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CHAPTER 1

Symbolic language

1.1 Statements

statement
a sentence that is either true or false

Example 1.1.1 Logical statements.

1. All prime numbers are odd.

2. Some trees have leaves and some trees have needles.

3. If you pay attention in class and work through all the homework problems,
then you will do well in this course.

□

substatement
part of a logical statement that could be considered a statement on
its own

Example 1.1.2 Substatements. “Some trees have leaves” is a substatement of
statement 2 in Example 1.1.1. □

simple statement
does not contain any proper substatements

compound statement
contains two or more substatements

connective
a connecting word between substatements in a compound statement

Example 1.1.3 Simple and compound statements. Reconsidering the state-
ments in Example 1.1.1:

1. statement 1 is simple;

2. statement 2 is a compound statement made up of two (simple) substate-
ments linked by the connective “and”; and

3. statement 3 is a compound statement made up of two substatements linked
by the connective “if . . . then . . . ”, where the substatement that constitutes
the “if” part is itself a compound statement.

3



4 CHAPTER 1. SYMBOLIC LANGUAGE

□
The substatements in a compound statement can be related to each other by

connectives in various ways.

Definition 1.1.4 Five basic connectives.

negation “not”
conjuction

“and”
disjunction

“or”
conditional

“if . . . then . . . ”
biconditional

“if and only if”

Given statements A and B, we use these connectives to construct new state-
ments:

negation of A
not A

conjuction of A and B
A and B

disjunction of A and B
A or B

conditional where A implies B
if A then B

biconditional involving A and B
A if and only if B

♢
Remark 1.1.5

1. All statements we will consider can be constructed starting from a finite
number of simple statements and modifying/joining them using connectives
as above.

2. Always take “A or B” to mean “A or B or both” (known as inclusive or).
However, in everyday language it may be reasonable to take “either A or B”
to mean “(A or B) and not (A and B)” (known as exclusive or).

3. The conditional and biconditional connectives are actually superfluous
— they can be constructed from the first three. (See Worked Example 2.1.2
and Exercise 2.5.5.) But they occur frequently, and such constructions from
other connectives obscure their meaning, so it is more convenient to include
these two connectives in our list of of basic connectives.

Example 1.1.6 Translating everyday English into logical statements. A
conversation.

Alice It is raining.
Bob No, it isn’t.
Alice Either it’s raining or it isn’t.
Bob How can we decide?
Alice If we go outside and we get wet, then it’s raining.
Bob We’d get wet outside if the sprinklers are on, too.
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Alice Don’t be silly!
Alice (continuing. . . )

We’ll get wet if it’s raining, and this is the only way we’ll get wet.

Let us rewrite the above conversation to clearly identify the substatements
and connectives.

Alice it is raining
Bob not (it is raining)
Alice (it is raining) or (not (it is raining))
Bob [not a statement!]
Alice if ((we are outside) and (we get wet)) then (it is raining)
Bob if ((we are outside) and (the sprinklers are on)) then (we get wet)
Alice [not a statement!]
Alice if (we are outside) then ((we get wet) if and only if (it is raining))

□
Test 1.1.7 Checking whether a sentence is a logical statement. If S is an
English language sentence and the phrase “It is true that S” makes sense as an
English language sentence, then S is a logical statement.

Strictly speaking, many mathematical statements are not logical statements,
for a different reason then the one used in the test above.

Example 1.1.8 An ambiguous mathematical statement. The phrase “ f
is a differentiable function” is not a logical statement, since whether it is true
or false depends on the free variable f . For example, if we substitute the
function f (x)= x into this statement, the statement becomes true. However, if
we substitute the function f (x)= |x|, the statement becomes false. We will deal
with this issue in Chapter 4. □

1.2 Converting language to symbols

As we have already begun to do, we will use letters to represent (possibly variable)
logical statements and substatements. To complete the conversion from verbose
language to compact symbolism, we will introduce symbols to represent the Five
basic connectives.

negation of A
¬A

conjuction of A and B
A∧B

disjunction of A and B
A∨B

conditional where A implies B
A → B

biconditional involving A and B
A ↔ B

Using variables to represent statements and the above symbols to represent
connectives allows us to isolate the task of analyzing logical structure, without
being distracted or influenced by the content of the statements.

Warning 1.2.1 In mathematics, the symbol → is also used in function notation;
you will need to determine from the context which role this symbol is playing.
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Example 1.2.2 Translating English language into symbolic language.
Consider the statement “if we are outside and we get wet then it is raining.”
Assign statement variables:

A = “we are outside,” B = “we get wet,” C = “it is raining.”

Then symbolically, the statement can be written

A∧B → C.

□

Remark 1.2.3 Using substatement variables is not the same as using free vari-
ables. You should think of substatement variables as placeholders for specific
logical statements which, by definition, can each be determined to be either true
or false.

1.3 Logical analysis

We will now leave the English language behind and concentrate on logical
statements consisting only of variables and connectives. Keep in mind that
variables are not limited to representing simple statements; they can represent
compound statements as well.

truth value
the property of being true or false

Given a logical statement, view the variables as inputs and the truth value of
the entire statement as an output. We would like a systematic way to determine
how the truth value of the output changes as we vary the truth values of the
inputs.

logical analysis
the process of determining the truth value of a statement based on
the truth values of its variable substatements

truth table
tabular method of carrying out logical analysis

If a statement involves a finite number of variables, then since each variable
can have one of only two possible truth values, there are a finite number of
different combinations of input truth values for the statement. So we can test
each combination one after the other to determine all possible outputs. Arrange
this analysis in a table with all possibilities for the input variables on the left
and the resulting outputs on the right.

Note 1.3.1 In fact, if there are n variables, then there are exactly 2n different
combinations of truth values for the variables.

First, let’s establish the truth tables of the basic connectives (that is, of
statements containing exactly one connective).
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Negation

p ¬p
T F
F T

Conjunction

p q p∧ q
T T T
T F F
F T F
F F F

Disjunction

p q p∨ q
T T T
T F T
F T T
F F F

Conditional

p q p → q
T T T
T F F
F T T
F F T

Biconditional

p q p ↔ q
T T T
T F F
F T F
F F T

Figure 1.3.2 The truth tables of the Five basic connectives.

Note 1.3.3

1. Conjunction p∧ q is true only when both p and q are true.

2. Disjunction p∨ q is true when at least one of p and q is true.

See. Statement 2 of Remark 1.1.5 for the difference between inclusive or
and exclusive or.

3. The first two rows of the truth table for p → q are consistent with the read-
ing “if p is true then q is also true.” Really, this reading of the conditional
says nothing in the case that p is actually false, but we cannot leave the
“output” column of the truth table blank for the corresponding rows where
p =F. Instead, the outputs in the last two rows of the truth table for p → q
are “default” values chosen to avoid inconsistencies. (See Exercise 1.6.3.)

4. Looking at all four rows of the truth table for p → q, we can succinctly say
that p → q is true except when p is true but q is false.

5. Biconditional p ↔ q reads “p is true when q is true, and only when q is
true.” But this means that when q is false, p cannot be true, hence must
by false, which explains the fourth row of the truth table.

6. Looking at all four rows of the truth table for p ↔ q, we can succinctly say
that p ↔ q is true when p and q have the same truth value.

We can now use the truth tables of the basic connectives to analyze more
complicated statements. Liberal use of extra “intermediate” columns to analyze
substatements separately is highly recommended.

Worked Example 1.3.4 Analyze ¬(p ↔ q).

Solution.

p q p ↔ q ¬(p ↔ q)
T T T F
T F F T
F T F T
F F T F

□

Note 1.3.5 The logical statement ¬(p ↔ q) analyzed in Worked Example 1.3.4 is
one way to realize exclusive or: p or q but not both.

Worked Example 1.3.6 Analyze (p∧ q)→ (p ↔ r).

Solution.
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p q r p∧ q p ↔ r (p∧ q)→ (p ↔ r)
T T T T T T
T T F T F F
T F T F T T
T F F F F T
F T T F F T
F T F F T T
F F T F F T
F F F F T T

□

Worked Example 1.3.7 Analyze
(
(p → q)→ r

)↔ (
p → (q → r)

)
.

Solution.

p q r p → q q → r A B A ↔ B
T T T T T T T T
T T F T F F F T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F T F F T F
F F T T T T T T
F F F T T F T F

□

1.4 Tautologies and contradictions

tautology a logical statement that is always true for all possible truth values
of its variable substatements

logically true statement
synonym for tautology

Example 1.4.1 Basic tautologies.

1. p → p.

2. p ↔ p.

3. Law of the Excluded Middle: p∨¬p.

Verification:

p ¬p p∨¬p
T F T
F T T

The table verifies that the statement is a tautology as the last column
consists only of T values.

4. Law of Contradiction: ¬(
p∧¬p

)
.

Verification:
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p ¬p p∧¬p ¬(
p∧¬p

)

T F F T
F T F T

The table verifies that the statement is a tautology as the last column
consists only of T values.

□
Example 1.4.2 Not a tautology. Is p∨ p a tautology? No, since it is false when
p is false. □

contradiction
a statement that must always be false, regardless of the truth values
of its variable substatements

logically false statement
synonym for contradiction

Example 1.4.3 Contradictions.

1. Negation of a tautology is always a contradiction (and negation of a contra-
diction is always a tautology).

2. Statement (p∨¬p)→ (q∧¬q) is a contradiction:

p q ¬p ¬q p∨¬p q∧¬q (p∨¬p)→ (q∧¬q)
T T F F T F F
T F F T T F F
F T T F T F F
F F T T T F F

The table verifies that the statement is a contradiction as the last column
consists only of F values.

□
Example 1.4.4 Conditional versus contradiction. Implication A → B can
only be a contradiction if A is a tautology and B is a contradiction. □
Theorem 1.4.5 Substitution Rule. Suppose A is a logical statement involving
substatement variables p1, p2, . . . , pm. If A is logically true or logically false, then
so is every statement obtained from A by replacing each statement variable pi
by some logical statement Bi, for every possible collection of logical statements
B1,B2, . . . ,Bm.

Example 1.4.6 Using the Substitution Rule.

1. We know p∨¬p is a tautology, therefore so is
(
q → (r∧¬s)

)∨¬(
q → (r∧¬s)

)

using substitution p = (
q → (r∧¬s)

)
.

2. We know (p∨¬p)→ (q∧¬q) is a contradiction, therefore so are

(p∨¬p)→ (p∧¬p) (by p = p, q = p),(
(r∨ s)∨¬(r∨ s)

)→ (
q∧¬q

)
(by p = r∨ s, q = q),

(
r∧ (s ↔ t)

)∨¬(
r∧ (s ↔ t)

)→
(
t∧¬t

)
(by p = r∧ (s ↔ t), q = t).

□
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In mathematics, we often wish to prove that a condition A → B is actually a
tautology. (See Chapter 6.)

logically implies
if the conditional A → B is a tautology, we say that A logically
implies B

A ⇒ B notation for logical implication

Example 1.4.7 Logical implication.

1. If A = p and B = p∨ q, then A ⇒ B.

2. If A = p∧ q and B = p, then A ⇒ B.

□
Remark 1.4.8 As we will see in Chapter 6, verifying logical implications in
mathematical contexts is one of the main tasks of mathematical proof. And to
verify a logical implication A ⇒ B, we want to focus on the idea of conditional
as expressing “If A is true then B is true,” and we really don’t want to concern
ourselves with what happens in the case that A is false. Here is where our
“default” values in the rows of the truth table for the conditional A → B where
A is false help out — as the conditional A → B is automatically true when A is
false, regardless of the truth value of B, we really only need to consider what
happens when A is true to verify A ⇒ B.

1.5 Activities

Activity 1.1 Consider the following statement.
If the game is on and the popcorn is ready, then Joe is happy.

(a) Assign statement variables and rewrite the statement in symbolic lan-
guage.

(b) Write out the truth table for your symbolic statement.

(c) You visit Joe’s residence room and found that Joe is unhappy even though
the game is on. Assuming that the above conditional statement is a true
statement about Joe, what can you conclude about the popcorn? Which
rows in your truth table justify this conclusion?

Activity 1.2 Consider the logical statement

(p → q)→ (¬p∨ q).

(a) Make up an English language statement that has the same logical structure
as this symbolic statement. (Do not just make a word-for-word translation
of the logical connectives — make sure you have a reasonable-sounding
English sentence when read out loud.)

(b) Argue convincingly that this symbolic statement is a tautology, not by
writing out its truth table, but by arguing that it is not possible for the
statement to be false.

Don’t skip ahead. In Chapter 2, we will learn that the two substatements
involved in this conditional are logically equivalent. If you have already
read ahead into that chapter, do not just use this equivalence of these two
statements to carry out this task.
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Hint. Start with the assumption that this conditional statement is false,
and then work backwards from the statement to the possible truth values
of p and q based on that assumption to conclude that the statement being
false is not actually possible.

Activity 1.3 Consider the logical statement

(p∧¬r)→ [
(p → q)→ (p∧¬r)

]
.

(a) Make the statement simpler by assigning new variables to represent com-
pound statements and rewriting the statement in terms of the new vari-
ables.

(b) Argue that your new statement is a tautology. What does this mean about
the original statement?

Activity 1.4 First, re-familiarize yourself with what it means when one state-
ment logically implies another.

Suppose that A logically implies B and B logically implies C. Must A logically
imply C? Argue convincingly in support of your answer by arguing that the
technical definition of logically implies is satisfied.

Activity 1.5 If there is still time: work through Exercise 1.6.3 from this chapter.

1.6 Exercises

1. Let p, q, and r represent the following statements.

p : The game is on.

q : The popcorn is ready.

r : Joe is happy.

Suppose the following compound statement is true.
If the game is on and the popcorn is ready, then Joe is happy.

However, you just visited Joe’s residence room and found that Joe is unhappy
even though the game is on. What can you conclude about the popcorn? Use
a truth table to justify your answer.

2. Consider the logical statement (p∧q1)→ (q1∨q2). Partially translated, this
statement says:

if p and q1 are both true, then at least one of q1 and q2 is true.

Would you expect this statement to be a tautology? . . . a contradiction? . . .
neither?

Use a truth table to check.

3. The wizard Hatty Porrer is studying logic at Cowpimples School for Second-
Rate Wizards. As an exercise, he is filling out the truth table for the
conditional

(r∧ s)→ (r∨ s).

But he forgets what to do for the lines where the “if” part of the conditional
evaluates to false, so he only gets this far:
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r s r∧ s r∨ s (r∧ s)→ (r∨ s)
T T T T T
T F F T ?
F T F T ?
F F F F ?

(a) Help Hatty out by finishing his homework for him.

(b) While you were filling out the truth table, Hatty got bored and opened
up a portal to a parallel universe. Parallel Hatty is also working on
the same truth table, and is stuck at the same spot that normal Hatty
was. However, you notice that parallel Hatty’s textbook is open to the
page with the truth table for the basic conditional p → q, and it looks
as follows.

p q p → q
T T T
T F F
F T F
F F T

Finish parallel Hatty’s homework exercise. Make sure parallel Hatty’s
instructor will like the result!

(c) While you were finishing parallel Hatty’s homework, Hatty got bored
again and opened up a portal to another parallel universe! Parallel
Hatty number two is also working on the same truth table, and is
stuck at the same spot that the previous two Hattys were. This time,
however, parallel Hatty number two’s textbook says that the truth
table for the basic conditional p → q is as follows.

p q p → q
T T T
T F F
F T T
F F F

Finish parallel Hatty number two’s homework exercise. Make sure
parallel Hatty number two’s instructor will approve!

(d) You’ll never believe what happened while you were finishing parallel
Hatty number two’s homework! Yep, Hatty got bored again and opened
up a portal to a third parallel universe. Parallel Hatty number three
is also working on the same truth table, and is stuck at the same
spot that the previous three Hattys were. The truth table for the
basic conditional p → q is different in parallel Hatty number three’s
universe, yet again.

p q p → q
T T T
T F F
F T F
F F F

Finish parallel Hatty number three’s homework exercise. Make sure
parallel Hatty number three’s instructor will give him full marks!
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(e) OK, so what the heck is the point of all this? The statement (r∧ s)→
(r∨ s) could be read as:

If r and s are both true statements, then at least one of r
and s is a true statement.

This conditional statement seems “obviously true”. Based on this
example, what do you think of each parallel universe’s system of logic
compared to our own?

4. Suppose A,E,U are logical statements such that U is a tautology and E is
a contradiction.

(a) Show that A∨U is always a tautology.

(b) Show that A∧E is always a contradiction.
5. Suppose that A, B, and C are logical statements such that A ⇒ B and

B ⇒ C. Must A ⇒ C?





CHAPTER 2

Logical equivalence

2.1 Equivalence

equivalent statements
statements A,B such that A ↔ B is a tautology

A ⇔ B statements A and B are equivalent

Test 2.1.1 Equivalence of logical statements. Statements A and B are
logically equivalent if A and B always have the same output truth value whenever
the same input truth values are substituted for the substatement variables in each.
That is, A ⇔ B if A and B have the same truth table.

Worked Example 2.1.2 Testing logical equivalence. Demonstrate that the
following are equivalent statements.

A: If it’s nice outside, I will ride my bike.
B: It’s not nice outside, or I will ride my bike.

Solution. Let p represent the substatement “it’s nice outside,” and let q repre-
sent the substatement “I will ride my bike.” Then the equivalence we want to
establish is

p → q ⇔¬p∨ q.

We can analyze the truth tables of both statements in the same table.

p q ¬p ¬p∨ q p → q
T T F T T
T F F F F
F T T T T
F F T T T

We see that the two statements always have the same truth value in all rows of
the truth table, so they are equivalent. □

Note 2.1.3 Worked Example 2.1.2 shows that the basic conditional connective “if
. . . then . . . ” can be constructed out of the basic connectives “not” and “or”.

Worked Example 2.1.4 Demonstrate the equivalence p ↔ q ⇔¬p ↔¬q.

Solution. Again we build a truth table, and see that the “output” columns for
the two statements are identical.

15
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p q ¬p ¬q p ↔ q ¬p ↔¬q
T T F F T T
T F F T F F
F T T F F F
F F T T T T

□
Proposition 2.1.5 Logical equivalence has the following properties.

1. It is reflexive. That is, A ⇔ A is always true.

2. It is symmetric. That is, whenever A ⇔ B, then also B ⇔ A.

3. It is transitive. That is, whenever A ⇔ B and B ⇔ C, then also A ⇔ C.

4. Every pair of tautologies is an equivalent pair of logical statements.

5. Every pair of contradictions is an equivalent pair of logical statements.

Check your understanding. Thinking in terms of truth tables, consider why
each of the statements of Proposition 2.1.5 holds.

2.2 Propositional calculus

Logical equivalence gives us something like an “equals sign” that we can use to
perform logical “calculations” and manipulations, similar to algebraic calcula-
tions and manipulations. To enable us to do such calculations, we first need a
“tool chest” of basic logical equivalences to use therein.

Proposition 2.2.1 Rules of Propositional Calculus. Suppose A,B,C,E,U
are logical statements, where E is a contradiction and U is a tautology. Then the
following equivalences always hold.

1. Rules involving tautologies.

(a) A∨U ⇔U (b) A∧U ⇔ A

2. Rules involving contradictions.

(a) A∨E ⇔ A (b) A∧E ⇔ E

3. Duality of tautologies and contradictions.

(a) ¬U ⇔ E (b) ¬E ⇔U

4. Double negation.

¬¬A ⇔ A

5. Idempotence.

(a) A∨ A ⇔ A (b) A∧ A ⇔ A

6. Commutativity.

(a) A∨B ⇔ B∨ A (b) A∧B ⇔ B∧ A
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7. Associativity.

(a) (A∨B)∨C ⇔ A∨ (B∨C) (b) (A∧B)∧C ⇔ A∧ (B∧C)

8. Distributivity.

(a) A∧ (B∨C)⇔ (A∧B)∨ (A∧C)

(b) A∨ (B∧C)⇔ (A∨B)∧ (A∨C)

(c) (A∨B)∧C ⇔ (A∧C)∨ (B∧C)

(d) (A∧B)∨C ⇔ (A∨C)∧ (B∨C)

9. DeMorgan’s Laws.

(a) ¬(A∨B)⇔¬A∧¬B (b) ¬(A∧B)⇔¬A∨¬B

10. Constructing the conditional and biconditional.

(a) A → B ⇔¬A∨B (b) A ↔ B ⇔ (A → B)∧ (B → A)

Remark 2.2.2 Each of these basic equivalences can be established with a truth
table. See Exercise 2.5.4.

Example 2.2.3 DeMorgan. Using Rule 9.b of Proposition 2.2.1, the following
are equivalent statements.

1. The triangle can’t be both right and equilateral.

2. The triangle is not right or it is not equilateral.

To see how the rule applies, let p represent the statement “the triangle is right”
and let q represent the statement “the triangle is equilateral.” Then the first
statement above is ¬(p∧ q), while the second statement above is ¬p∨¬q. □

Now we need some new substitution rules to enable us to use the rules of
Proposition 2.2.1 in logical calculations.

Theorem 2.2.4 Substitution Rules.

1. Replacing a substatement by an equivalent one.

Suppose A is a logical statement and X is a substatement of A. If state-
ment Y is equivalent to X , then the new statement A′ obtained from A by
replacing substatement X by Y is equivalent to A. That is, if Y ⇔ X then
A′ ⇔ A.

2. Substituting into a known equivalence.

Suppose A and B are logical statements, each of which involves substate-
ment variables p1, p2, . . . , pm. If A and B are equivalent, then so are new
statements A′ and B′ obtained by applying substitution pi = Ci to both A
and B, for every collection of statements C1,C2, . . . ,Cm.

Proof idea.

1. Think of X as an intermediate column in the calculation of the truth table
of A. Replacing X by Y does not change this column, as the truth tables of
X and Y are the same.

2. We leave this statement for you, the reader, to consider. (Again, think of
the Ci as intermediate columns in the calculations of the truth tables of A′
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and B′.)

■
Example 2.2.5 One of DeMorgan’s Laws (Rule 9.a of Proposition 2.2.1) says that
¬(p∨ q)⇔¬p∧¬q. Therefore,

¬(
(r → t)∨ (t → r)

)⇔¬(r → t)∧¬(t → r),

using Rule 2 of our new Substitution Rules, with substitutions p = r → t, q = t → r.
□

Here is an example of a string of logical manipulations. It also demonstrates
the use of Rule 10.a of Proposition 2.2.1 to manipulate an expression involving a
conditional.

Example 2.2.6 DeMorgan with a conditional. Consider the statement
(p1 ∨ p2)→ q. We may read it as “if either p1 or p2 is true, then q will be true as
well.” So it seems that each of p1 and p2 must imply q on its own. Let’s see what
propositional calculus says about this:

(p1 ∨ p2)→ q ⇔¬(p1 ∨ p2)∨ q (i)

⇔ (¬p1 ∧¬p2)∨ q (ii)

⇔ (¬p1 ∨ q)∧ (¬p2 ∨ q) (iii)

⇔ (p1 → q)∧ (p2 → q) (iv),

with justifications

(i) Rule 2 of our new Substitution Rules, where we substitute A = p1 ∨ p2
into both sides of the construction of the conditional (Rule 10.a of Proposi-
tion 2.2.1);

(ii) Rule 1 of our new Substitution Rules, using DeMorgan (Rule 9.a of Propo-
sition 2.2.1) on the substatement ¬(p1 ∨ p2);

(iii) distributivity (Rule 8.d of Proposition 2.2.1); and

(iv) Rule 1 of our new Substitution Rules, using the construction of the condi-
tional (Rule 10.a of Proposition 2.2.1) on each of the two “factors” of the
conjunction.

So our intuition about the logic of a disjunction in a conditional in this way was
correct.

A look ahead. This observation will come in handy — see Section 6.4 and
Section 6.5.

□

2.3 Converse, inverse, and contrapositive

Related to the conditional p → q are three important variations.

converse q → p
inverse ¬p →¬q
contrapositive

¬q →¬p
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Theorem 2.3.1 Modus tollens. A conditional and its contrapositive are equiva-
lent.

Proof. We simply compare the truth tables.

p q ¬p ¬q p → q ¬q →¬p
T T F F T T
T F F T F F
F T T F T T
F F T T T T

As the two “output” columns are identical, we conclude that the statements are
equivalent. ■
Corollary 2.3.2 Modus tollens for inverse and converse. The inverse and
converse of a conditional are equivalent.

Proof. The inverse of the conditional p → q is ¬p →¬q. The contrapositive of this
new conditional is ¬¬q →¬¬p, which is equivalent to q → p by double negation.

■
Warning 2.3.3 Common mistakes.

• Mixing up a conditional and its converse.

• Assuming that a conditional and its converse are equivalent.

Example 2.3.4 Related conditionals are not all equivalent.

