooth with
+)*

)

respect to 7% and (n7)*, respectively, coincide.

Proposition 1.5.1. There exist the following relationships between the properties of mw and n*.
(1) The extension n* is unitary if and only if 7 is unitary.
(2) The extension n* is supercuspidal if and only if n is supercuspidal and Z(G)/Z(G)g is compact.

Proof. First suppose n* is unitary. Then any G*-invariant, positive definite, Hermitian inner product
on V is also G-invariant. On the other hand, if 7 is unitary, let (-, -) be a G-invariant, positive definite,
Hermitian inner product on V. For v,w € V, set (v, w)* = Z?jo_l(Af,v,Af,w > It is straightforward to

verify that this defines a G*-invariant, positive definite, Hermitian inner product on V. This proves (1).

Now suppose 7" is supercuspidal. Choose elements v eV, i€ V, and let ¢ = @u,5 be the corresponding
matrix coefficient of 7. Then the pair v, also determine a matrix coefficient of 7+ which is an extension of
¢ to G*. Denote this extension by ¢*. Since 7™ is supercuspidal, supp¢™ is compact modulo Z(G*). Let w
be a compact subset of G* such that supp¢* < wZ(G*). Then suppy < (wZ(G*)) NG. Recall that Z(G)y =
Z(G*)NG (Lemma 1.1.2(1)). Set go=1,let A={0<i<dy | Z(G")NG' # @}, and for each i € A with i #0,
let g; € Gy as in Lemma 1.1.2(2). Note that g;0" € Z(G*) for each i € A. Let A = U;ep :0' (0N G%71) cG.
We may assume that w was chosen with w NG # @, so that A # @. Then

supp@ < (0Z(GH)) NG =Y (wnG% ) (Z(GH)NG) = AZ(G)g < AZ(G).

Since A is compact, it follows that 7 is supercuspidal. To see that Z(G)/Z(G)g must be compact, notice
that Z(G) acts on V by (non-zero) scalars, since 7 is irreducible. Therefore, if v and ¢ are chosen such that

(0,v) #0, then, as above, Z(G) S suppp S AZ(G)y.

Finally, assume Z(G)/Z(G)y is compact and 7 is supercuspidal. Again, choose elements v €V and 6 € V,

and let ¢ be the corresponding matrix coefficient of 7*. For 0 <i < dy, define
¢':G—C, g—¢*(g0").

Then each ¢’ is the matrix coefficient of 7 corresponding to the elements ALv € V and & € V, and therefore

has compact support modulo Z(G). For each i, we may choose a compact subset w; < G such that

supp(¢*1G?) = (supp )0’ € w; Z(G)H'.
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Since Z(G)/Z(G)g is compact, we may also choose a compact subset A ¢ G such that Z(G) € AZ(G)g. There-

fore, suppp™ < wZ(G"), where w is the compact set w = U‘iiz_olwiAHi. It follows that n* is supercuspidal,

completing the proof of (2). O

1.5.2 Induced O-stable representations. Let (g,W) be a smooth, irreducible representation of an
open, closed, O-stable subgroup H < G, and consider the representation (,V) of G with 7 = c-Indg g.

Since H is open, we may embed W in V as follows. For w € W, let f,, be the element of V defined by

o(x)w, xeH,
fw(x) =
0, x¢H.

Proposition 1.5.2. There exist an injection and surjection, respectively,

®: Hompg(o,000) — Homg (7,7 080),

V¥: Homg(r,m060) - Hompg(o,000),
such that ® preserves invertibility, and ¥ o ® =id.

Proof. First, define
(D(A)f)(x) = Af (D), (A e Homp(o,000), feV,x€G).

This map is clearly linear. Take elements A € Homy(o,000), f €V, and x € G. The function ®(A)f has
compact support modulo H, since supp ®(A)f <%suppf). For h € H, we have

(@(A)f)hx) = Af (hx)’) = a(WAF (x?) = o (h)(D(A)F) (),

so ®(A)f transforms properly under left-translation by elements of H. If f is right K-invariant for some
compact, open subgroup K c G, then ®(A)f is right ’K-invariant. We have now shown that the image of

®(A) is contained in V. For any g € G, we have
(@A()f)x) = Af((x%8)") = (1C)DA)f)(x),

hence ®(A) is an element of Homg (7,7 00). Now suppose ®(A) = 0. Then Af(x?) =0 for all x € G and
feV.Taking x =1 and f = f,, for any w € W, we see that Aw =0 for all w € W, and therefore A is the zero
endomorphism of W. This shows that ® is injective. Finally, suppose A is invertible. Then ®(A) is also

invertible, with inverse
(@A) )@ =A" ), (FeV,xeq),

where similar arguments to those above show that ®(A)™! € Homg(r 00, 7).

Now define
Y(B)w = (Bfy)1), (BeHomg(n,noe),wEW).
Again, this map is clearly linear. Take elements B € Homg(,m00), we W, and h € H. Then,

Y (B)o(h)w = B f )1 = (1Ch)Bf,)(1) = Bf)Ch) = 0Ch) ¥(A)w,
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so that W(B) €e Homg(o,000).

For any A € Hompy(o,000) and we W,
(Yo ®)A)w = (P(A)f,)(1) = Afy(1) = Aw,
so that (¥ o ®)(A) = A. Note that this also shows that W is surjective. O

Corollary 1.5.3. If o is 0-stable, then so is 7.

Assume that o is O-stable. Fix an intertwining operator A, € Homg(o,000) and let A, = ®(A,) €
Homg (7,7 06), where ® is as in Proposition 1.5.2. Note that if A, is normalized so that Ag" =1, then
also A% = 1. Using these operators we may define representations 7+ and o* of G* and H*, respectively,
asin §1.5.1.

Proposition 1.5.4. The extension n* is equivalent to c-Inde: o”.

Proof. Let U be the space of 7 = c-Indg: o*. Define A;: V — U by
(A )x0") = (ALF)x) = AL ™), (feV,x€G,iez).

Take elements f €V, x€ G, h€ H, and i,j € Z. The function A;f has compact support modulo H™, since
suppA.f = U?ﬁgl 0! -supp f. We have

(A f)RO-x67) = AL £ (RO 29y = s(WALY F(:P) = 0 (RO )AL f)(x67),

so A;f transforms properly under left-translation by elements of H*. If f is right K-invariant for some
compact, open subgroup K of G, then sois A;f, and K is a compact, open subgroup of G*. Thus the image

of A; is indeed contained in V;. For any g € G, we have
(A, (g0)F)0”) = (ALY F)x-¥ 0) = (A, )0’ g0") = ((g0)) A, )(x67).

Therefore, A; € Homg(7",7), and it remains to show that A, is invertible. Suppose A;f =0. Then f =
A, f|IG =0, and so A; is injective. Now let f' € U and f = f'|G. Let w =« G* be a compact subset such that

dp-1

suppf'cwH", and let o' =U,’ " (@ NGY)67!. Then o' is a compact subset of G, and

suppf =suppf' NG<wH NG =w'H.

Also, since f' transforms properly under left-translation by elements of H, so does f. And if f’ is right
K-invariant for some compact, open subgroup K of G*, then f is right (K NnG)-invariant. Therefore, f €V,
and furthermore,

(A8 = AL f (") = 0@ (") = f'(x6"),

since 0 € H*. Thus, A; is surjective. O
1.5.3 Unitary twists. We now take G = GL,(F), for F a p-adic field, and assume 0 is of the form of

(1.4.1), with y of the form of (1.4.2). In this section, we show that for any irreducible, supercuspidal,

0-stable representation 7 of G, there exists a twist of 7 which is unitary and 6-stable.
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Lemma 1.5.5. If 7 is an irreducible, smooth, 0-stable representation of G, then there exists a 0-fixed quasi-

character v of G such that n ® v has unitary central character.

Proof. Let w; be the central character of 7. Since 7 is irreducible and 8-stable, w,; must be 6-fixed. If
valf = —1, then (1 - 0)(@F) € @%0;. Then, from the relation w,(0(@r)) = w.(@F), we see that lw(@p)|%, =
1. Therefore, we may take v = 1. Now suppose valf = 1. Then, as in §1.4.2, we have valg (det@(x)) =
valp(detx) for any x € G. Let s € C such that w;(2) = |zl w,,(intp(z)) for any z € Z. Then if we set v(x) =

Ideth}S/ " the twist 7 ® v has unitary central character, and clearly v is 0-fixed in the present case. O

Corollary 1.5.6. If 7 is an irreducible, supercuspidal, 6-stable representation of G, then there exists a

quasi-character v of G such that n ®v is irreducible, supercuspidal, 0-stable, and unitary.

Proof. Let v be as in the lemma. Then 7 ® v is unitary, and since v is 6-fixed, we have

Homg (7 ®v,(1 ®v)08) = Homg (7,7 0 0). O



2. A CHARACTER FORMULA OVER THE RESIDUE FIELD

The 6-stable representations of G = GL,,(F), for F' a p-adic field, which we will consider will be constructed
from 6-stable, cuspidal representations of G = GL,(kr), where 0 € Aut(G) is induced from the restriction of
6 € Aut(G) to an appropriate 0-stable, maximal parahoric subgroup of G. These cuspidal representations
of G will in turn be constructed using Deligne-Lusztig induction from characters of 6-stable tori of G.
Extending these 0-stable representations to G and G*, respectively, the associated characters of G will
figure into our character formula at the level of G*. In [14], Digne and Michel develop a Deligne-Lusztig
theory for non-connected, reductive algebraic groups over a finite field. In this section, we use their results
to obtain a character formula over kr which allows us to reduce to Green functions on the set of unitary

elements in the group of fixed points Gg.

2.1 Definitions and basic facts

Let G be a connected, reductive algebraic group defined over a finite field £ = F,, for ¢ a power of p, and
let 6 be a quasi-semisimple automorphism of G which is defined over 2 and of finite order dg. Assume
that ged(dg, p) = 1. We make the following definitions, as in [14, Definition 1.2]. A Borel subgroup of G*
is one of the form B’ = Ng+(B) for some Borel subgroup B of G. A torus of G* is a subgroup of the form
T'=Ng+(T,B) for some pair Bo T in G.

Fix a pair B> T in G, with T defined over & and 0-stable. Then /B > T is also a pair in G, and so there
exists a unique w, € Wg(T) such that “’B = B ([38, 6.4.12]). Fix a choice of representative n, € G of w,,
and set 9 = n,0. The automorphism Inty, 9 of G* restricts to a quasi-semisimple automorphism of G, as
it stabilizes the pair B > T. This automorphism is defined over % if n, € G(k). Let T’ be the torus of G*
corresponding to the pair B o T. Notice that T’ is not necessarily defined over %; however, if B is defined

over k then clearly T’ is as well.
Proposition 2.1.1.
(1) The element w,0 of Wg(T)* has order dy.
2) [T':T] =dp, with T NG =T for 0<i <dy.
(3) If w, € Wg(T)g, then 0 normalizes T
(4) If w, =1 (that is, if B is 0-stable), then T' =T" and T' is defined over k.

Proof. Let y = (wo0)% = Ng(w,) € Wg(T). Since w,0 stabilizes B, so does y. Therefore, y must be trivial,
proving (1). Fix an integer 0 < i < dy. Since 9 normalizes B, we have that for any x € G/, x € Ng+(B) if
and only if x07' € Ng(B) = B. Thus, Ng+(B)n G’ = B9'. But 9 also normalizes T, so that for any b € B,
b€ Ng+(T) if and only if b € Ng(T). Since G is reductive, Ng(T) =T, and (2) follows. If w, € Wg(T)g,
then there exists t € T such that 9 = ¢9. Since T is 6-stable, we have (¢9)'9~* € T, and so

T NGH=T%9) =T 99 =T9 =T nG".
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This proves (3). Finally, if B is 6-stable, then n, lies in T, hence 9°0~¢ does as well. Therefore,
TNnG =T96 70 =T =T" nG',

and we have (4). O

2.2 Deligne-Lusztig induction

2.2.1 On the identity component. Let G = G(k). Assume that T = T(%) is non-degenerate in the sense
that T = Cg(T)° (see [8, §3.6]). In this case, Wg(T)* is isomorphic to W = Wg(T) (8, 3.6.51). For A € Irr(T),
let RTGJL be the corresponding Deligne-Lusztig (virtual) character of G. Let QTG be the Green function
associated to T, defined on the unipotent set in G by QTG (u) = (RTG 1)(w), for unipotent u € G.

Proposition 2.2.1. For any A € Irr(T), we have R$ (1) = (R1@ )L) 001,

Proof. Let g € G have Jordan decomposition g = su so that g has Jordan decomposition g’ = rv, where
r=s% v=u®. Then [8, 7.2.8] gives
-1 GO
RED() =16 X Qe @) A().
x€G
re*T
Since T is 0-stable, we may make the change of variables y = 6(x) in the sum to obtain
011 GO 0
RFD() =[] T QT @A)
yec D
se¥T
-1 GO
=G Y Q7 @A)
yeG
se¥T

= (RTG (eﬂt)) (8). O

Recall that A € Irr(T) is said to be in general position if its stabilizer in W is trivial. In this case, one of
iR?/l is an irreducible character of G ([8, 7.3.5]). If R.?/l is O-stable, then from Proposition 2.2.1 we have
RTG)L = RTG (PA). Therefore, there exists a unique element w; € W = Wg(T) such that “291 = A ([8, 7.3.4]).

Proposition 2.2.2. Let A € Irr(T) be in general position. If R.I(.SJL is O-stable, then the element w6 of W+
has order dividing dg.

Proof. Since w6 stabilizes A, so does (w) 6)%o. However, (w) 0)% lies in W, and therefore A in general

position implies (w, 0)% = 1. O
Let T’ be the finite group T'nG™.

Lemma 2.2.3. Suppose n, can be chosen to be an element of G, and A € Irr(T) is the restriction to T of some

irreducible character of T'. If A is in general position, then A is O-stable and R?/l is O-stable.

Proof. If n, is k-rational then, as in Proposition 2.1.1(2), T’ is the union of the cosets T9 0<i<dp-1.
Therefore, for any element ¢ € T, ¢ and ¢? are T'-conjugate, and so A must be 9-stable. Thus, “1 = A, for
w the image of n, in W. Since A is in general position, w is the unique element of W with this property.

Therefore, we have w) = w, and R?)L is O-stable. O
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2.2.2 Extension to G*. Let A’ € Irr(T’). Using [14], we obtain a (virtual) character RTG,+ A of G* (see
[14, Definition 2.2 (i)]), which satisfies a reduction formula similar to that for Deligne-Lusztig characters

in the connected case.

Theorem 2.2.4 (Digne-Michel). Let g € G* with Jordan decomposition g =su. If u € (G*)?, then

(G*)?

crn @A),

+ _ -1
2.2.1) RE M@ =T11GH Y [eThQ
xeG*
se*T’
Otherwise, (R%+ A (g)=0.
Remark. There is a minor typographical error in the formula given in [14, Proposition 2.6 (i)]. The correct

formula should appear similarly as in the connected case (see [15, Proposition 12.2 (i)]).

Proof. This is [14, Proposition 2.6 (i)], combined with the following observations. For any x € G* such

+10
that s € *T/, let Y; , be the Deligne-Lusztig variety corresponding to R(ﬁ,))g. Then, as in loc. cit., for any
unipotent elements v € (G*); and w € (*T’);, define
(G tr((w,w)|[HF (Ys)), vwe(GHY,
Q(xT,)OS (v,w) =
s 0, otherwise.

Since G*/G = (0) consists of semisimple elements, the unipotent elements of G* all lie in G ([14, Remark
2.7]). Hence, for any x € G*, the only unipotent element in (*T’) is the identity, and so the inner sum in

the formula given in [14, Proposition 2.6 (i)] is trivial. Now, if u ¢ (G*)?, then for each x € G* such that

+10
s€*T' we have Q(ﬁ,;g (1,1)=0, and so (R%Zl’)(g) =0. On the other hand, if u € (G*)?, then
(G*)? (G PN (N
Qe @ 1) = (RaT')g’ 1)(”)‘Q<fo>2 @). =

We now consider the above formula on specific elements of G™ which will be of interest later. Recall that
n, is any representative of the unique element w, € Wg(T) such that “°?B = B, for B our fixed Borel
subgroup of G. In all of the cases we will consider, we will be able to choose n, = 1. Therefore, to simplify
questions of rationality and Jordan decomposition in the current general discussion, it is reasonable to
assume for the remainder of Chapter 2 that we at least may choose n, to lie in G. Under this assumption,
T’ is defined over &, with T/ = T'(k) = |J; T9". We are particularly interested in the values of R.F",+ A on
elements of G! with semisimple part nd for some n € Ng(T). For any x € G*, let (Gg)unip =GN G unip»

where Gyp is the set of unipotent elements in G.

Corollary 2.2.5. Let n € Ng(T) such that nf € G* is semisimple. For u € (Ggg)unip,

. _ 0
(2.2.2) RE V@) =TT Y V@ Y QoW ().

xeX1(no,nn;t) ¥€G\Gpro
Remark. See §1.3.1 for the definition of iT(no,nngl).

1

Proof. Setting m =nn,*, we prove the equivalent formula

4 _ 0
(2.2.3) RE Numd)=[TTY ¥ Amo Y QGmﬁ(uy),

xTO
xeGrm‘]\G yEG?{Lﬂ\Gm{] 9

" ImOxeT
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which follows from (2.2.1) and the following. First, clearly (G +)?n 9= G?n 9> and since conjugation in G*
preserves connected components, also (xT’)(r)n 9= (xT)(r)n g forany xe G *+. Choose {9/ }jﬁal as a set of repre-

sentatives for G\G*, and convert the sum in (2.2.1) to a double sum as

T,
X€E
mIe*(T 9)

dg-1 .
RE V) wm®) = TG, ¥ |eD,lQ Sno () Y A (mo),
Jj=0

using the fact that 9 normalizes T. For x € G, we have m9 € “(T9) if and only if x 'm%x € T. Suppose x

satisfies this condition. Then *B > *T is an m®-stable pair in G. By Theorem 1.3.1, (*T)? , is indeed a
o mY

maximal torus of G0 , and the Green function Q (x;’)g is defined. It is easy to check that (*T),,9 =*Ty, so

that (xT)gL 9= ng. The cardinality of this last set is equal to |T§|. Moreover, A’ is a class function on T/, so

¥ )(m9) = “A'(m?) for each j. Noting that [T': T]=dg, we now have

(RE A md) =[T/T9] 7|60, " P Qm (@) “A'(m),
1

x meT

Finally, the map x — (m9d)* is constant on right-cosets of G,,9, so

RE VY umd) = [TAY GO, ¥ Vmd) Y ny_l_o(u)

x€Gpo\G y€G 9
2 ImxeT
— 0-1j~0 -1 xq/
=TT |Gl Y. MmO ) )y Qy()yxTO(u)
x€Gm{]\G yeG(r)nﬂ\G"Lﬂ y0€G0m
x ImOxeT
— 0)-1 xq/
=Tl X Ao Y ny-l-o
xEGmﬁ\G yEG?m(J\Gmﬁ
x 1mxeT

where the last manipulation follows from the fact that Green functions associated to conjugate tori are
equal. Formula (2.2.3) is now obtained by noting that for any y € G,, 9, the associated inner automorphism

of G, normalizes G° ., so that

md?
yGO G0
nyTO ( ) = nyTO (y( y)) xTO (uy) O

Corollary 2.2.6. Let n be as in Corollary 2.2.5. If there does not exist an (Inty,(n) o 6)-stable G-conjugate
of the pair Bo T, then (RTG,+ A wun6) =0 for all unipotent elements u € G pg.

