:: Answers to practise problems for Jordan normal form

    1. \( P = \begin{bmatrix} 1 & -4 & 3 \\ 0 & -4 & 4 \\ 0 & -4 & 0 \end{bmatrix} \)      \( P^{-1} A P = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \)
    2. \( P = \begin{bmatrix} 1 & 1 & -1 & 10 \\ 0 & 0 & 1 & 4 \\ 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 2 \end{bmatrix} \)      \( P^{-1} A P = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \)
  1. Both matrices have \(\lambda = 1\) with \(m_1 = 1\) and \(\lambda = 2\) with \(m_2 = 2\). However, by comparing \(\operatorname{rank} (2 I - A)\) and \(\operatorname{rank} (2 I - B)\) we see that they are similar to Jordan normal form matrices \[\begin{align*} J_A & = \begin{bmatrix} 1 \\ & 2 \\ & & 2 \end{bmatrix} \text{,} & J_B & = \begin{bmatrix} 1 \\ & 2 \\ & 1 & 2 \end{bmatrix} \text{,} \end{align*}\] respectively. Since these form matrices are not similar, neither can \(A\) and \(B\) be similar.
  2. [Omitted.]
  3. Since \(2 \times 2\) matrix \(A\) has two distinct eigenvalues, it is actually diagonalizable, and is similar to diagonal matrix \( \left[\begin{smallmatrix} 1 + \epsilon \\ & 1 \end{smallmatrix}\right] \) via transition matrix \( P = \left[\begin{smallmatrix} \epsilon & 0 \\ 1 & 1 \end{smallmatrix}\right] \). But \(J\) is already in Jordan normal form and is not diagonal, hence \(A\) cannot be similar to \(J\).