1. Suppose m is a fixed but unspecified whole number that is greater than 2.

conditional
If m is a prime number, then it is an odd number.

contrapositive
If m is not an odd number, then it is not a prime number.

converse If m is an odd number, then it is a prime number.
inverse If m is not a prime number, then it is not an odd number.

Only two of these four statements are true!

2. Suppose f (x) is a fixed but unspecified function.

conditional
If f is continuous, then it is differentiable.

contrapositive
If f is not differentiable, then it is not continuous.

converse If f is differentiable, then it is continuous.
inverse If f is not continuous, then it is not differentiable.

Only two of these four statements are true!

□

2.4 Activities

Activity 2.1 Write an English language statement that has the logical form
¬(A∨B). Then write one that has the form ¬A∧¬B, where A and B are the
same as in your first sentence. DeMorgan’s Laws say your two sentences are
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logically equivalent. Do you agree?

Activity 2.2 What do you think DeMorgan’s Laws would say about ¬(A∧B∧C)?
Use propositional calculus to justify your answer.

Activity 2.3 Use Proposition 2.2.1 to simplify ¬(p → q). (Begin by applying
Rule 10.a.)

Activity 2.4 Recall that a pair of coordinates (x, y) defines a point in the Cartesian
plane.

Consider the following conditional statement.

If Cartesian points (a,b) and (c,d) are actually the same point, then
a = c.

(a) Write out the converse, inverse, and contrapositive of the above statement.

(b) You now have four conditional statements. For each of the four, decide
whether it is true, and justify your answer.

(c) For each of the three new conditional statements from Task a in turn, take
the view that that statement is the original conditional, and decide which
of the others are its converse, inverse, and contrapositive.

Activity 2.5 In this activity, we will justify the equivalence

p ↔ q ⇔ (p → q)∧ (q → p).

So consider the statements A = p ↔ q and B = (p → q)∧ (q → p).

(a) Argue that if A is false, then so is B.

Do not use the proposed equivalence above as part of your argument.

(b) Argue that if B is false, then so is A.

Do not use the proposed equivalence above as part of your argument.

(c) Explain why the two arguments in Task a and Task b, taken together, jus-
tify the equivalence A ⇔ B. Do this without making any further arguments
about the truth values of p and q.

Activity 2.6 Consider the statements p → (q1 ∨ q2) and (p∧¬q1)→ q2.
Use propositional calculus and substitution to show that these two statements

are equivalent.

2.5 Exercises

1. Consider again the two collections of related conditional statements in
Example 2.3.4.

(a) For each of these collections, determine which two of the four related
statements are true and which two are false. For the two false state-
ments in each collection, demonstrate it by providing examples where
the statements are false.

(b) Give an example of a conditional statement involving mathematical
objects for which all four of conditional, contrapositive, converse, and
inverse are all true.

2. Suppose U is a tautology and E is a contradiction.

(a) Show that P ∧U ⇔ P for every statement P.
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(b) Show that P ∨E ⇔ P for every statement P.
3. Consider the equivalence of statements p → (q1 ∨ q2)⇔ (p∧¬q1)→ q2.

(a) Use a truth table to verify the equivalence.

(b) Use propositional calculus to demonstrate the equivalence.
4. Use truth tables to establish the double negation, idempotence, commutativ-

ity, associativity, distributivity, and DeMorgan’s Law equivalences presented
in Proposition 2.2.1.

5. This exercise asks you to demonstrate that the basic connective “if and only
if” can be constructed out of the basic connectives “not”, “and”, and “or.”

(a) Use a truth table to prove Rule 10.b from Proposition 2.2.1.

(b) Starting with Rule 10.b from Proposition 2.2.1, use propositional
calculus to prove the equivalence

p ↔ q ⇔ (¬p∨ q)∧ (p∨¬q).
6. Use Exercise 5 to demonstrate that exclusive or

(p∨ q)∧¬(p∧ q)

is equivalent to
p ↔¬q.

See. Statement 2 of Remark 1.1.5 for the difference between inclusive or
and exclusive or.





CHAPTER 3

Boolean algebra

3.1 Boolean polynomials

We can proceed more algebraically by assigning value 0 to represent false and
value 1 to represent true.

Example 3.1.1 Boolean multiplication. Comparing the two tables below, we
see that Boolean multiplication is equivalent to logical conjunction.

x y xy
1 1 1
1 0 0
0 1 0
0 0 0

p q p∧ q
T T T
T F F
F T F
F F F

□

Example 3.1.2 Boolean addition. Comparing the following two tables, we see
that Boolean addition is equivalent to exclusive or.

Boolean arithmetic. Notice that in the first row for Boolean addition, we use
mod 2 arithmetic to define 1+1= 0.

x y x+ y
1 1 0
1 0 1
0 1 1
0 0 0

p q ¬(p ↔ q)
T T F
T F T
F T T
F F F

□

Example 3.1.3 Boolean disjunction. In Boolean arithmetic we may realize
disjunction by combining both addition and multiplication.

x y x+ y+ xy
1 1 1
1 0 1
0 1 1
0 0 0

p q p∨ q
T T T
T F T
F T T
F F F

□

Example 3.1.4 Boolean negation. In Boolean algebra, negation is just a
matter of shifting one value to the next.

23
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x x+1
1 0
0 1

p ¬p
T F
F T

□
For notation, we borrow symbols ∧ and ∨ from logic, but add new negation

notation.

x′ Boolean negation

With this notation setup, we have

x∧ y= xy, x∨ y= x+ y+ xy, x′ = x+1.

Boolean polynomial
an expression involving variables x1, x2, . . . , xm representing Boolean
values, and operations ∧,∨, ′, often written in function notation

Note 3.1.5 Every Boolean polynomial can be interpreted as a logical statement.

Example 3.1.6 There are two special constant Boolean polynomials, the zero
polynomial and the unit polynomial:

0(x1, x2, . . . , xm)= 0, 1(x1, x2, . . . , xm)= 1.

□

Example 3.1.7 The Boolean polynomials p(x, y) = x′∨ y and q(x, y) = (x∧ y′)′

have the same truth table.

x y x′ p(x, y) y′ x∧ y′ q(x, y)
1 1 0 1 0 0 1
1 0 0 0 1 1 0
0 1 1 1 0 0 1
0 0 1 1 1 0 1

Using our knowledge of logical equivalence, we see that the truth tables are the
same because as logical statements, p and q are equivalent by DeMorgan. □

equivalent polynomials
Boolean polynomials which represent equivalent logical statements

Fact 3.1.8 Recognizing equivalent Boolean polynomials. Polynomials p, q
are equivalent if and only if they have the same truth table.

3.2 Disjunctive normal form

It is often desired (e.g. in computer programming or logic circuit design) to
reverse the process: starting with a desired truth table, can we construct a
Boolean polynomial with the same outputs?

Worked Example 3.2.1 Determine a Boolean polynomial p(x, y) that has the
truth table below.
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x y p(x, y)
1 1 1
1 0 0
0 1 0
0 0 1

Solution. We want a “true” output when the inputs match the first or fourth
rows, and only then. The inputs match the first row precisely when both x and y
are true (i.e. when the conjunction x∧ y is true), and they match the fourth row
precisely when both x is not true and y is not true (i.e. when the conjunction x′∧y′

is true). So take the disjunction of these two conjunctions: p(x, y)= (x∧y)∨(x′∧y′).
□

Remark 3.2.2 In the solution to the above worked example, it might seem like
we should take a conjunction of the two conjunctions instead of a disjunction,
since we see an output of 1 in the first row and in the fourth row. However, we
cannot be in the input “state” described by those two rows simultaneously, since
neither x nor y can be both 1 and 0 simultaneously. So you should think of it this
way instead: if we see an output state of 1, then we know we must be either in
the input state of the first row or of the fourth row.

disjunctive normal form
a Boolean polynomial in variables x1, x2, . . . , xn which is the disjunc-
tion of distinct terms of the form a1 ∧a2 ∧·· ·∧an, where each ai is
either xi or x′i.

Convention 3.2.3 The zero polynomial is also considered to be in disjunctive
normal form.

Note 3.2.4 Disjunctive normal form is usually not the “nicest” or “simplest”
Boolean polynomial with a desired truth table, but there is a relatively simple
procedure to produce it.

Procedure 3.2.5 To produce the disjunctive normal form polynomial for
a given Boolean truth table. Given a truth table with nonzero output, we may
obtain a Boolean polynomial in disjunctive normal form with that truth table as
follows.

1. Identify rows the in truth table for which the desired output is 1

2. For each such row, form the conjunction of all variables, but negate those
variables that have input value 0 for that row.

3. Form a polynomial by taking the disjunction of all those conjunctions.

Worked Example 3.2.6 Determine a Boolean polynomial p(x, y, z) that has the
truth table below.

x y z p(x, y, z)
1 1 1 0
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 1
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Solution. The fourth, fifth, seventh, and eigth rows have outcome 1. The
corresponding conjunctions are

fourth row
x∧ y′∧ z′;

fifth row x′∧ y∧ z;
seventh row

x′∧ y′∧ z; and
eigth row x′∧ y′∧ z′.

Therefore, the Boolean polynomial

p(x, y, z)= (x∧ y′∧ z′)∨ (x′∧ y∧ z)∨ (x′∧ y′∧ z)∨ (x′∧ y′∧ z′)

is both in disjunctive normal form and will have the desired truth table. □

Worked Example 3.2.7 Determine a Boolean polynomial q(x, y, z) that has the
truth table below.

x y z q(x, y, z)
1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

Solution 1. Every row except the third has outcome 1, so we must form con-
junctions for all rows except that one:

first row x∧ y∧ z;
second row

x∧ y∧ z′;
fourth row

x∧ y′∧ z′;
fifth row x′∧ y∧ z;
sixth row x′∧ y∧ z′;
seventh row

x′∧ y′∧ z; and
eigth row x′∧ y′∧ z′.

Therefore, the Boolean polynomial

q(x, y, z)= (x∧ y∧ z)∨ (x∧ y∧ z′)∨ (x∧ y′∧ z′)∨ (x′∧ y∧ z)

∨ (x′∧ y∧ z′)∨ (x′∧ y′∧ z)∨ (x′∧ y′∧ z′)

is both in disjunctive normal form and will have the desired truth table.

Solution 2 (Alternative solution). We can get a much simpler expression for
q(x, y, z) by not using the procedure (though of course the result will not be in
disjunctive normal form).

Notice that we want the third row to have output value 0. In logic terms, we
want that combination (and only that combination) of input values to result in
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an output that is “not true”. So the Boolean polynomial

q(x, y, z)= (x∧ y′∧ z)′ = x′∨ y∨ z′

will produce the desired truth table. □

Note 3.2.8 The polynomials in the solutions to the preceding examples are in
disjunctive normal form, but the alternative solution to the second example is
not.

Fact 3.2.9 From Procedure 3.2.5, it is easy to see that any Boolean polynomial
can be expressed in disjunctive normal form.

Worked Example 3.2.10 Converting a polynomial into disjunctive normal
form. Rewrite the Boolean polynomial p(x, y, z)= (x∧ z)′∨ (x′∧ y) in disjunctive
normal form.

Solution. First, produce the truth table.

x y z x∧ z x′∧ y p(x, y, z)
1 1 1 1 0 0
1 1 0 0 0 1
1 0 1 1 0 0
1 0 0 0 0 1
0 1 1 0 1 1
0 1 0 0 1 1
0 0 1 0 0 1
0 0 0 0 0 1

Then apply the disjunctive normal form procedure to obtain

p(x, y, z)= (x∧ y∧ z′)∨ (x∧ y′∧ z′)∨ (x′∧ y∧ z)

∨ (x′∧ y∧ z′)∨ (x′∧ y′∧ z)∨ (x′∧ y′∧ z′).

□

Check your understanding. What do you think conjunctive normal form
should mean? Can you come up with a procedure which takes a truth table and
determines a Boolean polynomial in conjunctive normal form with the desired
truth table?

Hint. Extend the idea of the Alternative solution for Worked Example 3.2.7.

3.3 Exercises

Creating truth tables. In each of Exercises 1–2, write out the truth table for
the given boolean polynomial.

1. p(x, y)= (x∧ y)′∧ x′. 2. q(x, y, z)= (x∨ y)′∧ (z∨ x)∧ y.

3. Explain why the boolean polynomial p(x, y)= x∨ y∨ y′ is not in disjunctive
form.

Disjunctive normal form from a truth table. In each of Exercises 4–6, write
out a boolean polynomial in disjunctive normal form that has the given truth
table.
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4.

x y p(x, y)
1 1 1
1 0 1
0 1 1
0 0 0

5.

x y p(x, y)
1 1 1
1 0 0
0 1 1
0 0 0

6.

x y z p(x, y, z)
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

Disjunctive normal form from a boolean polynomial. In each of Exer-
cises 7–9, write out a boolean polynomial in disjunctive normal form that is
equivalent to the given boolean polynomial.

7. p(x, y, z)= (x∨ y)∧ z.

8. q(x, y, z)= [
(x∧ y′)∨ (x∧ z)

]′∨ x′.

9. r(x, y, z)= (x∧ y′)∨ (x∧ z)∨ (x∧ y).
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Predicate logic

4.1 Predicates and quantifiers

We often let variables represent arbitrary mathematical objects. However, as we
have seen, object variables or free variables (as opposed to statement vari-
ables) lead to problems in logic. For example, the phrase “ f is a differentiable
function” can only be determined to be true or false when f represents a specific
function.

In this section, we deal with these problems by quantifying such free vari-
ables: restricting ourselves to discussing whether “statements” involving one
or more free variables are always/sometimes/never true for objects of the type
represented by the free variables.

predicate a statement whose truth value depends on one or more free variables
A(x) a predicate statement A whose truth value depends on the free

variable x
A(x, y) a predicate statement A whose truth value depends on the free

variables x and y

Example 4.1.1

1. Let A( f ) represent the phrase “ f is differentiable”, a predicate statement
in one free variable f .

2. Let B(m,n) represent the phrase “m is greater than n”, a predicate state-
ment in two free variables m and n.

□
Note 4.1.2 A predicate is not a logical statement unless all of its variables
represent specific objects.

domain the type of object that a variable in a predicate represents

Example 4.1.3 In Example 4.1.1, the domain of the variable f could be “functions
of a single real variable”, and the domains of the variables m and n could both
be “natural numbers” (i.e. whole, nonnegative numbers). □

Note 4.1.4 Usually the domain of a variable in a predicate is implicit and can be
determined from the context of the statement. However, if we want to make the

29
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domain explicit we can prefix it to the variable. For example,

A( f )= “function f is differentiable”,

B(m,n)= “integer m is greater than integer n”.

We can turn a predicate into a logical statement by being more specific about
which objects in their domains the variables represent. However, we often do not
want to be too specific (or else we would usually not need variables).

Example 4.1.5 The following sentences are logical statements, because their
truth value can be determined.

• “Every function f is differentiable.”

• “There exists an integer m that 2 divides.”

The first statement is false; for example, the function f (x) = |x| is not differen-
tiable at x = 0. The second statement is true; this statement basically says that
even integers exist. □

quantifier
the sentence fragments “for every” and “there exists” quantify
whether a predicate should apply to all or only some of the objects in
the domain of one of its variables.

universal quantifier
the quantifier “for every”

∀ symbol for the universal quantifier
existential quantifier

the quantifier “there exists”
∃ symbol for the existential quantifier

Example 4.1.6 As before, let A( f ) represent the predicate “ f is differentiable.”
Then the statement (∀ f )A( f ) is false, because not every function is differen-
tiable. However, the statement (∃ f )A( f ) is true — for example, polynomials are
differentiable. □
Warning 4.1.7 For an existentially quantified statement to be true, it is not
necessary for there to be one and only one object in the implied domain that
satisfies the conditions of the predicate — there could be many such objects. So,
just as you should always read a disjunction p∨ q as “p or q or both,” you should
always read an existentially quantified statement (∃x)A(x) as “there exists at
least one x such that A(x) is true.”

Mathematical statements often involve several quantified variables.

Worked Example 4.1.8 Working with quantified statements of several
variables. Let B(m,n) represent “m divides n”, where m and n are positive
whole numbers. Which of the following statements are true?

1. (∀m)(∀n)B(m,n)

2. (∃m)(∃n)B(m,n)

3. (∀m)(∃n)B(m,n)

4. (∃m)(∀n)B(m,n)

5. (∀n)(∃m)B(m,n)

6. (∃n)(∀m)B(m,n)
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Solution.

1. False.

This statement says “for every m and for every n, m divides n.” One
example of values for m and n with m not dividing n (such as m = 3 and
n = 2) suffices to show that it is not always true that one number m divides
another number n.

2. True.

This statement says “there exists m such that there exists n such that
m divides n.” To demonstrate that this statement is true, we have to
explicitly show that at least one pair of values for m and n exists by giving
an example (such as m = n = 2).

3. True.

This statement says “for every m there exists an n such that m divides n.”
To show that this statement is true, we have to provide, for every possible
value of m, a value of n that works. When m = 1, we have example n = 1.
When m = 2, we have example n = 2. When m = 3, we have example n = 3.
Similarly, for each value of m, we can choose n to be the same value as m
as an example.

Note. If the domain for m and n included 0, then this third statement
would actually be false, as demonstrated by the example m = 0.

4. True.

This statement says “there exists m such that for every n we have m
divides n.” This is true, as the example m = 1, which divides every number
n, demonstrates existence of this special m (though it is the only example
possible).

5. True.

This statement says “for every n there exists an m so that m divides n.”
Similarly to the justification for Statement 3, for every possible value of
n we need to provide an example m so that m divides n, but this time it
is the n that is arbitrary and the m that is to be the example. But again,
every positive number divides itself, so we could always take m to be the
same value as n as our example to demonstrate that such an m exists. (Or,
actually we could always choose m = 1 as the example for each different
value of n.)

6. False.

This statement says “there exists n such that for every m we have m divides
n.” However, there is no positive number that is divisible by every other
positive number.

□

Warning 4.1.9 While the order of two quantifiers of the same type does not
matter (which is why we didn’t consider the statements with quantifiers in the
order (∀n)(∀m) and (∃n)(∃m) in Worked Example 4.1.8 above), the order of a
“mixed” pair of quantifiers matters! This is demonstrated by Statement 3 and
Statement 6 in Worked Example 4.1.8 — both of these statements involve a ∀m
and a ∃n, but in opposite orders. Since one of these two statements is true and
one is false, they obviously cannot be the same statement.

Even more, the order of a “mixed” pair of quantifiers implies a dependence of
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the second quantified variable on the first.

1. If the statement (∀x)(∃y)A(x, y) is true, it means that, corresponding to
each and every object x in the appropriate domain, there will exist at least
one example of an object y in the appropriate domain so that A(x, y) is true.
But the corresponding example y could be different for different examples
of the object x.

2. If the statement (∃y)(∀x)A(x, y) is true, it means that there is at least one
“special” example object y that enjoys the property that A(x, y) will be true
for each and every object x in the appropriate domain.

Example 4.1.10 Suppose A(x, y) is a predicate statement, where x and y are
variables that can only take on the values 0, 1, or 2. Further suppose that it is
known that A(x, y) is true in the specific instances

A(0,1), A(1,0), A(1,1), A(1,2), A(2,2).

1. Statement (∀x)(∃y)A(x, y) is true because for each value of x we can exhibit
at least one value y for which A(x, y) is true:

• when x = 0, we know A(0, y) is true for at least one y (for example,
y= 1);

• when x = 1, we know A(1, y) is true for at least one y (for example,
y= 1); and

• when x = 2, we know A(2, y) is true for at least one y (for example,
y= 2).

2. Statement (∃x)(∀y)A(x, y) is true because we can exhibit at least one “spe-
cial” value of x for which A(x, y) is true for each and every value of y. In
particular, we see that for x = 1 we have A(1, y) true for each of y= 0,1,2.

□

Remark 4.1.11 Depending on grammar requirements or personal style, the
quantifier “for every” might be expressed as “for all” or just “every” or “all”. The
quantifier “there exists” can also be expressed as “some” or “there is at least one”,
but remember that the reality of the situation could be “more than one.”

Warning 4.1.12 Mathematicians are fond of using “any” or “for any” in place of
“every” or “for every”.

Worked Example 4.1.13 Prove that n+1 is an odd number for any even number
n.

Solution 1 ((Incorrect)). It says to prove n+1 is odd for any even number n, so
I will choose my favourite even number n = 8. Then 8+1= 9 is obviously odd.

Solution 2 ((Correct)). The problem statement is really asking to prove that
every even number has the property that the subsequent number is odd. So let n
represent an arbitrary but unspecified even number. Then n is divisible by 2, so
there is some number m such that n = 2m. Now, n+1= 2m+1 is not divisible by
2, since (2m+1)/2= m+ 1

2 is not a whole number. Therefore, n+1 must be odd.
□

Note 4.1.14 We will practice proving statements involving universally quantified
predicates in Chapter 6.
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4.2 Manipulating quantified statements

4.2.1 Negation of quantified statements

Negating quantified statements in English can be tricky, but we will establish
rules that make it easy in symbolic logic.

Warning 4.2.1 The negation of the statement “all X are Y” is not “no X are Y”
nor “all X are not Y”.

Example 4.2.2 What is the negation of the statement “all cows eat grass”?
To avoid making the mistake in the preceding warning, consider the following
question: what is the minimum number of cows that do not eat grass that can be
used as evidence to demonstrate that the statement “all cows eat grass” is false?

things that
eat grass

cows

In this case, both “all cows eat grass” and
“some cows eat grass” are true.

things that
eat grass cows

In this case, both “some cows eat grass”
and “some cows do not eat grass” are
true.

things that
eat grass cows

In this case, each of “no cows eat grass”,
“all cows do not eat grass”, and “some
cows do not eat grass” are true.

It takes just one lasagna-eating cow to make “all cows eat grass” false, so the
negation of “all cows eat grass” is “some cows do not eat grass” or “at least one
cow does not eat grass”. □
Warning 4.2.3 We have indicated that the statement “some cows eat grass” is
technically true in the first diagram in Example 4.2.2, even though it is more
precise to say “all cows eat grass” in that situation. Similarly, we have indicated
that the statement “some cows do not eat grass” is technically true in the third
diagram. Remember that truth and falsity are usually all that matter in logic,
not necessarily making the most precise statement possible.

Proposition 4.2.4 Rules for negation of quantifiers. Let A(x) represent a
predicate in the variable x.

1. Universal negation.

The negation of (∀x)A(x) is (∃x)(¬A(x)).

2. Existential negation.

The negation of (∃x)A(x) is (∀x)(¬A(x)).
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Check your understanding. Use the “cows eat grass” diagrams in Exam-
ple 4.2.2 to convince yourself that these negation rules are correct.

Worked Example 4.2.5 Negating a quantified statement. Determine and
“simplify” the negation of

(∀x)
(
A(x)→

(
(∃y)(∀z)

(
B(y)∧¬C(z)

)))
.

Solution. Using the rules of quantifier negation and known logical equiva-
lences, we can perform the following manipulations:

¬(∀x)
(
A(x)→ (∃y)(∀z)

(
B(y)∧¬C(z)

))

⇔ (∃x)¬
(
A(x)→ (∃y)(∀z)

(
B(y)∧¬C(z)

))
(i)

⇔ (∃x)¬
(
¬A(x)∨ (∃y)(∀z)

(
B(y)∧¬C(z)

))
(ii)

⇔ (∃x)
(
A(x)∧¬(∃y)(∀z)

(
B(y)∧¬C(z)

))
(iii)

⇔ (∃x)
(
A(x)∧ (∀y)¬(∀z)

(
B(y)∧¬C(z)

))
(iv)

⇔ (∃x)
(
A(x)∧ (∀y)(∃z)¬(

B(y)∧¬C(z)
))

(v)

⇔ (∃x)
(
A(x)∧ (∀y)(∃z)

(¬B(y)∨C(z)
))

(vi)

with justifications

(i) quantifier negation;

(ii) known equivalence p → q ⇔¬p∨ q;

(iii) DeMorgan, double negation;

(iv) quantifier negation;

(v) quantifier negation; and

(vi) DeMorgan, double negation.

□

4.2.2 Distributing quantifiers

Proposition 4.2.6 Rules for distributing quantifiers. Let A(x),B(x) represent
predicates in the variable x.

1. Universal distributes across conjunction.

(∀x)
(
A(x)∧B(x)

)⇔ (∀x)A(x)∧ (∀x)B(x)

2. Existential distributes across disjunction.

(∃x)
(
A(x)∨B(x)

)⇔ (∃x)A(x)∨ (∃x)B(x)

Example 4.2.7

• The statement “every vegetable is delicious and nutritious” is the same as
saying “every vegetable is delicious and every vegetable is nutritious”.

• The statement “at least one vegetable in the garden is rotten or nibbled
by squirrels” is the same as saying “at least one vegetable in the garden is
rotten or at least one vegetable in the garden is nibbled by squirrels”.