Proof. Ifu e G,g~ Ggg, then from Theorem 2.2.4 we have (RTc;,+/1’ )(unB) = 0, regardless of the existence
or non-existence of such a G-conjugate of B> T. On the other hand, if u € Gge, then by Lemma 1.3.9, the

outer sum of (2.2.2) is void under the given hypothesis. O

Remark. If one is interested in the values of R$,+ A" on elements u6, for u a unipotent element of Gy, then
the only interesting situation is when some G-conjugate of B > T is O-stable. If B > 8T is such a pair,
for some g € G, then (1-0)(g™!) = ng mod T. Using this, it is not hard to show that (Rg(T’) ANN(u0) =
(RT, A )uB). Therefore, one may as well assume that B> T is 0-stable, and take n, = 1.
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2.2.3 A specific situation. As before, fix A’ € Irr(T’). We are interested, in particular, in the situa-

tion that Resg+ £RTG,+ A’ is the character of an irreducible, 0-stable Deligne-Lusztig representation o of

G attached to T, for some sign € = +1, and £R1@,+ A’ is the character of ot for some choice of normalized

intertwining operator A, € Hom(o,o o0). This will restrict the choice of 1.
G*pG* _pG T’
Lemma 2.2.7. ResgZ RT, = RT Resy .
Proof. This is [14, Corollary 2.4 (i)], where in the present case T'G = G*. O

Corollary 2.2.8. Let y' =egeT R$,+ M and y = Resg+ x'. Then both y and x' are irreducible if and only if

the character A = Res??t’ of T is irreducible and in general position.

Remark. See [14, Corollary 2.5] for the sign eg €.

Proof. The reverse implication is immediate from Lemma 2.2.7, so suppose y and y' are both irreducible.

Express 1 as a (non-negative) integral combination ¥y crrr(r)cy¥. Using the lemma,

1= (Resg+ xs Resg+ X)G
=(REAL, RS )G

= Z C<PC1I/<R'IG¢’ R—IGW)G.
¢welrr(T)

Since (R?gb, R?w)G = [{w e Wg(T) | “¢ = y}| ([8, Theorem 7.3.4]), the above sum must reduce to a single
term ci( R?t[/, R.?w)G, for some vy € Irr(T). Conclude that A = v is in general position. O

In light of the corollary, we wish to analyze (2.2.2) under the assumption that our fixed character A’ €
Irr(T') is the extension of some A € Irr(T) in general position. In particular, A’ is then 1-dimensional, hence
multiplicative. Also, combining this assumption with Lemma 2.2.3 implies that 1 is 9-stable and R??L is
O-stable. So it is possible to simplify (2.2.2), in the case that n = n,, under a mild condition on (1—-9)|T.
By Proposition 2.1.1(1), the automorphism ¢ — % of T has finite order dy, so we may consider the 9-norm

homomorphism Ng: T—T.

Theorem 2.2.9. Suppose Res?l’ is irreducible and in general position, and let u € (Gg)unip. If(1-9): T—

kerNy is surjective, then the natural map
To\T = X1(n0,1) = Go\X1(n0,1)
is a bijection, and

+ - G9
(2.2.4) RE V@) =V@)[TyTY " Y Q5w
yEGg\Gﬁ 9

If, in addition, Gy is connected, then

2.25) RE @) = 1O Qr? @)
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Proof. Since T is 9-stable, it is contained in X1(n,,1). Given ¢t € T, the cosets Tgt € T and Gg¢ < G are both
uniquely determined by the element ¢~ 1(%). Therefore, the map To\T — %T(no, 1) induced by inclusion
T — Xt(n,,1) is both well-defined and injective. For x € G, the coset Gyx is uniquely determined by the
element x' = x"1(%x). If x € XT(n,,1), then x’' € T, and in fact x’ € kerNy. If we assume (1 —9)(T)=kerNy,
then there exists ¢ € T such that x' = ¢~ 1(%), so that Ggx = Ggt. Thus Ggx is the image of Tyt under the

given map, showing surjectivity.

Using this bijection in formula (2.2.2), in the case n = n,, gives

+ - GY
RE @) =1@[TTY™" ¥ ¢ Y Q,po ().
teTo\T yeGNGy 7

But obviously ¥ tTg =Y Tg for any ¢ € T. Also, since A is O-stable, it is trivial on (1 —9)(T). Formula (2.2.4)

now follows, and (2.2.5) is immediate if we also assume that Gy is connected. O



3. A CHARACTER FORMULA OVER THE p-ADIC FIELD

In an appendix of [7], Bushnell and Henniart provide a detailed survey of the development of an explicit
character formula for supercuspidal representations of GL,,(F) % (0), in the case where 0 is a generator of
the Galois group of a finite, cyclic field extension F/F(. In this section, we follow this development very
closely to obtain a character formula in the case of a more general automorphism 6. The main difference
here is the need to work around an issue with convergence to be able to handle certain classical cases (see
§3.4), as the representations of GL, (F') x (6) we consider will not always be supercuspidal (see Proposition
1.5.1(2)).

3.1 Preliminary hypotheses

Let F be a p-adic field, and let G = GL,(F). Let Fo > Q, be a (not necessarily proper) subfield of F' such
that F/F is a finite, abelian extension. Fix 6 € Aut(G@) of finite order dg. It is necessary to make several

assumptions on . We first restrict to the form of 6 to which all of the cases we consider conform.

Hypothesis H1. The automorphism 6 € Aut(G) is of the form of (1.4.1), with y trivial. We allow the
possibilities that J =1 and/or Fo =F.

Remark. There should be little difficulty in extending the results of this thesis to the cases where 6 is
of the form of (1.4.1), but with y non-trivial and of the form of (1.4.2). Two possible issues might be
determining when such an automorphism has finite order, and finding a suitable replacement for b, the

AdG™-invariant, non-degenerate, symmetric, bilinear form on g = Lie(G) to be introduced in §3.2.

Since y is trivial, we may as well take F to be the fixed field of 7, so that Gal(¥/Fy) is cyclic and generated
by 7. The two possibilities of Oy are now distinguished by valé. For all g € G, we have

det6(g) = (det g)"2?,
det((1-0)(g)) = (detg) T(detg) 2!,

Write Z = Z(G). As usual, we identify Z with F'*. Based on the assumption that 0 has finite order, we
have the following. First, [F': Fy] must divide dy. For valf = 1, we must have N;(J ~1ydolF: Fol ¢ 7 For

valO = -1, dg must be even, and NTOQO(J_l)d"/lcm@’[F: Fob ez,

Fix a kp,-basis @F/Fo for kr, and let @F/Fo be any lift of @F/Fo into Op. Then Bp/r, = U’l?;ol (D}'@F/FO
is an Op,-basis for O, hence an Fy-basis for F, where e is the ramification index of F/Fy. Also, as
in §1.4.1, lift 7 to an element of Gal(F/Fy), and take {id,,...,7/F:Fol-1} as a set of representatives of
T = Gal(F/Fy)/Gal(F/F). Let G = Rp/p, GL,, constructed using X and the single basis Bp/r, (see §1.2).
Then G is a connected, reductive algebraic group defined over Fy such that G(Fy) =~ G. We identify G
with G(Fp) via the isomorphism afforded by Br/r,. By Lemma 1.4.2(2), 0 is the restriction to G of some
Fy-automorphism of G, which we will also denote by 6. From the proof of loc. cit., we may take this
0 € Autg,(G) to have finite order dy. Recall that 6 is then semisimple. Let g = Rp/r, M, be the Lie algebra
of G, and identify g(Fo) with g = M,(F). Let d6: g — g be the differential of 8. The action of df on g is

31
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easy to compute in either case. For X € g, we have

J11(X)J, valo=1,
doX) =
-J11(X)J, valO=-1.

Note that df is an Fy-linear operator on g, but not an F-linear operator if 7 is non-trivial.
We continue with a restriction on the order dg of 0.
Hypothesis H2. The residual characteristic p does not divide dg.

We make the following hypothesis to significantly reduce notational complexity, and because it is satisfied

in all the cases we will consider.
Hypothesis H3. The subgroup Gg of 0-fixed points of G is connected.

Remark. One obvious example where Gy fails to be connected is when Gy is an orthogonal group.

Let Ko = GL,(OF). In the cases we will consider, we will choose 0 so that K is 8-stable. For now, it is

enough to assume the following.
Hypothesis H4. There exists a G-conjugate Lo of K¢ such that Lg is compact.

Remark. This holds if there exists a 6-stable G-conjugate of K.

We fix now an irreducible, admissible, 8-stable representation (7,V;) of G. By Schur’s Lemma, there exists
an intertwining operator A, € Homg (7,7 00) with Ag" =1. Asin §1.5.1, use A, to construct the extended

representation (n*,V;) of G*. The remainder of Chapter 3 will be concerned with the analysis of ©+.

3.2 Harish-Chandra’s submersion principle

In this section, we verify the analogues of two results of [22] in the present setting. Let b be the AdG-

invariant, non-degenerate, symmetric, F-bilinear form on g given by
(3.2.1) b(X,Y) = Trp/r, tr(XY), (X,Y € g).

It is easy to check that b is df-invariant in both cases of vald = +1, under Hypothesis H1, and so is

AdG™-invariant. Let P be a parabolic subgroup of G.

Theorem 3.2.1. For g in G/

qr the map

bg: Gt xP —G", (x,p)— ("@)p
is submersive.
Proof. Here we follow the proof of [7, Theorem (A.4)]. Observe that
Pg(xy, pq) = Prg(x, p)q, (x,y€G*, p,qeP),

so it suffices to verify that ¢ is submersive at (x, p) =(1,1).



CHAPTER 3. A CHARACTER FORMULA OVER THE p-ADIC FIELD 33

The map ¢, is the composition of the following three maps,

G*xP—-G*" xP, G*xP—-G*xP, G*xP—-G™,
(x,p)— (xgx"1g™,p), (x,p)— (xg,p), (x,p)— xp,
with respective differentials
TGt e TP — F1G* © T1P, TiG* e TP — T,G* & T1P, T,G* e TP — TG,
X, Y)—(1-Adg)X,Y), X, Y)—(Xg,Y), X, Y)—»X+gY.

Thus,
(d11yg) (X, Y)=Xg-gX +gY =g(Adg™ - X -X +Y).

So d(1,1)¢g is surjective if and only if (Ad g '—1)g+p =g, where p = Lie(P). The orthogonal complement
of p with respect to b is u = Lie(U), where U is the unipotent radical of P. On the other hand, a sim-
ple calculation using the AdG™*-invariance of b gives that the orthogonal complement of (Adg™! — 1)g is

ker(Adg —1). But since g € Garr, we have ker(Adg — 1) nu = {0}. Taking orthogonal complements of both

sides now yields the result. O
Choose a Haar measure dx on G* and a left Haar measure d;x on P.

Theorem 3.2.2 (Harish-Chandra [21, Theorem 11]). Fix g in G:;r. There exists an embedding
C(G"xP)—C(GY), @ fag,
such that
fG a0 (4t p) dxdip = fG fag® @@, (®cC®(GY)).
Lemma 3.2.3. For fixed a € CZ° (G* x P), the mapping
G — (6, g fag
is locally constant.
Proof. We use the method of proof of [22, Lemma 1]. It follows from Theorem 3.2.1 that the map
GixG*xP -Gy xGY, (8,%,p) — (8,¢4(x,p)),
is submersive. Thus we have a mapping
C§°(Ggrxa+ xP)—»CCOO(GgrxGJr), B,

such that
[ [, [ pexmowosepmdpdrds=[ [ wognoendrds,
:I—T +JP Ga’r G+

for any ® € C®° (Gf{r x G+). Now, C° (Gf{r x G+) =C® (Gf{r) ®C(G), so we may write ® = 1® p for some
rec(Gy) peC(GY). Thus,

f /l(g)f fﬁ(g,x,p)p((pg(x,p))dlpdxdg=f )L(g)f pp(g,x) plx)dxdg.
G G+ Jp G G*
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Since this is true for any A, conclude that
[ [ e putepraimds= [ witgxpwds, (8€Gi peC2(GY))

Fix go € G},. We also have C° (Ggr xG* ><P) =Cx (G;r) ® C°(G* x P), so take f to be u® a for some
peCx (G;r) with u(go) = 1. Since p is locally constant, there exists a neighbourhood w, of go in G, such
that u=1 on w,. Hence B(g,x,p) = alx,p) for g€ w,, x € G*, and p € P, and therefore,

fG+ vp(g,x) p(x)dx=fcﬁfpﬁ(g,x,p)p(tbg(x,p))dlpdx
- f f a(x, p) p(¢plx, p)dpdix = f Farg ) p@)dx.
Gt JP G+

Since this is true for all p € C°(G*) and g € w,, we conclude that fy ¢(x) = yp(g,x) for g € w,, x € G*. The

result now follows. O

3.3 A representative for O+

Following [7], for each g € Garr we construct an operator on V,; whose trace is equal to ©,+(g).

Let Endo(V;) « Endc(V;,) be the space of linear maps T': V,; — V,; such that the maps G* — End¢(V},) given
by g — n"(g)T, g — Tn"(g) are both locally constant. For each integer m > 1, let K, = 1+ M, (). For
any G-conjugate Lg of Ky as in H4 and open subgroup K c Lg, define

Y? : G — Endc(Vy), g fKﬂ*(kg)dk,

where dk is normalized Haar measure on K. For the remainder of this section, fix a choice of Ly and
K c L§ as above, and to simplify notation write Y = Yf{o. Note that L] is open. We have a Cartan
decomposition of both G and G* associated to Lo as follows. Let D be the maximal torus of diagonal

matrices in G, and set
A={a,=diag(@},0%,...,05) | e=(e1,..,en)€Z", e1<es<---<e,}cD.

Let g be an element of G such that Lo = 8°K(. Then, from the usual Cartan decomposition G = KyAK),
we immediately get G = LoA'Lg and G* = LoA'L}, where A’ = 8%A. Let B > D be the standard Borel

subgroup of G consisting of invertible, upper-triangular matrices, and take P = £°B.
Theorem 3.3.1. The map Y is locally constant with image in Endo(Vy).

Proof. For the most part, we follow the proof of [7, Theorem (A.8)] quite closely. The group K contains an
open subgroup K', necessarily of finite index, which is normal in Lg. We obtain normalized Haar measure
on K’ by taking dk restricted to K and renormalizing. Then,
Y@=[K:K]" Y nt kYRt ®, (g€GL).
keK/K'

Therefore, without loss of generality, we may assume that K itself is normal in Lg. Let C1,Co,...,C, be

the distinct cosets of K in L, with K = C;. For 1< j<r, define Y: Gj, — C by

Y@= [ = ¢ par, (gGy),

J
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where dk" is the extension of dk to Ljj. Then for g € Gy, and [ € L,

n+(1)Y,»(g):f atUkt gk ) HdE" =f at (k' gk ) dR,
C. .

J IC;

using the change of variables &' = [k*. Choosing j = j(I) such that /C; = K, we have
DY (@) =Y(@n* ).

Since 7" is irreducible, V; = G* -vg for some vy € V. Fix an open, normal subgroup L of Lg such that

vo € VL. Then V,, is generated as a G*-module by VX, which is finite-dimensional by admissibility of 7*.

We may choose an integer m = 1 such that L contains the open subgroup 8°K,,. Let B,, = BnK,, and
P,, =8°B,,. Then P,, is a compact, open subgroup of P such that (P,;,)* c£°K,, c L for any a € A’. For
1<j<r,letaje C®(G* x P) be the characteristic function of C; x P,. By Theorem 3.2.2, for any g € G,

there exists a unique function fy, ¢ € CS°(G*) such that
fc | Ohgh™ p)dkdip= fG fa, @O dx, (@cCe(GH),
i*Pm *

for 1< j<r. Since n* is smooth, we may apply this formula to the coefficients of 7* (see the Corollary of

[21, Part V, §2]). Therefore, for g€ Gy, v€Vy, and 0 € V., we have

(0.7 (fa, )0 ) = fG e (5,70 dx
=f (ﬁ,n+(kgk_1p)v)dkdlp=<ﬁ,f Yj(g)n(p)dlpv>.
Since this is true for all v and 7, conclude that

(o) = [, Y@ 1@)dip, (e<GL).

m

Fix xg € G:{r. By Lemma 3.2.3, there exist a neighbourhood w of x¢ in G:{r and an open, normal subgroup
K of L, contained in K, such that fa;g 18 K-bi-invariant for each 1< j<r and g € . Consider elements

leLo,acA’,and ve VL. From above, we have
Y(g)n(la)y =n(l)Y j(g) n(a)v, (gew,j=jd).
We also have
n+(faj,g)n(a)v = fpm Y (gn(p)n(a)vd;p = Yj(g)n(a)fpm a(p®vd;p =cj(@)Y j(@n(a)v,
for some cj(a) >0, since p® € L for all p € Py,. Thus,
Y(@n(la)v = ()Y j(@n(@)v = cj(@) ' n)r* (fa, g)n(a)v.
Let ez =meas(K) ! chz. Then,

1t ep)Y(@nla)v = cj(a)_1n+(eg)n(l)n+(faj,g)n(a)U

=cji(@ n)nt (eg * fa; )@,
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where 77 (ez) and 7(/) commute since K is normal in L. Furthermore, since fq; ¢ is K-bi-invariant for

g€w, wehave eg * fo, ¢ =fa;,g, and so
n+(eg)Y(g)n(la)v = cj(a)_ln(l)n+(faj,g)n(a)v =Y(g)n(la)v.

Therefore, 17 (ez)Y(g) acts as Y(g) on LoA’ -VEL. Recall that V, =G*-VF = (LOA’LE)-V,f‘. However, since
L is normal in L}, V,TL is L{-invariant, and so V, = (LOA')'V,f‘. Hence 7% (e)Y(g) = Y(g) on all of V;, for

any g € w.

From the definition of Y(g), it is clear that since K c K, 7+ (k) commutes with Y(g) for any % € K. It follows

that nt(e %) commutes with Yg(g) as well. Thus,
Y(g)=n"(ep)Y(g)=Y(g)nt(ep),

and so since K is normal in K, one may calculate that Y(kgk') = Y(g) for &,k € K and g € w. Hence

g — Y(g) is a locally constant mapping of G, into Endc(Vy).
To see that the maps
x— 1T (x)Yg(g), x— Yr(g@nt(x), (xeG™).
are locally constant, consider that for & € K, we have
7t xk)Y(g) =t (xk)mt (e g)Y(g) = 1 ()1t (e )Y (2) = ¥ (%)Y (),
and similarly Y(g)n" (kx) = Y(g)r* (x) using Y(g) = Y(g) 7" (eg). Thus, we have shown Y(g) € Endo(V;). O

Notice that for g € G:;r,

the existence of a compact, open subgroup K < G* such that
Y(g)=n"(eg)Y(g)

implies that the image of Y(g) lies in the space Vf , which is finite-dimensional by admissibility of 7*.

Therefore, each Y(g) has finite rank.

