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A PROBLEM-CENTRED APPROACH
TO CANONICAL MATRIX FORMS

Abstract: This article outlines a problem-centred approach to the topic of
canonical matrix forms in a second linear algebra course. In this approach,
abstract theory, including such topics as eigenvalues, generalized eigenspaces,
invariant subspaces, independent subspaces, nilpotency, and cyclic spaces, is
developed in response to the patterns discovered in studying similarity classes
of square matrices, rather than as a disconnected prerequisite to this topic.
Furthermore, the subtopics involved afford an opportunity to highlight many
common mathematical problem-solving techniques and philosophies.
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1 INTRODUCTION

In [1], the authors advocate a problem-centred approach to the teaching
of undergraduate linear algebra. In such an approach, abstract theory is
developed to use as a tool in solving specific problems, which may be of
an applied or purely mathematical nature. The purpose of this approach
is to give students an immediate raison d’être for the theory, as opposed
to the “much-delayed gratification” ([1]) of the traditional theory-then-
applications order of topics, and to allow the students to see theory as
arising naturally out of the study of problems. This method could be
viewed as a form of inquiry-based learning, and the outline of the study
of canonical matrix forms given in this article could be adapted for use
in such a learning environment in a straightforward manner.

The relation of similarity is an equivalence relation on the set of
n × n matrices, and the members of a given equivalence class share all
of the most important properties of a matrix: rank, nullity, invertibility,
characteristic polynomial, eigenvalues, dimensions of eigenspaces, deter-
minant, and trace. Most of elementary linear algebra reduces to the
study of homogeneous systems of linear equations, and two similar ma-
trices represent the same system, up to a linear change of variables. The
central problem in the topic of canonical matrix forms could be phrased
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as: what is the “simplest” representative member of any given similar-
ity class? Attempting to answer this question, and discovering that the
answer can take on many forms, provides an enriching theme of inquiry
for one unit of a second linear algebra course. In particular, a step-
by-step investigation of the topic, through examples and special cases,
allows an instructor to model for students many common mathematical
problem-solving and theory-building techniques, such as

• considering special cases as prelude to more complicated situations,

• generalizing concepts,

• applying and adapting old methods to new situations,

• breaking objects into smaller constituent parts, and analyzing each
piece individually,

• special analysis of “cusp” cases, on the boundary between one type
of behaviour and another,

• using indirect methods of gathering information, and

• collecting results into a general theory encompassing all cases,

all in one self-contained unit. These techniques, and the pedagogical
choice to explicitly highlight their use in teaching the topic of canonical
matrix forms, could be considered to be in the spirit of the modern
problem solving heuristics of Pólya (see [3]).

2 FIRST STEPS

2.1 Diagonalizable Matrices

Philosophy: Start with a simple case.

A good place to start is with a discussion of what “simplest member of a
similarity class” should even mean. Students will usually offer the zero
matrix and the identity matrix as the simplest matrices they know, but
each of these is alone in its respective similarity class. The observation
can be made that analyzing too simple a case is often not valuable, if it
provides no clues as to how to proceed in other cases. (One could also
pause here to investigate: what other matrices are the sole member of
their similarity class?)

Eventually diagonal matrices will come up. Students will

D =
[
3 0 0
0 3 0
0 0 −1

]
A =

[
7 −12 −4
4 −9 −4

−4 12 7

]
P =

[−1 2 −1
0 1 −1

−1 −1 1

]
Example 1. How is it that P−1AP = D?

probably have seen eigenvalues and eigenvectors in their first course in
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linear algebra, and they might remember that the answer to the question
posed in Example 1 is that the columns of P must be eigenvectors of
A, but they probably do not remember why. It is easy to convince
the students that the requirement AP = PD is much nicer to work
with than P−1AP = D, as it avoids a messy inverse matrix calculation.
From here, we can borrow an idea from the concept of matrix-as-linear-
transformation, and make the connection to the vector space Cn (where
C is the field of complex numbers) — it can only be true that AP
and PD are the same matrix if they act the same way on Cn. That
is, we must have APej = PDej for each standard basis vector ej of
Cn. Now, multiplying a standard basis vector by a matrix picks off
the corresponding column of the matrix, and since the columns of D
are just scalar multiples of these basis vectors, we immediately get that
Apj = λjpj , where pj is the jth column of P , and λj is the jth diagonal
entry of D. Of course, this says that λj ,pj must be an eigenvalue-
eigenvector pair of A, and we are led directly to the attendant theory of
such objects.