□
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Warning 4.2.8

• The universal quantifier ∀ does not distribute over disjunction ∨.

• The existential quantifier ∃ does not distribute over conjunction ∧.

Check your understanding.

1. Create an example of predicates A(x) and B(x) such that, of the statements

(∀x)
(
A(x)∨B(x)

)
, (∀x)A(x)∨ (∀x)B(x),

the first is true but the second is false.

2. Create an example of predicates A(x) and B(x) such that, of the statements

(∃x)
(
A(x)∧B(x)

)
, (∃x)A(x)∧ (∃x)B(x),

the first is false but the second is true.

4.3 Vacuously true statements

We have to be careful with quantified predicates because it is (seemingly) possible
to violate the Law of Contradiction (see Basic Tautology 4 in Example 1.4.1).

Example 4.3.1 Let x be a variable in the domain of all living humans. Define
predicates

A(x)= “x is an Augustana student,”

B(x)= “x is three hundred years old,”

C(x)= “x is tall,”

and consider the statement

(∀x)
((

A(x)∧B(x)
)→ C(x)

)
,

which says “every three-hundred-year-old Augustana student is tall”. This
statement is true, since a conditional p → q is true when p is false, and A(x)∧
B(x) is false for each and every x: there is no living human who is both three
hundred years old and is an Augustana student (issues concerning the existence
of vampires notwithstanding). But by the same reasoning, the statement “every
three-hundred-year-old Augustana student is not tall” is true. This seems to be a
contradiction: how can every three-hundred-year-old Augustana student be both
tall and not tall? The answer is that you can say anything you like about things
that do not exist and your statement will be true. So you should avoid altogether
making claims about things that do not exist. □

vacuously true
a statement of the form (∀x)

(
P(x) → Q(x)

)
where P(x) is false for

every x in its domain

Check your understanding. Determine the negation of (∀x)
(
P(x)→Q(x)

)
. Is

the negation of a vacuously true statement true or false?
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4.4 Activities

Activity 4.1
(a) Devise an example of predicates A(x) and B(x) such that, of the statements

• (∀x)
(
A(x)∨B(x)

)
, and

• (∀x)A(x)∨ (∀x)B(x),

the first is true but the second is false.

(b) Devise an example of predicates A(x) and B(x) such that, of the statements

• (∃x)
(
A(x)∧B(x)

)
, and

• (∃x)A(x)∧ (∃x)B(x),

the first is false but the second is true.

Activity 4.2 Let P( f , g) represent the predicate d f
dx = g, where f and g are free

variables in the domain of continuous functions in the real variable x.
For each of the following, determine whether the statement is true or false.

Explain your reasoning.

(a) (∃ f )(∃g)P( f , g)

(b) (∀ f )(∀g)P( f , g)

(c) (∀ f )(∃g)P( f , g)

(d) (∃ f )(∀g)P( f , g)

(e) (∀g)(∃ f )P( f , g)

(f) (∃g)(∀ f )P( f , g)

Activity 4.3 Let P( f , g) represent the predicate d f
dx = g, and let E( f , g) represent

the predicate g = f , where f and g are functions in the real variable x. Consider
the statement

(∀ f )(∀g)
(
(∃h)

(
P( f ,h)∧P(g,h)

)→ E( f , g)
)
.

(a) Translate the statement into English.

(b) Determine whether the statement is true.

(c) Working with the originally provided symbolic version above, negate the
statement. Simplify the negated version to so that any/all negation symbols
appear directly to the left of one of the predicates P or E.

(d) Translate your simplified negated statement from Task c into English.

Activity 4.4 You’ve become an expert at predicate logic, and now make a (very
meagre) living grading logic assignments for a large university. Here is the
question you’ve been assigned to mark two thousand times.

Let x represent a free variable from the domain of all living humans.

Translate the following two statements into properly quantified pred-
icate statements in the variable x.

(i) All university students study diligently.

(ii) Some university students study diligently.
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You pick up the first assignment. Here is the student’s answer.

Let U(x) mean “x is a university student”. Let S(x) mean “x studies
diligently”.

(i) (∀x)
[
U(x)→ S(x)

]
.

(ii) (∃x)
[
U(x)→ S(x)

]
.

Are the student’s answers correct? Justify your assessment.

Hint. Try translating the student’s symbolic language statements back into
English, explicitly using the stated domain of x, and see what you get. Is it
possible for the student’s version of the statement to be true in a way that goes
against the idea expressed by the original English version of the statement?

4.5 Exercises

Interpreting symbolic language. Let A(x) represent the predicate “x is a
wonderful learning experience”, where x is a free variable in the domain of all
university courses.

Translate each of the following into an English sentence that is grammatically
correct.

1. A(AUMAT 250) 2. (∃x)A(x)
3. (∀x)A(x) 4. ¬(∀x)A(x)
5. (∃x)¬A(x)

Translating into symbolic language. Let B(x) represent the predicate “x is
excellent”, where x is a free variable in the domain of all Augustana professors.

Translate each of the following into symbolic language.
6. The instructor for this course is an excellent professor.
7. Every professor at your university is excellent.
8. Some professor at your university is excellent.
9. Some professors at your university are excellent.
10. There is at least one professor at your university who is excellent.
11. Some professor at your university is not excellent.
12. Some professors at your university are not excellent.
13. Any professor at your university is excellent.
14. No professor at your university is excellent.

Analyzing predicate statements about integers. Let P(m,n) represent the
predicate 2m−45n > 101, where m and n are free variables in the domain of
integers.

For each of the following, determine whether the statement is true or false.
Explain your reasoning.

15. P(25,−1)
16. P(30,−1)
17. P(100,2)∨P(100,3)
18. P(100,2)∧P(100,3)
19. (∃m)(∃n)P(m,n)
20. (∀m)(∀n)P(m,n)
21. (∀m)(∃n)P(m,n)
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22. (∃m)(∀n)P(m,n)
23. (∀m)(∃q)(∀n)(P(q,n)→ P(m,n))

Analyzing predicate statements about functions. (Requires calculus.) Let
P( f , g) represent the predicate d f

dx = g, where f and g are free variables in the
domain of continuous functions in the real variable x.

For each of the following, determine whether the statement is true or false.
Explain your reasoning.

24. (∃ f )(∃g)P( f , g)
25. (∀ f )(∀g)P( f , g)
26. (∀ f )(∃g)P( f , g)
27. (∃ f )(∀g)P( f , g)
28. (∀g)(∃ f )P( f , g)
29. (∃g)(∀ f )P( f , g)

30. Consider the statement “every odd number is either 1 more or 3 more than
a mulitple of 4.”

(a) Assign appropriate predicates (with domains explictly stated), and
then translate the statement into symbolic logic.

(b) Negate the statement, and simplify the logical expression so that
any/all negation symbols appear directly to the left of a predicate.

(c) Translate your simplified negated statement from Task b into English.

31. Let P( f , g) represent the predicate d f
dx = g, and let E( f , g) represent the

predicate g = f , where f and g are free variables in the domain of functions
in the real variable x. Consider the statement

(∀ f )(∀g)
(
(∃h)

(
P( f ,h)∧P(g,h)

)→ E( f , g)
)
.

(a) Translate the statement into English.

(b) Determine whether the statement is true.

(c) Working with the originally provided symbolic version above, negate
the statement. Simplify the negated version to so that any/all negation
symbols appear directly to the left of one of the predicates P or E.

(d) Translate your simplified negated statement from Part c into English.
32. You’ve become an expert at predicate logic, and now make a (very meagre)

living grading logic assignments for a large university. Here is the question
you’ve been assigned to mark two thousand times.

Let x represent a free variable from the domain of all living
humans.

Translate the following two statements into properly quantified
predicate statements in the variable x.

(i) All university students study diligently.

(ii) Some university students study diligently.

You pick up the first assignment. Here is the student’s answer.

Let U(x) mean “x is a university student”. Let S(x) mean “x
studies diligently”.
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(i) (∀x)
[
U(x)→ S(x)

]
.

(ii) (∃x)
[
U(x)→ S(x)

]
.

Are the student’s answers correct? Justify your assessment.

Hint. Try translating the student’s symbolic language statements back
into English, explicitly using the stated domain of x, and see what you get.





CHAPTER 5

Arguments

5.1 Basics

Studying the logic of individual statements is an important first step, but ulti-
mately we will need to analyze how statements can be combined into an argu-
ment (mathematical, philosophical, political, or otherwise) that tries to convince
others that some particular conclusion is true.

argument a finite collection of statements, called premises or hypotheses,
along with a final statement, called the conclusion

A1, A2, . . . , Am ∴C
an argument with premises A1, A2, . . . , Am and conclusion C

A1

A2
...

Am

C

an argument with premises A1, A2, . . . , Am and conclusion C

Example 5.1.1 Argument in English.

(premise) If the world is flat, it has an edge.
(premise) The world does not have an edge.
(conclusion) Therefore, the world is not flat.

□
Example 5.1.2 Another argument in English.

(premise) If the world is round, there exists a Titan named Atlas who holds it aloft in the heavens.
(premise) The world is round.
(conclusion) Therefore, the Titan Atlas exists.

□
Example 5.1.3 Yet another argument in English.

(premise) Rectangles are geometric objects that have four sides.
(premise) Parallelograms have four sides.
(premise) Tetrahedrons have four sides.
(conclusion) Therefore, parallelograms and tetrahedrons are rectangles.

41
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□
When we analyse an argument, one component of the analysis should be to

check whether or not its logical structure is valid, regardless of the content and
truth/falsity of the individual statements making up the argument.

Question 5.1.4 Of the three provided English-language example arguments
above, which are “true”? Which are “logically correct”? Is there a difference?

valid argument
whenever the premises are all true, the conclusion must be true as
well

Warning 5.1.5 Whether the conclusion of an argument is actually true is irrele-
vant to the validity of the argument! It is the combination of possibilities of truth
and falsity of the premises and conclusion together that determine whether an
argument is valid.

Test 5.1.6 For validity of an argument in symbolic language. If there is no
choice of truth values for the statement variables that simultaneously make the
premises all true but the conclusion false, then the argument is valid.

Worked Example 5.1.7 Test the validity of the following argument.

p → q
q → r
p → r

Solution 1. Let’s write out the truth tables for the statements in the argument.
However, we are only concerned with truth table rows where every premise is true,
so we won’t bother completing any rows where a premise ends up being false.

(pr) (pr) (c)
p q r p → q q → r p → r
T T T T T T ✓
T T F T F ∗
T F T F ∗ ∗
T F F F ∗ ∗
F T T T T T ✓
F T F T F ∗
F F T T T T ✓
F F F T T T ✓

As every row that resulted in both premises true also resulted in the conclusion
true (as indicated by ✓), the argument is valid. (The ∗ symbol indicates a truth
value that we don’t care about, since it is in a row with at least one premise
false.)

Solution 2 (Alternative solution). Rather than work out the whole truth table,
let us consider the question: is there any possible way for the conclusion to be
false but all the premises true? Start with the following partial truth table row.

(pr) (pr) (c)
p q r p → q q → r p → r

T T F

The conclusion is only false when p = T and r = F; fill these into the row. Now
since p =T, the first premise can only be true if q =T; fill this into the row.
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(pr) (pr) (c)
p q r p → q q → r p → r
T T F T T F ×

We have marked this row as “incorrect,” because q =T and r =F should make the
second premise false! So the above truth table row is inconsistent, and therefore
there is no way for conclusion to be false and all the premises true. Conclude
that the argument is valid. □
Remark 5.1.8 The reasoning in the Alternative solution above is an example of
a proof by contradiction — see Section 6.9.

Worked Example 5.1.9 Demonstrate that the following argument is invalid.

If n is even, then n is divisible by 2.
If n is odd, then n+1 is even.
If n is not divisible by 2, then n is not divisible by 4.
Therefore, if n is not divisible by 4, then n+1 is even.

Solution. Introduce statement variables and write the argument in symbolic
form.

p = “n is even”

q = “n+1 is even”

r = “n is divisble by 2”

s = “n is divisble by 4”

p → r
¬p → q
¬r →¬s
¬s → q

Try to construct a truth table row in which all the premises are true but the
conclusion is false.

(pr) (pr) (pr) (c)
p q r s ¬p ¬r ¬s p → r ¬p → q ¬r →¬s ¬s → q

T T T F

Start with the above partial truth table row. The conditional in the conclusion
can only be false when ¬s = T and q = F; fill these into the row, also entering
s = F. Now since q = F, the second premise will only be true when ¬p = F; fill
this and p =T into the row. Now since p =T, the first premise will only be true
when r = T; fill this and ¬r = F into the row. Finally, check that our choices of
truth values for p, q, r, s are consistent with the imposed truth value for the third
premise.

(pr) (pr) (pr) (c)
p q r s ¬p ¬r ¬s p → r ¬p → q ¬r →¬s ¬s → q
T F T F F F T T T T F

Since there exists a choice of truth values for the statement variables which
makes all premises true but the conclusion false, the argument is invalid. □
Proposition 5.1.10 Some technicalities regarding argument validity.

1. If the conclusion is a tautology, the argument is automatically valid.

2. If the premises are all contradictions (i.e. logically false), the argument is
automatically valid.

3. If the argument is valid and the premises are all tautologies, then the
conclusion must also be a tautology.
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4. If the argument is valid and the conclusion is a contradiction, then the
premises can’t all be true at the same time. (That is, in this situation the
conjunction of all the premises must be a contradiction.)

Remark 5.1.11

1. In the logical analysis of an argument, we don’t care if the premises are
actually true. We only care that the conclusion follows from the premises.

2. The order of the premises is irrelevant to the validity of the argument. For
arguments written in English language, there may be a preferred order
that best illuminates validity or invalidity, but this is essentially only
aesthetic from a logical-analysis point of view.

Check your understanding. Verify that an argument A1, A2, . . . , Am ∴C is
valid if and only if A1 ∧ A2 ∧·· ·∧ Am ⇒ C.

5.2 Standard arguments

5.2.1 Modus ponens

modus ponens
standard argument with form

p → q
p
q

Worked Example 5.2.1 Verify the validity of the modus ponens standard argu-
ment.

Solution. Verify the validity by ensuring that each row in the truth table with
premises all true also has the conclusion true.

(pr) (c) (pr)
p q p → q
T T T ✓ argument is valid
T F F
F T ∗
F F ∗

□
Example 5.2.2 The argument in Example 5.1.2 has modus ponens form. So it is
valid, even though the first premise and the conclusion are not actually true. □

5.2.2 Modus tollens

modus tollens
standard argument with form

p → q
¬q
¬p
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Worked Example 5.2.3 Verify the validity of the modus tollens standard argu-
ment.

Solution. Verify the validity by ensuring that each row in the truth table with
premises all true also has the conclusion true.

(pr) (pr) (c)
p q p → q ¬q ¬p
T T T F ∗
T F F ∗ ∗
F T T F ∗
F F T T T ✓ argument is valid

□
Example 5.2.4 The argument in Example 5.1.1 has modus tollens form. □

5.2.3 Law of Syllogism

Law of Syllogism
standard argument with form

p → q
q → r
p → r

Note 5.2.5 We already verified that the Law of Syllogism is valid in Worked
Example 5.1.7.

The Law of Syllogism may be extended to chains of conditionals of arbitrary
(finite) length.

Extended Law of Syllogism
standard argument with form

p1 → p2

p2 → p3
...

pn−1 → pn

p1 → pn

Note 5.2.6 We will verify that the extended Law of Syllogism is a valid argument
using mathematical induction in Section 7.2.

Example 5.2.7 A syllogistic argument in English.

If I don’t study hard this term, I won’t master the course material.
If I don’t master the course material, I will fail the course.
If I fail the course, I will have to take it again next year.
If I take it again next year, I will have to study harder.
Therefore, if I don’t study hard this term, I will have to study harder next year.

□
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5.3 Substituting into an argument

Substituting into an argument does not change its validity.

Theorem 5.3.1 Substitution Rule. Suppose A1, A2, . . . , Am ∴C is a valid argu-
ment involving statement variables p1, p2, . . . , pℓ. If we apply substitution pi → Bi
to each of A1, A2, . . . , Am,C, for some collections of statements B1,B2, . . . ,Bℓ, then
the resulting argument is also valid.

Example 5.3.2 Since modus tollens is a valid argument, using the substitution
rule with the equivalences

r∧ p ⇔¬(¬r∨¬p)⇔¬(r →¬p),

demonstrates that the following argument is also valid.

(p ↔ q)→ (r →¬p)
r∧ p
¬(p ↔ q)

□

5.4 Activities

Activity 5.1 Write an argument in English that has modus ponens form where
at least one premise is false, and the conclusion is true.

Does your argument contradict the fact that every modus ponens argument is
valid?Write an argument in English that has modus tollens form where at least
one premises is false and the conclusion is false. Does your argument contradict
the fact that every modus tollens argument is valid?Write an argument in English
that has syllogistic form where all the premises are true. Is your conclusion true
or false?

Activity 5.2 Prove that modus tollens is valid without using a truth table.
Instead, use the following facts:

• modus ponens is valid; and

• a conditional is equivalent to its contrapositive.

Activity 5.3 Discuss why an argument being valid is equivalent to its premises
logically implying its conclusion.

Activity 5.4 The definition of valid argument is as follows.

Whenever the premises are all true, the conclusion is true as well.

Create an equivalent definition that is the contrapositive of the definition above.

Activity 5.5 Show that the following argument is valid without using a truth
table. Instead, argue that the argument fulfills the equivalent definition for
valid argument that you created in Activity 5.4.

p →¬q
r → (p∧ q)
¬r
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CHAPTER 6

Definitions and proof methods

6.1 Definitions

Definitions are used in mathematics to label objects that have special properties,
and to group all such objects together. Be careful with definitions: as stated by
mathematicians, they often contain implicit conditions.

Example 6.1.1 A number is called prime if its only divisors are 1 and itself.
This definition has some hidden parts: a more complete definition would be

as follows.
A number is called prime if

(i) it is an integer,

(ii) it is strictly greater than 1, and

(iii) there does not exist any other number greater than 1 which divides it.

□
You should view a definition as a technical test or collection of technical tests

that an object must pass before it can be given a specific label.

Worked Example 6.1.2 Demonstrate that, according to the technical definition
of prime, 17 is prime but 21 is not.
Solution. Let us test 17.

(i) Yes, 17 is an integer.

(ii) Yes, 17> 1.

(iii) None of the numbers in the following list is an integer:

17
2

,
17
3

,
17
4

, . . . ,
17
16

,
17
18

,
17
19

, . . . .

So 17 is prime since it passes the technical tests that define the concept of prime.
Now let us test 21.

(i) Yes, 21 is an integer.

(ii) Yes, 21> 1.

(iii) However, clearly 21/3= 7 is an integer, so 3 divides 21.

So 21 is not prime, since it fails at least one of the technical tests that define the
concept of prime. □

49
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Often, the first thing we do in mathematics is to look for ways to make testing
our definition easier.

Proposition 6.1.3 Suppose n is an integer with n ≥ 2. Then n is prime if and
only if n/m is not an integer for every integer m with 2≤ m < n

2 .

The proof is left to you as Exercise 6.12.1.

See also. Exercise 6.12.2 for a refinement of the statement of Proposition 6.1.3.

Worked Example 6.1.4 Demonstrate that 17 is prime.

Solution ((Sketch)). By the proposition, to check that 17 is prime we now only
need to note that none of the numbers in the following shorter list is an integer:

17
2

,
17
3

,
17
4

, . . .
17
8

.

□

6.2 Common mathematical statements

In mathematics, we often want to prove that some statement P logically implies
some other statement Q; i.e. we want to prove that P ⇒Q or (∀x)(P(x)⇒Q(x)).
Note that the universal form covers the common statement “all A are B”, since
this can be rephrased “for all x, if x is A then x is B”.

Below are some common methods for proving P ⇒Q. In the universal case
(∀x)(P(x)⇒Q(x)), the domain of x may be infinite, so we cannot prove P(x)⇒Q(x)
for each specific x, one-by-one. Instead, we treat x as a fixed but arbitrary object
in the domain, and try to construct an argument proving P(x)⇒Q(x) which does
not depending on knowing the specific object x. So all of the methods below can
also be used in the universal case.

Since a conditional P → Q is true automatically when P is false, it will be
a tautology as long as we cannot have the case of P true and Q false at the
same time. (See Figure 1.3.2.) Therefore, we (almost always) begin a proof by
assuming that P is true, and proceed to demonstrate that Q must then also
be true, based on that assumption.

6.3 Direct proof

Recall. The argument

A → C1,C1 → C2, . . . ,Cm−1 → Cm,Cm → B ∴ A → B

is valid (Extended Law of Syllogism).

Procedure 6.3.1 Direct proof.

• To prove P ⇒Q, start by assuming that P is true. Then, through a sequence
of (appropriately justified) intermediate conclusions, arrive at Q as a final
conclusion.

• To prove (∀x)
(
P(x) ⇒ Q(x)

)
, start by assuming that x is an arbitrary but

unspecified element in the domain such that P(x) is true. The first sentence
in your argument should be: “Suppose x is a such that P(x)”, where
the blank is filled in by the definition of the domain of x. Then, through a
sequence of (appropriately justified) intermediate conclusions that do not
depend on knowing the specific object x in the domain, arrive at Q(x) as a
conclusion.
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Worked Example 6.3.2 Prove: If n is even, then n2 even.

Solution. Let P(n) represent the predicate “n is even” and let Q(n) represent
the predicate “n2 is even”, with domain the integers.

Suppose that n is an arbitrary (but unspecified) integer such that n is even.
Then there exists an integer m such that n = 2m, and so n2 = 4m2 = 2(2m) is
even. □

Check your understanding. Attempt Exercises 6.12.4–6.12.6.

6.4 Reduction to cases

Fact 6.4.1 The following logical equivalence holds:

(s1 ∨ s2 ∨·· ·∨ sm)→ t ⇔ (s1 → t)∧ (s2 → t)∧·· ·∧ (sm → t).

Proof idea. This is just an extended version of Example 2.2.6. ■
If

C1 ∨C2 ∨·· ·∨Cm

is a tautology, then

P ⇔ P ∧ (C1 ∨·· ·∨Cm) ⇔ (P ∧C1)∨·· ·∨ (P ∧Cm).

By substitution and Fact 6.4.1,

P →Q ⇔ (P ∧C1 →Q)∧·· ·∧ (P ∧Cm →Q).

A conjunction is only true if each “factor” in the conjunction is true, so the
conjunction on the right above can only be a tautology if each conditional P∧C1 →
Q is a tautology. Therefore, when we have a collection of statements C1, . . . ,Cm
so that

C1 ∨C2 ∨·· ·∨Cm

is a tautology, we can prove P → Q by instead proving each of P ∧Ci ⇒ Q one
at a time. This is also valid for universal statements, since ∀ distributes over ∧
(Proposition 4.2.6).

Now, having to prove many slightly more complicated statements P ∧Ci ⇒Q
seems like a lot more work than just proving the single simple statement P →Q
— why would we want to go to all this extra effort?

Idea 6.4.2 Each case statement Ci provides extra information that can be com-
bined with the assumption that P is true to arrive at the conclusion that Q must
also be true.
Procedure 6.4.3 Reduction to cases.

• To prove P ⇒Q, determine a set of cases C1,C2, . . . ,Cm such that C1 ∨C2 ∨
·· ·∨Cm is true, then provide a separate proof of each logical implication
P ∧Ci ⇒Q.

• To prove (∀x)
(
P(x)⇒Q(x)

)
, determine a set of cases C1(x),C2(x), . . . ,Cm(x)

such that
(∀x)

(
C1(x)∨C2(x)∨·· ·∨Cm(x)

)

is true, then provide a separate proof of each universally quantified logical
implication (∀x)

(
P(x)∧Ci(x)⇒Q(x)

)
.

Worked Example 6.4.4 Show n2 −n is always even.

Solution. Let P(n) represent the predicate “n is an integer” and let Q(n)
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represent the predicate “n2 −n is even”, each with domain the integers. Note
that P(n) is actually true for each n in the domain, since our original statement
makes no extra premise on n besides its domain.

Suppose that n is an integer. Break into cases based on whether n is even or
odd; in each case, proceed by direct proof.

Case n even. If n is even, then there exists an integer m such that n = 2m. Then,

n2 −n = n(n−1)= 2m(2m−1)

is also even.

Case n odd. If n is odd, then n−1 is even, so there exists an integer m such that
n−1= 2m, or n = 2m+1. Then,

n2 −n = n(n−1)= (2m+1)(2m)

is even. □
Warning 6.4.5 Make sure your cases cover all possibilities! (Though it is not
necessary that your cases by non-overlapping.)

Check your understanding. Attempt Exercise 6.12.7.