Corollary 3.3.2. The character of n* is represented on G, by
On+: Gy —C, g—tr(Y(g)).
In other words, for f € CZ° (Ggr), we have O,+(f) =tr(n* (f)) = [+ [()O+(g)d g.

Proof. For f € C®(G™), set fOx) = [ f(x*)dk, x € G*. Then suppf° < K(supp/)K, so f° has compact
support. Also, if f is left-invariant under some open, normal subgroup of K, then f° has the same property.
Thus, £ € C(G*). Moreover, tr(z* (£°)) = tr(z* (f)).

Now, suppose f € C° (Garr), and let x € G* such that £%(x) # 0. Then there exists & € K such that f(x*) #0,

+

k +
sox® € qu. Therefore, x € qu,

andso f0eC & (Ggr). Since x — Y(x) is locally constant, the map

Gh—C, x FEOt(Y(@),
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o +
lies in C° (qu). Therefore,

f ftr(Y(x))dx =tr (f f(x)Y(x)dx) =tr (f f Feonttx)dk dx)
Gt Gt G*JK
=tr ( f FeFnt (x)dk dx) =tr ( f fo(x)n+(x)dx)
G+*xK G+
=tr(t (fO) = tr(r* (). O
Corollary 3.3.3. For Y = Yéo, the map
Gy —C, g—tr(Y(g)

is independent of the choice of conjugate L of Ko and open subgroup K of Lg.

3.4 Restriction to an appropriate subgroup to ensure convergence

We now assume that 7 is also supercuspidal. We have the familiar Harish-Chandra character formula

([21D)

d(r) xk .
m L’\G]I;¢( g)dkdx, (geGreg),

for Z' any closed subgroup of Z(G) such that Z(G)/Z’' is compact, K any compact, open subgroup of G with

0O.(g) =

normalized Haar measure dk, and ¢ any sum of matrix coefficients of = with ¢(1) # 0. However, this does
not generalize to G*, as in some cases the centre Z(G™*) is too small and the integral [, g+ [x ¢(**g)dk dx
(for appropriate Z' =« Z(G*), K, dk, and sum of matrix coefficients ¢ of 7*) may not converge for certain
quasi-regular g € G*. Proposition 1.5.1(2) and Lemma 1.4.5 suggest that we should not have such a
problem when valf = 1. However, we are also interested in cases with vald = —1, even though n* will
not be supercuspidal. To demonstrate that what follows is necessary, a detailed example of this failure to
converge for a specific case with valf = —1 is provided in the appendix. We will work around this problem
by restricting 7 to an appropriate 0-stable subgroup H < G such that Z(H)/Z(H)g is compact and 7, = n|H
has finite length. For g € H, gr, we will then arrive at an integral formula for ©,+(g) by summing the trace
of the operator Yf{"(g) restricted to each irreducible component of 7} =77 |H™, for appropriate Lo and K

as in the previous section.
Set

G, valf =1,
H=

{geG | detgedy}, valo=-1,

and let Zo=Z(H)n Gg € Zg. Then H is an open, closed, normal, 6-stable subgroup of G such that
(i) m, is supercuspidal,
(i) Z(H)/Z is compact,
(iil)) Gg < Hy,

(iv) G/ZH is finite and cyclic, and
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(v) H contains every G-conjugate of K.

It will be necessary to determine how 7} decomposes. Clifford theory tells us that 7, should decompose

with multiplicity one.

Lemma 3.4.1 ([3, Lemma 2.1]). If A is a normal subgroup of a group B such that B/Z(B)A is finite and

cyclic, then any irreducible representation of B decomposes with multiplicity one when restricted to A.
Corollary 3.4.2.

(1) As an H-space, V;; decomposes into a direct sum V,; =U1 & --- & Uy of irreducible, inequivalent sub-
spaces. The length M of the decomposition is equal to the number of one-dimensional (continuous)

characters of G in the collection

Xzp(m)={veG|viZH=1and n®v=n}.

(2) As an H*-space, V;; decomposes with multiplicity one.

Proof. Statement (1) is a direct consequence of Lemma 3.4.1 and [16, Lemma 2.1]. The subgroup ZH" is
normal in G*, and by Lemma 1.1.2 and the fact that Gy € Hy, we have Z(G")ZH" = ZH". Since n* is
irreducible and G*/Z(GY)ZH" =G*/ZH* =G/ZH, (2) also follows from Lemma 3.4.1. O

We may use the above decomposition of 7, to obtain the decomposition of ). For 1 <i <M, write UL.+ =
do—1 4J

Lemma 3.4.3. Let W be a non-zero subspace of V;. Then W is H*-irreducible if and only if W = U;’ for

some integer 1<i <M.

Proof. First, suppose W €V, is a non-zero H*-irreducible subspace. Since the quotient H*/Z(H*)H has
order at most 2, we may apply Lemma 3.4.1 to see that W decomposes with multiplicity one as an H-space.
Let W/ = W be a non-zero H-irreducible subspace of W. Since 7, decomposes with multiplicity one, W' = U;

for some i. Then W also contains, hence is equal to, the non-trivial H*-invariant subspace Ui+.

Now fix 1<i <M. Let V; = W; &--- @ Wy be the decomposition of 7z} afforded by Corollary 3.4.2(2). Using
Lemma 3.4.1 to decompose each summand W; with multiplicity one into H-irreducible spaces, we see that

we must have U; € W; for some 1< j<M'. As before, H" -irreducibility of W; implies U;r =W;. O

The lemma shows that to obtain the decomposition of 7, we need only group together those summands

in the decomposition of 7, that lie in the same A ;-orbit.

Proposition 3.4.4. After reordering the U, if necessary, there exists an integer 1 <M’ < M such that V;

decomposes as an H*-space into a direct sum V; =U{ &--- @ U;l, of irreducible, inequivalent subspaces.

Finally, we obtain a little more information about the summands in the above decomposition of 7}, by

examining how the intertwining operator A, interacts with decomposition of 7.
Lemma 3.4.5.

(1) The operator A, permutes the summands in the decomposition in Corollary 3.4.2(1).
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(2) For each integer 1 <i < M, let m; be the smallest positive integer such that AL'U; = U;. Then m;
divides dg, and U;r is equal to the direct sum @ﬁglAf',Ui.

Proof. Fix an integer 1 <i <M. Since H is 0-stable, A,U; is H-irreducible. Statement (1) is then imme-
diate from the fact that 7, decomposes with multiplicity one. Now consider (2). Since Ag" U; =U;, such
a smallest positive integer m; exists and must satisfy m; < dg. Then we also have Aﬁo_[miUi = Uj, for
any ¢ € Z. If m; does not divide dg, then there exists ¢ € Z with 0 < dy — fm; < m;, which contradicts the
minimality of m;. The equality U = Z;.n:io_ 1A£ U; is obvious from the definition of m;. By (1), the only way
that this sum could fail to be direct is if there is a repeated summand. That is, there exist 0 < j<k<m; -1
such that AﬁUi = A{, U;. But this again contradicts the minimality of m,;. |

The preceding lemma gives us a convenient way to order the constituents in the decomposition of Propo-

sition 3.4.4. For the rest of Chapter 3, assume that m1 <mgo <---<myp.

3.5 An integral formula

As in §3.3, choose a G-conjugate L of Ky such that Lg is compact, and an open subgroup K < Lg. In this
section, we develop an integral formula for the character of 7 on elements of H, (;r by examining the trace
of the operator Y = Yéo on each constituent in the decomposition of Proposition 3.4.4. First, we show that
in most cases, there is no contribution from constituents whose H-decomposition has length greater than

one.

Lemma 3.5.1. Fix integers 1<¢ <M and 1<1i <dy such that m, is greater than 1 and does not divide i.
Let h € H such that h* = h6' € H... Then tr(Y(h")|U}) =0.

Proof. The condition m, > 1 says that U, # U,. By the proof of Theorem 3.3.1, there exists an open,
normal subgroup K cK L such that

YR)=Yh")n" (eg)=n"(eg) Y(RT).
Let L =K nLg. Then L is a compact, open subgroup of H* contained in Lg, with dim(U2r ) < 0o, and
K L

Y(RHU; <U;)* WU, ).

By the H-invariance of the summands in the definition of U}, we have
L “1( i \F

Wk =@ (adu).

Now,

Y(h+):f n+(kh+)dk=f
K

(00 (kh)? Y dE = Al f n((kh)? 1) dkE,

K K

where (kh)?" k=1 € H for any k € K. Therefore, for each j, Y(h+)(A{, Us)c Affj U,. The result now follows
from the fact that since my { i, we have A,i,+j Uy # A{,Ug, and so the projection of Y(hﬂ(A{,Ug)L onto
(AU, is trivial. O

Corollary 3.5.2. If h € H such that hf € H(ilr, then tr(Y(ROIU;) =0 for any 1< < M with m, > 1.
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Fix1<j<M, and let 71;? = nglU;F. Recall that we have assumed that 7 is supercuspidal. The following
compactness lemma will ensure that the pieces of our integral formula will all converge.

Lemma 3.5.3. Assume that 7 is unitary. Then nt is also unitary, so let {-,-) be a G*-invariant Hermitian

inner product on V. Let ¢ be a matrix coefficient of n;. of the form
p)=(n; (@u,v), (xeH"),

for some u,v € UJJ.’. Suppose C is a compact subset of H(';r. Then, there exists a subset A ¢ H* which is

compact modulo Zy and satisfies the following. For g€ C and x€ H™,

f o(*g)dk =0,
K

unless x € A.

Proof. Consider C as a compact subset of Ggr. From the proof of Theorem 3.3.1, for any g € C there exist
a neighbourhood w(g) Garr of g and a compact, open subgroup K(g) of G* such that Y(x) = n(eg(g))Y(x),
for all x € w(g). Since C is compact, there exists a finite collection {g;} = C such that C < |; w(g;). Set
K =(N;K(g;)))nH". Then K is a compact, open subgroup of H*. For xe C c H*, U;F is Y(x)-invariant. Let
x € C. Following through the details of the proof of Theorem 3.3.1, and noting that 7 (eg) IU; =7 (eg),
we see that Y(x)IU; = n;. (ez) Y(x)IU;F. Therefore, the image of Y(x)IU; lies in (UJJF)K , which has finite

dimension by admissibility of 7*. Let {v1,...,v,} be an orthonormal basis of (Uj+ )Kv . Then,
Y(x)WZZ[’m<Y(x)v[7 Um><wavf>vma (H)EU‘;—)
Thus, for g€ C,
JLocrodr= [ (x¢omau,me o) dk= (Y@ 6 e r e e)

=Y o Y@ vz, vm) (F (@™ D, 0p) O, w5 (x7H0)

=2 om Y@ Ve, vm) (T (XD Ve, ) (T} (W)U, V).
Now, for 1 <m <r, the function
Ym: HY —C, X =7 (®)om, V),

restricted to the component H6?, can be considered a matrix coefficient of 7,. Since 7, is supercuspidal,
there exists a collection of compact sets {wm,i}?jo_l, with each w,,, ; © H, such that suppy,, SU; wm,iZ(H)Hi.

But Z(H)/Z is compact, so there exists a compact subset A, c H such that Z(H) c A,Zy, and
supp¥m < U, Om,i(DoZ0)B' = (Ul wm,iAOHi) Zo.
Therefore, [; p(**g)dk = 0 unless
xel,, suppym < (Uml wm,iAOHi) Zo,

so take A to be this last set. O
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We may now state a Harish-Chandra-type integral formula on UJf’.

Theorem 3.5.4. Let ¢ be a matrix coefficient of n}’, and let d(n}’) be the formal degree of n;f relative to the

Haar measure dx on Zo\H". Then for g€ H:l’r,
(3.5.1) (p(l)tr(Y(g)IU;-’) = d(n}’)[ f (p(xkg)dk dx.
Zo\H*+JK

Proof. Note that Z( has finite index in Z(H*). First, assume that 7 is unitary. Let (-, -) be as in Lemma

3.5.3. In this case, it suffices to consider ¢ of the form ¢(x) = (n;.’(x)u, v), for some u,v € U;’. As in the

proof of the Lemma 3.5.3, let {v1,...,v,} be an orthonormal basis of (Uj+ )K . Using Schur orthogonality,

d(n?) f f o(*g)dkdi
Zo\H* JK

= Lem (Y(@ve, vm) dGr)) fz e T @ ) @om, v) dk
=2 0 Y@, vm) (u, 0) (W, v0) = (1) Y, (Y (&)U, ) = (Dt (Y(IU7).

Note that convergence of the integral is guaranteed by Lemma 3.5.3, since the inner integral has compact

support mod Zj.

Now we drop the assumption that 7 is unitary. By Corollary 1.5.6, there exists a 6-fixed quasi-character

v of G such that the twist 7’ = 7 ® v is O-stable and unitary. Using the same intertwining operator A,

to define an extension (/)" to G*, we have (7')" = 77 ® v*, where v* is the extension to G* defined by

v*(60) = 1. The restriction (z); = (n')"|H" has the same decomposition as 7;. Let (')} be the restriction

of ('); to U;. Then (n')} =7} ® vy, where vy =v*|H", and so d((n)]) = d(r}) by definition.

Let u € UJJ.’ and i € 17; such that (k) = (&, n"(h)u), for any h € H*. Since kerv; is open, the linear
functional # is also smooth with respect to (7’ );T. Therefore, the function ¢'(kh) =v*(h)@(h), for he H* |is a

matrix coefficient of(n');.r. Moreover, ¢'(1) = (1), and ¢'(**g) = v*(g)p(**g), for any x,g e H* and k€ K.
Finally, define Y' = (Y’)éo with respect to (7')", as in §3.3. Then Y'(g) = v'(g)Y(g), for any g € G,.
Applying (3.5.1) to (n’)}r, Y', and ¢’, we have
pEr(Y@IU7) =v* (@) o Otr(Y (@IU;)
=v* (@) d((@)}) f f ¢'(*g)dkdi =d(n}) f f o(**g)dkdz,
Zo\H*+ JK Zo\H+ JK
for any g € H,. O

Assuming we have ordered the U; as in Proposition 3.4.4, the theorem allows us to obtain an integral

formula for
0.+ (g) = tr(Y()) =Z§”:'1tr(Y(g)|Uj), (geHY),
by applying (3.5.1) to each term in the sum.
Corollary 3.5.5. Fix an integer 1 <i <dy, and set
J=dJ(@)={1<j<M' | mjdividesi}.

For each index j € J, take
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Lj, a conjugate of Ko such that L;T is compact;
M;, an open subgroup of L;T;
djm, normalized Haar measure on M;; and

¢j, o matrix coefficient ofﬂ;f with ¢;(1) #0.

Then, for g € H.,,

d(n}r) p
3.5.2 0,+(g) = (M) d im d .
( ) @) Jg’] @;(1) fzo\}ﬁfMj(pJ( gldjmdx

If each subgroup M is chosen so that 0 € Ng+(M;), then for g € (Hé)qr,

d(nt)

3.5.3 0,+(g)=1(0 ’f f CMa\d imd.
(3.5.3) g =K >|j§]¢j(l) . Mj(p,( g)d;md%

The formulas in the corollary do not follow immediately from (3.5.1), as they compare ©,+(g) to a sum
involving terms tr(YIA'lj_(g)lU;), where the compact, open subgroup M; LJ+. may vary from term to term.
J

To justify this, we first need the following lemma.

Lemma 3.5.6. For 1< j<M, the function
L
is independent of the choice of conjugate Lo of Ko and open subgroup K < L.

Proof. Fix g € Hy,. Let L be another G-conjugate of Ko such that (L{)* is compact, and let K’ be an open
subgroup of (Lj))*". We wish to show that tr(Y?(g)lU;) = tr(Yé?(g)lU;). Consider the following cases.

Case 1. K' =K c L{n(Lp)*".
Clearly, the definition of Yf{o does not depend on the choice of Lg, and its properties depend only on the
existence of some such G-conjugate of Ko such that K L. Therefore, tr(Y5*(g)|U;) = tr(YéO @IU;).

Case 2. L{, = Lo, K' a normal subgroup of K.
As in the proof of Theorem 3.3.1, we have

YR =[K: K Y at ) YR@nt k.
keK/K'

Now, Uj+ is K-invariant, since K € L{ c H*. Therefore,

(Y (@IU}) = [K: K’]_lk %Kltr(f(k) (YR@Uf) @)

= KK Y r(YR@IUT) = te (YR @IU7).
keK/K'

Case 3. Ly, = Lo, K' arbitrary.

There exists an open subgroup K" € KnK' which is normal in L, hence normal in both K and K'. By the
. L L L
previous case, tr(YKO(g)IUJJ.’) = tr(YK‘?,(g)IU;) = tr(YK?(g)IU;T).
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Case 4. The general case.

Let K"=KnK'. Then K" < L{ n(Ly)", so cases 1 and 3 give

(Y2 (@IUT) = tr (Y2 IUT) = tr (Y2 IUT) = tr(Y (@)U, O

We are now in a position to verify (3.5.2) and (3.5.3).

Proof of Corollary 3.5.5. Let g € Hér. Then O,+(g) = tr(Yf{O(g)) ZM tr(Y éo(g)lU;F), by Corollary 3.3.2.
But from Lemmas 3.5.6 and 3.5.1, we have
. (Y3 (@IUY), jed,
tr(YKO(g)IU;) = J J
0, jed.
Equation (3.5.2) then follows from (3.5.1).

Now assume ‘g =g and 6 e Njeg Ng+(M;). Then for each j €/, we have

(pj(l)tr(ﬁ;j(gNU;) :d(n;)f +fM.<p("mg)djmdx
dg—1
=d(r}) Zf f o ") djmd
Zo\H

+ dg-1 x0/mo~¢
=d(r?) f f ( )dimdx
/ 20 zoJu, 814
=dy d(n}r)[ f oC*g)d,;mds,
Zo\H Ju;

where the last equation is achieved using the change of variables m — . |

We are really only interested in the values of ©,+ at points in H, since at points in H, gr we have just the

qr’
character of 7, while, for 1 <i < dp, at points in H’ qr We may restrict 7t to G % (%), effectively replacing 0

by 6°.

Recall that we have ordered the constituents in the decomposition of 7 so that m; <=mg <---<myy. Let

Jo be the largest index such that m , = 1. If jo does not exist, Corollary 3.5.2 says that ©,+ =0 on H 1. So
suppose jo does exist. Note that the constituents U} ,U; ,...,U;O are precisely those such that Uj+ =U;.
Using the notation of Corollary 3.5.5, we have J(1)={1<j<s|mj=1}, and so

Jo d(ﬂ )

©54 O ()= 21 @;(1) sz\H+f ;" gd;mdx, (g € Hey)-
J
If 6 € Njes Ng+(M;), then
Jo d(7‘[+)
(3.5.5) 0,+(g) = 6| Zl<pj(1) fz it f ¢;("g)d;mdx, (g€ (HYqr)-
J



4. DEPTH-ZERO SUPERCUSPIDAL REPRESENTATIONS

In this section we analyze (3.5.4) and (3.5.5) in the case that 7 is induced from a representation o of ZK

which is trivial on K; and cuspidal as a representation of Ky/K;.