2.2 Similarity Revisited

Philosophy: Find the essence of what made the analysis of the simple
case work.

Looking back at the diagonalizable case, it is easy for students to focus
on the fact that eigenvalues and eigenvectors made an appearance, and
to get lost in details like algebraic and geometric multiplicities of eigen-
values. While these objects and details will certainly be important in
further cases, the analysis that led to the consideration of eigenvalues
and eigenvectors is much more important for the purpose of developing
a framework for investigating all possible cases.

If A and B are similar matrices, and P is an invertible matrix that
realizes the similarity relation between them, then the idea of analyzing
the equality APej = PBej (similar to the analysis of the diagonalizable
case), leads to

Apj = Pbj

= P (b1je1 + b2je2 + · · ·+ bnjen)

= b1jp1 + b2jp2 + · · ·+ bnjpn.

This observation provides the guiding principle by which to analyze sim-
ilarity in general: P−1AP = B is true if and only if the columns of B
encode the action of A on the basis of Cn formed by the columns of P .

2.3 Block Diagonal Form

Philosophy: Generalize.
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If a matrix is not diagonalizable, when is it similar to something vaguely
diagonal in form? Block diagonal form is a simple example of taking old
ideas in a new direction to produce a generalization.

B =

[
3 1
1 1

2 1
1 2

]
A =

[ 6 4 −1 −3
7 10 −2 −6
0 6 0 −3

14 12 −3 −8

]
P =

[
1 1 1 1
1 2 1 1
0 0 1 −2
2 4 2 3

]

Example 2. How is it that P−1AP = B?

Consider the matrices in Example 2. Using the fact that the form
matrix B encodes the action of A on the columns of P , we see that A
sends each of p1 and p2 to a linear combination of the two, and similarly
for p3 and p4. This example leads to the theory of invariant subspaces
and of collections of independent subspaces. (I prefer to avoid the concept
of direct sum at this level as unnecessarily complicated. The equivalent
concept of independent subspaces is more natural as a generalization of
independent vectors.)

Of course, for a given matrix, it is not so easy to come up with a
collection of independent, invariant subspaces. But geometric examples
can be used here, such as rotations in R3. And, of course, the prototyp-
ical example of the collection of eigenspaces of a diagonalizable matrix
should be discussed as a prelude to a future topic.

3 SQUEEZING MORE OUT OF EIGENVALUES

3.1 Scalar-Triangular Form

Philosophy: Try an incrementally more difficult case.

What can we do with a matrix that is not diagonalizable? The students
will likely identify triangular matrices as the appropriate next step after
diagonal matrices. Here it is useful to use the special case of an upper
triangular matrix with a single repeated eigenvalue (I call this a scalar-
triangular matrix ) as an incremental step.

T =
[
3 1 2
0 3 −1
0 0 3

]
A =

[−2 −14 5
1 6 −1

−2 −5 5

]
P =

[
1 −2 1
0 1 −1
1 1 −1

]
Example 3. How is it that P−1AP = T?

Consider the matrices in Example 3. Once again, using the point of
view that the form matrix T encodes the action of A on the columns of
P , we immediately see that the first column of P must be an eigenvector
of A. But the second column is a puzzle — it is almost an eigenvector,
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except for a pesky extra multiple of p1. With a little algebraic ma-
nipulation, we find that the vector p2 does not solve the homogeneous
system (λI−A)x = 0 (as it should if it were an eigenvector), but instead
solves the nonhomogeneous system (λI − A)x = −t12p1. If possible, it
would be preferable to replace this relationship between p1 and p2 with
a homogeneous condition involving just p2. Toward that end, we can
use the already obtained knowledge that p1 is an eigenvector to turn
(λI − A)p2 = −t12p1 into (λI − A)2p2 = 0. From here, the pattern
becomes evident: we need (λI − A)jpj = 0 to be true for each column
index j, and so are led naturally to the theory of generalized eigenvectors.