6.5 Statements involving disjunction

First, let’s consider a conditional statement with a disjunction on the hypothesis
side. To prove a statement of the form (P1 ∨P2) ⇒ Q, we can use Fact 6.4.1 to
decompose into two conditionals:

(P1 ∨P2)→Q ⇔ (P1 →Q)∧ (P2 →Q).

Appealing to the properties of conjunction, as in our discussion of reduction to
cases, we see that we can prove P1 ⇒Q and P2 ⇒Q by separate proofs.

What about a conditional with a disjunction on the conclusion side? To prove
a statement of the form P ⇒ (Q1∨Q2), we can again reduce to cases, but in a sort
of tricky way. For any statement, there are only two possibilities — either the
statement is true or it is false. (See Basic Tautology 3 in Example 1.4.1. Apply
this fact to one of the statements we are trying to prove.

Procedure 6.5.1 Proof of conditional involving disjunction. To prove a
statement of the form P ⇒ (Q1 ∨Q2), start by assuming that P is true and Q1 is
false. Try to show that these assumptions lead to Q2 being true.

Idea 6.5.2 There are only two possibilities for Q1: either it is true or it is false. If
Q1 is true, then Q1 ∨Q2 is already true, regardless of the truth values of P and
Q2, so there is nothing to prove in this case. On the other hand, if Q1 is false, the
only way Q1 ∨Q2 could be true is if Q2 is true.

Note 6.5.3

• Also see Exercise 2.5.3.

• Of course, you can swap the roles of Q1 and Q2 above: you could also start
by assuming that P is true and Q2 is false, then try to show that this leads
to Q1 being true.

• Another strategy is to attempt a proof by contradiction (discussed in
Section 6.9 below). By DeMorgan, ¬(Q1 ∨Q2) ⇔ ¬Q1 ∧¬Q2, so for this
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strategy, you should start by assuming that P is true and both Q1 and Q2
are false. Then, try to arrive at a contradiction.

Worked Example 6.5.4 Prove: Every odd number is either 1 more or 3 more
than a multiple of 4.

Solution. Let P(n) represent the predicate “n is odd”, let Q1(n) represent the
predicate “n is 1 more than a multiple of 4”, and let Q2(n) represent the predicate
“n is 3 more than a multiple of 4”, each with domain the integers.

Start by assuming that n is an odd number that is not 1 more than a multiple
of 4. We must now try to show that n is 3 more than a multiple of 4. We know
that n is odd, so there exists a number m such that n = 2m+1. However, since n
is not 1 more than a multiple of 4, 2m cannot be a multiple of 4, and so m cannot
be a multiple of 2. Therefore, m is also odd, and so there exists another number
ℓ such that m = 2ℓ+1. Then

n = 2m+1= 2(2ℓ+1)+1= 4ℓ+3,

which says that n is 3 more than a multiple of 4, as desired. □

6.6 Proving the contrapositive

Recall. Modus tollens: P →Q ⇔¬Q →¬P.

Procedure 6.6.1 Proof by proving the contrapositive. To prove P ⇒Q, you
can instead prove ¬Q ⇒¬P.

Example 6.6.2 In Worked Example 6.3.2, we proved that the square of an even
number is also even. Therefore, this also constitutes a proof of the contrapositive
statement: if the square of a number is odd, then that number is also odd. □

Worked Example 6.6.3 Prove that every prime number larger than 2 is odd.

Solution. We want to prove the following universally quantified conditional
(“for all p” omitted, domain is positive integers).

conditional
if (p is prime and p > 2) then p is odd.

contrapositive
if p is not odd, then not (p is prime and p > 2)

DeMorgan substitution
if p is not odd, then (p is not prime or p ≤ 2)

These are all equivalent.
Let’s prove the last statement: as in the procedure for proving conditionals

with a disjunction, start by assuming that p is not odd and p > 2. We must then
show that p is not prime. Since p is not odd, it is divisible by 2. But since p > 2,
p is divisible by a number other than 1 and p itself. Therefore, p is not prime. □

Check your understanding. Attempt Exercise 6.12.8.

6.7 Proof by counterexample

Sometimes we want to prove that P ̸⇒Q; i.e. that P →Q is not a tautology.
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Recall. The equivalence

P →Q ⇔ (P ∧C1 →Q)∧·· ·∧ (P ∧Cm →Q)

holds for any set of cases C1,C2, . . . ,Cm such that C1 ∨ ·· ·∨Cm is a tautology.
(See Section 6.4.)

So if P ∧Ci →Q is not a tautology for at least one i, then P →Q also cannot
be a tautology. Again, this also works in the universal case since ∀ distributes
over ∧ (Proposition 4.2.6).

counterexample
relative to the logical implication P ⇒ Q, a statement C such that
P ∧C →Q is false

Worked Example 6.7.1 In Exercise 6.12.8, you are asked to prove the following
statement by proving the contrapositive.

If 2n −1 prime, then n is prime.

Prove that the converse of this statement is false.

Solution. The converse statement is “If n is prime, then 2n −1 is prime.” But
the case n = 11 is a counterexample:

211 −1= 2047= 23 ·89

is not prime even though n = 11 is prime. □

Check your understanding. Attempt Exercise 6.12.9.

6.8 Proving biconditionals

We also often want to prove that two statements P,Q are equivalent; i.e. that
P ⇔Q.

Fact 6.8.1 The equivalence

P ↔Q ⇔ (P →Q)∧ (Q → P)

holds; i.e. a biconditional is equivalent to the conjunction of the corresponding
conditional P →Q and its converse.

Proof. You are asked to prove this by truth table in Exercise 2.5.5. ■
Procedure 6.8.2 Proving a biconditional. To prove P ⇔Q, prove P ⇒Q and
Q ⇒ P separately.

As usual, this also works in the universal case since ∀ distributes over ∧
(Proposition 4.2.6).

Worked Example 6.8.3 Prove: A number is even if and only if its square is even.

Solution. We want to prove that the following quantified biconditional (“for all
n” omitted, domain is nonnegative, whole numbers).

biconditional
n is even if and only if n2 is even.

conditional and converse
(if n is even then n2 is even) and (if n2 is even then n is even)
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contrapositive and converse
(if n2 is odd then n is odd) and (if n2 is even then n is even)

conditional and inverse
(if n is even then n2 is even) and (if n is odd then n2 is odd)

These are all equivalent, so we could prove any one pair.

Original conditional. This is proved as Worked Example 6.3.2.

Converse. If n2 is even, then there exists an integer m such that n2 = 2m, so
that n =

p
2m . . . ? We seem to be stuck.

Inverse. If n is odd, then there exists an integer m such that n = 2m+1. Then,
n2 = 4m2 +4m+1 is odd. □
Checkpoint 6.8.4 Attempt Exercise 6.12.10.

6.9 Proof by contradiction

Fact 6.9.1 For any logically false statement e, we have

s → t ⇔ (s∧¬t)→ e.

Proof. First, s → t is false precisely when s is true and t is false. On the other
hand, (s∧¬t)→ e is false precisely when s∧¬t is true, and s∧¬t is true precisely
when s,¬t are both true, i.e. when s is true and t is false. ■
Procedure 6.9.2 Proof by contradiction.

• To prove P ⇒Q, devise a false statement E such that (P ∧¬Q)⇒ E.

• To prove (∀x)
(
P(x)⇒Q(x)

)
, devise a predicate E(x) such that (∀x)

(¬E(x)
)

is true (i.e. E(x) is false for all x in the domain), but (∀x)
[(

P(x)∧¬Q(x)
)⇒

E(x)
]
.

Note 6.9.3 Usually E is taken to be some variation of C∧¬C, for some state-
ment C. (See the Law of Contradiction, recorded as Basic Tautology 4 in
Example 1.4.1.)

Worked Example 6.9.4 Prove that
p

2 is irrational.

Solution. We want to prove the quantified conditional with domain the real
numbers: for all x, if x2 = 2 and x > 0 then x is not rational.

Suppose that x is a real number such that x2 = 2 and x > 0. By contradiction,
also assume that x is rational. We want this extra assumption to lead to a false
statement. Now, x rational means x = a/b for some integers a,b. We may assume
a,b are both positive, since x > 0. We may also assume a,b have no common
factors (i.e. fraction a/b is in lowest terms). Then,

x2 = 2 ⇒ a2 = 2b2,

⇒ a2 even,

⇒ a even,

⇒ a = 2m, some m,

⇒ 2b2 = a2 = 4m2,

⇒ b2 = 2m2,

⇒ b2 even,

⇒ b even.
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But if both a,b are even, then a and b are both divisible by 2. We have arrived at
our contradiction: a,b have no common factor but a,b have a common factor of 2.
That is, we have shown the following.

For all x, if
(
(x2 = 2 and x > 0) and x not irrational

)
then (there exist

positive integers a,b such that x = a/b and a,b have no common
divisor and a,b have a common divisor).

□
Checkpoint 6.9.5 Attempt Exercises 6.12.11–6.12.13.

6.10 Existence and uniqueness

In mathematics we often want to know whether an object with specific desirable
properties actually exists. In symbolic language, this is just (∃x)A(x). Conceptu-
ally, this is easy to do: just find an example! (In practice, this can often be quite
difficult.)

Worked Example 6.10.1 Prove that 851 is not prime.

Solution. We want to prove the quantified statement

(∃n)
(
(n ̸= 1)∧ (n ̸= 851)∧ (n divides 851)

)
,

with domain the positive, whole numbers. Testing each number, one by one,
starting at n = 2, we find that using n = 23 fits the bill. □

Once we have found an example for an existential statement, we also often
want to know whether there are more examples, or whether the one we have
found is unique. Suppose x0 is our concrete example proving (∃x)A(x). To show
that x0 is unique, we should prove the universal statement: (∀y)

(
A(y)→ (y= x0)

)
.

This translates as the following.

For all y, if A(y) is true, then y= x0.

That is, the only way object y can satisfy A(y) is if y is actually our original
example x0.

Procedure 6.10.2 Proving uniqueness. To prove that x = x0 is the unique
instance of an object x such that A(x) is true, assume that y is also an object such
that A(y) is true, and prove that y= x0.

Worked Example 6.10.3 Prove that 2 is the unique positive number that is both
prime and even.

Solution. Suppose n is a positive number which is both prime and even. Since
n is even, it is divisible by 2. But since n is prime, it is divisble by only 1 and
itself. Therefore, 2 and “itself” must be the same, i.e. n = 2. □

6.11 Activities
Activity 6.1

(a) Write a technical definition for the word car.

(b) Using only your technical definition (i.e. ignoring your common sense no-
tions of the word car), decide whether a transport truck should be called a
car. Then do the same for a train.

Note. Do not go back and modify your definition of car; test the objects



6.11. ACTIVITIES 57

transport truck and train against whatever definition you initially came
up with in Task a.

(c) What is the point of this activity?

Activity 6.2 A square number is an integer which is equal to the square of
some integer. An integer is square free if it is not divisible by any square
number other than 1.

(a) Is 0 a square number? Is it square free?

(b) Does there exist a negative square number?

(c) Is every negative number square free?

(d) Is every prime number square free?

(e) Is every square free number prime?

(f) Does there exist an integer which is both a square number and square free?

Activity 6.3 The following statement is a basic (and very useful) fact about real
numbers.

Triangle Inequality: For every pair of real numbers x and y,
|x+ y| ≤ |x|+ |y|.

Use the above statement to directly prove the following extended version of the
inequality, without resorting to considering cases of positive/negative for any of
the variables.

For every triple of real numbers x, y, and z, |x+ y+ z| ≤ |x|+ |y|+ |z|.

Remark. Using the two-number version of the inequality to prove the three-
number version is an example of inductive reasoning, something that we will
soon investigate further.

Activity 6.4 Suppose you are analyzing the rules for a complicated table-top
game, and you have come to the following realization.

Given any trio of distinct wizards where the first is zapping the
second, at least one of the following must also occur: the first is
zapping the third or the third is zapping the second.

If you were to approach proving this statement using the advice you read on how
to handle statements involving disjunction in Procedure 6.5.1, the first sentence
of your proof would be

Assume .

and the last sentence of your proof would be

Therefore .

Activity 6.5 What is the difference between proving the contrapositive and
proof by contradiction ?

Activity 6.6

(a) A positive integer that is greater than 1 and not prime is called composite.

Write a technical definition for the concept of composite number with
a similar level of detail as in the “more complete” definition of prime
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number given in Example 6.1.1.

Note. Don’t just define it as “not prime.” And make sure that the equality
7 = 1×7 can’t be used to justify the statement “7 is composite” by your
definition (because prime 7 is most definitely not composite).

(b) Prove by proving the contrapositive: If 2n −1 is prime, then n is prime.

Hint. You may find the following “difference of powers” factorization
formula useful:

am −bm = (a−b)(am−1 +am−2b+am−3b2 +·· ·+a2bm−3 +abm−2 +bm−1).

Activity 6.7

(a) Write down a technical definition of the term rational number.

(b) Prove directly: The sum of two rational numbers is a rational number.

(c) Prove by contradiction: The sum of a rational number and an irrational
number is irrational.

(d) Disprove by counterexample: The sum of two irrational numbers is irra-
tional.

Activity 6.8 Refer to Activity 6.2.

(a) Prove that a positive number n is square free if and only if for every
factorization n = ab, the integers a and b do not share a common factor
other than 1.

(b) Prove that a positive number is square free if and only if it is not divisible
by the square of a prime number.

Activity 6.9 A pair of prime numbers p1, p2 is called a twin prime pair if
p2 = p1 +2. A prime number is called an isolated prime if it is not part of a
twin prime pair.

(a) Determine the first (i.e. smallest) four twin prime pairs.

(b) Determine the first (i.e. smallest) two isolated primes.

(c) Prove that if p, p+2 is a twin prime pair with p ≥ 5, then p+1 is divisible
by 6.

(d) Prove that if p, p+2 is a twin prime pair, then p−2, p and p+2, p+4 cannot
be twin prime pairs.

6.12 Exercises

1. Let n represent an integer with n ≥ 2. Prove that n is prime if and only if
n/m is not an integer for every integer m with 2≤ m < n

2 .

2. Let n represent an integer with n ≥ 2. Suppose p1, p2, . . . , pℓ is a complete
list of prime numbers which are less than or equal to n/2. Prove that n
is prime if and only if none of the pi divide n. Careful: Is the statement
actually true in the case n = 2? n = 3? (Why should these cases be given
special consideration?)
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3. Call two people twins if they share the same mother and the same birthdate.
Consider the statement: “if two people are twins, then they share the same
birthdate.”

(a) Is the statement true?

(b) What is the converse of this statement? Is it true?
4. Prove directly: The sum of two rational numbers is a rational number.

5. Prove directly: If n is even, then n2 is divisible by 4.
6. Recall that the triangle inequality states that |x+ y| ≤ |x| + |y| for all

numbers x and y.
Use the triangle inequality to prove directly: |x+ y+ z| ≤ |x|+ |y|+ |z| for

all numbers x, y, z.

7. Prove by reduction to cases: n3 −n is always divisible by 3.

Hint. Use cases n = 3m,3m+1,3m+2.
8. Prove by proving the contrapositive: if 2n −1 is prime, then n is prime.

Hint. You may find the following “difference of powers” factorization for-
mula useful:

xm − ym = (x− y)(xm−1 + xm−2 y+ xm−3 y2 +·· ·+ x2 ym−3 + xym−2 + ym−1).
9. Prove by counterexample that the following statement is false.

The sum of any two irrational numbers is irrational.

(See Exercise 6.12.4.)

10. Prove the biconditional: n is even if and only if n2 is divisible by 4.
(See Exercise 6.12.5.)

11. Prove by contradiction: If m and n are integers such that 11m+19n is odd,
then either m or n (or both) must be odd.

12. Prove by contradiction: For x, y> 0,
p

x+ y ̸= p
x+py.

13. Prove by contradiction: The sum of a rational number and an irrational
number is irrational.

(See Exercise 6.12.4 and Exercise 6.12.9.)
14. Prove that if ℓ, m, and n are integers such that ℓ divides m and ℓ divides n,

then ℓ divides mn.
15. Prove that if ℓ, m, and n are integers such that mn divides ℓ, then both m

and n divide ℓ.
16. Suppose that m and n are integers, and p is a prime number. Prove that if

p does not divide the product mn, then p cannot divide either of m or n.

Working with a definition. Exercises 17–19 concern the following definitions.
A square number is an integer which is equal to the square of some integer.

An integer is square free if it is not divisible by any square number other than
1.

17. For each of the following, provide a proof to justify your answer.

(a) Is 0 a square number? Is it square free?

(b) Does there exist a negative square number?

(c) Is every negative number square free?

(d) Is every prime number square free?

(e) Is every square free number prime?
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(f) Does there exist an integer which is both a square number and
square free?

18. Prove that a positive number n is square free if and only if for every
factorization n = ab, the integers a and b do not share a common factor
other than 1.

19. Prove that a positive number is square free if and only if it is not
divisible by the square of a prime number.

20. A pair of prime numbers p1, p2 is called a twin prime pair if p2 = p1 +2.
A prime number is called an isolated prime if it is not part of a twin prime
pair.

(a) Determine the first (i.e. smallest) four twin prime pairs.

(b) Determine the first (i.e. smallest) two isolated primes.

(c) Prove that if p, p+2 is a twin prime pair with p ≥ 5, then p+1 is
divisible by 6.

(d) Prove that if p, p+2 is a twin prime pair, then p−2, p and p+2, p+4
cannot be twin prime pairs.



CHAPTER 7

Proof by mathematical induction

7.1 Principle of Mathematical Induction

Axiom 7.1.1 Principle of Mathematical Induction. Suppose P(n) is a
predicate where the variable n has domain the positive, whole numbers. If

(i) P(1) is true, and

(ii) (∀k)
(
P(k)→ P(k+1)

)
is true,

then (∀n)P(n) is true.
It is usual to take the principle of mathematical induction as an axiom; that

is, we assume that mathematical induction is valid without proving it.

A look ahead. We will discuss axioms a little more in Chapter 8.

Below is an outline of the idea behind why it is reasonable to assume that
mathematical induction is valid. However, this outline does not constitute a
proof since it technically uses mathematical induction implicitly.

Idea. Suppose n is fixed. We have a sequence of valid arguments:

P(1)→ P(2)
P(1)
P(2)

P(2)→ P(3)
P(2)
P(3)

· · · P(n−1)→ P(n)
P(n−1)
P(n)

Each is valid (modus ponens). So if we make the two assumptions stated in
the principles (i.e. that P(1) is true and that P(k)→ P(k+1) is always true) we
can trace the flow of truth from premises to conclusion in each argument in turn:

First argument
Premises true so conclusion is true.

Second argument
Premises true (using conclusion of the first argument) so conclusion
is true.

Third argument. . .

(n−1)th argument
Premises true (using conclusion of the (n−2)th argument) so conclu-
sion is true.

The conclusion of (n−1)th argument is P(n), so P(n) is true.
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Now, here is some specific terminology associated to proofs by induction.

base case the statement P(1) in a proof by mathematical induction
induction step

the portion of a proof by mathematical induction that establishes the
statement (∀k)

(
P(k)→ P(k+1)

)

induction hypothesis
the assumption P(k) made as the first step in the induction step of a
proof by mathematical induction

Procedure 7.1.2 Proof by induction. To prove a universal statement indexed
by whole numbers:

Base case. Start by proving the statement obtained from the universally quantified
predicate for the base case n = 1.

Induction step. Next, assume that k is a fixed number such that k ≥ 1, and that
the statement obtained from the universally quantified predicate is true for n = k.
Based on this assumption, try to prove that the next case, n = k+1, is also true.

Worked Example 7.1.3 Prove that the sum of the first n positive integers is

n(n+1)
2

.

Solution. We want to prove (∀n)P(n), where P(n) is as follows.

P(1) : 1= 1 ·2
2

, P(2) : 1+2= 2 ·3
2

, P(3) : 1+2+3= 3 ·4
2

,

. . . , P(n) : 1+2+·· ·+n = n(n+1)
2

, . . .

We will prove this by induction.

Base case. 1= (1 ·2)/2 is obviously true.

Induction step. Assume the statement is true for n = k; i.e. assume that

1+2+·· ·+k = k(k+1)/2.

We want to show that this implies the statement is true for n = k+1; i.e. show

1+2+·· ·+k+ (k+1)= (k+1)(k+2)/2.

We have

1+2+·· ·+k+ (k+1)= (1+2+·· ·+k)+ (k+1)

= k(k+1)
2

+ (k+1)

= k2 +3k+2
2

= (k+1)(k+2)
2

.

□

Worked Example 7.1.4 Prove that n3+ (n+1)3+ (n+2)3 is always divisible by 9
for every n ≥ 1.
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Solution. We want to prove (∀n)P(n), where P(n) is as follows.

P(1) : 13 +23 +33 is divisible by 9

P(2) : 23 +33 +43 is divisible by 9

P(3) : 33 +43 +53 is divisible by 9
...

P(n) : n3 + (n+1)3 + (n+2)3 is divisible by 9
...

We will prove this by induction.

Base case. For n = 1, n3 + (n+1)3 + (n+2)3 = 36= 9 ·4.

Induction step. Assume k3 + (k+1)3 + (k+2)3 is divisible by 9. This means that
there exists some whole number m so that

k3 + (k+1)3 + (k+2)3 = 9m.

We want to show that (k+1)3 + (k+2)3 + (k+3)3 is also divisible by 9. To make
the connection between this sum of cubes and the “previous case” sum of cubes
above, we can add in (and simultaneously subtract out) a k3 term:

(k+1)3 + (k+2)3 + (k+3)3 = (
k3 + (k+1)3 + (k+2)3

)+ (k+3)3 −k3

= 9m+ (k+3)3 −k3

= 9m+ (k3 +9k2 +27k+27)−k3

= 9(m+k2 +3k+3).

Since we have factored our sum of cubes into a product involving 9, that sum of
cubes is divisible by 9. □

Worked Example 7.1.5 Prove that 33n +1 is divisible by 7 whenever n is odd.

Solution. We do not want to use n as our induction index, since it jumps by
twos. But n odd means that n = 2m−1 for some m ≥ 1, so we want to prove
(∀m)P(m), where P(m) is as follows.

P(1) : 33 +1 is divisible by 7

P(2) : 39 +1 is divisible by 7

P(3) : 315 +1 is divisible by 7
...

P(m) : 36m−3 +1 is divisible by 7
...

We will prove this by induction.

Base case. For m = 1, 33 +1= 28= 7 ·4.

Induction step. Assume 36k−3 +1 is divisible by 7. This means that there exists
some whole number ℓ so that

36k−3 +1= 7ℓ.



64 CHAPTER 7. PROOF BY MATHEMATICAL INDUCTION

We want to show 36(k+1)−3 +1 is divisible by 7. We have

36(k+1)−3 +1= (36k−3)(36)+1

= (36k−3 +1−1)(36)+1

= (36k−3 +1)(36)−36 +1

= (7ℓ)(36)−728

= 7(36ℓ−104).

Since we have our expression factored into a product involving 7, our expression
is divisible by 7 as desired. □
Remark 7.1.6 Indexing of statements does not have to start at 1.

Worked Example 7.1.7 Prove 2n < n! whenever n ≥ 4.

Note. This statement is actually false for n = 1,2,3.

Solution.

Base case. For n = 4, 24 = 16 and 4!= 24.

Induction step. Assume 2k < k! for some k ≥ 4. We want to show 2k+1 < (k+1)!.
We have

2k+1 = 2(2k)< 2(k!)< (k+1)(k!)= (k+1)!.

□

7.2 An application to logic

Theorem 7.2.1 Validity of the Extended Law of Syllogism. The Extended
Law of Syllogism is a valid argument.

Proof. By mathematical induction.

Base case n = 3. This is just the ordinary Law of Syllogism.

Induction step. Let k ≥ 3. Consider the n = k version (below left) and the n = k+1
version (below right) of the Extended Law of Syllogism.

p1 → p2

p2 → p3
...

pk−1 → pk

p1 → pk

p1 → p2

p2 → p3
...

pk−1 → pk
pk → pk+1

p1 → pk+1

Assume the n = k version of the argument is valid. We want to show that the
n = k+1 version is also valid. So suppose that premises of that latter version are
all true. We need to show that the conclusion p1 → pk+1 must then also be true.

But each premise of the n = k version is also a premise of the n = k+1 version,
so we can say that we have assumed that every premise of the n = k version
is true. But we have also assumed that version to be valid, so we may take its
conclusion p1 → pk to be true.

Consider the following syllogism.

p1 → pk
pk → pk+1

p1 → pk+1
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Since this is valid (base case n = 2) and its premises are all true, the conclusion
is true. ■

7.3 Strong form of Mathematical Induction

Axiom 7.3.1 Principle of Mathematical Induction (Strong Form). Suppose
P(n) is a predicate where the variable n has domain the positive, whole numbers.
If

(i) P(1) is true, and

(ii) (∀k)
((

P(1)∧P(2)∧·· ·∧P(k)
)→ P(k+1)

)
is true,

then (∀n)P(n) is true.