4.1 The inducing data

We are interested in those supercuspidal representations of G which are obtained using a special case of
Howe’s construction as follows. For a complete account of Howe’s construction of the tame supercuspidal
representations of G, see [24]. Let Z = Z(G) = F*. Let E be a degree n, unramified extension of F, and
let A be an admissible quasi-character of E* which is trivial on 1+ 2. In this case, the property of
admissibility is equivalent to the regularity condition that (10n;)|0, i = 1,2, are distinct for all pairs
11 # 12 of elements of Gal(E/F). Choose an F-basis B of E, and identify E* with a subgroup of G via the
embedding a — [mult(a, )], a € E*. Let K be a maximal parahoric subgroup of G such that E* nK = Gy.
Such a subgroup K exists, as we may take it to be the conjugate of K¢ afforded by the change of basis
matrix between B and some fixed integral F-basis of E. Then T = (E*nK)/K' is a torus in K/K' =~ GL,,(kF),
where K’ is the pro-unipotent radical of K. The restriction of A to @5, induces a character of T. By the
admissibility of A, this character is in general position, as the Galois groups Gal(E/F) and Gal(kg/kr)
are canonically isomorphic. Therefore, we may associate to A a cuspidal representation (o,W) of K/K’
via Deligne-Lusztig induction. Inflate o to K. Since ZK = (@) K, we may extend o to an irreducible
representation of Ng(K) = ZK by letting @ act on W by the scalar operator associated to A(@r) € C*. Note
that (o, W) is necessarily finite-dimensional. If we let 7 = c-IndgK o, then 7 is an irreducible, admissible,
supercuspidal representation of G. The representation 7 is depth-zero in the sense that it has non-zero
K'-fixed vectors. To make use of Corollary 1.5.3, we would like our inducing data ¢ and K to both be

O-stable (note that Z is always 6-stable).
Hypothesis H5. There exists a 0-stable maximal parahoric subgroup K c G.

Remark. Based on H1, in either of the cases of vald = +1, we have that the maximal parahoric Ky is
0-stable if and only if J € Ng(K() = ZK), since it is always (7 o §g)-stable. In general, H5 is satisfied if and
only if there exists g € G such that T(Go(g))_lJ geZKy. For example, H5 fails to be true when 6 is trivial
and J =diag(l,...,1,0Fr).

Let G act on Autg,(G) by (g-n)(x) = 8(n(x8)), for n € Autr,(G), g € G, and x € G. Then, replacing 6 by g-0
for a suitable choice of g € G, we may assume that K = Ky. Note that this allows us to choose Ly = Ky to
satisfy H4, so that H4 is essentially replaced by H5. Since the pro-unipotent radical K; < Kj is unique,

we must also have 8(K1) = K1. For any automorphism 1 of Ko, write Ko = (Ko); and K1 ; = (K1)y.

If we further assume that o is 0-stable, then Corollary 1.5.3 tells us that 7 is 0-stable as well. Use the
notation of §1.5.2, and choose an intertwining operator A, € Hom(o,o 00) with Age =1.Let A, =®(A,) €
Hom(r, 7 00), where @ is as in Proposition 1.5.2. Then Aﬁ" =1 as well. Use A, and A, to define ot and

nt, respectively.

44
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4.2 Some integral formulas

We now analyze (3.5.4) and (3.5.5) for 7 as in §4.1.

4.2.1 In the case valf = 1. The property that Z(H)/Zj is compact is essential for Lemma 3.5.3 and
Theorem 3.5.4. Our choice of H is then guided by Lemma 1.4.5. For valf = 1, we have chosen H = G, and

there will be only one term in the expressions for @,+ in Corollary 3.5.5. Let y,+ be the extension by zero

G+

+ . .
zK)+ 7> and therefore j,+ is a sum of

of y,+ to all of G*. From Proposition 1.5.4, we have 7t = c-Ind

matrix coefficients of 7*. Using this in (3.5.4), we now have

d(ﬂ+)f f ok .
4.2.1 0,+(g)= o+ Pg)dkdx,
( ) (&) deg(o) Jz\g+ KX ) *

for any g€ Gér. If g commutes with 6, then (3.5.5) gives

.
d@”) f f Yo (e dhd.
deg(o) Jz,\c Jk

4.2.2 In the case vald = -1. In this case, we have had to restrict to a large subgroup H C G to ensure

(4.2.2) O,+(g) =)

convergence of our integral formulas (see §3.4). The subgroup H was chosen precisely so that Z(H)/Z, is
compact and 7|H has finite length. To find suitable matrix coefficients to use in these formulas in this
case, let us analyze the irreducible constituents of n} = 7n7|H*, given the above construction of 7. As in

§3.4, we should first decompose 7, = 7|H. The following lemma will let us make use of [30, Lemma 3.4].
Lemma 4.2.1. ZH =E*H = E*SL,(F).

Proof. Clearly E*SL,(F) is contained in E*H. Now, E*SL,(F)={ge G | detge NgjrE*}. Let e € E*

and h € H. Then dete € NgrE™ and deth € 0. But since E/F is unramified, NgrOp = Op

7> and so

deteh € Ng/z E*. This proves the second equality.

Since Z = F*, to show the first equality it suffices to show that E* is contained in ZH. Let e € E*, and
let r = valg(dete). Now, dete € Ng/rE™, and so since E/F is unramified, we have r =0 modn. If we set
z =diag(@?",...,@"") e Z, then detz e € Op, so that 2z lee H. Thus, e = z(z le) lies in ZH. O

Lemma 4.2.2 (Moy-Sally). n|ZH has n irreducible, inequivalent components.

Proof. This is [30, Lemma 3.4], noting that in the present unramified case
|F*/NgpE*|=[E: Fl1=n. O

Remark. In [30], Moy and Sally restrict to the case that (p,n) =1 to ensure tame ramification. However,

the cited result holds even without this restriction.

Let V, be the image of W in V,; under the usual embedding (see §1.5.2). We may characterize V, as
precisely those elements of V,; whose support is contained in ZKy. We now show that each irreducible
component of 7, is induced, and moreover is generated by the image of V,; under a fixed element of G.
Recall that gH - V,; = Span{n(gh)v | h € H, v € V;}. Since H is normal in G, gH -V, is an H-invariant

subspace of V.
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Proposition 4.2.3. Forany g€ G, gH -V, = c-Indg{0 (80,) as H-spaces, where 80,(8x) = 0,(x) for x € Ky.

Proof. Fix geG. Let T: gH -V, — c-Indg{o (80,) be the linear map defined by (Tf)(h) = f(g~'h), for
fe€gH-V, and h € H. First, we show that the image of T is contained in c-Indg{0 (8o,). Let fegH -V,
be non-zero. Then f = n(gh1)f1 +---+n(gh;)f, for some h; € H, f; € V;, and r € Z¢. For h € H, we have
(Tf)h) #0 only if fj(g‘lhghj) # 0 for at least one j. Since supp f; € ZK for each j, we have

supp Tf < Hn (U}, “&oh;HZ) = U}, “®oh;Y),

where the set on the right is compact, hence compact modulo 8K(y. Furthermore, since f transforms

appropriately under left multiplication by elements of K, we have
(TF)EkR) = f(kg ™ h) = 0o(R)f (g7 h) = E0,((R)(Tf)(R),

for any % € K. Finally, if f is right K-invariant for some compact, open subgroup K c G, then T'f is right
(K nH)-invariant. Thus, T'f € c-Indg(-O Boy,).

Suppose T'f =0 for some f € gH - V;. This says flg~'H = 0. Since H is normal in G, we have f|Hg 1 =0.
Let f = Z;Zln(ghj)fj as before. Then, suppf c U;:lZKohj_.lg‘l cZHg'. ButforzeZ and h € H,
fzhg™ ) =0(2)f(hg 1) =0, so in fact f|ZHg ! =0. Therefore, f =0 and ker T = {0}, so T is injective.

Finally, it is clear that T is an H-map, and thus embeds gH -V, in c-Indg{O (80,) as a non-zero H-invariant

subspace. By the irreducibility of c-Indi_?K0 (80,), we must have that this subspace is the whole space. [

Corollary 4.2.4. Let g1,82,...,8n be a set of representatives for G/ZH. Then the irreducible components

of moare g;jH-V; = c-IndgK0 ©Bioy), j=1,2,...,n.
As in §3.4, to decompose 7}, we need only investigate the action of A, on the constituents of m,.
Lemma 4.2.5. The subspace V5 is Ay-invariant.

Proof. Let f € V,. Then (A,;f)(x) # 0 only if 6(x) € suppf < ZKy. Since ZKj is O-stable, conclude that
suppA,f <cZKy,and so A f €V,. O

Corollary 4.2.6. Let g€ G. Then gH -V, is Ay-invariant if and only if 0(g) = g mod ZH.

Proof. For g =1, the result follows from Lemma 4.2.5 and the fact that H is 6-stable. Otherwise, we have
A, (gH-V,;)=0(g)H-V,;. Suppose 0(g) = gzh forsome z € Z, h€ H. Then 6(g)H -V, = gH-V,, since z acts as
a scalar. On the other hand, if we assume gH -V;; is A;-invariant, then again we have 0(g)H -V, = gH -V;.
Therefore, 0(g) =g mod ZH, by the inequivalence of the components in Corollary 4.2.4. |

From Corollary 3.5.2, the constituents of 7, in which we are interested are the A -invariant ones. How-
ever, we would also like the inducing data for such constituents to be 6-stable, a property not guaranteed

by the previous result.

Proposition 4.2.7. Let g € G. Then 8K is 0-stable if and only if 6(g) = g mod ZK. In this case, 80, is

also O-stable, and gH -V, = c-Indg;{Oy (80,)" as H*-spaces.
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Proof. Since Ng(Ky) = ZK, it is immediate that K is 6-stable if and only if 6(g) = ¢ mod ZK,. Write
0(g) = gzkg for some z € Z and kg € Ko. It is not hard to check that A, = 0(zko)As € Homeg,(80,,80,00), so
that &0, is 0-stable. Define (80,)* via A. Let x = c-Indg(-O 80,, and set A, = ®(A]) € Homp(x,x 00), where
® is as in Proposition 1.5.2. Use A, to define x* as usual. Then x* = c-Inde,I;O)+ (80,)*, by Proposition
1.5.4. We will show gH -V, =«x". Let Vi be the space of x (and also of x*), and let T': gH -V, — V; be the
H-isomorphism given in the proof of Proposition 4.2.3. An easy calculation shows that 7' commutes with

the action of 6 on the respective spaces, that is, TA,; = A, T. So T is in fact an H " -isomorphism. O

Proposition 4.2.8. Let g1,82,...,8, be a set of representatives for G/ZH, and set U; = g;H-V,;, 1< j<n.
Then we may re-order this set such that, as a H*-space, V; =U{ eUj &---® U:;,, for some n' < n. Here, each

U;T is defined as in §3.4. Furthermore, my | dg and my <mp,1 for each k.

Proof. Arrange the elements of G/ZH into (0)-conjugacy classes. That is, consider gZH ~ g'ZH if there
exists an integer j such that Hj(gZH )=g'ZH. Let n' be the number of such conjugacy classes. For
each 1<k <n/, choose a ZH-representative g that represents each (0)-conjugacy class in order of car-
dinality of the classes from smallest to largest. Let m; be the corresponding cardinality. The class of
gk is {grZH,0(g1)ZH,...,0™ Y(g,)ZH}. In this arrangement we have mj < my,; for each &, and it is
straightforward to show that each m;, must divide the order of 8. Choose n —n' more ZH -representatives
Znisls---,8n to round out the set. As an H-space, V,; decomposes as V; = @, Uy, and for each £ and any
integer i we have A,i, (gpH)-V, =0'(gi)H - V,;. The result now follows from Proposition 3.4.4. O

Let g1,...,2, and Uj,...,U, be as in the proposition, in the given ordering. Corollaries 3.5.2 and 4.2.6 say
that only the pieces which correspond to a representative g, with 0(g;) = g mod ZH make a contribution
to ©,+. We will always choose g1 = 1. Using the determinant map to induce a bijection between G/ZH and

F*/NgrE>, we have the following easy lemma.

Lemma 4.2.9. The only representatives in the collection {g1,...,8n} which satisfy 0(gr) =g, mod ZH are
(i) g1, if nisodd, or
(ii) g1 and g9, if n is even, with detgs € (D;ffz NgrE™.

Proof. Fix 1<k <n. Suppose detgy, € @, NgrE*, for some 0 <i <n—1. Then detf(g;) € @5 ' NgpE*,

and the result follows. O

It remains to specify appropriate matrix coefficients to use in (3.5.4) and (3.5.5). Use the notation of §3.5,
H+
Ky
Take K = Ko. Let y,+ be the character of o; = 0¥|K, and let j,+ be its extension by zero to all of H™.

recalling that for 1 < j <n/, we set n}’ = 7'[;|U;.'. Having chosen g1 =1, we have Uy = H-V; Zc-Ind ;. 0.
Then j,+ is a sum of matrix coefficients of JII, with §,+(1) = deg(o) # 0. By Lemma 4.2.9, this is all we

need in the case that n is odd.

If n is even, consider the contragredient spaces l71,l72 c Vn; c V. We have Uy = n*(gz)Ul. Therefore, if
1 is any matrix coefficient of 77, the function ¢2: H* — C given by @a(x) = ¢1(x%2), x € H', is a matrix
coefficient of n5. Therefore, the function x — j,+(x%?) is a sum of matrix coefficients of 75. Collect all of

this in the following result.



CHAPTER 4. DEPTH-ZERO SUPERCUSPIDAL REPRESENTATIONS 48

Corollary 4.2.10. Let s be 1if n is odd, and 2 if n is even. Then,

1 s . “Ixk .
4.2.3 O+ (g) = —— .dff f +(81 " g)dkd,
(4.2.3) (&) dog(@) > i-1d)) . Xor G/ T g)dkdx

for ge Hollr. If g commutes with 0, then

_ <0} s +f f . g7 lxk .
@24 Or &)= Gogton 214 g o Xos T IR

Remark. Since H = G for valf = 1, in the notation of §3.5 we really have 7'[1' = n". Therefore, if we write

0, =0 and use s =1 and g1 = 1 in this case, then we may use (4.2.4) for both cases val0 = +1.

4.3 Further hypotheses

Recall that an element y € G is called topologically unipotent if yp[ —1as ¢ — oo. If y € Ky is topologically
unipotent, then its image in K¢/K; is unipotent. In light of this, we wish to use Chapter 2 to analyze
(4.2.4) in the case that o is Deligne-Lusztig as a representation of K¢/K1, and g is of the form y0, for some
topologically unipotent element y € K 9. We now make some hypotheses on the structure of G and K¢/K1

relative to 6 to facilitate this analysis.

Recall that in the case that n is even and valf = —1, the sum in (4.2.4) has two terms, with the second
corresponding to a representative g9 of G/ZH such that detgs € (D;‘,&NE/FEX. We need some notation to

be able to make statements which apply simultaneously to both cases. Set

0 {1,2}, n even and valf =-1,

G/ZH = )
{1}, otherwise.

Hypothesis H6.
(1) Foreachice IZ/ZH, we may choose the representative g; so that 6(g;) = g; mod Z.
(2) Fixiel? .., and suppose x € g;*H. If (1-0)(x) € ZK, then x € Kog;'Gy.
Remarks.

(1) To ensure that the inducing data of the irreducible subrepresentation of 7|H associated to the coset
giZH is 0-stable, we only need to assume that each g; satisfies 8(g;) = g; mod ZK; (see Proposi-
tion 4.2.7). However, in the cases we consider, we may go further by assuming H6(1), significantly
simplifying the general formulas to follow. For i = 1, H6(1) is always satisfied, since we always take

g1=1

(2) Note that H6(1) can fail to be true. For example, suppose n =2 and [F': Fo] =2, with F/Fy ramified.
Let 7 be the non-trivial element of Gal(F/Fy), and let 0(x) = tz(x) "1, for x € G. Let g9 = diag(@r,1),
so that detgg € @pNg/rpE*. If —1 is not a square in &k, then there does not exist 2 € H such that
(gh) '0(gh) e Z.

Using H6(1), we may apply Proposition 4.2.7 to the case that n is even and valf = —1 to see that d(r}) =

d(n}). Indeed, we have deg((¥20,)") = deg(c) and the measures of Zy\(¥2Ko)* and Zo\K| relative to
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0

G/zp> ™ust

dx are equal as well. Also using H6(1), it is straightforward to check that each g;, for i € I
normalize both Gg and Gy.

The following lemma approximates H6(2) near 6.

Lemma 4.3.1. Fixic€ I%/ZH’ and suppose 'y € Kq g is topologically unipotent. If y € gi‘lH such that ¥(y0) €
(ZKo)*, then y € Kog;'Gy.

Proof. We will show that (1-6)(y) € ZK, from which H6(2) will give the result.

By H6(1), (1-0)g;") € Z. If we set ¢; = valp(g;10(g;)), then (1-0)g; 1) € (Df;."Ko. By assumption,
yy08(y~1) € ZKy. Then, since detyyf(y 1) e (Dzli@’;, we have w = a)}[i (*(y9) € KJ. By H2, there exists
a positive integer ¢y satisfying p’ =1 mod dg, so that 0P"™" = 9 for any integer m > 0. Consider cases

based on i, starting with ¢ = 1. Now, ¢; =0, and since y is 6-fixed and topologically unipotent, we have

mlg mlg
wP " =Y(yP ") -0 as m —oo.

Therefore, since Kg is closed and each element of the sequence {wpng Ymez., lies therein, we must have
Y0 e Kg and (1-0)(y) € Ky, and we have finished the proof in this case. Now suppose 7 is even, valf = —1,
and i =2. Set = Ngw};l. Since vald = -1, @p0(@F) = ag, for some ag € 05, and it follows that § =

Ngz(agl) € 0y. Now, w = pl2Y(y0)%0 g0 w1 = (D;fz B2 9(y0) %+ for any integer r = 0. Therefore,
w?" = @yt prmtz Yo" g), (m € Z50),

where r,,, = (p™% —1)/dg. Since € G, the sequence {6 ™ }mez,, has a convergent subsequence. If {m ;} is

a set of indices such that the sequence {' ™/} converges to oo € Oy, then

rnjfo iy ¢ .
wP " @270 as j— oo

As in the previous case, we conclude that (D;fz ﬁg?, Y0 e Kg , hence (1-60)(y) € (D?Ko. O

We now assume that the necessary structure exists for it to be possible for o to be Deligne-Lusztig and
0-stable. Recall that we have chosen a degree n, unramified extension E/F. Any choice of F-basis for E
affords an embedding of the torus Rg/r Gy, onto a maximal F-torus of GL, (see the example of §1.2.3),
and the images of all such embeddings are G-conjugate by the appropriate change of basis matrices. If
S c GL,, is the image of such an embedding, then S(F) = E*. As in §1.4.1, lift 7 to an element of Gal(F/Fy),
and consider 0 as an automorphism of the abstract group GL,, = GL,,(F).

Hypothesis H7. There exists an Og-basis for O such that the image S of the corresponding embedding
Rg/r G — GL,, is O-stable.

Let T be the maximal Fy-torus Rp/z, S = Rg/r, Gm of G. By Lemma 1.4.3, T is 6-stable. Under the identi-
fication of G with G(Fy), we have T = T(Fy) identified with S(F').