3.2 Triangular-Block Form

Philosophy: Boldly forge ahead using whatever tools worked before.

If A has more than one eigenvalue, can it still be similar to a triangular
matrix? Generalized eigenvectors had something to do with the scalar-
triangular case, so it stands to reason that they could play a role in this
more general setting. Working with some examples, we quickly find that
generalized eigenspaces of a matrix A are invariant under multiplication
by A, and the collection of generalized eigenspaces of A form an inde-
pendent collection. So the theory attached to block diagonal form can
be applied to put any matrix into a block form where each block is in
scalar-triangular form.

4 ATTACKING THE BLOCKS

4.1 Nilpotent Matrices

Philosophy: Break the problem apart.

Can each of the blocks of a matrix in triangular-block form be “simpli-
fied” any further? It is not immediately obvious how to choose bases for
each generalized eigenspace to do this. The scalar diagonal of each block
is as simple as possible already, so it is natural to focus on the messy
upper triangular part. Breaking each block into the sum λI + N , and
recognizing the simple algebraic identity P−1(λI+N)P = λI+P−1NP ,
leads naturally to the consideration of the special case of nilpotent matri-
ces. And just as the study of matrix forms is an attempt to understand
the partition of the set of all n×n matrices into similarity classes, nilpo-
tent matrices are one cell in a partition of the set of singular n × n
matrices with respect to the multiplicity of the eigenvalue 0. The set of
nilpotent matrices can be further subdivided with respect to the degree
of their nilpotency — that is, the size of the exponent in the first power
of the matrix to become zero. (See Figure 1.)
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n× n matrices

nonsingular

matrices

singular with λ = 0 of mult. 1

singular with λ = 0 of mult. 2

......

singular with λ = 0 of mult. n

A1 = 0 A2 = 0 · · · · · · An = 0

?

Figure 1. Cells of singular matrices.

4.2 Elementary Nilpotent Form

Philosophy: Analyze the “cusp” case.

Of the cells of nilpotent n × n matrices in the partition illustrated in
Figure 1, the cell containing those matrices A that satisfy An−1 6= 0 is
the furthest from the cell containing just the zero matrix, and could be
considered to be on the “cusp” between the larger cells of nilpotent and
nonnilpotent singular matrices. For this reason, the matrices in this cell
are a good initial special case to consider. It turns out that such matrices
are all similar to a particularly simple triangular form (and, therefore,
to each other). The prototypical example of a nilpotent matrix in this
class is one that is zero in every entry, except for an unbroken line of
ones along the first subdiagonal (I call this elementary nilpotent form).
Here, we switch to a lower triangular form so that the theory will work
out a little more cleanly.

N =

[
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

]
A =

[ 1 2 0 −1
3 7 −1 −4

−1 9 −2 −4
6 10 −1 −6

]
P =

[
1 1 1 1
1 2 1 1
0 0 1 −2
2 4 2 3

]

Example 4. How is it that P−1AP = N?

In Example 4, we again consider the action of A on the columns of
P , and we see that the columns of P form an A-cyclic basis for Cn, with
pj = Ajp1 for 2 ≤ j ≤ 4. In general, if A is an n × n nilpotent matrix
with An−1 6= 0, we can always take P to be the matrix with columns
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pj = Aj−1ek, where k is any fixed index such that the kth column of
An−1 is nonzero, and ek is the corresponding standard basis vector. In
this way, we are led to the theory of cyclic subspaces.

4.3 Triangular-Block Form For Nilpotent Matrices

Philosophy: Gather information indirectly.

From here, depending on the level of the course and the time available,
some “hand waving” may be called for. A full journey to the Cyclic
Decomposition Theorem is not really necessary, and, based on the results
so far, students should have little trouble accepting that a nilpotent
matrix that becomes zero before the nth power is similar to one made
up of smaller blocks in elementary nilpotent form. Rather than focus on
algorithm development, I prefer here to set students to some detective
tasks, to indirectly determine the form of a nilpotent matrix, without
explicitly computing P .