Idea. The idea here is the same as for regular mathematical induction. How-
ever, in the strong form, we allow ourselves more than just the immediately
preceding case to justify the current case.

If the first case P(1) is true, and P(1)→ P(2), then P(2) must be true as well.
Now, if P(1)∧P(2) → P(3), and we already have P(1) and P(2) both true, then
P(3) must be true as well. Furthermore, if P(1)∧P(2)∧P(3) → P(4), and we
already have P(1), P(2), and P(3) all true, then P(4) must be true as well. And
so on, until we have reached P(n), for n whatever value we wish.

Procedure 7.3.2 Proof by strong induction.

Base case. Start by proving the statement for the base case n = 1.

Induction step. Next, assume that k is a fixed number such that k ≥ 1, and that
the statement is true for all n ≤ k. Based on this assumption, try to prove that the
next case, n = k+1, is also true.

Worked Example 7.3.3 Prove that each whole number greater than 1 can be
factored into a product of (one or more) primes.

Solution.

Base case. The first number greater than 1 is n = 2, and it is prime. So it can be
considered a product of one prime.

Note. Our base case is at n = 2 because our original statement only concerns
numbers greater than 1.

Induction step. Let k represent a whole number that is greater than 1. Assume
that 2,3,4, . . . ,k can each be factored into primes. We want to show k+1 can also
be factored into primes.

Break into cases.

Case k+1 prime. In this case k+1 is already a product of a single prime, itself.

Case k+1 not prime. If k+1 is not prime, then it has nontrivial divisors. So
there exist integers m1,m2, with 2≤ m1,m2 ≤ k, such that k+1= m1m2. By our
induction hypothesis, each of m1,m2 can be factored into a product of primes, so
their product k+1 can as well. □
Warning 7.3.4 If your proof of the induction step requires knowing a very specific
number of previous cases are true, you may need to use a variant of the strong
form of mathematical induction where several base cases are first proved. For
example, if, in the induction step, proving that P(k+1) is true relies specifically
on knowing that both P(k−1) and P(k) are true, then this argument does not
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prove that P(1)→ P(2), and so you must prove both base cases of P(1) and P(2)
explicitly.

7.4 Activities

Below is a more detailed version of Procedure 7.1.2. Follow the steps of Proce-
dure 7.4.1 to create a proof by induction for each of the requested proofs in this
activity set.

Procedure 7.4.1 Mathematical induction, step-by-step.

(a) Write the statement with n replaced by k.

(b) Write the statement with n replaced by k+1.

(c) Identify the connection between the kth statement and the (k+1)th statement.

(d) Complete the induction step by assuming that the n = k version of the
statement is true, and using this assumption to prove that the n = k+1
version of the statement is true.

(e) Complete the induction proof by proving the base case.

Activity 7.1 A binary string is a “word” in which each “letter” can only be 0 or
1.

Prove that there are 2n different binary strings of length n.

Activity 7.2 Prove that for every positive integer n, the binomial 1− xn can be
factored as (1− x)(1+ x+ x2 +·· ·+ xn−1).

Activity 7.3 Prove that the following argument is valid for all positive integers
n.

(p1 ∧ q1)→ r1

(p2 ∧ q2)→ r2
...

(pn ∧ qn)→ rn
p1 ∧ p2 ∧·· ·∧ pn

(q1 → r1)∧ (q2 → r2)∧·· ·∧ (qn → rn)

Careful. Recall that in this context, the words valid and true do not have the
same meaning.

Activity 7.4 Prove that a truth table involving n statement variables requires
2n rows.

Activity 7.5 Prove that a knight can be moved from any square to any other
square on an n×n chess board by some sequence of allowed moves, for every
n ≥ 4.



CHAPTER 8

Axiomatic systems

8.1 Basics and examples

Any mathematical system must have a starting point; we cannot create some-
thing out of nothing. The starting point of a mathematical system (or any logical
system, for that matter) is a collection of basic terminology accompanied by a
collection of assumed facts about the things the terminology describes.

primitive term
a label for an object or action that is left undefined

axiom a statement (usually involving primitive terms or terms defined in
terms of primitive terms) that is held to be true without proof

axiomatic system
a collection of primitive terms and axioms

Example 8.1.1 An axiomatic system.

Primitive terms.

• woozle (noun),

• dorple (noun),

• snarf (verb).

Axioms.

1. There exist at least three distinct woozles.

2. A woozle snarfs a dorple if and only if the dorple snarfs the woozle.

3. Each pair of distinct woozles snarfs exactly one dorple in common.

4. There is at least one trio of distinct woozles that snarf no dorple in common.

5. Each dorple is snarfed by at least two distinct woozles.

□
Remark 8.1.2 In the axiomatic system of Axiom 8.1.1, Axiom 1 is redundant as
we may infer from Axiom 4 that there exist three distinct woozles. But there is
no harm in including this axiom for clarity. As well, we will later investigate the
effect of altering it.
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The axiomatic system of Example 8.1.1 seems like nonsense, but we can
actually prove things from it.

Theorem 8.1.3 There exist at least three distinct dorples.

Proof. (In this proof, all references to axioms refer to the axioms of Example 8.1.1.)
By Axiom 4, there exists a trio w1,w2,w3 of distinct woozles that snarf no

dorple in common. Breaking this trio into various pairs and applying Axiom 3, we
see that there exists a dorple d1 that w1 and w2 both snarf in common, there also
exists a dorple d2 that w1 and w3 both snarf in common, and there also exists a
dorple d3 that w2 and w3 both snarf in common. These snarfing relationships
are illustrated in the diagram below.

d1

d2 d3

w3

w1 w2

Now, suppose d1 and d2 were actually the same dorple — then all three
woozles would snarf it in common.

d1 = d2
d3

w1 w2

w3

As this would contradict our initial assumption, it must be the case that d1
and d2 are distinct. Similar arguments allow us to also conclude that d1 ̸= d3
and d2 ̸= d3. ■

It is often useful to give names to important properties of objects.

defined term
a label for an object or action that is defined in terms of primitive
terms, axioms, and/or other defined terms

definition an formal explanation of the meaning of a defined term

Example 8.1.4 Making a definition. Here is a definition relative to the
axiomatic system of Example 8.1.1.

snarf buddies
two distinct dorples that snarf a common woozle

□
A definition allows us to more succinctly communicate ideas and facts about

the objects of an axiomatic system.

Theorem 8.1.5 A pair of snarf buddies snarf a unique woozle in common.

Proof. Suppose d1,d2 are snarf buddies. By contradiction, suppose they snarf
more than one woozle in common: let w1,w2 be distinct woozles both snarfed by
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d1 and d2. By Axiom 2, each of w1,w2 snarfs each of d1,d2. But this contradicts
Axiom 3, as two distinct woozles cannot snarf more than one dorple in common.

■
Suppose we replace Axiom 1 in the system of Example 8.1.1 with the follow-

ing.

1. There exist exactly three distinct woozles.

In the new, modified axiomatic system, our previous two theorems (Theorem 8.1.3
and Theorem 8.1.5) remain true, because it is still true that there exist at least
three distinct woozles. But we can now also prove the following.

Theorem 8.1.6 In the axiomatic system of Example 8.1.1 with the above modified
version of Axiom 1, there exist exactly three distinct dorples.

Proof. You are asked to prove this in the exercises. ■
A nonsense system like the one in Example 8.1.1 is just that — nonsense

— and not much use unless there are actual examples to which the developed
theory can be applied.

model a system obtained by replacing the primitive terms in an axiomatic
system with more “concrete” terms in such a way that all the axioms
are true statements about the new terms

If we agree that the axiom statements are still all true with the new terms,
then any theorems proved under the abstract system are still valid in the new
model system.

Example 8.1.7 A model for the woozel-dorple system. Again consider the
axiomatic system of Example 8.1.1, still using the modified version of Axiom 1.
Let the three distinct woozles be the points (0,0), (1,1), and (2,0) in the Cartesian
plane. Let dorple now mean line in the plane, and let snarf now mean lies
on. Convince yourself that the axioms of the system are all true with this
interpretation of the primitive terms.

Theorem 8.1.6 now says that there exist exactly three distinct lines in the
plane which fit into our axiomatic system; can you find their equations?

x

y

□
Remark 8.1.8 Using nonsense terms like woozle, dorple, and snarf for the
primitive terms in an axiomatic system is usually not a good idea, as it takes
all intuition out of the process of discovering statements that can be deduced
from the axioms. It would have been much better if we had used the words point
instead of woozle, line instead of dorple, and lies on instead of snarfs as our
primitive terms, to be able to use our intuition about how such objects interact.
In such a case, the axioms we choose should be a reflection of our idea of the
simplest possible properties about the primitive terms, properties that everyone
could reasonably agree are “true” without proof. However, for the theorems
deduced from such an axiomatic system to have the widest possible applicability,
we should leave the words point and line as truly primitive, undefined terms
— that is, point and line should not be taken to mean point in the plane and
line in the plane, as in the example above, but rather just left as some abstract,
intuitive idea of point and line.
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8.2 Incompleteness of axiomatic systems

It turns out that if we want to create an axiomatic system on which to base
mathematics, we will always run into problems, and some things will remain out
of our reach.

Theorem 8.2.1 Gödel’s First Incompleteness Theorem. In any axiomatic
system that is sufficiently complex for it to be possible to prove certain basic facts
about the nonnegative whole numbers, it is possible to devise a statement that is
true but unprovable.

May you never attempt to prove a statement that is true but unprovable!

8.3 Exercises

Reasoning in an abstract axiomatic system. Exercises 1–5 concern the
axiomatic system described in Example 8.1.1.

1. Rewrite each axiom of the system and each subsequent theorem proved
in Section 8.1, replacing the words woozle by point, dorple by line,
and snarfs by lies on. Come up with a replacement for the terminology
snarf buddies that is consistent with these replacement primitive
terms. Do the statements make more sense now?

2. Rewrite Theorem 8.1.5 as an “if . . . then . . . ” statement. Then form the
converse of this conditional. Now prove the converse.

3. Prove each of the following statements. In your proofs, you may use
as justification any combination of the five axioms in the system, Theo-
rem 8.1.3 and Theorem 8.1.5 already proved in this chapter, and/or any
of the statements of this exercise that you have already proved.

(a) There is no dorple who snarfs all woozles.

(b) Each woozle snarfs at least two distinct dorples.

(c) Each dorple belongs to at least two distinct snarf buddy pairs.

(d) There is no woolze who snarfs all dorples.

(e) There is at least one trio of distinct dorples that snarf no woozle
in common.

(f) Each woozle belongs to a trio of woozles that snarf no dorple in
common.

(g) Every pair of woozles can be increased to a trio of woozles that
snarf no dorple in common.

Note. Statement f and Statement g in Exercise 8.3.3 are indeed different
statements and require separate proofs (and each of these statements
is different from Axiom 4).

4. Rewrite each statement in Exercise 8.3.3 using the replacement primi-
tive terms point for woozle, line for dorple, and lies on for snarfs.
Also replace snarf buddies by whatever terminology you came up with
in Exercise 8.3.1.

5. Now consider the system with the revised version of Axiom 1. Prove
that there exist exactly three dorples.
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Hint. Start with the first diagram in the proof of Theorem 8.1.3. Now
argue by contradiction: what do the axioms say would happen if you
added a fourth dorple d4?

6. Consider the following axiomatic system.

Primitive terms.

• wizard (noun),

• zaps (verb).

Axioms.

1. There are at least three distinct wizards.

2. If W1, W2 are distinct wizards, then W1 zaps W2 or W2 zaps W1.

3. No wizard zaps itself.

4. If W1, W2, W3 are wizards such that W1 zaps W2 and W2 zaps W3, then
W1 zaps W3.

Notes.

• Recall that in mathematics and logic, we always interpret “or” as
inclusive or: one or the other or possibly both.

• In Axiom 2 and Axiom 4, you should treat W1,W2,W3 as variables
or placeholders that can be “substituted into”. These axioms are not
stating facts about specific wizards; rather, they are stating facts about
all wizards, and their relationships to each other through zapping.
In particular, Axiom 4 could (in principle) be applied to a collection
W1,W2,W3 of wizards where W1 and W3 are in fact the same wizard.

Prove the following statements based on this axiomatic system.

(a) Principle of Non-Retaliation. If wizard A zaps wizard B, then B
does not zap A.

(b) Friends and Enemies Theorem. If A, B, and C are distinct wizards
such that A zaps B, then A zaps C or C zaps B.

Hint. You may wish to refer back to Activity 6.4.

(c) Bully Theorem. Given four distinct wizards, exactly one of the four
zaps all of the others.

Hint. First argue there cannot be more than one of the four that
zaps the other three. Then show there is at least one. You may need
to consider several cases — draw diagrams to help.)
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CHAPTER 9

Sets

9.1 Basics

object any distinct entity

Example 9.1.1 Some objects.

• The number 2.

• The real number line.

• A monkey.

• A basket of tennis balls.

□

set a collection of objects

Example 9.1.2 Some sets. From our list of example objects above, we would
intuitively consider

• the number 2 to not be a set;

• the real number line to be a set as it is a collection of points, each repre-
senting a different real number;

• a monkey to not be a set; and

• a basket of tennis balls to be a set as it is a collection of tennis balls (though
the basket itself is not part of this set, just the container for the objects
making up the set).

However, the answers above may depend on your point of view. For example, a
monkey could be considered a collection of cells. Even the number 2 is sometimes
defined to be a set! (See Example 11.4.2.) □

Remark 9.1.3 Formally, we leave object and set as primitive terms in the
axiomatic system of set theory. The reason for leaving these terms undefined is
because any attempt to define them would lead us down a never-ending rabbit-
hole of definitions: what is an “entity”? what is a “collection”?

We will not discuss any axiomatic basis for set theory, but instead rely on
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naive set theory.

naive set theory
whatever axioms for set theory the experts decide upon, we are safe
(usually, see Warning 9.7.7) to assume that all the mathematical
objects that we would like to be sets, will be

We need one more primitive term to make set theory workable.

membership
a property of sets relative to other objects: given object x and set S,
exactly one of the statements “x is a member of S” and “x is not a
member of S” is true

element an object that is a member of a set
x ∈ S object x is an element of set S

9.2 Defining sets

Remember that mathematical notation is about communicating mathematical
information. Since a set is defined by its member objects, to communicate the
details of a set of objects one needs to provide a means to decide whether any
given object is or is not an element of the set.

9.2.1 Listing elements

One way to communicate the details of a set definition is to explicitly list or
describe all elements of the set. Such a list should be enclosed in braces to
indicate that the objects in the list are being collected into a set.

Example 9.2.1 Listing the elements of a set. If we write

A = {monkey, tennis ball, the number 2},

then we intend for the letter A to become a label representing the set consisting
of some specific monkey, some specific tennis ball, and the number 2. □

Here are some sets containing familiar collections of numbers. Notice how in
the first two examples we “list” the elements by providing a pattern and then
using . . . to imply that the pattern continues as expected, and in the second two
examples we merely describe what the elements are in words.

N the set {0,1,2, . . . } of natural numbers
Z the set {. . . ,−2,−1,0,1,2, . . . } of integers
Q the set of all fractions, call the set of rational numbers
R the set of all decimal numbers, called the set of real numbers

Note 9.2.2 Keep the following in mind for a set defined by listing elements.

• Order does not matter. For example, {a,b} and {b,a} are the same set
because they consist of precisely the same member elements.

• Repetition does not matter. For example, {a,a,b} and {a,b} are the same set
because they consist of precisely the same member elements.
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9.2.2 Candidate-condition notation
Another way to define a set is candidate-condition notation:

set= { candidate domain | condition(s) on candidates } .

This notation provides a means to decide whether an object is a member of the
set by first using an already-defined set as a pool of “member candidates” as well
a condition or a list of conditions each candidate must satisfy in order to actually
be a member.

If we write S for the set being defined, C for the set of candidates, and T
for the test those candidates must satisfy to be included in S (that is, T is a
predicate with domain C), then the candidate-condition notation takes the form

S = { x ∈ C | T(x) } ,

and can be read as

S is the set of those elements x in C for which T(x) is true.

Example 9.2.3 Using candidate-condition notation to define a set. Con-
sider the set

A = {0,3,6,9,12, . . . }.

We could define this set in a more precise manner (i.e. without resorting to using
dots) as follows.

A = { n ∈N | n divisible by 3 }

The “n ∈ N” part to the left of the divider tells us that the pool of “member
candidates” for A is the set of natural numbers, and the test to the right of
the divider tells us how to decide when a given candidate natural number n is
actually a member of A. In words, you should think of the above definition as
saying the following.

Set A consists of those elements of N which are divisible by 3.

□

9.2.3 Form-parameter notation
Finally, sets can be defined by form-parameter notation:

set= { form involving parameter | parameter domain } .

This notation describes the members of a set by providing a “form” to which the
members must conform. Usually the “form” is based on parameter variables that
can range over a set of possibilities.

Example 9.2.4 Using form-parameter notation to define a set. Again
consider the set

A = {0,3,6,9,12, . . . }.

We could also define this set as

A = { 3n | n ∈N } .

Here, the form of the elements of A is given to the left of the divider as “3 times
a number”, where the number is represented by the parameter n. Then the
allowed range of the number parameter n is given to the right of the divider. In
words, you should think of the above definition as saying the following.
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The elements of set A are precisely those objects that are 3 times a
natural number.

□
Example 9.2.5 Defining the set of fractions. We could define the set Q of
rational numbers in this way:

Q=
{ m

n

∣∣∣ m,n ∈Z, n ̸= 0
}

.

This says that the set Q consists of all symbols of the form “number over number”,
where the numbers can be any integers, as long as the bottom number is not zero.
However, we need to be a little bit careful here, since we allow different symbols
of this form to represent the same element. For example,

3
6
= 1

2
,

2
−9

= −2
9

,
0
n
= 0

1
(any n ̸= 0).

We really should make this element form duplication explicit in the definition
of the set, but to do this would be really cumbersome and would be expressing
something that is learned in grade school, so it is usually omitted. □

9.2.4 Empty set
There is one special set, the elements of which are very easy to list.

empty set the set which has no elements
∅ the empty set

Remark 9.2.6 The empty set is defined by requiring that the statement “x is an
element of ∅” is always false, for every object x.

Warning 9.2.7 Be careful not to inadvertently try to prove some property of
members of the empty set! You will be proving a vacuously true statement. (See
Section 4.3.)

9.3 Subsets and equality of sets

Often we want to distinguish a collection of certain “special” elements within a
larger set of elements.

subset a set whose elements are all members of another set
A ⊆ B set A is a subset of or is contained in set B

B

A

Figure 9.3.1 A Venn diagram demonstrating a subset relationship.

Warning 9.3.2 We also sometimes use the phrase “contained in” to mean an
object is an element of a set.
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Test 9.3.3 Subset. To demonstrate A ⊆ B, prove (∀x)(x ∈ A ⇒ x ∈ B).

Example 9.3.4 Basic examples involving familiar sets of numbers.

• Every natural number is an integer, so N⊆Z. To emphasize this, we could
write N= { m ∈Z | m ≥ 0 }.

• Every integer can be considered to be a rational number, since for every
m ∈Z we can write m = a

b with a = m and b = 1. Thus Z⊆Q.

• Every rational number can be considered to be a real number if we identify
fractions with their decimal expansions via long division. Thus Q⊆R.

□
Example 9.3.5 Candidate-condition notation always defines subsets.
When we define a set by Candidate-condition notation, we first specify a pool
of candidate elements, and then a condition or collection of conditions that those
candidates must satisfy in order to actually be included in the set. But then
every element in the set we are defining must first be from the set of candidate
elements, so our defined set must be a subset of the candidate set.

For example, in Example 9.3.4, we provided a definition for the set N in
candidate-condition form where the pool of candidates is the set Z. This definition
makes it explicit that N⊆Z. □

Worked Example 9.3.6 Prove that A ⊆ B for

A = { 3m+1 | m ∈Z } , B =
{

x ∈R
∣∣∣∣ sin

(
π(x−1)

3

)
= 0

}
.

Solution. There are an infinite number of elements of A, so we cannot check
that all elements of A are also elements of B one-by-one. Instead, we let a variable
x represent an arbitrary but unspecified element of A. Since all elements of A
have the form 3m+1 for some m ∈Z, we have x = 3m+1 for some m ∈Z. Check
the condition for being an element of B by calculating

sin
(
π(x−1)

3

)
= sin

(
π
(
(3m+1)−1

)

3

)
= sin(mπ)= 0.

Therefore, x ∈ B. Since the above calculation works for every m ∈Z, all elements
of A are elements of B. □
Proposition 9.3.7 Basic properties of the subset relationship.

1. Every set has an empty set as a subset. That is, ∅⊆ S is always true for a
set S.

2. Every set is a subset of itself. That is, S ⊆ S is always true for a set S.

3. The subset relation is transitive. That is, whenever A ⊆ B and B ⊆ C are
true, then A ⊆ C is true as well.

A look ahead. We will study abstract notions of relation and the transitive
property in Chapter 17.

set equality
write A = B if both sets consist of precisely the same elements
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Test 9.3.8 For set equality. To demonstrate A = B, check that both A ⊆ B and
B ⊆ A.

This requires two applications of the Subset Test:

(i) begin with the assumption x ∈ A and proceed to the conclusion x ∈ B;

(ii) begin with the assumption x ∈ B and proceed to the conclusion x ∈ A.

Remark 9.3.9 One could combine both applications of the Subset Test described
in the Test for Set Equality above into one biconditional: A = B is true if

(∀x)(x ∈ A ⇔ x ∈ B)

is true. If the logic of x ∈ A ⇒ x ∈ B is easily reversed, then it makes sense to
argue x ∈ A ⇔ x ∈ B instead of separately arguing x ∈ A ⇒ x ∈ B and x ∈ B ⇒ x ∈ A.
However, in most cases separate arguments of these logical implications is
preferred.

Worked Example 9.3.10 Let A and B be as in Worked Example 9.3.6. Prove
that A = B.

Solution.

Show A ⊆ B. See Worked Example 9.3.6.

Show B ⊆ A. Let x represent an arbitrary element of B. This means that

sin
(
π(x−1)

3

)
= 0.

However, we know from trigonometry that sinθ = 0 if and only if θ is an integer
multiple of π; i.e. θ = mπ for some m ∈Z. If we set

π(x−1)
3

= mπ

and solve for x, we get x = 3m+1 ∈ A. □

proper subset
a set contained in but not equal to another set

A ⫋B set A is a proper subset of set B

Note 9.3.11 Some people exclude ∅ from the definition of proper subset.

Test 9.3.12 For a proper subset. To demonstrate A ⫋ B, first test A ⊆ B as
usual (Test 9.3.3), but also demonstrate that there exists some x ∈ B such that
x ∉ A.

Example 9.3.13 Proper subsets of number sets. We already know that
N⊆Z⊆Q⊆R, but we have

1. N⫋Z, since, for example, −1 ∈Z but −1 ∉N;

2. Z⫋Q, since, for example, 1
2 ∈Q but 1

2 ∉Z; and

3. Q⫋R, since, for example,
p

2 ∈R but
p

2 ∉Q.

□
Remark 9.3.14 To show the A ̸= B part of A ⫋ B, you only need to exhibit one
example element of B which is not in A; i.e. you need to find a counterexample
for the logical implication x ∈ B ⇒ x ∈ A.
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9.4 Complement, union, and intersection

First, it is often convenient to restrict the scope of the discussion.

universal set
a set that contains all objects currently under consideration

We will consider all of the following set operations to be performed within a
universal set U . In particular, suppose A,B ⊆U .

9.4.1 Universal and relative complement

complement
the set of elements of U which are not in A

Ac the complement of A (in U), so that

Ac = { x ∈U | x ∉ A }
relative complement

if A,B ⊆U, the complement of A in B is the set of elements of B
which are not in A

B∖ A the complement of A in B, so that

B∖ A = { x ∈ B | x ∉ A }

U

A
Ac

U

A B

B∖ A

Figure 9.4.1 Venn diagrams of universal and relative set complements.

Note 9.4.2 Another common notation for relative complement is B− A. However,
this conflicts with the notation for the algebraic operation of subtraction in
certain contexts, so we will prefer the notation B∖ A.

Example 9.4.3 Some examples of relative complement involving number
sets.

• Suppose B = {1,2,3,4,5,6} and A = {1,3,5}. Then B∖ A = {2,4,6}.

• The complement of the set of rational numbers Q inside the set of real
numbers R is called the set of irrational numbers, and we write I =
R∖Q for this set. If you are thinking of real numbers in terms of their
decimal expanions, the irrational numbers are precisely those that have
nonterminating, nonrepeating decimal expansions.