Turn now to the structure over the residue fields. We have assumed that K is 0-stable, so we may also
assume that J € K. Identify Kyo/K; with G = GL,,(kr). We will also use 6 to denote the automorphism of
G which is induced by 0|Kj. This automorphism is also of the form of (1.4.1), with y trivial, J replaced by
J, and 7 replaced by the induced element 7 € Gal(kr/k Fo)-
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Let F" be the unramified closure of F. Then kun) is the algebraic closure k. Lift 7 to the element of
Gal(kp/k F,) induced by 7|F"". Then we may let 6 also denote the automorphism of the abstract group
GL, = GL,(kF) of the form (1.4.1) with respect to J and 7, and with y trivial. Let ﬁF/Fo be the fixed kp,-
basis for kr from §3.1, and take {id,7,...,7¢"1} as a set of representatives of < = Gal(]EF/kFO ) Gal(kp/kr),
where e is the ramification index of F/Fy. Let G =Ry, 7o GL,, constructed using £ and BF/FO (see §1.2).
Then G is a connected, reductive algebraic group defined over kr, such that G(kr,) = GL,(kF). As over the
local fields, we identify G(%F,) and GL, (k) via the isomorphism afforded by B F/F,> and also identify these
two groups with Ko/K;. Let 6 also denote the semisimple element of Auty, Fo(G ) provided by Proposition
1.4.2(2), from 0 as an automorphism of GL,,. Let dg be the order of 6 in Aut;, Fo(G ). Note that dgy divides
dy.

Let S = (S(F) nKO)/K 1. Then S is the set of kp-rational points of a maximal, 2g-minisotropic torus S of
GL,. The torus S is the image of the embedding Ry, /., Gm — GL, afforded by the kp-basis of kg induced
by the basis from H7. Now, since S =~ &k, the eigenvalues of any element of S are precisely its Gal(kg/kF)-
conjugates. Therefore, S is non-degenerate in the sense of property (iii) of [8, Proposition 3.6.1]. By loc. cit.,
we then have that S is the unique torus of GL, containing S. But since S is 0-stable, it is also contained
in 6(S). Therefore, S is O-stable. Let T be the maximal kp,-torus RkF/kFO S of G. Again by Lemma 1.4.3,
T is O-stable. As well, Lemma 1.2.3(3) says that T is kr,-minisotropic. Under the identification of G with
G(kF,), we have T =T(kp,) identified with S(kF)= kg, and T=(TnKy)/K;.

The following sets up the necessary structure to use Chapter 2.
Hypothesis HS.
(1) There exists a 6-stable Borel subgroup B of G which contains T.
(2) There exists a 6-stable character A of T in general position.

Remark. We will be interested in values of the Deligne-Lusztig characters of G* examined in Chapter 2
on elements of the form u0, for u a 0-fixed, unipotent element of K¢/K1. In light of Corollary 2.2.6, in order
that these character values are not zero, we have assumed in H8(1) that we have an appropriate 6-stable

pair, rather than just an appropriate 6-stable torus.

Since it is true in the cases we will consider, we make the following hypothesis to avoid overly burdensome

complications in our general statements.
Hypothesis H9. The subgroup Gy of 0-fixed points of G is connected.

Remark. Again, Gg will fail to be connected, for example, when it is an orthogonal group.

Combining H8(1) with H9, we have that Ty is a maximal %p,-torus of Gg. By Corollary 1.3.7, it is k-
minisotropic. Write X= %T(l, 1). For each x € i, the maximal torus *Ty of Gy is also kp,-minisotropic,
as x € G implies that *Ty is isomorphic over kp, to Ty. We would like to be able to construct irreducible,

cuspidal representations of Gy using Deligne-Lusztig induction from each *Tj.

Hypothesis H10. For each x € X, there exists a character Ay of Ty which is in general position with
respect to WGO(XTe)kFO.
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We also need to be able to lift these cuspidal representations of Gg to Ko g, and induce from the normalizer

of Kg g to obtain irreducible, supercuspidal representations of Gg.

Hypothesis H11. The subgroup Ko g is a maximal parahoric subgroup of Gg whose normalizer in Gg is

Z(Gg)Ko,9, and Ko /K1 g is naturally isomorphic to Gg.

The following hypothesis will allow us to apply the general results of [21] to the supercuspidal represen-

tations of Gy mentioned above.
Hypothesis H12. The quotient Z(Gg)/Zy is compact.

Remark. This quotient can fail to be compact, for example, in the case that 6 is the inner automorphism

of G corresponding to an element which is regular but not elliptic.

Finally, we would also like to use the results of [13, §12.4]. Let (Gg)y+ (resp. (gg)y+) be the subset of
topologically unipotent (resp. topologically nilpotent) elements of Gg (resp. gg).

Hypothesis H13.
(1) For each x € %, there exists an element X € Lie(*Ty) whose centralizer in Gg is precisely XTp.

(2) There exists a Gg-equivariant map log: (Gg)y+ — (gg)g+ whose restriction to Kon(Gg)g+ induces a

Gg-equivariant map log: (Gg)unip — (Lie(G)g)nilp-

Remark. Both of these hold in the case that 6 is Galois. In other cases, if we assume that Gy splits over
the maximal unramified extension of Fy, then H13 holds whenever [13, Restrictions 12.4.1] hold (see [13,
Lemma 12.4.2]).

4.4 Descent to Gy

For the remainder, assume that

.
Yo Ky =€+ R% A,

where the righthand-side is lifted to K}, A* is some extension of A to T*, and we have adjusted the sign by
&4+ = eg €1 using [14, Corollary 2.5]. We now use Chapter 2 to express 0,+, on elements of Kar near 6, as
a linear combination of characters of representations of Gy. It is necessary here to restrict our attention
to G-regular elements, rather than quasi-regular elements. Recall that every G-regular element of G* is

quasi-regular (Lemma 1.3.14). We first analyze the inner integrals of (4.2.4).

For each pair (i,%), consisting of an integer i € Ig 7y and an element x € X, construct an irreducible, su-
percuspidal representation mg(i,x) of Gy as follows. We have assumed in H10 that there exists a character
Ax of *Tg which is in general position with respect to Wg e(ng)kFO. Choose such a character 1. Since
*Ty and Ty are G-conjugate, they have the same kp,-rank. Therefore, using g = g, - €1, to adjust the
sign ([15, Proposition 12.9]), there exists an irreducible, cuspidal representation oy of Gg with character

Yx = €0 RE—FH)LX- Using the natural isomorphism Gg = K g/K1 g of H11, lift o to a representation of Ko,
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and extend this to a representation of Z(Gg)Kgg. Let yx also denote the character of this representation.
Let M; = Z(Gg)(¥1K g). Since g; normalizes Gg, H11 implies that M; = Ng,(¥:K¢ ), and so

(i, %) = c-Indf;i (Eioy)

is an irreducible, supercuspidal representation of Gg. Let y¢(i,x) be the extension of iy by zero to Gy.
For certain g e (H ;)G_reg, we can use Chapter 2 to relate the inner integral of (4.2.4) to integrals of {y(i,x)

over Ko g.

Lemma 4.4.1. Let y be a topologically unipotent element of Kog such that y0 € (H ;)G_reg. Let dk' be
normalized Haar measure on Ko g. For i € I%/ZH’ define
fyi: H—C, x| g G ) dR
Koo °
Fix i.
(1) The function fy; is locally constant and invariant under left-translation by elements of 8iK,. Its

support is contained in (8iKo)Gy.

(2) For x € Gy,

fri)=0(g;'0(g:) eveq ITTol ™t Y XF(G)fK ()'ce(i,x))(xk’y)dk’.
xeX 0.0

(3) The support of fy,; is compact modulo Zj.

Remark. Recall that we have assumed g;'6(g;) € Z for each i € I% .. (H6(1)). Since o is irreducible,
U(gi‘le(gi)) is a scalar operator on W, by Schur’s Lemma. In the formula of (2), and throughout the rest
of this chapter, we abuse notation and use cr(gi_lg(gi)) to also denote the element of C* associated to the

scalar operator o(g;16(g;)).

Proof. The integrand in the definition of f,; is invariant under Kar -conjugation of its argument, so in
particular fy; is invariant under left-translation by elements of #.K,. This also implies that f ; is locally
constant. Fix x € H. For &' € Koy, 4+ is zero on gflxk/(ye) unless this element lies in (ZK()". Suppose
there exists &' € K g that satisfies this condition. Then applying Lemma 4.3.1, we have gi‘lxk’ € Kogi‘ng,
hence x € (81K()Gy. This completes the proof of (1).

Now let x € Gg. Let &’ be any element of K¢ g, and set w = gi_lxk'. For convenience, write z; = gi_le(gi) €Z.
Since x and &’ are 0-fixed, we have 0 = z;60. Therefore, “(y0) € (ZK()* if and only if ¥y € ZKy. However,
det¥y = dety € @5, so we have Yy € ZK( = (®df) Ko if and only if ¥y € K. Thus,

Tor (57 0)) = 13 (2:*1)0)

oz)es (REA)(1)0), “yeKo,

0, otherwise.

Since g; normalizes Gy, we have ¥y € Kj if and only if “y € Ko g. Also, ¥y is topologically unipotent, so if

it lies in Ky we may apply (2.2.2) with n =1 and 9 =0 to get

REAH(E0) =TT T 2 @) Q% (@)

XE%
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However, for each x € X, we have QXGf’o(v) = (R,¢G1f’0/1x)(v), for any v € (Gg)unip (recall from §2.2 that Gpip is
the set of unipotent elements of G and (Gg)unip = Gg N Gynip). Therefore, if “y € K g, then

ot (2i("P0) = (2 €4 £9 IT/ToI ™1 Y A7 (0) &g (*y).

XE;
Now, ¥y € Ky ¢ if and only if xk’y €Ky, hence we may write
Ry iud) = oz ex g9 [T/Me ™" Y A% 0) (10, )y,
XE%

Substituting this expression as the integrand in the definition of £, ; gives (2).

For (3), note that Ky g is a compact, open subgroup of Gg, and each y4(i,x) is a sum of matrix coefficients of
the irreducible, supercuspidal representation mg(i,x) of Gg. Furthermore, by Lemma 1.3.12, y is regular
in G, hence regular in Gg by Lemma 1.3.10. Therefore, we may apply [21, Part V, §4, Lemma 23] to see
that the functions

Gy —C, fo ()’(g(i,x))(xk’y)dk',
Koo

each have compact support mod Z(Gy). By (2), fy,;|Ge is a (finite) linear combination of such functions,
so there exists a compact set w c Gy such that supp(fy,i |G9) S wZ(Gg). It follows from (1) that suppfy,; <

(iK9)wZ(Gy), and statement (3) is now a consequence of H12. O

0
G/ZH

x € X. Note that the representations in the collection {oy} all have the same degree. Write deg(ay) for this

The lemma allows us to express O,+(y0) as a linear combination of the values ©,; x)(y), for i € I and

common degree. As well, the representations in the collection {7g(i,x)} all have the same formal degree.
Write d(g) for this common formal degree.
Theorem 4.4.2. Let y be as in Lemma 4.4.1. Then,

deg(op) d(n])
deg(o) d(mp)

O+ (y0) = 1(0)| 4 ¢ |T/Tgl ! Y Y AT 0 (g70(g1)) Onyii 0 ()

iEI(e}/ZH xeX
Proof. Let i € I%/ZH' The integral fZO\H fy,ilx)dx converges, by Lemma 4.4.1(3). By invariance of the
measure dx, we have fZO\H fritx)da = fZO\H fy,i(xk)dz, for any k € Ko. Thus, using normalized Haar

measure dk on K\, we have

(4.4.1) f fy,i(x)da'czf f fy,i(xk)da'cdsz frilxk)dkdx
Zo\H Ko JZo\H Zo\H JK,

- f f Tor (€ 0) dRds,
ZO\HJK, °

where the last integral manipulation is achieved by absorbing the integral over Ky g from the definition of

fy,i into the integral over Ky, using invariance of dk. From (4.2.4), we have

1<6)] -1

O 9= Geg) d frf f (o (6 “k(y0) dkdi.
r0) deg(o) L.EI(-)Z i) Zo\H KOX 5 oo ¥

G/IZH

Recall that for n even and valf = -1, d(rr3) = d(n7). For all other cases, Ig/ZH = {1}. Substituting (4.4.1)

into the above equation, we have

()

d
deg(o) iez fZO\ny,i(x)dx.

0
IG/ZH

(4.4.2) O+ (y0) = KO
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Assume that the invariant measure dx has been normalized so that the image of Ky in Zo\H has volume
1. Similarly, let di’ be invariant measure on Zo\Gy, normalized so that the image of Ko g in Zo\Gy has
volume 1. Then Lemma 4.4.1(1), the invariance of f,; under left-translation by elements of K¢, and our

choice of normalization of measures dx and dx’ allows us to write

f fyi(x)dx :f fyi(x)dx =f frixhdx'.
Zo\H Zo\EiK)Gy Zo\Gyg

Note that in the proof of Lemma 4.4.1(3), we have shown that the support of f ;|Gg is compact modulo Zj,
so that this last integral converges. Now apply Lemma 4.4.1(2) to get

f fri(x)ds=o(g;'0(g:)) 4 €0 ITTol ™1 Y. *A7(0) f f (10, )" y)dE' dig
Zo\H Zo\Gy JKop

XE.%

= o(g;"0g ) e4 c0 T/ Y X17(0) 2B

. 871 i ( )
xek d(m(i0) T

Substituting this into (4.4.2) and pulling out the common degrees deg(cg) and d(y) completes the proof.
O

4.5 Transfer to the Lie algebra

We may use [13] to express each O, x) in terms of the Fourier transform of an orbital integral on gg,
giving us an expression for ©,+ as a linear combination of such Fourier transforms.

For X € g, write dNg(X) = X +dO(X) +--- +d0%"1(X). Let g, = ker(dNp). Then g = gg ® g, as an Fo-space.
Let b be as in (3.2.1). Since b is non-degenerate and df-invariant, it follows that g is the orthogonal
complement of gy with respect to b. Therefore, the restriction of b to gy remains non-degenerate. Fix a

non-trivial additive character A of Fy with conductor Z,. For f € C{°(gg), the Fourier transform of f is
defined by

f&X)=| fFAOAbX,Y))AY, (X €go).
g0

Given an element X € gy, let dxg be the unique (up to a constant) invariant measure on the homogeneous

space Gg/Cq,(X). The orbital integral associated to the Gg-orbit of X in gy is the distribution
ux(N= FEX)dio, (F € C(an).
GQ/CGO (X)
Define the Fourier transform of px by gx(f) = ux(f). The distribution fx is represented by a locally
integrable function on gy ([20]), which we also denote [1x.
Set €9 = M,(Or) and £; = M, (%), and let £ g and £ g be the respective subsets of d f-fixed points.

Theorem 4.5.1. For each x € X, there exists a regular semisimple element X € €y \ €19 satisfying the
following. The image of Xy in Lie(G)y under the mod Py map is the element Xy € Lie(*Ty) of H13(1). Also,

for each regular element g € (Gg)y+, we have

Oryi,x)(8) = d(mg) Qsix, ) (log g),

where log is as in H13(2).
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Proof. This is [13, Lemma 12.4.3], noting that in loc. cit., the measures have been normalized in such a

way as to eliminate the d(mg) factor. O
We now combine Theorems 4.4.2 and 4.5.1.

Theorem 4.5.2. For any g € G and any topologically unipotent element vy € K¢ g such that y0 is G-regular

in Gt, we have

deg(ayg) Z

+(8 — -1 +
O+ (5(y0)) = KOY £ ex [T/Tol ™" d(m7) deg(©)

Y A O)0(g70(g) peeix, dogy).

iell, . xeX

Note that the set of all elements of the form &(y0), for g and y as in the theorem, forms an open neighbour-
hood of 0 in G*.

4.6 A special case

In all of the cases we will consider, we will be able to apply Hilbert’s Theorem 90 in one way or another to

show that (1-6): T — kerNy is surjective. We will now restate the results of §§4.4-4.5 in this case.

Theorem 2.2.9 says that the reduction formula for RTG: A", on elements uf with u € (Gg)unip, is now re-
duced to a single term. Therefore, we may simplify the construction of the supercuspidal representations
{mg(i,x)|i€lgzH, X€E X}of Gy in §4.4 as follows. First, we may replace H10 by the assumption that there
exists an irreducible character Ag of Tg which is in general position. Choose such a character Ag, and from
it obtain a cuspidal representation gy of Gy. Then construct only one or two (depending on valf and n)
representations {my(i) | i € Ig/zg }, similarly to §4.4. Again, write d(ig) for their common formal degree.
Using (2.2.5) instead of (2.2.2), Lemma 4.4.1(2) then becomes

fri(@) =e.eg A (0) (g7 0(g))) fK (16())* ) dE’, (i €Il . x€Go),
0,0
where each y4(i) is defined similarly to the functions y4(i,x) in §4.4. Theorem 4.4.2 becomes

deg(op) d(n])

_ +
O,+(y0)=(0)| €4+ €9 A7 (0) deg(@) dlm)

Y o(87'0(80) Omyiy ()

.70
€170

We may also replace H13(1) by the assumption that there exists an element X € Lie(Tg) whose centralizer

in Gg is precisely Tg. Now Theorem 4.5.2 simplifies to

d
(4.6.1) ®n+(g(}/9))=|<9)|E+Egﬂ+(9)d(ﬂi)ﬁ Y o(g;'0(g)) e, logy),
eg(0) ;10

G/ZH

choosing a single regular semisimple element Xy € £y g \ €1 9 whose image in Lie(G)g under the mod &z

map is Xp.



5. EXAMINATION OF SOME CASES

We now apply the general results of the previous sections to several cases of particular interest.

5.1 The unramified Galois case

In this section, we examine the case of valf =1, J =1 and F/Fy unramified.

5.1.1 Definition of 0. Use the general setup of §3.1 and §4.3. Assume that F/Fj is unramified, with
1<d =[F:Fy] < oo relatively prime to p. To ensure the existence of a stable elliptic torus, we also
assume that d is relatively prime to n. As in §1.2.4, 7 induces a semisimple Fy-automorphism 6 = 1, of
G =Rp/r, GL,. Since F/Fy is unramified, we have Gal(kr/kr,) = (T). On G = Rkp/kpo GL,, we also have
0 =n;z.

5.1.2 Verification of hypotheses.
H1, page 31. This is satisfied by the definition of 6 above.
H2, page 32. We have dg =d =[F': Fy], and we have assumed that ged(d, p) = 1.

H3, page 32. The set (GLn)iT of y,-fixed points of (GL,)” is just the image of GL, under the diagonal

embedding, and therefore is connected. Hence, Gy is also connected.
H4, page 32 /| H5, page 44. The maximal parahoric subgroup K¢ = GL,(CF) is 0-stable.

H6(1), page 48. There is nothing to verify, since vald = 1 implies I g oy =1}, and g1=1.

H9, page 50. By the same argument as for H3, Gy is connected.

H11, page 51. We have K¢ g = GL,(OF,) and K19 = 1+M,(%r,), so Ko /K1 ¢ is naturally isomorphic to
Go = GL,(kF,). Also, Ng,(Ko) = F;Kog=Z(Gg)Kop.

H12, page 51. Since valf = 1, we choose H = G, and so Zy = Z(G)g = F;. Since Gy = GL,(Fy), the
quotient Z(Gy)/Zy is trivial.