Using the knowledge that nilpotent A is similar to a block diag-
onal matrix, with each block in elementary nilpotent form, how can
we determine the number and sizes of the blocks? This information
completely determines the form matrix, and, by similarity, the ranks
of the powers of A are enough to work out the form. Each block
in the form has rank one less than full, so the number of blocks is
equal to n − rank(A) = nullity(A). If k is the first positive expo-
nent such that Ak = 0, then the largest block is k × k, and there are
rank(Ak−1) such blocks. From here, the term-to-term jumps in the se-
quence rank(Ak−1), rank(Ak−2), . . . , rank(A) tell the number and sizes
of the smaller blocks.

5 PUTTING IT ALL TOGETHER

5.1 Jordan Canonical Form

Philosophy: Develop a general theory encompassing all cases.

Finally, the results of the analysis of the nilpotent case can be applied
back to the triangular-block form case, to arrive at the Jordan canon-
ical form. Again, if procedural proficiency is not a main objective of
the course, it may be more appropriate to tackle this form from the
same philosophy as the triangular-block form for nilpotent matrices:
the number and sizes of elementary Jordan blocks corresponding to a
given eigenvalue λj can be deduced from nullity(Aj) and the sequence

rank(A
mj

j ), rank(A
mj−1
j ), . . . , rank(Aj), where Aj = λjI −A, and mj is

the algebraic multiplicity of λj .
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6 ALGORITHM DEVELOPMENT TO REINFORCE THE-
ORY

In [2], it is suggested that “learning may be improved by helping students
construct knowledge in their own minds in a context that is designed to
aid, or even stimulate, that construction,” and that one way to structure
such a learning experience is “to have the student program mathemat-
ical constructions in a computer language designed so that the act of
programming parallels the construction of the underlying mathematical
processes.”

Rather than hand the students ready-made algorithms for comput-
ing, for a given matrix A, an invertible matrix P so that P−1AP is in
a desired form, the instructor can ask the students to develop the al-
gorithms on their own, forcing them to think more deeply about how
the theory leads to a solution of the problem than they would in just
running through the (quite tedious) calculations in exercises. The algo-
rithms could take the form of a sequence of commands to be entered into
a computer algebra system such as Maple or Maxima, or could simply be
in a pseudo-code language of the instructor’s or students’ own devising.

BEGINFUNCTION (INPUT matrix A)
COMPUTE eigenvalues of A
IF A has more than one distinct eigenvalue THEN

RETURN ERROR
ENDIF
SET e := eigenvalue of A
SET I := identity matrix of same dimension as A
COMPUTE basis B for nullspace of (e*I − A)
SET k := 2
WHILE B contains fewer vectors than dimension of A DO

COMPUTE basis B2 for nullspace of (e*I − A)ˆk
WHILE B contains fewer vectors than B2 DO

APPEND to B a vector in B2 that is not in span of B
DONE
INCREMENT k

DONE
RETURN matrix P obtained by concatenating column vectors in B

ENDFUNCTION

Listing 1. Pseudo-code for an algorithm to compute from input matrix A an

output matrix P so that P−1AP is in scalar-triangular form.
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In Listing 1, a sample pseudo-code algorithm for putting a matrix
in scalar-triangular form is given. As can be seen in this sample listing,
developing such algorithms also forces students to revisit fundamental
topics in elementary linear algebra, such as basis and span, and how to
extend a basis for a subspace to one for a larger space. These abstract
concepts, with which students often struggle, become more fixed or con-
crete in the mind of the student when they consider them as related
to objects (matrices and vectors) which are supposed by the student to
exist, if only in the memory of a (possibly fictitious) computer, but are
still abstract in that they are not specific matrices and vectors (see [2,
p. 235]).

7 CONCLUSION

In this article, we described how the topic of canonical matrix forms can
be used as the context and motivation for the development of several
important general topics in elementary linear algebra. By situating these
general topics in a problem-solving context, rather than presenting them
as disconnected prerequisites, it is hoped to provide a more engaging
learning experience for the student, as well as an opportunity for the
student to reflect on various approaches to problem solving.
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