□
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9.4.2 Union, intersection, and disjoint sets

union the combined collection of all elements in a pair of sets
A∪B the union of sets A and B, so that

A∪B = { x ∈U | x ∈ A or x ∈ B (or both) }
intersection

the collection of only those elements common to a pair of sets
A∩B the intersection of A and B, so that

A∩B = { x ∈U | x ∈ A and x ∈ B }

U

A B

A∪B

U

A B

A∩B

Figure 9.4.4 Venn diagrams of set union and intersection.

Note 9.4.5 A union contains every element from both sets, so it contains both
sets as subsets:

A,B ⊆ A∪B.

On the other hand, every element in an intersection is in both sets, so the
intersection is a subset of both sets:

A∩B ⊆ A,B.

Example 9.4.6 For subsets A = {1,2,3,4} and B = {3,4,5,6} of N, we have

A∪B = {1,2,3,4,5,6}, A∩B = {3,4}.

□
Example 9.4.7 Consider the following subsets of N.

E= { n ∈N | n even } P= { n ∈N | n prime, n ̸= 0 }

O= { n ∈N | n odd } T = { 3n | n ∈N }= {0, 3, 6, 9, . . . }

Then,

E∪O=N, E∩P= {2}, E∩T = { 6n | n ∈N } ,

E∩O=∅, O∩P=P∖ {2}, O∩T = { 6n+3 | n ∈N } .

□

disjoint sets
sets that have no elements in common, i.e. sets A,B such that A∩B =
∅
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disjoint union
a union A∪B where A and B are disjoint

A⊔B the disjoint union of sets A and B

U

A B

A⊔B

Figure 9.4.8 A Venn diagram of a disjoint set union.

Example 9.4.9 Sets E,O from Example 9.4.7 are disjoint, and N=E⊔O. □
Remark 9.4.10 If A ⊆U , then we can express U as a disjoint union U = A⊔ Ac.
Similarly, if U = A⊔B, then we must have B = Ac.

9.4.3 Rules for set operations
Proposition 9.4.11 Rules for Operations on Sets. Suppose A,B,C are subsets
of a universal set U . Then the following set equalities hold.

1. Properties of the universal set.

(a) A∪U =U (b) A∩U = A

2. Properties of the empty set.

(a) A∪∅= A (b) A∩∅=∅

3. Duality of universal and empty sets.

(a) Uc =∅ (b) ∅c =U

4. Double complement.

(Ac)c = A

5. Idempotence.

(a) A∪ A = A (b) A∩ A = A

6. Commutativity.

(a) A∪B = B∪ A (b) A∩B = B∩ A

7. Associativity.

(a) (A∪B)∪C = A∪ (B∪C) (b) (A∩B)∩C = A∩ (B∩C)

8. Distributivity.

(a) A∩ (B∪C)= (A∩B)∪ (A∩C)
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(b) A∪ (B∩C)= (A∪B)∩ (A∪C)

(c) (A∪B)∩C = (A∩C)∪ (B∩C)

(d) (A∩B)∪C = (A∪C)∩ (B∪C)

9. DeMorgan’s Laws.

(a) (A∪B)c = Ac ∩Bc (b) (A∩B)c = Ac ∪Bc

Proof of Rule 9.a. Recall that to prove this set equality, we need to show both

(A∪B)c ⊆ Ac ∩Bc, Ac ∩Bc ⊆ (A∪B)c.

Show (A∪B)c ⊆ Ac ∩Bc. We need to show

x ∈ (A∪B)c ⇒ x ∈ Ac ∩Bc.

If x ∈ (A∪B)c then by definition of complement, x ∈U but x ∉ A∪B. Then x ∉ A
must be true, since if x were in A then it would also be in A∪B. Similarly, x ∉ B
must also be true. So x ∈ Ac and x ∈ Bc; i.e. x ∈ Ac ∩Bc.

Show Ac ∩Bc ⊆ (A∪B)c. We need to show

x ∈ Ac ∩Bc ⇒ x ∈ (A∪B)c.

If x ∈ Ac ∩Bc then by definition of intersection, both x ∈ Ac and x ∈ Bc are true.;
i.e. x ∉ A and x ∉ B. Since A∪B is all elements of U which are in one (or both) of
A,B, we must have x ∉ A∪B. Thus x ∈ (A∪B)c. ■

Proofs of the other rules. These are left to you, the reader, in the Exercise 9.9.1.
■

Remark 9.4.12 Compare the set operation rules of the proposition above with
the Rules of Propositional Calculus.

9.5 Cartesian Product

9.5.1 Definition and examples

Cartesian product
the set of all possible ordered pairs of elements from two given sets
A and B, where the first element in a pair is from A and the second
is from B

A×B the Cartesian product of A and B: A×B = { (a,b) | a ∈ A, b ∈ B }

For “small” sets, we can list the elements of the Cartesian product by listing
all ways of combining an element from the first with an element from the second.

Example 9.5.1 A Cartesian product of “small” sets. Suppose A = {1,2} and
B = {a,b, c}. Then

A×B = {(1,a), (1,b), (1, c), (2,a), (2,b), (2, c)}.

□
Example 9.5.2 A special subset of a certain Cartesian product. Let N+

represent the positive natural numbers: N+ =N∖ {0}. Then we can describe the
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Cartesian product Z×N+ as

Z×N+ = { (m,n) | m,n ∈Z, n > 0 }⊆Z×Z.

Consider the subset

A = {
(m,n) ∈Z×N+ ∣∣ n has no divisors in common with |m| }⊆Z×N+.

Does A resemble some more familiar set . . . ? □

Extend. Define A×B×C = { (a,b, c) | a ∈ A, b ∈ B, c ∈ C }.

Example 9.5.3 Suppose A = {1,2}, B = {a,b, c}, C = {α,β}. Then,

A×B×C = { (1,a,α), (1,a,β), (1,b,α), (1,b,β), (1, c,α), (1, c,β),

(2,a,α), (2,a,β), (2,b,α), (2,b,β), (2, c,α), (2, c,β) }

□
Remark 9.5.4 Technically, there is a difference between the elements of each of
the sets

(A×B)×C = { (
(a,b), c

) ∣∣ a ∈ A, b ∈ B, c ∈ C
}
,

A× (B×C)= { (
a, (b, c)

) ∣∣ a ∈ A, b ∈ B, c ∈ C
}
,

A×B×C = { (a,b, c) | a ∈ A, b ∈ B, c ∈ C } ,

but it is rare that anyone actually observes this technicality. Usually, we consider
these three sets to be the same set.

We use special notation for Cartesian products of a set with itself.

A2 notation to mean A× A

A3 notation to mean A× A× A
An notation to mean A× A×·· ·× A involving n “factors” of A

And so on.

Example 9.5.5 Cartesian products in linear algebra. You have probably
already encountered the notation

R2 = { (x, y) | x, y ∈R } ,

R3 = { (x, y, z) | x, y, z ∈R } ,
...

Rn = {
(x1, x2, . . . , xn)

∣∣ x j ∈R
}
,

...

used to represent 2-, 3-, and higher-dimensional (real) vector spaces. □

9.5.2 Visualizing Cartesian products
Cartesian products do not really lend themselves to visualization with Venn
diagrams. So how should we visualize them?

The example we are probably most familiar with is that of the Cartesian
plane, R2 = R×R, where each element (x, y) is visualized as a point in a two-
dimensional diagram, plotted according to the x- and y-coordinates of the element
relative to a central set of xy-axes.
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R

R

(x, y)

x

y

Figure 9.5.6 Visualizing elements of R×R as points in a plane relative to a set
of perpendicular axes.

To produce this visualization, we imagine the elements of the “first” R arrayed
along the x-axis, and the elements of the “second” R as arrayed along the y-axis,
and then imagine each element of the Cartesian product R×R as a point located
at a position that “lines up” with the corresponding positions on the x- and y-axes
of the element’s coordinates. This is possible because the concepts of “less than”
and “greater than” allow us to think of elements of R as “progressing” from left
to right along the x-axis and from bottom to top along the y-axis.

Even though other types of sets may not have readily available notions of
“less than” and “greater than”, we may still visualize a Cartesian product A×B as
“points” in a “plane” plotted relative to a central set of AB-axes. In the particular
case that A and B are finite, it doesn’t really matter in what “order” we place the
elements of A along the A-axis or the elements of B along the B-axis.

A look ahead. We will study abstract notions of “less than” and “greater than”
in Chapter 19.

Example 9.5.7 Visualizing a Cartesian product between finite sets. Con-
sider the sets A = {a,α,φ, z} and B = {1,2,3}. Instead of listing the elements of
A×B, we will place them in a grid. In Figure 9.5.8, you might imagine that the
elements of A listed along the bottom row make up a horizontal axis and the
elements of B along the leftmost column make up a vertical axis. But take care
that these “axes” are not a continuum of values — there are no other “values”
between these “coordinate values” along the “axes”. For example, there is no 1.5
along the “horizontal axis.” Similarly, there are no other “points” between the
elements of A×B.

B
3 (a,3) (α,3) (φ,3) (z,3)
2 (a,2) (α,2) (φ,2) (z,2)
1 (a,1) (α,1) (φ,1) (z,1)

a α φ z A

Figure 9.5.8 Visualizing elements of A×B as “points” in a grid relative to a set
of perpendicular “axes.”

□

9.6 Alphabets and words

alphabet any set can be considered an alphabet
letters the elements of an alphabet set
word a finite-length, ordered list of letters
Σ∗ the set of words using alphabet set Σ
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Remark 9.6.1 Even if the alphabet set Σ is the usual English-language alphabet,
we do not restrict ourselves to actual English-language words — nonsense words
are allowed.

Example 9.6.2 English is not a full set of words. Using Σ= {a, b, c, . . . , y, z},
words

math, qwerty, aabbccddijzuuu

are examples of elements in Σ∗. So, ignoring punctuation, hyphenation, and
capitalization, the English language is a proper subset of Σ∗. □
Example 9.6.3 If digits are letters then numbers are words. Using alphabet
Σ= {0, 1, 2, . . . , 9}, then N⫋Σ∗. □
Checkpoint 9.6.4 Why is N ̸=Σ∗ in Example 9.6.3?

In computing science, a certain set of words is of particular importance.

binary word
a word using alphabet {0,1}

binary string
synonym for binary word

Warning 9.6.5 Order matters! For example, using the alphabet

Σ= {a, b, c, . . . , y, z},

the words ab and ba are different words in Σ∗.

length (of a word)
given w ∈Σ∗, the length of w is the number of elements from Σ used
to form w, counting repetition

|w| length of the word w ∈Σ∗

Example 9.6.6 Using alphabet Σ= {a, b, c, . . . , y, z}, we have

|qwerty| = 6, |aabab| = 5.

□
The concept of length allows us to identify some special subsets and a special

element of Σ∗.

Σ∗
n for n ∈N, the subset of Σ∗ consisting of all words of length n

empty word
given an alphabet Σ, we always consider Σ∗ to contain a unique word
of length 0

; the empty word
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9.7 Sets of sets

Note 9.7.1 Sets can be made up of any kind of objects, even other sets! (But now
we must be careful of the use of the phrase “contained in”.)

Example 9.7.2 Consider

T = { 3n | n ∈N } , X = { A ⊂N | A∩T =∅ } , Y = X ∪T.

Elements of T are numbers. Elements of X are subsets of N — that is, X is a set
of subsets of N, but is not itself a subset of N. Elements of Y are either from X or
from T, so some elements of Y are numbers, and some elements of Y are sets of
numbers. □

power set given a set A, the power set of A is the set {B ⊆ A} of all subsets of
A

P (A) the power set of the set A

Warning 9.7.3 The elements of a power set are subsets of the set in question.

Fact 9.7.4 A power set is never empty. For every set A, P (A) ̸=∅.

Proof. Both ∅ and A are subsets of A, so both are elements of P (A). Even if
A =∅, we still have

P (∅)= {∅} ̸=∅.

■
Example 9.7.5 Power set of a “small” set. For A = {a,b, c}, we have

P (A)= {∅, {a}, {b}, {c}, {a,b}, {a, c}, {b, c}, {a,b, c} } .

Note the use of curly braces here. In particular, note that ∅ has not been placed
in its own set of curly braces because it is already a set itself. □
Example 9.7.6 A set of sets as a subset of a power set. For X as in
Example 9.7.2, we have X ⊆P (N). □
Warning 9.7.7 We are not completely free to define sets any way we want.

Example 9.7.8 Let

R = { any set X | X is not an element of itself. } .

First note that there exist sets which satisfy the condition for membership in R;
for example, the empty set. So R should not be not empty. If R is a set, then it is
a “candidate” for membership in itself! Break into cases.

Case R ∈ R. Then R ∉ R, which contradicts the case assumption.

Case R ∉ R. Then R ∈ R, which contradicts the case assumption. Since all cases
lead to a contradiction, R is cannot be a set! This is called Russell’s Paradox,
and is one of the reasons we rely upon “naive set theory” in this course. □
Remark 9.7.9 One of the ways to avoid Russell’s Paradox is by requiring every
object, including sets, to have a type, similar to how variables in a computer
language can be declared to have a type. In such a scheme, a set is never just a
set — it is always a set of a certain kind of object. Then an operation such as
N∪P (N) would not be allowed, as N is a set of numbers while P (N) is a set of
sets of numbers, and we have a type mismatch. And, more importantly, asking
a question like “Is R ∈ R?” becomes nonsensical, as on the left of the ∈ symbol R
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is required to be some type of object while on the right R is required to be a set of
that type of object, and again we have a type mismatch.

9.8 Activities

Activity 9.1 For each member of your group, consider the set of all math and
computing science courses you have taken so far at university. What is the
intersection of these sets for your group?

Activity 9.2 Is it possible to have two sets A and B with A∪B = A∩B?

Activity 9.3 Cancellation is not always valid.

(a) Demonstrate using an example that (A∪B)∖B = A is not a valid simplifi-
cation in set theory.

(b) Demonstrate using an example that A∪B = A∪C ⇒ A = B is not a valid
simplification in set theory.

Activity 9.4 Fill in the blank with a concept from the reading.

Breaking the students in a class into groups is an example of .

Activity 9.5

(a) Write a definition in Candidate-condition notation for the set of all points
on the graph of the parabola f (x)= x2.

(b) Write a definition in Form-parameter notation for the set of all numbers
that are one less than a power of two.

Activity 9.6 Recall that Mn(R) is the set of all n×n matrices. Let V be the subset
of invertible n×n matrices, and S the set of scalar n×n matrices. Write 0 for
the n×n zero matrix.

Recall. Scalar matrix means a scalar multiple of the identity matrix.
Singular matrix means not invertible.

Express each of the following statements using the symbols of set theory:

∈, ⊆, ∪, ∩, ∅, etc.

(a) 0 is a scalar matrix.

(b) 0 is scalar and singular.

(c) 0 is the only scalar, singular matrix.

(d) Every scalar matrix besides 0 is invertible.

(e) Every matrix is either invertible or singular.

Activity 9.7 Pick another group in the class and list the elements of the Cartesian
product of your group with that other group. If that group happened to also
choose your group for this task, would their answer be the same as yours?

Activity 9.8 List the elements of the power set of your group. Make sure you
have all the { }-pairs you need in all the right places.

Activity 9.9 For alphabet Σ= {a,b,c}, describe the elements of Σ∗ and (Σ∗)∗:
Elements of Σ∗ are .
Elements of (Σ∗)∗ are .
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Is the equality of sets (Σ∗)∗ =Σ∗ true?

Activity 9.10 The equality of sets

A× (B∖C)= (A×B)∖ (A×C)

is true in general.
Write a formal proof of this equality, using the Test for Set Equality.

Activity 9.11 The equality of sets (A×B)∪ (C×D)= (A∪C)× (B∪D) is false in
general.

(a) Write down definitions for example sets A,B,C,D that form a counterex-
ample.

(b) Can you come up with some conditions on A,B,C,D that make this equality
true?

Activity 9.12 Write a formal proof of the equality

P (A∩B)=P (A)∩P (B)

using the Test for Set Equality.
Keep Warning 9.7.3 in mind as you do this!

Activity 9.13 Informally explain why the set equality P (A∪B)=P (A)∪P (B)
is not true in general.

9.9 Exercises

1. Prove each of the set operation rules in Proposition 9.4.11. Use the provided
proof of the first of DeMorgan’s Laws as a model for your proofs.

Expressing relationships using the symbols of set theory. In each of
Exercises 2–4, you are given a collection of sets (and possibly some elements of
those sets), a collection of symbols, and a collection of statements about those
sets and their elements. Use the given symbols to express the given statements
in symbolic language.

Note that there may be more than one correct answer for each statement.
2. Sets:

A = the set of all Augustana students,

R = the set of Augustana students who attend class regularly,

S = the set of Augustana students who study diligently,

P = the set of Augustana students who will pass all their courses.

Symbols:

A, R, S, P, Rc, Sc, Pc, ∩, ∪, =, ̸=, ⊆, ⫋, ∅.

Statements:

(a) All Augustana students who attend class regularly and study
diligently will pass all their courses.

(b) Some Augustana students attend class regularly but do not study
diligently.

(c) Some Augustana students who study diligently will still fail a
course.
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3. Recall that a square number is an integer which is equal to the square
of some integer. (See the introduction preceding Exercise 6.12.17 in
Exercises 6.12.)

Sets:

P = the set of prime numbers,

E = the set of even numbers,

S = the set of square numbers.

Symbols:

2, N, P, E, S, Nc, Pc, Ec, Sc, ∈, ∩, ∪, =, ̸=, ⊆, ⫋, ∅, { }.

Statements:

(a) 2 is the only even, prime number.

(b) There exist odd square numbers.

(c) No prime number is square.

(d) No square number is prime.

(e) It is not true that every natural number is either even or prime.

4. Sets:

F= the set of all functions in a single real variable,

C= the set of continuous functions,

D= the set of differentiable functions,

P= nonnegative functions

= { f (x) | f (x)≥ 0 for all x in the domain of f } .

Elements:

f1(x)= x2 f2(x)= |x| f3(x)= tan x

Symbols:

F, C, D, P, Fc, Cc, Dc, Pc, f1(x), f2(x), f3(x), ∈, ∩, ∪, =, ̸=, ⊆, ⫋, ∅.

Statements:

(a) The function f1(x) is differentiable and nonnegative.

(b) The function f2(x) is continuous and nonnegative, but not differ-
entiable.

(c) The function f3(x) is neither continuous nor nonnegative.

(d) Every differentiable function is continuous.

(e) Some continuous functions are not differentiable.

(f) Not every function is continuous.

Testing set equalitye. For each of Exercises 5–8, either formally prove the
given equivalence of sets (using the Test for Set Equality) or demonstrate that it
is false by providing a specific counterexample.



92 CHAPTER 9. SETS

5. A = (A∖B)⊔ (A∩B)
6. A∖ (A∖B)= B
7. (A×B)∪ (C×D)= (A∪C)× (B∪D)
8. A× (B∖C)= (A×B)∖ (A×C)

9. Suppose Σ is an alphabet. Prove that Σ∗ is the disjoint union of the subsets

Σ∗
0 ,Σ∗

1 ,Σ∗
2 , . . . ,Σ∗

n, . . . .

10. Write out the elements of each of the sets

P (∅), P (P (∅) ), P (P (P (∅) ) ), P (P (P (P (∅) ) ) ).

Make sure you have all the pairs of braces { } you should have.
Without computing it, make a conjecture about the number of elements

in the set
P (P (P (P (P (∅) ) ) ) ).

Properties of power sets. For each of Exercises 11–14, either formally prove
the given statement about power sets or demonstrate that it is false by providing
a specific counterexample.

11. P (A∪B)=P (A)∪P (B)
12. P (A∩B)=P (A)∩P (B)
13. If A ⊆ B, then P (A)⊆P (B).
14. If A ⊆ B, then P (B∖ A)=P (B)∖P (A).



CHAPTER 10

Functions

10.1 Basics

10.1.1 Terminology and basic concepts

function (working definition)
a rule which assigns to each input element from a set A a single
output element from a set B

domain the set of all possible input elements for a function
codomain a set containing all possible output elements for a function
f : A → B f is a function with domain A and codomain B
input-output rule

the process/algorithm/rule/formula that describes how each input
element from the domain will be transformed into an output element
in the codomain

f (a)= b function f : A → B associates the codomain element b ∈ B to the
domain element a ∈ A

a 7→ b alternative notation for f (a)= b
image (of an domain element)

when f (a) = b we say that b is the image of a under f , or that f
maps a to b

BA

a f (a)
f

Figure 10.1.1 A Venn diagram of a function transforming a domain element into
a codomain element.

Warning 10.1.2 Domain elements are necessarily inputs, but codomain
elements are not necessarily outputs. When we define a function, the domain
should either be implicitly clear from the input-output rule, or explicitly stated
so that the precise collection of allowable input elements is known.

However, it would be too onerous to do the same for the precise collection
of output elements — often when we create a function we won’t initially know
exactly what outputs it will produce. The purpose of stating a codomain is so
that it is at least clear what type of output element is produced.

93
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10.1.2 Defining functions
Defining a function is a two-step process, in which we need to specify three
pieces of information:

(i) the domain,

(ii) the codomain, and

(iii) the input-output rule.

The first two pieces of information are specified in one step, when we write

f : A → B.

This notation indicates that A will be the domain and B will be the codomain
for the function named f . Of course, the name of the function is an additional
piece of information being specified with this notation, but naming a function is
optional (though highly recommended!).

Specifying the input-output rule may be done in many different ways, e.g. by
a formula, table of values, a description of a step-by-step process or algorithm to
determine or compute an output given an arbitrary input, etc.

Example 10.1.3 Defining a function by an input-output formula. An
input-output formula like f (x) =p

x defines a function, but we here need to be
careful about the domain. The domain and codomain for this function could
be specified as f : R≥0 → R, where R≥0 represents the set of nonnegative real
numbers. □
Example 10.1.4 Correctly stating a domain and codomain. In the function
definition

f : R→R,

x 7→ 1
x2 ,

the first line of the definition tells us the domain (R), codomain (again R), and
a name for the function ( f ). The second line tells us the input-output rule, so
that

f (x)= 1
x2 .

However, on closer inspection we discover that the domain has been incor-
rectly specified, as x = 0 is not a permissible input for the input-output rule.
Instead, we should write

f : R∖ {0}→R.

Even though this function will only ever produce positive real numbers as
outputs, the codomain is acceptable as stated. It would be more precise to write

f : R∖ {0}→R>0,

where R>0 represents the set of positive real numbers, but it is not necessary to
do so. □
Example 10.1.5 Defining a function by an input-output algorithm. Con-
sider the function P (Z)→N where outputs are computed according to the follow-
ing algorithm.

Given an input element X ∈P (Z) (which, by definition, is a set of integers),
carry out the following.

1. Compute the absolute value of each element in X . (If X is empty, skip this



10.1. BASICS 95

step.)

2. Determine the minimum result of the absolute value computations in
the previous step. (If X is empty, there will not be any absolute value
computation results to compare, so take 0 as the “mininum” instead.)

3. Multiply the minimum value found in the previous step by 2 and add 1.
Output this final result.

However, with the right notation, an algorithm like the above can often be
converted into an input-output formula — see Example 10.4.7. □
Example 10.1.6 Defining a function by listing input-ouput pairs. For
N= {1,2,3} and A= {a,b, c,d}, one way to define a function f : N→A is

f (1)= d, f (2)= a, f (3)= d.

□
Example 10.1.7 Multi-variable functions. In a first course in calculus a
student typically studies only single-variable functions, i.e. functions with
a single input variable and a single output variable. In subsequent calculus
courses a student may study multi-variable functions with multiple input
variables, such as

f (x, y)= x2 + y2.

Technically, we should write

f
(
(x, y)

)= x2 + y2,

as the proper definition of f is f : R2 → R, but the extra brackets convey no
additional information and only clutter things up.

Functions with multiple real output variables are often called vector func-
tions. For example, g : R→R2 defined by

g(t)= (t, t2)

can be considered as a vector parametrization of a parabola in the plane.
And of course we could consider multi-variable vector functions as well.

A function ϕ : R2 →R2 like

ϕ(s, t)= (s− t, s+ t)

could be considered as a change of variables

x = s− t, y= s+ t.

□
Example 10.1.8 Logical statements as functions. A logical statement
S involving statement variables p1, p2, . . . , pm is essentially a multi-variable
function

S : Λm →Λ,

where Λ= {T, F}. For example, the statement

S(p1, p2)= (p1 → p2)

is a function S : Λ×Λ→Λ, where

S(T,T)=T, S(T,F)=F, S(F,T)=T, S(F,F)=T.

□
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10.1.3 Graph of a function

graph (of a function)
the set of all input-output pairs for the function

∆( f ) the graph of function f : A → B, so that

∆( f )= { (a, f (a)) | a ∈ A }⊆ A×B

Example 10.1.9 Graph of a single-variable, real-valued function. The
graph of a function f : R→R is a subset of R×R=R2. We usually represent R2

visually as the xy-plane and the graph ∆( f )⊆R2 as a curve in the plane.

x

y

−1 1

1

Figure 10.1.10 The graph ∆(x 7→ x2) represented as a curve in the Cartesian
plane.