H13(2), page 51. Let by be the subset of £ consisting of elements whose (i, /) entries lie in @ for i = J,
and let By =1+by. Write by g =(b1)g and By = (B1)s. Then (gg)g+ = Go(bl,e) and (Gg)g+ = GO(BLQ). Clearly,

it suffices to take log: x — x — 1, the inverse of the truncated exponential map exp: X — 1+ X.
Remaining hypotheses. We leave H6(2), H7, H8, H10, and H13(1) to be verified below.
5.1.3 A factorization result. In this section (and this section only), we may drop the assumption that

d and n are relatively prime. Our aim is to prove the following factorization result, which is equivalent to

H6(2) (page 48) for the present case.

56
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Lemma 5.1.1. For any g € G such that g8(g™1) € Ko, there exists an element k € Ko such that g6(g™1) =
EO(R™L).

First, we verify a variant of the additive version of Hilbert’s Theorem 90.
Lemma 5.1.2. For any a € O such that Trg/rya =0, there exists an element € O such that a = —1(p).
Proof. Since ged(d,p) =1, d lies in 0. Take f=d ! z;l;g(d —j-Dil(a). O

Note that any a € O N (1 — 1)F satisfies the hypothesis of Lemma 5.1.2. Considering 0 acting on F”"

coordinatewise, we may extend this result to elements of 05 N (1-0)F".

Proof of Lemma 5.1.1. Suppose g € G with g0(g1) € Ky. Let U be the unipotent radical of the upper-
triangular Borel subgroup of G. We first consider the case that g € U, proceeding by induction on n. If
n =1, then take 2 = g=1. For n > 1, write g = (gOO f), for some C € F*~! and some upper-triangular
unipotent go € GL,,—1(F). Then

got(gy") C—got(gyHr(C)
) .

g0(g™h) =

Now, gor(gal) must lie in GL,-1(OF), so by induction there exists kg € GL,-1(0F) such that gor(gal) =
kot(ky'). We must also have Y —7(Y) € 671, for Y =k;'C, so by Lemma 5.1.2 there exists Y’ € 67! such

that Y —7(Y') =Y — 7(Y). Therefore, we may take & = (kOO kOIYI).

Now consider any g € G such that gf(g~!) € Ky. By multiplying g on the left by elementary matrices
in K(, we may row-reduce g to an upper-triangular matrix which has the same diagonal entries as x =
diag(@/1,...,@'"), for some integers j;. Let k1 € Ko be the product of these elementary matrices, so that
y=kigx leU. But x € Gy, so y0(y 1) = k1g0(g_1)9(k11) € Ky. By the previous case, there exists &, € Ko
with k,0(k;") = y0(y™1), so take k = k] 'k,. O

5.1.4 A 0O-stable elliptic torus. We now provide an Or-basis for O to satisfy H7 (page 49), for E a
degree n unramified extension of F. As well, we will show that the resulting torus T of G satisfies the
hypothesis of §4.6, and verify H13(1). Let Eo be a degree n, unramified extension of Fy, and let E be the
composite extension FE of Fy. Since ged(n,d) =1, we have [E: Eg]l=d and [E: F] = n, so that we have
associated diagrams of p-adic fields (with all extensions unramified) and residue fields as below, where

also kg is the composite krkg,.

E kg

(N RN
Ey F kg, kr
x d X d
Fy kr,

Since restriction to F' defines an isomorphism of Gal(E/E() onto Gal(F/Fy), there exists a lift of 7 to an
element of Gal(E/Fy) such that E is the fixed field of (r). Assume that we have chosen our lift of 7



CHAPTER 5. EXAMINATION OF SOME CASES 58

into Gal(F/Fy), as in §1.4.1 and §4.3, so that 7|E is such a lift into Gal(E/F). Choose any OF,-basis
B = {v1,...,vp} for Og,. Then B is also an Op-basis for O, and we claim that this basis will satisfy

2d  t(n=Dd} a9 g set

H7. To simplify some technical details further on, choose vi = 1. Take id, 79,7
of representatives for X' = Gal(F/F)/Gal(F/E). Using these representatives and F-basis B of E, follow
the example of §1.2.3 to form the F-torus S = Rg/p Gm. But {t"P9} is also a set of representatives of
>0 = Gal(F/F)/ Gal(F/E), so in fact REy/F,Gm, constructed using B as an Fy-basis for Eg, is equal to
S. Therefore, S is an Fy-torus. Identify S with its image in GL, under the isomorphism given in the
cited example, using constants {c;;z} © F' such that v;v; =}, c;jz v;. Then elements of S have the form
(Xpxrce ji) for some (x3) € F*. Now, our constants {c; iz} actually lie in Fo, so the chosen embedding
S — GL,, is defined over Fy. Therefore, S is 7-stable, and we have verified H7. As in §4.3, the torus
T =Rp/r, S < G is 0-stable, and T' = T(Fy) = S(F) = E*. The isomorphism fg induces an action of 6 on E*,

given by
Oarvy+-+anpvy) = T(a)vy + - + 7(an )y, ((ai)eF™).

However, B is contained in E(, and so this induced action of 6 on E* is given by 7.

Similarly, for T as in §4.3, we have T = T(kF,) = S(kr) = k},, and the induced action of 6 on &}, is given
by 7. Identify T and k5, and note that restricted to T, we have Ny = N, kg, Therefore, by Hilbert’s
Theorem 90 we have (1 —60)(T)=kerNy. This puts us in the situation of §4.6. As discussed in loc. cit., to
satisfy H13(1), we only need to show that there exists an element Xy € Lie(Ty) whose centralizer in Gy is
precisely Tg. For this, it suffices to show that Ty is non-degenerate in Gy in the sense of [8, Proposition
3.6.1]. However, Gy is isomorphic over 2y to GL,,, via the composition of the map G — G L% which defines
G with projection G L% — GL,, onto the first component of GI_,ZL. Since this same map also induces the
isomorphism G(kr,) = GL,(kF), to verify (iii) of [8, Proposition 3.6.1] it suffices to show that Ty contains
an element with distinct eigenvalues as an element of GL,,(kr). Using the identification T = &7, it suffices
to show that (k)¢ contains an element whose Gal(kg/kFr)-conjugates are all distinct. Now, (k;)g = k;so.
Write ¢ = qF,. If { is a generator of k7, then (™ is a generator okao, for m = (¢%" — 1)/(¢" — 1). Since
ged(n,d) =1, it follows that {™ is the required element of (& 2)9.

5.1.5 A O-stable Borel subgroup. In this section, we verify H8(1) (page 50). First, we will construct
a O-stable Borel subgroup of G which contains our 6-stable torus T. Fortunately, such subgroups are

plentiful. Note that it suffices to find a ,-stable Borel subgroup of (GL,)* which contains S*.

Let C o D be the pair in GL,, consisting of the Borel subgroup of upper-triangular matrices and the torus
of diagonal matrices. Both are defined over Fy, so C* and D* are just the direct products of d copies of C
and D, respectively, and hence are ;-stable. As well, N(GLn)z(Dz) is just the direct product of d copies
of NgL,(D), and so any Borel subgroup of (GL,)* containing D* is of the form (C¥)* =[] €%, where
x = (xp) for some {x;} c Ngr,,(D). Let Ag be the invertible n x n matrix (T(i_l)d(vj)), and let A% be the
element of (GLn)i , obtained by taking d copies of Ag. Then S = D43, as in the example of §1.2.3, and so
S* = (D®)A%. Therefore, any Borel subgroup B  (GL,)* containing S is of the form (CZ)*A%, for some
x€ N(GLn)z(DZ). In particular, if we take x to be in the image of the diagonal embedding of Ngi,, (D) into
N(GLn)z(DZ), then x is y,-fixed, and both (C*)* and B are wo-stable.
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Again, since all of our local field extensions are unramified, the Galois groups between corresponding local
and residue field extensions are isomorphic. Thus, the above argument may be repeated in GL,, and G,
implying the existence of a 6-stable Borel subgroup of G which contains T. This completes the verification
of H8(1).

5.1.6 Characters of T and Ty. Here we verify H8(2) (page 50) and H10 (page 50). Write g = qF,. Fix
a primitive (g% — 1)th root of unity 7€ C* and a generator { of k. Any character of k5, =~ T is of the form
A¢(0) =’ for some integer 0 < ¢ < g®®—2. On the other hand, 7 is a generator of Gal(kg/kE,), so 7({) = "
for some integer m, with 0 < m <d — 1 and ged(m,d) = 1. Therefore, since ged(g™" —1,¢%" -1)=q¢" -1, a
character A, is O-stable if and only if ¢ = £5(¢?%" — 1)/(q" — 1) for some 0 < ¢ < ¢" — 2. To verify H8(2), we

would like to find such a 0-stable character A, which is in general position.

In particular, consider A = A, for ¢ = Z;lz_ol qj " Then ¢ is of the above form, with ¢y = 1, and so A is 6-
stable. Now, Gal(kg/kr) = W (T) is generated by the Frobenius automorphism { — ( a? Suppose we have
MCY) = Q) for some 1= j <n. Then 1= A" HAQCL) = 5/@ =D, 50 g9 — 1 divides ¢(¢’? — 1). But then
g" -1 divides ¢’ — 1, which is only possible if n|jd. Since n and d are relatively prime, we can only have

J =n, and thus A is in general position.

As mentioned in §5.1.4, we are in the situation of §4.6. Therefore, instead of H10, we need only show that
there exists a character of Ty which is in general position with respect to WGO(Tg)kFO. In §5.1.4, we also
showed that Ty was non-degenerate in Gy. Therefore, by [8, Corollary 3.6.5], Wg o(Tg)kFO =Ng,(To)/ Ty =
Gal(kg,/kF,). If no € C* is a primitive (¢" — D™ root of unity and (o is a generator of kxo, then the

character (o — 7o is in general position.

5.1.7 The result. As noted in §5.1.4, we are in the situation of §4.6. From (4.6.1), we have

deg(og) .
deg(o) o

O+ (E(y0)) = [F: Fol 4 eg A" (0)d(x") (y-1),

for any g € G and any y € By g such that y0 is G-regular in G*. Finally, from [15, Proposition 12.9], we

have
-1 _

deg(og) HE
deg(o) [ Goll,

- (H:;l Sgeom([F': Fol,q, ))

T
Ty
where Sgeom(£,x) = (x* = 1)/(x = 1) for £ € Z5, x € R.

5.2 The symplectic case

In this section, we examine the case of valf = -1, Fo = F, n = 2m for some m € Z-¢, and J a skew-

symmetric element of GL,,(Cr).

5.2.1 Skew-symmetric bilinear forms on Or-modules. First we will verify that the familiar result
of equivalence of skew-symmetric bilinear forms on finite-dimensional vector spaces holds for the case of

finitely generated Or-modules. For the basic facts concerning forms on modules over rings, see [6].

Let M be a torsion-free, finitely generated Or-module. By [9, Ch. 7, Lemma 5.3], M is in fact a free
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Op-module. Let f: M x M — Or be a non-singular, skew-symmetric bilinear form on M. By [6, §5, n° 1,

Théoreme 1], M must be of even rank, say 2m.
Theorem 5.2.1. There exists a basis B of M such that

1

[flg =

-1

Proof. Choose any basis B = {x],...,x5,} of M and set x1 = x}. Let J = [f]lp,. We have detJ € O, since f is
non-singular. Therefore, there exists an index jo such that J7;, = f(xl,x}o) € Op. Note that J11 = f(x1,%1) =

0,50 jo>1. Let xg = f(xl,x}o)_lx;.o. Then f(x1,%2) = 1.

If m =1, then we must have jj =2, and B = {x1,x9} is the required basis. For m = 2, proceed by induction
on m. Let N be the Gp-submodule of M generated by {x1,x2} and let N be the orthogonal complement to
N with respect to f. Suppose x € NNNL. Write x = ajx1 +asxs for some ai,a9 € Gp. Then f(x,x1) = as and
f(x,x9) = a1. But then x € N+ implies a1 =ag =0, so x =0. Thus NN+ ={0}. Now let x be any element of
M, and set x’ = f(x,x1)xo — f(x,x2)x1 and x” =x—x'. Then x’ € N, x” e N*, and clearly x = x’' + x”. Therefore
M=NeN-=.

Clearly N is free of rank 2. Since O is a principal ideal domain, N is also free and must have rank < 2n.
Since the ranks of N and N+ must sum to 2n, we have that N1 is of rank 2(n —1). Choose a basis D of N+
and let B” be the basis {x1,x2}UD of M. Then

[f]ﬁ" =|-1 )
[fIN*] 5

and so since [f]gr is skew-symmetric and invertible, [f[N*];, must be as well. Therefore, f|N* is non-
singular and skew-symmetric, and so applying our induction hypothesis we obtain a basis D’ of N+ such

that [fINL]jD, has the required form. Taking B = {x1,x2} U D’ gives the required basis of M. |

Corollary 5.2.2. For any non-singular, skew-symmetric bilinear form g on M there exists an invertible
element A € Endg, (M) such that g(x,y) = f(Ax,Ay) for all x,y € M.

Proof. By the theorem, there exist bases B = {x1,...,x2,} and B’ = {x],...,x5,, } of M such that

. 1, 1<i<s2m-1,j=i+1,
f(xi,xj)zg(xi,xj)z
0, 1=si<j<2m,j#i+1.

So take A defined by Ax} = x;, for i =1,2,...,2m, and extend linearly. |

We now prove a factorization result for linear operators on M which are self-adjoint with respect to f,
to be used in verifying H6(2). Recall that given an element A € Endg, (M), there exists a unique adjoint
operator fAe Endg, (M) such that f(Ax,y) = f(x,fAy), for all x,y e M.



CHAPTER 5. EXAMINATION OF SOME CASES 61

Corollary 5.2.3. Let S € Endg, (M) be invertible and self-adjoint with respect to f. Then there exists an
invertible element A € Endg, (M) such that S = fAA.

Proof. Let g: M x M — O by g(x,y) = f(Sx,y). Then g is skew-symmetric and non-singular. By the
preceding corollary, there exists an invertible element A € Endg, (M) such that g(x,y) = f(Ax,Ay) for all
x,y € M. Therefore, f(Ax,y) = gx,A™1y) = f(x,SAly), hence fA=8SA1. |

5.2.2 Definition of 0. Let n=2m for some m € Z(, and set G = GL,, and G = G(F'). Let L be a degree

m unramified extension of F, and let f: L x L. — F be the trace form, i.e.,

f(a,B) =Tryrap, (a,ﬁEL).

Then f is a non-singular, symmetric F-bilinear form on L. Clearly (€}, x €1,) € O, and so the restriction
of f is a symmetric Og-bilinear form on €r,. Choose an Gp-basis B = {¢1,...,&n} of Or, and let Jy be the
symmetric matrix [f]g € M,,(@r). By [9, Ch. 7, Theorem 6.1], [detJy| = 1, so Jy € GL,,(Or). Hence the
restriction of f to Oy, is non-singular, and by [9, Ch. 7, Lemma 6.3], it induces a non-singular, symmetric

Er-bilinear form f on £7. Note that f is in fact just the trace form over k.
Let 0 be the involution of G given by
O(x)=J 11y, (xeG),

where o is the skew-symmetric element of GL, (0Or) defined in block form as

g=| O o).
—-Jo Op

Since J € GL,(GF), we may proceed as in §4.3 to produce an automorphism of G = GL,, = GL,(kr) induced
by 0. Clearly this map will be given by 0(x) = J 1 tx~1J, where

- [0 I
J={ " O
-Jo Op
Note that the projection B is a kp-basis of k7, and so since f(@,p) = f(a,B) for any a,B € O, we have
Jo=[f] -

5.2.3 Verification of Hypotheses.

HI, page 31. This is satisfied by the definition of 6 above.

H2, page 32. We have dy = 2, and we have assumed that p is odd.

H3, page 32. The group Gy is isomorphic over F' to the connected group Sp,,.

H4, page 32 /| H5, page 44. The maximal parahoric subgroup Ky = GL,(OF) is 8-stable.

HG6(1), page 48. Since valf = —1 and n is even, we have IZ/ZH ={1,2}. Choose g1 =1 and

(DFlm Om
82 = .

Then 6(g2) = @5 g2.
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HOY, page 50. We also have Gy = Sp,, over kF, so that Gy is connected.

H11, page 51. Wehave K¢ = Sp,,(OF,) and K g is its pro-unipotent radical. Since the natural projection
Kop — Ko/K1,9 coincides with the mod 2y map applied to the coefficients of the elements of Ky g, the
quotient Ko /K1 g is naturally isomorphic to Gg. Also, Ng,(Kog) = Kog = Z(G)Ko .

H12, page 51. Since valf = —1, we choose H as in §3.4. In this case, the groups Z(Gy) and Z, coincide
and are finite, and the quotient Z(Gg)/Z is trivial.

H13, page 51. The group Sp,, is split over the prime subfield, hence Gy is split over F. For this case, we
assume [13, Restrictions 12.4.1], so that [13, Lemma 12.4.2] provides H13(1) and H13(2).

Remaining hypotheses. We leave H6(2), H7, H8 and H10 to be verified below.

5.2.4 A factorization result. We now verify H6(2) (page 48). First, we prove a factorization result in
K.

Lemma 5.2.4. For any element k € Ky such that (k) = k1 there exists k1 € Ko such that k = kle(kil).

Proof. Let M = @; and let € be the standard basis of M. Let g be the Op-bilinear form on M such that
[gle = <. Then g is non-singular and skew-symmetric. For any & € Ky, it is easy to check that 9% = Ok~ 1).
The condition 8(k) = k! is equivalent to % being self-adjoint with respect to g. By Corollary 5.2.3, for any
self-adjoint % € K there exists kg € Ko such that & = 9o kg = 0(k,;1)ko. Take k1 = 0(k;1). O

Verification of H6(2). Write z1 =1 and z2 = @, so that (1 -0)(g;) = z; for each i € IZ/ZH. Fix i, and
suppose x € gL._IH such that y = (1-0)(x) € ZKj, as in H6(2). By considering dety, we see that & = z;y € K.
Moreover, since 8(y) = y~1, we also have 0(k) = k~1. Therefore, by the lemma there exists an element
k1 € Ko such that 2 = (1 -0)(k1). This says that (1 - 9)(k11x) = zi‘l. However, gi‘ng is the unique coset
of Gy in G consisting of all elements w € G satisfying (1 - 6)(w) = zi_l. Therefore, k;lx € gi_ng, hence

xEKogi_ng. O

5.2.5 A 0O-stable elliptic torus. We now provide an Or-basis for Or to satisfy H7 (page 49), for E
a degree n unramified extension of F. As well, we will show that the resulting torus T of G satisfies
the hypothesis of §4.6. Note that since Fo = F in this case, we will have T = S. Fix an element ¢ € 0]
such that € is non-square in k7. Then ¢ is non-square in L and the quadratic extension E = L(\/¢) is
unramified. We may use the basis B from §5.2.2 to form an Og-basis C = {¢1,...,Em,E1VE, ..., EmVE) of
Og. Let v be the Frobenius automorphism of E/F (see §1.1.1). Then Gal(E/L) = (v'*) and Gal(L/F) =
(vIL). Lifting v to an element of Gal(F/F), we may take {id,v,v2,...,v" 1} as a set of representatives
of the quotient X = Gal(F/F)/Gal(F/E), and {id,v,v?,...,v™ 1} as a set of representatives of the quotient
¥’ = Gal(F/F)/Gal(F/L). Let A be the m x m matrix (vi"1(¢;)). Then,

‘ApAgp = (Zh Vh_l(fi)vh_l(fj)) =(Tryra;a;)=dJo.
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Similarly, let Ae be the n x n matrix whose (i, ))'" coordinate is

vi=l(g)), l<jsm,
Aeij={
Vl_l(fj—m\/g); m<jsn.

Then we may express Ae in block form as

A Ag AfAg
““lag -aFag)

where AE is the m x m diagonal matrix with vi~1(,/€) in the i*! diagonal position. Let D be the diagonal

torus in G, and let wg be the element

0 24F
we = € Ng(D).
-24% 0

Then, in fact, we have J = 'Ap w(;lA@. Consider the torus T =DA¢ = Ry Gy, as in the example of §1.2.3.
Then for ¢ € T, we have x = “¢(Y(4¢)~1) € D, and so 6() = xA¢ is back in T. Hence, T is 0-stable, and
we have verified H7. Notice that under the identification T = Rg/z Gy, 0|T is given by Rg/zton,m, where
t is inversion on Gy, and 7, is as in §1.2.4. Thus, the action of 8 on E* induced by the isomorphism
fe: T — Gu(E) is given by

0(a)=v"(a)?, (a€eEX).

Recall that ¢ is a non-square in k7. Therefore, kg = k7 (V&) and C is a kp-basis for k. For T as in §4.3, we

have T =T(kFr) =k}, and the induced action of 6 on %, is given by

m

0(a)= V™)t =a"1", (aekg),

where g = gr. Consider 1 -0 and Ny restricted to T. Since ¥ generates Gal(kg/ky1,), from above we have
1-60 =Np,, and Ng = 1-v™. By Hilbert’s Theorem 90, Ng(T) = ker(1-0), so that [T|= [ker Ny||ker(1-0)|.
This implies that (1 —0)(T)=kerNy as well, so that we are now in the situation of §4.6.

5.2.6 A O-stable Borel subgroup. In this section, we verify H8(1) (page 50). First, we will find a 6-
stable Borel subgroup of G which contains our 6-stable torus T. Let X = X*(D) be the space of algebraic
characters on D. Denote the group of automorphisms of G which stabilize D by Aut(G/D), and let this
group act on X by

pa=aou"t, (a € X, peAut(G/D)).

This action preserves the set ® c X of roots of D. Indeed, take a € ® and non-zero Y € g,, for g, the root

space of @ in g = Lie(G). For any x € G, we have dpuoAdx = Ad u(x)od u ([38, p. 731), hence
Hdp(Y)) =dp(* @Y = dp(a(u  @)Y) = (ua)x) du(Y), (xeD).

Therefore, du(Y) # 0 lies in g,,,, and so u can be considered as an element of Aut(®). We have Aut(P) =
Wa(D) % (y,), where v, is the element of Aut(®) that sends each root to its negative. Let A be the standard
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base of simple roots in @; that is, A consists of all characters of D of the form (d;) — dp/dp, 1, 1<k <n-—1.
Let w, € Wg(D) be the element which sends (d1,...,d,) €D to (d,,...,d1). Then y =w,Yy, stabilizes A, and

any other base of simple roots is of the form wA for some w € Wg(D), with stabilizer (wyw™1).

Let 0’ =Int;, ApoBolIntg Ae, so that 8'|D is induced by 0|T via conjugation by Ae in G. For x € D, we have

0'(x) =%ox~1, Since wg €D, 0'|D is an involution.
Proposition 5.2.5. ® has a base of simple roots which is stable under the action of 0'.

Proof. We need to find an element w € Wg(D) such that 0’ = w)/w_1 as elements of Aut(®). Now, the

actions of y and 0’ on D are given by

y:(dy,....dp)—d;},...,d7Y),
0': (d1,...,dn)— (N1, dytdY L dyD).

m+1s-*

Therefore,

w: (dl;-'- ,dn)'_’ (dm; ,dl’dm+1;--- ,dn)
is the required element of Wg(D). O

Corollary 5.2.6. There exists a 0'-stable Borel subgroup B’ of G which contains D.

Proof. Let B’ =(D,1+¢,),c,,n, With w as in the proof of the proposition. For any @ € wA, we have

0 (1+g,)=1+d0'(g,) =1+ ggra>
where 0'a lies in wA as well. Thus B’ is 6'-stable. O

Corollary 5.2.7. There exists a 0-stable Borel subgroup B of G which contains T.
Proof. Take B=(B')Ac¢. O

We may repeat the above arguments for T and D =4¢T in G to obtain a 6-stable Borel subgroup B c G

which contains T. This completes the verification of H8(1).

5.2.7 Characters of T and Ty. Here we verify H8(2) (page 50) and H10 (page 50). Again, write q¢ = gF.
Fix a primitive (¢" — 1) root of unity 7 € C* and a generator { of & g+ Any character of T = kj, is of the
form A,({) =’ for some integer 0 < ¢ < g™ —2. Since ¢™ — 1 factors as (¢ + 1)(¢™ — 1), A, is O-stable if and
only if ¢ = £¢(¢g™ — 1), for some 0 < ¢y < g™. To verify H8(2), we would like to find such a 6-stable character
A¢ which is in general position. Consider the case of £y = 1, so that ¢ = ¢ — 1. Write 1 = A,, and suppose

that j is an integer such that 1< j <n and 1o = A. Then,
1= Q) A Q) = A 1) = e/ -1,

so we must have (¢ — 1)|(¢7 — 1)(¢™ — 1). Then (g™ + 1)|(¢’ — 1), which is only possible for j = n. Therefore,

A is in general position.

To verify H10, we have the following.
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Lemma 5.2.8. Let A be a 0-stable element of Irr(T). If A is in general position, then Res{)/l is in general

position.

Proof. We shall prove the contrapositive instead. Write A = 1, with ¢ = ¢y(¢™ — 1), as above, and suppose
xe= Res% A¢ is not in general position. We may identify Wg,(Tg) with the subgroup

(G pn—-in-jllsi<jsm}u{in-i)|l<i=m})

of the symmetric group S,,. The only non-trivial element of this subgroup which commutes with (1 2 --- n)
is (1 m+1)X2 m +2)---(m n), so we may identify Wg,(To)** with (v). Now, (k5)g = ((?" ~1). Therefore,
if ¥, is not in general position, we must have ("A@)= 2,92 ~1), which can only occur if ¢ is 0 or
(@™ +1)/2. Clearly Ag is not in general position, and it is easy to show that every element of Gal(kg/kr)
stabilizes A, for £ =(q" —1)/2. O

The following will be needed in the appendix.
Lemma 5.2.9. If A € Irr(T) is O-stable, then Ak} = 1.

Proof. The element (7" 1€ ky is a generator of k7, and A"y = MOAOQ)) L = 1. O

5.2.8 The result. We may now apply the results of §4.6 to the present case. From (4.6.1), we have

d
O+ (5(y0)) = 140)| €4 €9 AT (0)d(7) % (ix,(logy) + o(@p) ™ fis2x,)(logy)),

for any g € G and any topologically unipotent element y € Ko g such that y0 is G-regular in G*. Now, G
is kp-split and T is £Zp-minisotropic, so rky, G =rkG =n and rky, T =rkZ(G) = 1. Since n is even, we
have £, = —1. Similarly, Gy also splits over kr and Ty is also kr-minisotropic in Gg. So rky, Gg =rkGg =
m and rky, Tg = rkZ(Gg)?. However, Z(Gp)? is trivial, so rkz, Tg = 0. Therefore, we have g5 = (=1)™.

Substituting these and [(f)| = 2 into the above expression, we have

d ~1 A
O+ (5(0)) = 2(-1™ L A% (0) d(}) % (fx, (logy) + o(@p) " fieex,)(logy)).
Finally, from [15, Proposition 12.9], we have
deg(og) ”E -1 l 3 qm-1
deg(o) |[Gollp [Tol TIJL,(¢271-1)

where g = gF.

We will now show that both terms in the above formula are necessary. That is, we will show that fix,
and fl2x,) differ on (gg)g+. To do this, we will find a function f € C2°(gg) with supp f < (gg)o+ such that
fsix,(f) differ for i = 1,2 (recall that g1 = 1). For each 7, let O; = Go(8iXy). Since AeEixy(f) = N(giXO)(f) #0
if and only if suppf N O; # @, it suffices to find such an f such that suppf N1 # @ but suppf N Oy = @.
In particular, consider f = c/\hgoﬂ. Then suppf < €19 < (gp)y+. Since we may assume that dY (see §4.5) is
normalized so that 3(X) = g(—X) for any g € C°(gg) and any X € gy, we have f= chg,,. We have now
reduced to showing that £,y N 01 # @ and £y p N Oz = @.
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Because of the way that we have constructed T, we may embed t = Lie(T) = E in Ma(L) by

a+ﬁ\/E-—>(a eﬁ), (@.peL,).
B «a

1

To see how d6 acts on such an element, note that for « € L, we have 0(a) = a~*. From this, we may

conclude that J; gy = a for any a € L, where we identify L with its image in M,,(F) afforded by the
F-basis B of L. Therefore,
40 a eﬁ_}—a eﬁ’
B a B -a

and so tp may be identified with the F-subspace L+/e of E. Choose f € G; such that B generates kj, and
let Xy € tg be the element corresponding to /€ € Lv/€.

To proceed, we will need the language of buildings. In the interest of not burdening ourselves with a full
background discussion on the building of a connected, reductive, p-adic group, we refer the reader to the
survey in [39]. For details on Moy-Prasad filtrations, see [29]. Let 8B = B(G,F) and By = B(Gy, F) be the
Bruhat-Tits buildings of G and Gy, respectively. For x € B, Moy and Prasad define a filtration {g, r},er of

g, indexed by the real numbers. Each subset in the filtration is a lattice in g. For r € R and x € *B, define

Oert = Us>r Ox,s5 gr= Uxe% Ox,r> g = Us>r Js-

We have similar definitions for gg relative to 2Bg. As in [36], 0 induces an action on B, and we may identify
By with the fixed points in B under this action. According to the definition in [4, §5], our given choice
of Xy is a Ty-good element of depth 0 in tg. Since Xy is regular, and the building of a torus is a point,
[26, Theorem 2.3.1] implies that there exists a unique xy € By such that Xy € (gg)x,,0 \ (g9)x,,0+- Because
of our choice of §, we have (gg)x,,0 = 0,0 and (gg)y, 0+ = £19. For any g € Gy, x € By, and r € R, we have

8(g9)x,r = (g6)g-x,r- The uniqueness of xy implies that
(5.2.1) Go-xp={x€By | (go)r0oNO1#B}.

In particular, xg € Gg-xg, so that (gg)x,,0nO1 # @. Now, 82X, is a #2Tg-good element of depth 0 in Lie(¥2Tg) =
82ty, and g2 -xp is the unique element of By such that 2Xy € (gg)gy-x9,0  (96) g5-1, 0+ - Since Xy and £2X lie

in distinct Gg-orbits, g2 -xg cannot lie in Gg - x9. From (5.2.1), we may conclude that (gg)x, 0 N O2 = @.

5.3 The unitary case

In this section, we examine the case of valf = —1, [F: Fy] = 2, and J an element of GL,(F') which is

Hermitian with respect to the non-trivial element 7 of Gal(F/F).

5.3.1 Restriction to a sub-case. The following result allows us to restrict our attention to the case
that n is odd and F/Fy is unramified. Let 6 be as above, and write N = Ng/r,. For any matrix X with
entries in F, let *X = 7(!X). Recall that a square matrix X with entries in F is called Hermitian (with
respect to 1) if *X =X.

Proposition 5.3.1. If F/F is ramified or n is even, then the depth-zero supercuspidal representations of

G constructed in $4.1 cannot be 0-stable.
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Proof. Let E, A, and 7 be as in §4.1. Suppose that 7 is 8-stable. By Corollary 1.5.6 and the proof of Lemma
1.5.5, 7 must be unitary. Since conjugation by JJ preserves equivalence, we also have that 7 is stable
under the involution x — *x~1. By [35, Lemma 2.1], there exists an automorphism 7’ of E which fixes Fy,
stabilizes but does not fix F, has order 2, and satisfies A o7’ = A71. Therefore, we may apply the results
of [18, §2]. Let E, be the fixed field of 7’ in E. A Howe factorization of A consists of quasi-characters
Ao and A; of F and E, respectively, such that A; is generic over F and A = 1; (19 oNg/z). In the notation
of loc. cit., wehave E' =E,, r=1, Eg=F, and E1 = E. Since E/F is unramified and 11 is generic, the
conductoral exponent f1 of 11 must be 1. First suppose F/F is ramified. Then since E/F is unramified, we
must also have E/E’ ramified. But then [18, Lemma 2.1(i)] says that we must have f1 > 1, a contradiction.
On the other hand, if F/F is unramified, then the hypotheses of [18, Lemma 2.1(iv)] are satisfied, and so
n=I[E: F]is odd. O

In light of this result, we will assume for the remainder of this examination of the unitary case that F/F

is unramified. As usual, we take a common uniformizer @ = ®r = @r,.

For g € G, replacing 6 by g~1-0 (see §4.1) is equivalent to replacing J by *g < g. The orbit of the Hermitian
matrix J under the action J — *gJ g is uniquely determined by the class of detJ in Fj/NF* ([25]).
The following result allows us to restrict our attention to Hermitian J with detJ € NF*. Since F/F is

unramified, we may take {1,®} as a set of representatives for Fj/NF*.

Proposition 5.3.2. Suppose n is odd. For i = 0,1, choose a Hermitian matrix J; € G such that detd; €
@'NF*, and define 0;: x — J; *x~ 1 Ji_l. Then there exists g € G such that g-01 = 0.

Proof. There exists go € G such that *ggJygo = 1. Since n is odd and F/F( is unramified, there exists
g1 €G such that *g1J1 g1 = ®. Then both g1 -0 and g7! -0 are given by x — *x~1. Take g = gog;*. O

5.3.2 7-Hermitian forms on Or-modules. In this section, we prove a factorization result for linear
operators on an Or-module M, similar to the symplectic case (§5.2.1). Let M be a torsion-free, finitely
generated Op-module. As in §5.2.1, M is in fact a free Op-module. Suppose that M is of rank n. For this
discussion, we do not need to restrict to the case that n is odd. View 7 as an automorphism of the ring
Op. A form f: M x M — O on M is called t-sesquilinear (henceforth sesquilinear) if it is linear in the first
term, respects addition in the second term, and satisfies f(x,ay) = t(a)f(x,y) for all x,y € M and a € Or. A
sesquilinear form f is called 7-Hermitian (henceforth Hermitian) if f(y,x) = 7(f(x, y)) for all x,y € M. If f is
Hermitian and B is an basis of M, then [f]g € M,,(OF) is necessarily Hermitian. Again, we refer the reader
to [6] for the basic facts concerning forms on modules over rings. We now show that the characterization of
GL,,(Or)-orbits of Hermitian elements in GL, (F') given in [19, §3] implies that all non-singular, Hermitian

forms on M are equivalent. Fix such a form f.
Theorem 5.3.3. There exists a basis B of M such that [flg = 1,.

Proof. Let C be any basis of M, and let J = [fle € GL,(0Or). When F/Fj is unramified, [19] says that
the GL,(Or)-orbit of  in GL,(F'), under the action %-J = *kJEk, contains an element of block form
diag(@®'1,,,,...,@% 1y, ), where my +---+ m; is a partition of n by integers, and a1 > --- > a, is a de-

creasing sequence of integers. However, since GL,(OF) is stable under the map & — *k, the orbit of ¢/ is
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entirely contained in GL,(OF). The only element of the above form which lies in GL,(CF) is 1,,. Therefore,
there exists & € GL,(Or) such that *kJk = 1,,. Let B be the basis of M such that & is the change of basis
matrix [id]eg. O

Corollary 5.3.4. For any non-singular, Hermitian form g on M, there exists an invertible element A €
Endg, (M) such that g(x,y) = f(Ax,Ay) for all x,y € M.

Proof. By the theorem, there exist bases B ={x1,...,x,} and B' ={x],...,x,,} of M such that

;o 1, i=j,
fxi, ) = gy, ) =
0, otherwise.

So take A defined by Ax} = x; for i =1,2,...,n, and extend linearly. |

As in the symplectic case, we use this result to prove a factorization result for self-adjoint, invertible linear
operators on M, which will in turn be used to verify H6(2). Recall that given an element A € Endg, (M),
there exists a unique adjoint operator fAe Endg, (M) such that f(Ax,y) = f(x,fAy), for all x,ye M.

Corollary 5.3.5. Let S € Endg, (M) be invertible and self-adjoint with respect to f. Then there exists an
invertible element A € Endg, (M) such that S = fAA.

Proof. Argue precisely as in the proof of Corollary 5.2.3, replacing the term “skew-symmetric” by “Hermi-

tian”. O

5.3.3 Definition of 6. In light of Proposition 5.3.1, assume that n is odd and F/Fj is unramified. Let
E be an unramified, degree n extension of Fy. Similarly to §5.2.2, let f be the trace form on Ey. Choose
an Of,-basis B = {{1,...,¢{n} of O, and let J be the symmetric matrix [flg € M,(OF,). Then, in fact,
J € GL,(Op,), and J is Hermitian with detJ € NF*. Let 6 be the Fy-automorphism of G = Rg/r, GL,
given in the proof of Proposition 1.4.2(2). Since the automorphism Intg<J of GL, is defined over Fy,
the automorphisms (IntgJ)* and v, of (GL,)* commute, and we may write 6 = 7; oRp/r, 01, where 01
is the Fo-involution x — J 1x"1J of GL,. As well, i, and Rp/r, 601 commute and are both of order 2,
so we have dg = 2. Write 02 for the involution v, oef of GL,ZL. Since GL,, is defined over Fy, we have
(GL,)* = GL,, x GL,, and 0, is given by 0(x,y) = (01(y),01(x)), for x,y € GL,,.

The restriction of f to Og, induces a non-singular, symmetric kg -bilinear form fonk E,- In fact, f is
just the trace form over kp,, and [f_]% = J. Therefore, if we also write 6; for the % Fo-automorphism
x— J 171 J of GL,, the automorphism 6 of G is given by 6 =17; Rpp/kp, 01-

5.3.4 Verification of hypotheses.

H1, page 31. This is satisfied by the definition of 6 above.

H2, page 32. We have dy =2, and we have assumed that p is odd.

H3, page 32. The subgroup of O2-fixed points of GL,ZL is (GLn)g2 = {(x,@l(x)) | x € GLy,}. Therefore,
(GLn)g2 =~ GL,, and so both (GLn)g2 and Gy are connected.
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H4, page 32 /| H5, page 44. The maximal parahoric subgroup K¢ = GL,(0OF) is 0-stable.

H6(1), page 48. Since we have assumed that n is odd, we have I g 7 = {1} and g1 =1, so there is nothing

to verify.

H9, page 50. The same argument which showed that Gy is connected may be applied to show that Gg is

connected.