In the graph of f (x)= x2 above, each point on the curve represents an element
of R2 which is in the subset ∆( f ). For example, (−1,1) ∈∆( f ) but (−1,π) ∉∆( f ).

□
Example 10.1.11 Graph of a multi-variable, real-valued function. The
graph of a function f : R2 →R is technically a subset of R2×R, but usually we just
think of this as R3, or 3-space. Instead of a curve, such a graph defines a surface
in R3. For example, the graph of the function f (x, y)= x2+y2 from Example 10.1.7
is a parabolic cone, i.e. a (non-solid) cone-like surface with parabolic sides. □
Example 10.1.12 Graph of a function defined by a list. To describe the
graph of the function f : N→A defined in Example 10.1.6, we just need to collect
the defined input-output pairs into Cartesian product elements:

∆( f )= {(1,d), (2,a), (3,d)}.

This graph can most simply be represented by a table:

x 1 2 3
f (x) d a d

Similarly to Example 9.5.7, we can also visualize this graph as a set of “points”
relative to a set of perpendicular “axes,” where the horizontal axis represents the
domain set and the vertical axis represents the codomain set.

A

d • •
c
b
a •

1 2 3 N

Notice that we have not joined the points in the above visualization with lines or
a curve, since the three points pictured are the only points on the graph. □
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Example 10.1.13 Graph of a logical statement. We’ve already encountered
the graph of a logical statement: it is usually represented as a truth table. For
example, the graph ∆(S) of the logical statement

S : Λ×Λ→Λ, S(p1, p2)= p1 → p2,

where Λ= {T,F} as usual, can be represented as below.

p1 p2 S(p1, p2)
T T T
T F F
F T T
F F T

Figure 10.1.14 The graph ∆(S) of the logical statement S(p1, p2)= p1 → p2.

□
Unfortunately, our working definition for function is lacking: what is a

“rule”? Rather than chasing some circle of definitions, we can come up with
a better definition by noticing that the graph of a function contains all the
necessary information about the function.

function (formal definition)
a subset F ⊆ A ×B such that for every x ∈ A there is exactly one
element (a,b) ∈ F with a = x

In this formal definition, we are defining a function to be what we previously
would have called its graph.

Example 10.1.15 Formal definition for a single-variable, real-valued
function. We are now defining a function f : R→ R to be the subset of the
Cartesian plane R2 consisting of the graph of the function. In this case, you can
think of the “exactly one” requirement as equivalent to the vertical line test: an
input value may not produce more than one output value. (Though the “one” part
of “exactly one” captures our requirement that a function be defined on every
domain element.) □

10.1.4 Undefined and well-defined

We have to be careful defining functions; sometimes what we think is a function
turns out to not be a function.

Example 10.1.16 A function must be defined on the whole domain. Again
write N= {1,2,3} and A= {a,b, c,d}, and consider

F = {(1,a), (3,d)}⊆N×A.

Does this subset define a function with domain N and codomain A? That is, does
there exist a function f : N→A such that F =∆( f )? The answer is no, because
there is no input-output pair in F with domain element 2. If we attempt to
consider a function f with graph ∆( f ) = F, we have no way to tell what result
f (2) should return. In other words, such an f will have been left undefined on
element 2, which is supposed to be part of the domain.

The set F does define a function, just not one with domain N. If we consider
the smaller set N′ = {1,3}, then there is a function f : N′ →A with F =∆( f ). □
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Example 10.1.17 A function must be well-defined. Again write N= {1,2,3}
and A= {a,b, c,d}, and consider

F = {(1,a), (3,a), (3,d)}⊆N×A.

Does this subset define a function with domain N and codomain A? That is, does
there exist a function f : N→A such that F =∆( f )? The answer is no, because
there are more than one input-output pairs with domain element 3. In other
words, a function f with graph ∆( f )= F is not well-defined, because we have
no way to tell whether f (3) should be a or d. □
Example 10.1.18 An input-output rule does not necessarily define a
function. Recall that

Q=
{ m

n

∣∣∣ m,n ∈Z, n ̸= 0
}

.

Suppose we attempt to define f : Q→Z by f ( m
n )= m+n. This seems like a valid

way to define a function, until we realize that, for example,

f
(

1
2

)
= 1+2= 3, f

(
2
4

)
= 2+4= 6.

This is nonsense, because 1
2 and 2

4 represent the same element of Q. Thus, rule
f is not well-defined as a function, since to each element of the domain Q it
associates more than one element of the codomain Z. □

10.1.5 Equality of functions

equality of functions
for f : A → B and g : A → B, write f = g if f (a)= g(a) for all a ∈ A

Example 10.1.19 Seemingly different input-output rules can define the
same function. The functions f : R→R, f (x)= |x|, and g : R→R, g(x)=

p
x2, are

equal. □

10.1.6 Image of a function

image of a function
the set of all possible outputs of the function

f (A) the image of function f : A → B, so that

f (A)= { f (a) | a ∈ A }⊆ B

f (A)
A

a f (a)

f

B

Figure 10.1.20 A Venn diagram of the image of a function.

Warning 10.1.21 Codomain elements are not necessarily image elements.
We have stated before that a codomain in a function definition may be “larger”
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than necessary because we do not always know precisely what output elements a
given input-output rule will produce. Our idea of codomain is that it should at
least tell us what “type” of outputs will be produced, but not necessarily exactly
what outputs will be produced.

With our new concept of function image, we can now repeat this more
technically: a function image is always a subset of the codomain, but it
might be a proper subset.

How do we know if a codomain element is an image element? For
function f : A → B and codomain element b ∈ B, we have b ∈ f (A) if and only if
there exists a ∈ A such that b = f (a).

Worked Example 10.1.22 Verifying a function image description. Consider
f : R→ R, f (x) = x2. Prove f (R) = R≥0, where R≥0 is the set of nonnegative real
numbers.

Solution. Following the Test for Set Equality, we need to show both

f (R)⊆R≥0, f (R)⊇R≥0.

To be more explicit about the second set R≥0, we can write

R≥0 = { x ∈R | x ≥ 0 } .

Show f (R)⊆R≥0. Let y represent an arbitrary element of f (R). As an element of
the image of f , y is an output corresponding to some input. That is, there exists
some x ∈R such that

y= f (x)= x2.

Therefore, since square numbers are always positive, we have y≥ 0, and hence
y ∈R≥0.

Show f (R)⊇R≥0. Let y represent an arbitrary element of R≥0. To show y ∈ f (R),
we need to find x ∈R such that f (x)= y. Let x =py, which is defined since y ∈R≥0
implies y≥ 0. Then

f (x)= x2 = (
p

y)2 = y,

as desired. □

image of a function on a subset
the set of all outputs of a function when only fed inputs from a given
subset

f (A′) the image of the subset A′ ⊆ A under a function f : A → B, so that

f (A′)= {
f (a)

∣∣ a ∈ A′ }⊆ B

Example 10.1.23 We saw in Worked Example 10.1.22 that for f : R→R, f (x)= x2,
we have f (R)=R≥0. Now, the set of integers Z is a subset of the domain R, so we
can compute

f (Z)= {0,1,4,9,16, . . . ,n2, . . . }⊆R≥0.

□
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10.2 Properties of functions

surjective function
a function whose image is all of its codomain — that is, every element
of the codomain is an output for the function;

surjection
a surjective function

onto synonym for surjective
f : A ↠B function f is surjective

A function f : A → B is surjective if f (A) = B. Since we have f (A) ⊆ B by
definition of image, to show that a function is surjective we only need to show
f (A)⊇ B.

Test 10.2.1 Surjective function.

• Function f : A → B is surjective if B ⊆ f (A). That is, f is surjective if
for every element b ∈ B, there exists at least one element a ∈ A such that
f (a)= b.

• Function f : A → B is not surjective if there exists at least one element b ∈ B
for which there is no element a ∈ A satisfying f (a)= b. (Equivalently, there
exists b ∈ B for which every a ∈ A satisifes f (a) ̸= b.)

Worked Example 10.2.2 Show that, of the following functions, f is surjective
and g is not.

f : Z→N g : Z→Q

m 7→ |m| m 7→ m/2

Solution.

Show that f is surjective. Consider an arbitrary element n of the codomain N.
Since N ⊆ Z, n is also an element of the domain. In particular, f (n) = n, since
n ≥ 0. Therefore, as an element of the codomain, we have n ∈ f (Z).

Show that g is not surjective. We need to find a specific example of a rational
number that is not an output for g. For this, we could use 1/3, since there is no
integer such that m/2= 1/3. □

injective function
a function for which two different inputs never produce the same
output

injection an injective function
embedding

synonym for injection
one-to-one

synonym for injective
f : A ,→ B function f is injective

Test 10.2.3 Injective function.

• Function f : A → B is injective if the following conditional always holds for
elements a1,a2 ∈ A:
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if a1 ̸= a2 then f (a1) ̸= f (a2).

Alternatively, one can establish that the contrapositive of the above condi-
tional always holds for elements a1,a2 ∈ A:

if f (a1)= f (a2) then a1 = a2.

• Function f : A → B is not injective if there exists at least one pair of elements
a1,a2 ∈ A with a1 ̸= a2 but f (a1)= f (a2).

Example 10.2.4 Demonstrating that a function is not injective. The
function f : R→ R, f (x) = x2, is not injective, since f has repeated outputs. For
example, f (−1)= f (1). And in fact, f (−x)= f (x) for every x ∈R. □
Worked Example 10.2.5 Demonstrating that a function is injective. Verify
that the function f : N→N, f (n)= 2n+1, is injective.

Solution. Using the contrapositive version of the Injective Function Test, sup-
pose domain elements n1,n2 ∈N satisfy f (n1)= f (n2). Then using the formula
defining the input-output rule for f , we have

2n1 +1= 2n2 +1,

which reduces to n1 = n2. □
An injection f : A ,→ B gives us a way of thinking of A as a subset of B, by

considering f (A)⊆ B.

Example 10.2.6 Turning letters into numbers. Let Σ = {a, b, . . . , z}, and
define ϕ : Σ→N by the following table.

σ a b c · · · z
ϕ(σ) 1 2 3 · · · 26

Then f embeds Σ into N in a familiar way, and lets us think of letters as numbers.
□

bijective function
a function that is both injective and surjective

bijection an bijective function
one-to-one correspondence

synonym for bijection

Example 10.2.7 Function f : R→R, f (x)= x3 is bijective. □
A bijection f : A → B allows us to think of A and B as essentially the same

sets.

Example 10.2.8 Identifying letters with numbers. Consider again f : Σ→N

from Example 10.2.6. If we write B = f (Σ)= {1,2,3, . . . ,26}, then really we could
think of the function as being defined f : Σ→ B. This version of f is bijective,
and allows us to identify each letter with a corresponding number:

a ↔ 1, b ↔ 2, c ↔ 3, . . . , z ↔ 26.

In this way, we can think of Σ and B as essentially the same set. □
Worked Example 10.2.9 Recognizing bijections. Which of the following
functions are bijections?

f : Z→Z, g : Z→N, h : Z→Z,
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m 7→ 2m, m 7→ |m| , m 7→ −m.

Solution.

Is f bijective?. No, f is not bijective because it is not surjective. For example,
there is no m ∈Z such that f (m)= 1.

Is g bijective?. No, g is not bijective because it is not injective. For example,
g(−1)= g(1).

Is h bijective?. Yes, h is bijective. It is injective because if m1 ̸= m2 then
−m1 ̸= −m2. And it is surjective because for n ∈Z, we can realize n as an output
n = h(m) by setting m =−n. □

Checkpoint 10.2.10 Bijections of counting sets. For m ∈N write

N<m = { n ∈N | n < m }= {0, 1, . . . , m−1}.

Prove that there exists a bijection N<ℓ→N<m if and only if ℓ= m.

10.3 Important examples

identity function (on a set A)
the function A → A defined by a 7→ a

idA : A → A
the identity function on on set A

Note 10.3.1 An identity function is always a bijection.

inclusion function (on subset A ⊆ X )
the function A → X defined by a 7→ a

Check your understanding. Do you understand the difference between the
definitions of identity function and inclusion function?

ιXA : A → X the inclusion function on subset A ⊆ X

Note 10.3.2 An inclusion function is always an injection.

projection functions (on a Cartesian product A×B)
the functions A ×B → A and A ×B → B defined by (a,b) 7→ a and
(a,b) 7→ b

ρA : A×B → A
the projection function onto the first factor A in the Cartesian prod-
uct A×B

ρB : A×B → B
the projection function onto the second factor B in the Cartesian
product A×B

Example 10.3.3 Projection images. Consider ( 1
2 ,π) ∈Q×R. Then
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pQ
(

1
2

,π
)
= 1

2
, pR

(
1
2

,π
)
=π.

□

Extend. We may of course similarly define a projection function on a Cartesian
product with any number of factors. Write

ρ i : A1 × A2 ×·· ·× An → A i

to mean the projection function onto the ith factor A i in the Cartesian product

A1 × A2 ×·· ·× An.

Alternatively, we may write

proji : A1 × A2 ×·· ·× An → A i

for this function.

Note 10.3.4 A projection is always surjective (except possibly when one or more
of the factors in the Cartesian product is the empty set).

restricting the domain
the “induced” function A → Y created from function f : X → Y and
subset A ⊆ X by “forgetting” about all elements of X that do not lie
in A

f |A restriction of function f : X →Y to subset A ⊆ X
f |A alternative domain restriction notation

resX
A f alternative domain restriction notation

X

A

a
x

Y

f (a)
f |A

f (x)

f

Figure 10.3.5 A Venn diagram of restricting the domain of a function.

Example 10.3.6 Domain restriction. For f : Z→ N, f (m) = |m|, we have
f |N = idN. □

Checkpoint 10.3.7 Properties of restrictions. Consider function f : X →Y
and subset A ⊆ X .

1. If f is injective, is f |A injective?

2. If f |A is injective, must f be injective?

3. Answer the previous two questions replacing “injective” with “surjective”.
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Remark 10.3.8 The concept of restricting the domain makes our previously
defined concept image of a function on a subset unnecessary: for function
f : X →Y and subset A ⊆ X , the image of f on A is the same as the image of the
restriction f |A .

restricting the codomain
the “induced” function X → B created from function f : X → Y and
subset B ⊆Y by “forgetting” about all elements of Y that do not lie
in B, where B must contain the image of f

X Y
B

f (X )

x f (x)

f

Figure 10.3.9 A Venn diagram of restricting the codomain of a function.

Example 10.3.10 Codomain restriction. Consider f : R→ R, f (x) = x2. It
would be more precise to write f : R→R≥0, since x2 ≥ 0 for all x ∈R. □

Note 10.3.11 If we restrict the codomain all the way down to the image set f (X ),
the resulting map f : X → f (X ) is always surjective. In particular, if f : X ,→Y is
injective, then by restricting the codomain we can obtain a bijection f : X → f (X ).

extension of a function
relative to function f : A → B and superset X ⊇ A, a function g : X →
B so that g(a)= f (a) for all a ∈ A

X

A

B

a
f (a)= g(a)

f

x
g(x)

g

Figure 10.3.12 A Venn diagram of a function extension.

Note 10.3.13 The condition defining the concept extension function can be
more succinctly stated as requiring function g : X → B with A ⊆ X satisfy g|A = f .

Example 10.3.14 Floor function. Write flr: R→Z to mean the floor function:
for real input x, the output flr(x) is defined to be the greatest integer that is less
than or equal to x. Usually we write

flr(x)= ⌊x⌋.

As every integer is less than or equal to itself, we have flr(z)= z for every z ∈Z.
This says that the floor function is an extension of the identity function idZ. □

One of the most common ways to extend a function to a larger domain is to
pick an appropriate constant value in the codomain to assign to all “new” inputs
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in the enlarged domain.

extenstion by zero
relative to function f : A → Z and superset X ⊇ A, where Z is a
set of “numbers” containing a zero element, the extension function
g : X → Z defined by

g(x)=
{

f (x), x ∈ X ,

0, otherwise.

Example 10.3.15 Extending the identity function by zero. Define ĩdZ : R→
Z by

ĩdZ(x)=
{

x, x ∈Z,

0, otherwise.

Then ĩdZ is the extension by zero of the identity function idZ.

Compare. Example 10.3.14 also involved an extension of the identity function
idZ — was it an extension by zero?

□

10.4 Composition of functions

composition function
a function A → C created from given functions f : A → B and g : B →
C by a 7→ g

(
f (a)

)

g ◦ f the composition of functions f : A → B and g : B → C, so that g ◦
f : A → C by (g ◦ f )(a)= g

(
f (a)

)

CBA

a f (a) g
(
f (a)

)f g

g ◦ f

Figure 10.4.1 A Venn diagram of a function composition.

Example 10.4.2 A composition of two functions. Consider the functions

f : R→R≥0, g : R≥0 →R≥0,

x 7→ x2, x 7→p
x,

Then we have

g ◦ f : R→R≥0,

x 7→
√

x2 = |x| .

□
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Warning 10.4.3 Composition order matters. The notation for the composition
of functions f and g involves a reversal of order, so that we write g ◦ f . This is so
that when we use this notation with input-output notation (g◦ f )(a), the notation
reminds us that f must first be applied to the input a, and then g is applied to
the result f (a).

In general, f ◦ g ̸= g ◦ f . Usually, one of the two is not even defined, because
domains and codomains of f and g will not necessarily match up in both orders.
And when both are defined, the two different orders of composition usually have
different domains and codomains.

Example 10.4.4 Comparing composition order. Consider functions

f : N→N, g : N→N,

n 7→ n2, n 7→ n+1.

Then, both f ◦ g : N→N and g ◦ f : N→N are defined. But they are not equal, as

( f ◦ g)(n)= (n+1)2 = n2 +2n+1, (g ◦ f )(n)= n2 +1.

□
Example 10.4.5 An undefined composition. Consider functions

sqrt: N→R, flr: R→Z,

n 7→p
n, x 7→ ⌊x⌋.

(See Example 10.3.14 for a description of the flr function.)
Then, flr◦sqrt: N→Z is defined, with

(flr◦sqrt)(n)= ⌊pn⌋.

But sqrt◦flr is not defined, as the codomain of flr does not match the domain of
sqrt. In particular, flr will sometimes return a negative output, and we cannot
use such an output as an input in sqrt. □
Checkpoint 10.4.6 Properties of compositions. Consider functions f : A → B
and g : B → C.

1. If g ◦ f is injective, are either or both of f , g necessarily injective?

2. Answer the same question as above with “injective” replaced by “surjective”.

3. Demonstrate that if both f and g are bijective, then the composition g ◦ f
is also bijective.

Of course, we can compose any number of functions.

Example 10.4.7 A composition of three functions. Let us reconsider the
function defined by algorithm in Example 10.1.5. As the function description
involved a multi-step algorithm, we should be able to break the steps involved
into their own functions, then recreate the original functions as a composition.

First, define abs: P (Z)→P (N) by

abs(X )= { |x| | x ∈ X } .

Next, define min: P (N)→N so that min(X ) outputs the minimum number in
input set X , and outputs 0 in case X =∅.

Finally, define f : N→N by f (n)= 2n+1.
Each of these functions represents one step in the algorithm defining the

function in Example 10.1.5, but to recreate that function we need to compose the
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functions in the correct order: write ϕ= f ◦min◦abs, so that

ϕ(X )= 2min
(
abs(X )

)+1

computes the same result for an input set X as the algorithm described in
Example 10.1.5. □

10.5 Inverses

Suppose f : A → B is a function. By definition, f associates an element of B to
each element of A. Sometimes we want to reverse this process: given an element
b ∈ B, can we determine an element a ∈ A such that f (a) = b? We’ll begin to
answer this question by first finding all possible “reverse results” from elements
in subsets of B.

inverse image (of a subset C of the codomain B)
the set of all domain elements a ∈ A for function f : A → B for which
the corresponding output element f (a) lies in the subset C of the
codomain

f −1 (C) the inverse image of the subset C ⊆ B under the function f : A → B,
so that

f −1 (C)= { a ∈ A | f (a) ∈ C }

A B

f −1(C) C

a f (a)

f

a′ f (a′)

f

Figure 10.5.1 A Venn diagram of a function inverse image.

Idea 10.5.2 As in the figure above, f −1 (C) collects together all those elements of
A whose images under f land inside C.

Example 10.5.3 Some inverse images under sine. Consider f : R → R,
f (x)= sin x.

Then
f −1(

{−1,0,1}
)=

{ mπ

2

∣∣∣ m ∈Z
}

because
sin

( mπ

2

)

will equal 0 when m is even and will equal 1 or −1 when m is odd, and no other
input values will produce outputs of 0, 1, or −1.

However,
f −1(

{ y ∈R | y> 1 }
)=∅

because there are no input values for sine that will produce an output value
greater than 1. □

Now let’s return to the question of trying to reverse an input-output relation-
ship f (a) = b: the set f −1(

{b}
)

collects together all possible candidates for the
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inverse image of b.

inverse image (of an element b of the codomain B)
the inverse image f −1(

{b}
)
, which consists of all domain elements

a ∈ A for which f (a)= b

f −1 (b) simplified notation to mean the inverse image of element b

This gives us a way to associate to an element b ∈ B a set f −1 (b) of elements
of A.

Question 10.5.4 When does this association b 7→ f −1 (b) give us a function
f −1 : B → A?

There are two possible ways that this will fail to give us a function.

1. Suppose there is an element b ∈ B such that the set f −1 (b) contains (at
least) two distinct elements a1,a2. Then in general there is no way to
choose between f −1 (b)= a1 and f −1 (b)= a2. Therefore, if f is not injective,
the function f −1 : B → A is not well-defined.

2. Suppose there is an element b ∈ B such that f −1 (b)=∅. Then there is no
element of A which we can assign to f −1 (b). Therefore, if f is not surjective,
the function f −1 : B → A is undefined on some elements of B.

So it seems we will need a function to be bijective in order to be able to reverse
the input-output rule to obtain an inverse function.

inverse function
for a bijective function f , the inverse function associates to each
codomain element of f the corresponding unique domain element
that produces it through f

f −1 the inverse function f −1 : B → A for bijective function f : A → B, so
that for b ∈ B we have f −1 (()b) defined to be the unique element
a ∈ A such that f (a)= b

Example 10.5.5 An invertible single-variable, real-valued function. The
function f : R→R, f (x)= x3, is bijective and has inverse f −1(x)= x

1
3 . □

Example 10.5.6 Inverting a numerical encoding of the alphabet. Re-
turning again to the bijection ϕ : Σ → B encountered in Example 10.2.6 and
Example 10.2.8, where

Σ= {a, b, . . . , z}, B = {1,2, . . . ,26},

the inverse function ϕ−1 : B → Σ associates to each number 1 ≤ b ≤ 26 the cor-
responding letter at that position of the alphabet. For example, ϕ−1(11) = k.

□
Example 10.5.7 A non-invertible function. The function g : R→R, g(x)= x2,
does not have an inverse since it is not bijective. However, the function h : R≥0 →
R≥0, h(x) = x2, so that h = g|R≥0 but with codomain also restricted down to the
image of g, has inverse h−1(x)=p

x. □

Note 10.5.8 If f is bijective, then so is f −1, and f −1 is the unique function B → A
such that both

f −1 ◦ f = idA , f ◦ f −1 = idB .
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Checkpoint 10.5.9 Prove that if f is bijective then so is f −1, and ( f −1)−1 = f .

10.6 Activities

Activity 10.1 Suppose n is a fixed but unknown positive integer, and let D : R→
Rn represent the function defined by D(x)= (x, x, . . . , x).

Write a set definition in Candidate-condition notation for the image set D(R).
Then do the same for the graph ∆(D).

Activity 10.2

(a) Devise an example of a function N→N that is bijective.

(b) Devise an example of a function N→N that is injective but not surjective.

(c) Devise an example of a function N→N that is surjective but not injective.

Note that when you define a function, you don’t necessarily have to give an
input-output formula — you can also use a table of input-output values or just a
description in words (i.e. an algorithm) of how an output is to be produced from
an input.

Activity 10.3 For each function f : A → B defined below, carry out the following.

(i) Decide whether the function is injective. Use the Injective Function Test to
verify your answer.

(ii) Determine some pattern that all elements of the image f (B) have in com-
mon. That is, if you were handed an arbitrary element of the codomain B,
describe what property or properties you would use to determine whether
it was in the subset f (A)⊆ B.

(iii) Decide whether the function is surjective. Use the Surjective Function Test
to verify your answer.

(a) Σ= {0,1}, c : Σ∗ →Σ∗ is the bitwise complement function: for input word
w, the output word c(w) is the word of the same length as w but with a 0
at every position that w has a 1, and a 1 at every position that w has a 0.