H11, page 51. Let U < G be the subgroup of matrices g € G such that *gg = 1. By [19, Proposition 1(a)],
the quotient U = (U N Ko)/(U n K1) may also be described as the subgroup of G consisting of elements
g € G such that *gg = 1, where now the map g — *g is defined using 7. By Theorem 5.3.3, there exists an
element & € K¢ such that *kJ& = 1. But then Gy = *U, and K¢ ¢/K1 g = (*U nK)/(*U nK1) = *U. Since also
*kJk =1, we have *U = Gj.

H12, page 51. Since valf = —1, we choose H as in §3.4. The group Gy is a unitary group, and in this case
the groups Zg = Z(H)g, Z(Gy), and Z(G)y all coincide and are equal to (kerNg/r,) NG In particular, the
quotient Z(Gy)/Zy is trivial.

H13, page 51. The group Gy is isomorphic over F to GL,, hence split over F. For this case, we assume
[13, Restrictions 12.4.1], so that [13, Lemma 12.4.2] provides H13(1) and H13(2).

Remaining hypotheses. We leave H6(2), H7, H8 and H10 to be verified below.

5.3.5 A factorization result. To verify H6(2) (page 48), we may argue exactly as in the symplectic

case (§5.2.4). First, we prove a factorization result in Kj.
Lemma 5.3.6. For any element k € Kq such that 0(k) = k71 there exists k1 € Ky such that k = k10(k11).

Proof. Argue exactly as in the proof of Lemma 5.2.4, but replace the terms “Op-bilinear” and “skew-
symmetric” by “sesquilinear” and “Hermitian”, respectively, and appeal to Corollary 5.3.5 instead of Corol-
lary 5.2.3. O

The verification of H6(2) now proceeds exactly as in the symplectic case (§5.2.4), though here we need only

. _ _ . 0 _
consider g1 =21 =1, since IG/ZH ={1}.

5.3.6 A 0O-stable elliptic torus. We now provide an Or-basis for O to satisfy H7 (page 49), for E a
degree n unramified extension of F.. As well, we will show that the resulting torus T of G satisfies the
hypothesis of §4.6.

Let E be the composite field FEy. Then we have the same towers of p-adic and residue fields as in
the unramified Galois case with d = 2 (see the diagram of §5.1.4), where the p-adic extensions are all
unramified. We may regard the generator 7 of Gal(F/Fy) as the restriction to F' of the unique element of
Gal(E/Fy) of order 2. In this case, since E( is the unique unramified extension of Fy of degree n inside
E, E¢ must be the fixed field of 7. Our construction will be a mix of the arguments of the Galois and
symplectic cases. In §5.3.3, we chose an Or,-basis B of Og,. Since Eo/F is unramified, it is also an Fo-

basis for E¢. Moreover, since n is odd, it is also an F'-basis for E. Let v be the Frobenius automorphism of
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Gal(E/F) (see §1.1.1). Then 7 = v", Gal(E/F) = (v?), and Gal(E(/Fy) = (v2|E,). Similarly to the symplectic
case (§5.2.2), if we set Ap to be the n x n matrix (v2¢~1(¢;)), then *"AgAgp = J. Let D be the diagonal
torus in GL,,, and let S = D43 ~ Rg/r Gn. Here, S is precisely the torus (also denoted S) constructed in
the Galois case (§5.1.4), with d = 2. By the same argument, S is defined over Fy, and thus is 7-stable.
An easy calculation using J = tAgAg shows that for x € D, 01(x43) = (xA2)~1, so that S is not only ;-
stable, but 0;-split. We have now verified H7. As in §4.3, the torus T = Rp/r, S G is 0-stable. Under the
identification of G(Fy) with G, the torus T = T(Fy) is identified with the 6-stable torus S(¥) c G. Since
S(F) is isomorphic to E* = G (E) via f3, we also have T = E*. Let ¢ be the inversion homomorphism of S
(S is abelian). Since 01|S =1, we have 0|T = 1; oRgp/r, 1. Then, just as in the symplectic case (§5.2.2), the

induced action of 8 on E™ is given by
0(a)=1(a)7 L, (acEX).

In contrast to the symplectic case, however, note that here 7 is not an element of Gal(E/F), but rather an
element of Gal(E/Fy).

For T as in §4.3, we have T = T(kr) =k, and the induced action of § on %, is given by

0(a) =(a) t=a 7", (aeky),
where q = gF,. The identical argument as in the symplectic case (§5.2.2), with kg, playing the role of ky,,
shows that (1 —0)(T)=kerNjy. This will put us in the situation of §4.6.

5.3.7 A 0O-stable Borel subgroup. In this section, we verify H8(1) (page 50). First, we construct a
6-stable Borel subgroup of G which contains our -stable torus T. As in the Galois case, this is easy to do,

and it suffices to find a 0s-stable Borel subgroup of (GL,)* which contains S*.

Let C oD be the pair in X consisting of the Borel subgroup of upper-triangular matrices and the diagonal
torus. Arguing precisely as in the Galois case (§5.1.5), any Borel subgroup B c (GL,)* containing S* is of
the form (Cz)xA% = CM148 x C¥243  for some x = (x1,%9) € N(GLn)z(DZ). Here, A% is the element (Ag,Ap) €
(GL,,)*. Choose x1 = 1. Since S is 61 -stable, D is stable under the automorphism 0'1 =Int;, Agofiolntg Ag.
Let x2 € Ngr,,(D) such that 6;(C) = C*2. Then the resulting Borel subgroup is B = CAB x 91(CA3). This is

clearly Oq-stable, since 01 has order 2.

Once more, the identical argument over the residue fields yields a 0-stable Borel subgroup of G which

contains T, verifying H8(1).

5.3.8 Characters of T and Tg. Here we verify H8(2) (page 50) and H10 (page 50). Again, write ¢ = qr,.

Fix a primitive (¢2* —1)™"

root of unity n € C* and a generator ¢ of k. Any character of T =k, is of the
form A,(() = n’, for some integer 0 < ¢ < ¢®" —2. Comparing with the symplectic case (§5.2.7), we have
the same situation, where here the tower of fields kr, c kg, kg takes the place of the tower of fields
kr c k1, c kg in the symplectic case. Therefore, 1, is O-stable if and only if ¢ = ¢¢(¢™ — 1), for some
0< /¢y <q". To verify H8(2), we note that there exists at least one such 8-stable character which is also in

general position. In particular, as in the symplectic case, we may choose ¢y = 1.
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Before we verify H10, we will show that Ty is non-degenerate in Gy in the sense of [8, Proposition 3.6.1].
Now, Gy is isomorphic over kr to GL,,, via the composition of the map G — GL,ZL which defines G with pro-
jection G LE — GL,, onto the first component of GL%. Since this same map also induces the isomorphism
G(kr,) = GL,(kF), to verify (iii) of [8, Proposition 3.6.1] it suffices to show that Ty contains an element
with distinct eigenvalues as an element of GL,(kr). Under the identification T =~ k%, it suffices to show
that (k)¢ contains an element whose Gal(kg/kr)-conjugates are all distinct. Given our generator { of kg,

14 "1liga generator of (k 2)9. Since ged(n,2) =1, it follows that ¢ 7"-1 is the required element of Ty.

As mentioned in §5.3.6, we are in the situation of §4.6. Therefore, instead of H10, we need only show
that there exists a character of Ty which is in general position with respect to Wg Q(Tg)kFO. Since Ty is
non-degenerate in Gy, by [8, Corollary 3.6.5] we have Wg O(Tg)kFO = Ng,(Tp)/To. However, this last group

is trivial, hence every character of Ty is in general position.

5.3.9 The result. We are now in the situation of §4.6. Therefore, from (4.6.1) we have

deg(og) .

(& _ + +y 8€s\0g)
O+ (8(y0)) =2, eg AT(O) d(n]) dog(@) ax,(logy)

for any g € G and any topologically unipotent element y € K¢ g such that y6 is G-regular in G*. From [15,
Proposition 12.9], we have

T
Tg

deg(ay) _ H G
deg(o) | Gy

_ ( q" -1 ) ( iz @21+ 1

-1
o Hr[z:l(qnﬂ' -1) =1 qu—l -1)’

where q = qF,.
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A. A convergence counterexample

As discussed in §3.4, there exist cases where

(A.1) O(¢p,8) = f f o(**g)dkdi
Z'\G* JK

fails to converge for certain quasi-regular (even regular) g € G*, where ¢ is a sum of matrix coefficients
of the extension to G* of an irreducible, supercuspidal representation 7 of G, Z' is an appropriate closed
subgroup of Z(G"), and K is a compact, open subgroup of G* with normalized Haar measure dk. In this

appendix we provide such an example.

A.1 Definition of 0. Let p be a prime such that p =3 mod 4, and let F' be a finite extension of Q.
Assume that —1is non-square in k£, (for example, we could take F' = Q). Write g = g = |kF|. Let G = GLag,
G = G(F), and Z = Z(G). Use the setup and notation of §5.2.2. Since L = F in the present case, we may
choose B = {1}, so that for x € G, 0(x) = J 1%~ 1J, where oJ is the skew-symmetric matrix (% 3). Notice
that 6(x) = (detx) 1x for any x € G. It follows that Gg = SLg and Z(G™") = {+1}. It will make no difference
to the convergence (or lack thereof) of (A.1) whether we choose Z’' = Z(G") or Z' = {1}, so take the latter.
Recall that Ky = GL2(0F) and K1 = 1+Ma(Zr). These are 0-stable subgroups of G, and the automorphism
of G =Ky/K1 = GLg(kp) = GL(2,q) induced by 6 (also denoted 6) has the same form as above. Identify G
and GL(2,q).

A.2 An elliptic 0-stable torus. Continuing as in §5.2.5, we may choose € = —1. Then E = F(v-1), and

T=1{ y(a,b) (“ _b)
= a’ =
4 b «a

is O-stable. Let a,b € F such that y(a,b) € T. Note that y(a, b) is O-fixed if and only if dety(a,b) = a®+b% = 1.
The isomorphism fe: T — E* is given by y(a,b) — a + bv/~1, so that the induced action of @ on E* is

a,beF, dety(a,b) #0 }

Oa+bvV-1)=(a-bv-1)"L.

We identify T and E* via f@. Now, ¢ = -1 and kg =~ krp(vV—1), and we have analogous definitions and

properties for kg and T over kp. Again, we identify T and %, via the map f@.

A.3 Regular elements. We refer to §1.3.2. Let g = Ma(F). An element g € G is regular if and only if its
eigenvalues are distinct. Consider the notion of regular elements in Gt determined by the discriminant
functions Dg,D1 of [10]. We have

D1(g0) =2Dy (), Do(g0(g)) = (trg)*(det g) ™' Do (), (g€@).
Therefore, for g € G, g6 is regular if and only if g is regular, and G-regular if and only if g is regular and

has non-zero trace. We will be interested in certain regular elements of our torus 7. Suppose g =y(a,b)e T
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for some a,b € F. The eigenvalues of g are a + bv/—1, so g is regular if and only if b # 0. Suppose ab # 0.
Then tr g is also non-zero, and so g6 is regular and G-regular. By Lemma 1.3.14, g0 is then also quasi-
regular. Without appealing to this lemma, one can calculate directly that ker(Ad(g6)— 1) is spanned over
F Dby J in this case.

A.4 Conjugacy classes in G. There are g —1 central conjugacy classes in G. We may choose represen-
tatives for the non-central conjugacy classes of G as follows ([5]). There are q — 1 classes represented by
the elements in the set { | ack F} (g —1)(g — 2)/2 classes doubly represented by the elements in the
set {diag(a,p) | a,B € kX , ;é B}, where diag(B, @) is in the same class as diag(a, §), and g(q — 1)/2 classes
doubly represented by the non-central elements of T, where y(a, ) is in the same class as y(a,—f) for

a,B € kp with B #0. In total, there are g% —1 classes.

We will also find it useful to parameterize non-central classes through the following easily verified propo-

sition.

Proposition A.7. The class of a non-central element x € G is uniquely determined by the pair (detx,trx).

A.5 A character of T and Deligne-Lusztig induction. Moving now to §5.2.7, let : = V-1 € C*, and
take n = exp(2m/(q2 - 1)). Let { be a generator of k7, and let 1 = 141, so that A({) = 7?71, Then A is both
0-stable and in general position. Let y be the irreducible character — RTGJL of G. We will be interested in the
values of y on non-central elements of G with square determinant and zero trace. Examining our list of
conjugacy class representatives in §A.4, we see that the only classes of such elements are those containing
¥(0, B) for some f € k. Under the identification T = &, we have y(0,+5) +pv—1. Let cg = A(v=1). Then
by Lemma 5.2.9, A(~1) = 1, and so ¢o = +1. Moreover, A(+fv—1) = co for any f € k. From the character
table given in [5, Chapter 16, Exercise 18], we now have )((y(O, i,B)) = —2¢¢ for any f € k;

A.6 Definition of 7. Let o be a representation of G with character y. Using Lemma 5.2.9, from the
character table given in [5, Chapter 16, Exercise 18] we see that Z(G) € kero. Since 0(x) = (detx) 1x for
any x € G, it follows that 000 = ¢. Inflate o to Ky and extend to ZK( by setting o(@r) = 1. This extension
also satisfies 006 = 0, so we may extend o to a representation o* of (ZK)* by setting o*(0) = 1. Let y,+

be the character of o*, and let y,+ be its extension by zero to G*.

Let 7= c-IndgKO 0, an irreducible, supercuspidal representation of G. Define n* using A, = ®(c*(0)), for
® as in Proposition 1.5.2. Then nt = c-Ind(G;KO)+ 0" (Proposition 1.5.4), and so j,+ is a sum of matrix

coefficients of .

A.7 The inner integral. In (A.1), we will take K = K, and consider g — O(y,+,g60) as a function on
G. Fix g € G, and define

fo: G* —C, - f - (*(g0))d
Notice that fg is invariant under left-translation by elements of (ZK()* and under right-translation by

elements of Ky. Since K is 6-stable, through a change of variables in the integral above we obtain

fg(x0) = fo(g)(x) for any x € G, so we will concentrate on the properties of f¢|G. Let G act on itself by
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O-twisted conjugation. That is, for x,y € G, let x-y = xy0(x~1). Since o*(h0) = a(h) for any h € ZK,, we

have
(A.2) folo) = fK to((xk)-g) dE, (xeG).
0

The integrand above is zero unless its argument lies in ZK. Let K be the set-valued function on G given
by

Ke)={keKo | (xk)-ge ZKo}, (xeq),

and write

suppKg ={x € G | Kg(x) # @ }.

Clearly, fz(x) =0 for x € G \ suppX,, and f; is identically zero on G if suppXK, is empty. So suppose it is

not empty. The following formulas will allow us to determine f3|G completely in some cases. We have

(A.3) det((xk)- g) = (detk)*(detx)*(det g)
= @yalr(detn) fvalr(@ets) (qet)? (intp(detx))” (intp(det ),
(A.4) tr((xk)- g) = (detx)(detk)(tr g)

= @374 (detk)(intr(detx))(trg).
Lemma A.1. Let x € supp Ky, k € Kg(x), and write y = (xk)- g. Then,
(1) valg(detg) is even;
(2) yo =Ly €K for £ =—valp(detx) — 3 valp(detg);
(3) the image of(detyo)(intp(deté,f))_1 in kj is square;

4) w;valF(detg)/z trg € Op; and

(5) tryo=0 mod Pr if and only if w}valF(detg)/z trg =0 mod .

Proof. We prove (1) and (2) simultaneously. Since y € ZKj, yo = d)ll; y € K¢ for some integer ¢. But from
(A.3) we must have

2¢ + 2valp(detx) + valp(detg) =0,

which is only possible if valg(detg) is even and ¢ = —valp(detx) — %Valp(det g). Again from (A.3), we now
have that (detyo)(intz(det g))_1 = (detk)? (intp(detx))2, and (3) follows. Statements (4) and (5) are obvious
from (A.4) and the formula for ¢ in (2). O

—valp(detg)/2

Proposition A.2. If the image of intp(detg) is square in ky and @

(trg) =0 mod Py, then
fg(x) = —2co meas(Kq4(x),dk), (x € suppKy).

Proof. Let x, k, y and y¢ be as in Lemma A.1. Combining our hypotheses on g with statements (3) and
(5) of Lemma A.1, we see that the image of yg in G has square determinant and zero trace. From the

discussion in §A.5, we have y,(y) = —2¢g, and the result now follows. O



APPENDIX 75

A.8 Divergence. Finally, we will exploit Proposition A.2 to make O(y,+,g0) diverge for certain g € G.

For the following, use the convention valg(0) = co.

Lemma A.3. Suppose a,b are elements of F such that b # 0 and valg(a) = valg(b). Then for g =y(a,b),
K¢(1) = Ko.

Proof. We have detg = a? + b2, and claim that valgp(detg) = 2valg(b). If valp(a) > valp(b), this is imme-
diate. If valp(a) = valp(d) # oo, then since —1 is non-square in %%, we must have intg(a)? +intz(b)? # 0
mod Zr. Therefore, there is no cancellation in the sum a? + b2, so that valg(detg) = 2valr(b). Suppose
ke Ky, and set yo = m}valF ®)(% - g). Then one may check directly that yo € Mo(Gp), and from (A.3) we have
detyo € OF. O

Proposition A4. Let a, b, and g be as in Lemma A.3, but assume that valg(a) § valg(b). Then O(y,+,80)
diverges. In particular, there exists a regular element g € G for which g0 is regular, G-regular, and quasi-

regular in G, and O(j,+,g0) diverges.

Proof. As in the proof of Lemma A.3, valgp(det g) = 2valp(b). With the added restriction valz(a) ; valg(d),

we have intgp(detg) = (intz(5))2 mod P, so that the image of intr(detg) in k; is square. We also have

valF(LI)I_,,VZ’L]F(detg)/2 trg) =valp(a)—valp(b) > 0.
Since fg(x0) = fo(g)(x) = fg(x) for any x € G, f; is completely determined by Proposition A.2. In particular,
fo is real-valued and either non-negative or non-positive. It follows that O(},+,g0) is also real-valued.
From Lemma A.3, X4(1) = Ko, so that f(1) = —2co. But f;; is invariant under left-translation by elements
of (ZKo)™", s0 fg(x) = —2cq for any x € (ZK)*. Recall that we have chosen Z’ = {1}. Let dx be Haar measure

on G, normalized so that meas(Ky,dx) = 1. Then,

>

0Gts+,20)|., = UG fo@)dx

f chizk,)+ (%) fg(x)dx| =2meas(ZKo)",dx),
G+

oo oo

where || is absolute value on R. However, by the invariance of dx we have

meas((ZKo)",dx) = 2 meas(ZKo,dx) =2) ., meas(@}Ko,dx) =2, 1,

which proves the first assertion. Concerning the second assertion on existence, we only need add the

restriction that a #0. O

Remark. If we are interested in finding an element g € G as in Proposition A.4 that is also 6-fixed, we may

appeal to Hensel’s Lemma. Suppose a is a non-zero element of Zr, and let f(X) = X2 +a? — 1. Then
If+a)|p<1=|f'A+a)|5, (o' € Pp),

where ' is the formal derivative of f. Therefore, by Hensel’s Lemma there exists a root b of f in Or. Note
that & must in fact lie in @;, so that valg(a) 7>£ valp(b). Now, f(b) = 0 says that dety(a,b) = a?+b2=1,s0
that g =y(a,b) is the required 6-fixed element of G.
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