(b) f : R→R×R, f (x)= (x+1, x−1).

(c) A =P (N)∖ {∅}, m : A →N, m(X )= the smallest number in X .

Activity 10.4 Consider Σ = {0,1}, and recall that for n ∈ N, Σ∗
n is the subset

of Σ∗ consisting of all words from the alphabet Σ with length n. Suppose A =
{a1,a2, . . . ,an} is a set with n distinct elements. Construct a bijection P (A)→Σ∗

n.
When attempting this activity, remember that when you define a function

you don’t necessarily have to give an input-output formula — you can also use a
description in words (i.e. an algorithm) of how an output is to be produced from
an input.

Activity 10.5 Suppose A is a set that definitely does not contain any cats, and
let

f : P (A)→P (A∪ {Grumpy Cat})

represent the function defined by

f (X )= X ∪ {Grumpy Cat}.

(a) Verify that f is injective.
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(b) Verify that f is not surjective.

(c) Describe specifically how to make f bijective by restricting the codomain.

(d) As all bijective functions are invertible, the bijective version of f from
Task c has an inverse f −1. Describe this inverse by specifying its

(i) domain,

(ii) codomain, and

(iii) input-output rule.

Activity 10.6 Let ℓ : Σ∗ → N represent the length function, using alphabet is
Σ= {α,ω}.

(a) Compute ℓ
(
ℓ−1 (B)

)
for B = {1,10,100}.

(b) How many elements are there in ℓ−1(
ℓ(A)

)
for A = {αα,αω,ωωαω}?

Activity 10.7 Suppose f : A → B is a function, and B1,B2 are subsets of B.

(a) Draw a Venn diagram illustrating that

f −1 (B1 ∩B2)= f −1 (B1)∩ f −1 (B2) .

Include all of the sets

A, B, B1, B2, B1 ∩B2, f −1 (B1) , f −1 (B2) ,

f −1 (B1)∩ f −1 (B2) , and f −1 (B1 ∩B2)

in your diagram.

(b) Formally prove that f −1 (B1 ∩B2)= f −1 (B1)∩ f −1B2, using the Test for Set
Equality.

Activity 10.8 (Note: The parts of this question are independent of one another.)
Suppose f : A → B and g : B → C are functions.

(a) Argue that if f and g are both surjective, then so is g ◦ f .

(b) If g ◦ f is surjective, must g be? Must f be?

(c) Argue that if f and g are both injective, then so is g ◦ f .

(d) If g ◦ f is injective, must g be? Must f be?

10.7 Exercises

1. Use predicate logic to write formal definitions of surjective function,
injective function, and bijective function. Be sure to state the domains
of your free variables.

2. Let A represent the set of all university students and let C be the set of all
university courses. Does the rule f : A → C given by

f (a)= c if student is registered in course

define a function? Justify your answer.

Testing bijectivity and determining inverses. In each of Exercises 3–7,
determine whether or not the described function is a bijection. For those functions
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that are bijective, describe the inverse function; that is, specify the inverse
function’s

(i) domain,

(ii) codomain, and

(iii) input-output rule.
3. Λ= {T, F}, n : Λ→Λ is the logical negation function n(p)=¬p.
4. L represents the set of all possible logical statements, N : L→L is the

logical negation function N(A)=¬A for A a logical statement.
(Note: You may treat equivalent statements as being the same

statement.)
5. N : Z→Z is the numerical negation function N(n)=−n.
6. Σ= {0,1}, Σ∗ represents the set of all binary words, c : Σ∗ → Σ∗ is the

bitwise complement function defined by: if w is a binary word, let c(w)
be a binary word of the same length but with a 0 at every position
that w has a 1, and a 1 at every position that w has a 0. For example,
c(010)= 101 and c(0000)= 1111.

7. U represents a universal set, C : P (U)→P (U) is the complement func-
tion C(A)= Ac, for A ⊆U .

8. Let E ⊆ Z represent the set of even integers, and consider the function
f : Z→ E, f (n)= 2n.

(a) Prove that f is a bijection.

(b) Describe the inverse function f −1 : E →Z. That is, describe the rule
to determine f −1(n), given even number n.

9. As usual, Rm =R×R×·· ·×R represents the Cartesian product of m copies of
R, where m is a positive integer. Consider the function D : R→Rm defined
by D(x)= (x, x, . . . , x).

Terminology. The function D in this exercise is called a diagonal embed-
ding. We can define a similar diagonal embedding D : A ,→ Am for every
nonempty set A.

(a) Prove that D embeds R into Rm.

(b) Fill in the right-hand side of the set definition in Candidate-condition
notation for the image of D below.

D(R)=
{

(x1, x2, . . . , xm) ∈Rm
∣∣∣

}

(c) Provide a set definition for the graph ∆(D) in Form-parameter nota-
tion. Of what set is ∆(D) a subset?

(d) Can you come up with other “natural” embeddings R ,→Rm?
10. Let A = {0,1,2,3,4,5,6,7,8,9} and let P ⊆ P (A) represent the set of all

subsets of A which contain an odd number of elements. Define ν : P → A by
setting ν(X ) to be the “middle” element of X when the elements of X are
listed in order by size. For example, ν({0,8,9})= 8.

Is ν injective? Surjective? Bijective?
11. Let Σ= {0,1}. Recall that for n ∈N, Σ∗

n is the subset of Σ∗ consisting of all
binary words of length n.

Suppose A = {a1,a2, . . . ,an} is a set with n (distinct) elements. Construct
a bijection P (A)→Σ∗

n.
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12. Call a function with domain ∅ an empty function.

(a) Verify that every empty function is injective.

Hint. Use your formal expression of injective from Exercise 10.7.1,
along with what you learned in Section 4.3.

(b) Verify that an empty function with empty codomain is bijective.

Hint. You have already verified injectivity of an empty function
more generally in Task a. For surjectivity in this more specific setting,
use your formal expression of surjective from Exercise 10.7.1, along
with what you learned in Section 4.3.

13.

(a) Prove that if f and g are both surjective, then g ◦ f is surjective.

(b) If g ◦ f is surjective, must either or both of f , g necessarily be surjec-
tive? Justify your answers.

(c) Prove that if f and g are both injective, then g ◦ f is injective.

(d) If g◦ f is injective, must either or both of f , g necessarily be injective?
Justify your answers.

(e) Task a and Task c together prove that if f and g are both bijective,
then g ◦ f is bijective.

Prove that (g ◦ f )−1 = f −1 ◦ g−1. (See the definition of equality of
functions.)

14.

(a) Prove that f is a bijection.

(b) Prove that g = f −1.

Function image sets and inverse image sets. In each of Exercises 15–18,
consider abstract function f : A → B and subsets A1, A2 ⊆ A, B1,B2 ⊆ B.

15.

(a) Draw a Venn diagram illustrating that A1 ⊆ f −1(
f (A1)

)
.

Include all of the sets

A, B, A1, f (A1), and f −1(
f (A1)

)

in your diagram.

(b) Formally prove that A1 ⊆ f −1(
f (A1)

)
, using the Subset Test.

(c) Devise an explicit example where A1 ⫋ f −1(
f (A1)

)
.

16.

(a) Draw a diagram illustrating that f
(
f −1(B1)

)⊆ B1.

Include all of the sets

A, B, B1, f −1(B1), and f
(
f −1(B1)

)

in your diagram.

(b) Formally prove that f
(
f −1(B1)

)⊆ B1, using the Subset Test.

(c) Devise an explicit example where f
(
f −1(B1)

)
⫋B1.
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17.

(a) Draw a diagram illustrating that f (A1 ∩ A2)⊆ f (A1)∩ f (A2).

Include all of the sets

A, B, A1, A2, A1 ∩ A2, f (A1), f (A2),

f (A1)∩ f (A2), and f (A1 ∩ A2)

in your diagram.

(b) Formally prove that f (A1 ∩ A2)⊆ f (A1)∩ f (A2), using the Subset
Test.

(c) Devise an explicit example where f (A1 ∩ A2)⫋ f (A1)∩ f (A2).

18.

(a) Draw a diagram illustrating that

f −1 (B1 ∩B2)= f −1 (B1)∩ f −1 (B2) .

Include all of the sets

A, B, B1, B2, B1 ∩B2, f −1 (B1) , f −1 (B2) ,

f −1 (B1)∩ f −1 (B2) , and f −1 (B1 ∩B2)

in your diagram.

(b) Formally prove that f −1 (B1 ∩B2)= f −1 (B1)∩ f −1 (B2), using the
Test for Set Equality.

19. Suppose f : A → B is an injection. Use f to devise an injection F : P (A) ,→
P (B). Be sure to verify that your proposed function F is injective. If f is
bijective, will F also be bijective?





CHAPTER 11

Recurrence and induction

11.1 Sequences

counting set
the set

N<m = { n ∈N | n < m }= {0, 1, . . . , m−1}

The set N<m has exactly m elements in it. In Chapter 12 we will use these
counting sets to, well, count the elements in other sets. For now, we will use
them to index the objects in an ordered list.

finite sequence (from a set A)
a function N<m → A

infinite sequence (from a set A)
a function N→ A

term in a sequence
one of the image elements of the function defining the sequence

ak the kth term in a sequence, so that if f : N<m → A or f : N→ A is a
sequence then ak = f (k)

{ak} the collection of all terms in a sequence
{ak}m

0 the collection of the terms in a sequence up to (and including) the
mth term (if the sequence is finite, this could represent all terms in
the sequence for the appropriate m value)

{ak}∞0 the collection of all terms in a sequence, where we are explicit that it
is an infinite sequence

Remark 11.1.1

• Of course, we do not restrict ourselves to the letter a to represent the terms
of a sequence. We might write bk, or sk, etc..

• While we use set-like notation {} to represent the collection of all terms in
a sequence, this collection is not a set, since order and repetition matter.

Example 11.1.2 Sequence of squares. The sequence {k2} has terms 0, 1, 4, 9, 16, 25, . . . , k2, . . ..
□

Example 11.1.3 Sequence of definite integral values. The sequence
{

(−1)k
∫ k+1

1

dx
x

}

115
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has terms 0, − ln2, ln3, − ln4, . . . , (−1)k ln(k+1), . . .. □

11.2 Recurrence relations

recursively-defined sequence
a sequence {ak} from a set A, where a0,a1, . . . ,aK−1 are defined ex-
plicitly, and for k ≥ K , the term ak is defined in terms of some (or all)
of the previous terms in the sequence a0, a1, . . . , ak−1

recurrence relation
for a recursively-defined sequence, the formula that defines the
general term ak recursively in the previous terms a0, a1, . . . , ak−1

Example 11.2.1 A bouncing ball. A ball is dropped from a height of 100 cm.
On each bounce, it returns to 75% of its previous height.

Let hk be the height in centimetres after the kth bounce. Then h0 = 100 and
the recurrence relation is

hk = 3hk−1

4
, k ≥ 1.

The terms of the sequence are

100, 75, 56.25, 42.1875, . . . .

□

Example 11.2.2 Factorial. Set a0 = 1, and let ak = kak−1 for k ≥ 1. Then the
terms of the sequence are

1, 1, 2, 6, 24, 120, . . . .

□

Example 11.2.3 Fibonacci sequence. The sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

can be defined recursively by a0 = 0, a1 = 1, and

ak = ak−1 +ak−2, k ≥ 2.

□

Example 11.2.4 A sequence of sets. Define a sequence {Ak} from P (N)
recursively as follows. Let A0 =∅, and take the recurrence relation to be

Ak = Ak−1 ∪ {k}, k ≥ 1.

Then the terms of the sequence are

∅, {1}, {1,2}, {1,2,3}, . . . , {1,2, . . . ,k}, . . . .

□
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11.3 Solving through iteration

Given a recursively defined sequence {ak}, we can “unravel” the recursive defini-
tion to determine an explicit formula for the general term ak which involves only
the index k.

Worked Example 11.3.1 Solve the recurrence relation from Example 11.2.1.

Solution. The sequence in the example was defined recursively by h0 = 100
and

hk = 3
4

hk−1, k ≥ 1.

We can apply this formula to every term in the sequence, except for the first,
using the pattern “each term is three-quarters of the previous term.” That is,

hk = 3
4

hk−1, hk−1 =
3
4

hk−2, hk−2 =
3
4

hk−3, . . . .

Therefore, for k ≥ 1, we can calculate

hk = 3
4

hk−1

= 3
4

(
3
4

hk−2

)
=

(
3
4

)2
hk−2

=
(

3
4

)2 (
3
4

hk−3

)
=

(
3
4

)3
hk−3

...

=
(

3
4

)k
h0 =

(
3
4

)k
(100).

(Note that this formula is also valid for k = 0.)
We can verify our formula by substituting it into the original recurrence

relation:

RHS= 3
4

hk−1 =
3
4

(
3
4

)k−1
h0 =

(
3
4

)k
h0 = hk =LHS.

We could also prove our formula is correct by induction. □
Worked Example 11.3.2 Solve the recurrence relation ak = rak−1 for k ≥ 1,
where r is a constant and the first term a0 is arbitrarily chosen.

Compare. This example generalizes the previous example.

Solution. Through iteration, we obtain

ak = rak−1 = r(rak−2)= r
(
r(ran−3)

)= ·· · = rka0.

□
Worked Example 11.3.3 Solve the recurrence relation from Example 11.2.2.
Solution. The sequence in the example was defined recursively by a0 = 1 and

ak = kak−1, k ≥ 1.

Therefore, for k ≥ 1, we have

ak = kak−1

= k
(
(k−1)ak−2

)
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= k
(
(k−1)

(
(k−2)ak−3

))

...

= k(k−1)(k−2) · · ·(k− (k−1)
)
ak−k.

Simplifying this last expression leads to

ak = k(k−1)(k−2) · · ·1 ·a0 = k!.

Note that the formula ak = k! is also valid for k = 0 when we adopt the convention
0!= 1. □

Checkpoint 11.3.4 Verify that the formula in the solution to the above worked
example satisfies the recurrence relation.

Worked Example 11.3.5 Solve the recurrence relation a0 = 1, a1 = 1
2 , and

ak = k
2(k−1)

ak−1, k ≥ 2.

Solution. Iterating, we obtain

ak = k
2(k−1)

ak−1

= k
2(k−1)

(
k−1

2(k−2)
ak−2

)
= k

22(k−2)
ak−2

= k
22(k−2)

(
k−2

2(k−3)
ak−3

)
= k

23(k−3)
ak−3

...

= k
2k−1

(
k− (k−1)

) ak−(k−1).

Simplifying this last expression, we obtain

ak = k
2k−1 a1 =

k
2k .

□

11.4 Inductive definitions

We can use the idea of recursive definitions in a more general manner.

inductive definition
a method of defining a collection of objects, where each object in the
collection can be constructed from objects assumed or already known
to exist in the collection

base clause
a statement specifying some specific initial objects that belong to the
inductively-defined set

inductive clause
a statement describing a means to determine new objects in the
inductively-defined set from those already known to belong
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limiting clause
a declaration that no objects belong to the inductively-defined set
unless obtained from a finite number of applications of the base and
inductive clauses

Example 11.4.1 Set of all possible logical statements. Let us define a set L
with the following inductive definition.

Base clause. For every m ∈N, the statement variable pm belongs to L.

Inductive clause. Given statements A,B ∈L, the statements

¬A, A∧B, A∨B, A → B, A ↔ B

are also elements of L.

Limiting clause. The set L does not contain any elements except those that can
be obtained from a finite number of applications of the base and inductive clauses.
For example, the logical statement ¬p2 ∧ (p1 → p2) is in L by the following
construction.

p1, p2 ∈L ⇒ ¬p2 ∈L, p1 → p2 ∈L ⇒ ¬p2 ∧ (p1 → p2) ∈L

□
Example 11.4.2 Set-theoretic construction of the natural numbers. We
assume that an empty set ∅ exists. Let us define a set N inductively.

Base clause. The empty set ∅ is an element of N.

Inductive clause. If X is an element of N and X itself is a set, then the set
X+ = X ∪ {X } is also an element of N.

Limiting clause. The set N does not contain any other elements except those that
can be obtained from a finite number of applications of the base and inductive
clauses. Note that the three clauses together imply that every element of N must
be a set, so the “and X itself is a set” part of the inductive clause is superfluous.

Since the base clause involves a single initial element of N and the inductive
clause produces one new element of N from a single old element of N, we can
explicitly carry out the construction step-by-step. We now define the natural
numbers to be the elements in this construction:

0=∅,

1= 0+ = 0∪ {0}=∅∪ {0}= {0} ̸= 0,

2= 1+ = 1∪ {1}= {0}∪ {1}= {0,1} ̸= 0,1,

3= 2+ = 2∪ {2}= {0,1}∪ {2}= {0,1,2} ̸= 0,1,2
...

We usually write N for this set instead of N.
Note that the number of elements in each natural number (as a set) is equal

to the number defined by that set, and that each natural number m is defined to
be the set that we have previously called N<m. □

Bonus. In Example 11.4.2 above, we constructed the set N inductively using
only the axioms of set theory. But how do we do arithmetic with this definition?
We can define addition as an infinite collection of inductively-defined functions:
for each m ∈N, define a “sum with m” function sm : N→N as follows.
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Base clause. Set sm(0)= m.

Inductive clause. For n ∈N such that sm(n) is already defined, set

sm(n+)= sm(n)+ = sm(n)∪ {sm(n)}.

That is, if sm(n) is defined and n+ is the next natural number after n in the
inductive definition of N, then define sm(n+) to be the next natural number after
sm(n). We then use the symbols m+n to mean sm(n). In this notation, you can
think of the inductive clause above as saying that once m+n is defined, we can
define m+ (n+1) as (m+n)+1.

If you are bored on a Friday or Saturday night, you can try the following
using the above definition of addition in N.

Checkpoint 11.4.3

1. Prove that addition in N is:

(a) commutative: m+n = n+m, i.e. sm(n)= sn(m) for all m,n ∈N; and

(b) associative: (m+n)+ℓ= m+ (n+ℓ), i.e. ssm(n)(ℓ)= sm
(
sn(ℓ)

)
, for all

m,n,ℓ ∈N.

2. Use the idea that every positive integer should have a negative to define
Z as a subset of the Cartesian product N×N. Then define addition and
subtraction in Z.

Hint. To define Z, first choose an appropriate one-to-one function embedding N
into N×N in such a way that will then allow you to attach an additional second
piece of information to each natural number (namely, a designator of the sign of
the number).

11.5 Activities

Activity 11.1 Develop an inductive definition of the set of words Σ∗ from the
alphabet Σ= {a,b,c}.

Then verify that the word ccababb is in the set by tracing it back to the base
clause.

Hint. Steps:
(i) Think of a simple way to form new words from old (inductive clause).

(ii) Then think about the basic words you need to get the process started (base
clause).

(iii) Finally, decide whether you are certain you can form every possible word in
a finite number steps starting at some base word.

Activity 11.2 Let Σ= {a,z}. Write an inductive definition for the set of words in
Σ∗ that have the same number of a letters as z letters.

11.6 Exercises

1. Compute each of the terms s2, s3, s4, s5, s6 for the sequence defined recur-
sively by

sn =
√

s2
n−2 + s2

n−1, n ≥ 2,

with initial terms s0 = 3 and s1 = 4.
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Solving by iteration. In each of Exercises 2–8, use iteration to determine an
expression for the nth term of the sequence as a formula in n (and the initial
term(s) of the sequence, if necessary).

In some of these, you may find the following formulas useful.

1+2+3+·· ·+m = m(m+1)
2

12 +22 +32 +·· ·+m2 = m(m+1)(2m+1)
6

r0 + r1 + r2 +·· ·+ rm−1 = rm −1
r−1

, r ̸= 0,1

2. an = 2nan−1, a0 = 1. 3. an = (2n−1)an−1, a0 = 1.

4. an = an−1 +3n−1, a0 = 1. 5. an = an−1 +n−1, a0 = 1.

6. an = an−1 +n+n2, a0 = 1. 7. an = f (an−1), where f (x) is the
linear function f (x)= mx+b
for some fixed constants m,b,
and with arbitrary initial term
a0.

8. an = 4an−2, n ≥ 2, a0 = 1,
a1 = 2.

Hint. Treat the cases n even
and n odd separately.

9. Fibonacci numbers are those that appear in the sequence defined recur-
sively by

an = an−1 +an−2, n ≥ 2,

for some choice of initial terms a0,a1.

See. Example 11.2.3.

Using initial terms a0 = a1 = 1, use mathematical induction to prove
that every Fibonacci number an satisfies an < 2n (except, of course, for a0.

10. You are attempting to predict population dynamics on a yearly basis.
Suppose a population increases by a factor of i each year. That is, if we

set p = 100i, then the population increases by p percent. (Careful: This
is a description of the increase in population, not the total population. For
example, i = 1 means that the population doubles.)

(a) Write down a recurrence relation that expresses the population Pn in
the nth year relative to the previous year.

(b) Use iteration to determine an expression for the population in the nth

year as a formula in n, i, and the initial population P0.

(c) Suppose that on top of the natural population increase of i percent
per year, immigration increases the population by fixed amount A
people annually. Design a new recurrence relation for Pn, and use
iteration to determine an expression for the population in the nth year
as a formula in n, i, A, and the initial population P0.

11. Explicitly describe how to construct the following logical statement in a
finite number of steps using the inductive definition for L, the set of all
possible logical statements, given in Example 11.4.1.

(p1 ∧ p2)→ (
(¬p3 ∨ p1)↔ (p3 ∧¬p2)

)
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12. The set C of constructible numbers can be defined inductively as follows.

Base clause. Assume 1 ∈C.

Inductive clauses.

(i) Whenever a,b ∈C, then so are

a+b, ab, a/b,
p

a.

(ii) Whenever a,b ∈C with a > b, then a−b is also in C.

Limiting clause. The set C contains no elements other than those that
can be obtained through a finite number of applications of the base and/
or inductive clauses. Explicitly verify, by listing each application of the
relevant clauses, that the roots of the polynomial 2x2 − 3x+ 7

8 are both
constructible numbers.

13. Consider the following inductively defined set A ⊆N.

Base clause. Assume 32879 ∈ A.

Inductive clauses.

(i) When a is an element of A, then each of the prime factors of a is also
an element of A.

(ii) Whenever prime p is an element of A, then p+1 is also an element of
A.

Limiting clause. The set A contains no elements other than those that
can be obtained through a finite number of applications of the base and/or
inductive clauses. Determine all elements of A.

Hint. To help with this question, you may wish to search for “list of small
primes” on the internet.

14. Devise an algorithm that will produce an answer to the following question
in a finite number of applications of the inductive clause that we used to
define the natural numbers in Example 11.4.2.

Given m,n ∈N with m ̸= n, is m > n or is n > m ?



CHAPTER 12

Cardinality

In this chapter we will discuss how to measure and compare “sizes” of sets using
bijections.

12.1 Finite sets

Recall. For m ∈N we have defined the counting set

N<m = { n ∈N | n < m }= {0, 1, . . . , m−1}.

Clearly, N<m contains exactly m elements. In fact, we have defined the
number m to be the set N<m. (See Example 11.4.2.)

As the terminology implies, we will use these sets to count the elements of
other sets. In particular, given a set A, if we can match up the elements of A with
the elements of N<m, one for one, then A must also contain exactly m elements.

finite set a set A for which there exists a bijection N<m → A for some m ∈N,
m > 0

Fact 12.1.1 Uniqueness of counting number. For finite set A there exists one
unique natural number m for which a bijection N<m → A exists.

Remark 12.1.2 Suppose A is finite. While there is only one number m for which
a bijection N<m → A exists, there can be many such bijections, and the number
of bijections increases as m increases.

Checkpoint 12.1.3 Prove Fact 12.1.1.

cardinality (of a finite set A)
the unique natural number m for which a bijection N<m → A exists

|A| the cardinality of the finite set A
card A alternative notation for the cardinality of the finite set A
#{. . . } alternative notation for the cardinality of the set defined by {. . . }

Example 12.1.4 For Σ= {a, b, . . . , z}, we have |Σ| = 26. Below are two example
bijections ϕ,ψ : N<26 →Σ that verify this cardinality number.

123
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σ 0 1 2 3 · · · 24 25
ϕ(σ) a b c d · · · y z
ψ(σ) a z b y · · · m n

Figure 12.1.5 Bijections ϕ,ψ : N<26 →Σ defined by a table of values.

□

Cardinality of an empty set. What about the empty set? Clearly we should
have |∅| = 0. But is this consistent with our definition of cardinality?

empty function
a function with domain ∅

If we accept the existence of an empty function ∅→ X for every set X , then
the properties of such functions that we need in order to establish |∅| = 0 will be
vacuously true.

Proposition 12.1.6 Properties of empty functions.

1. For every set X , an empty function ∅→ X is injective.

2. An empty function ∅→∅ is a bijection.

Proof. You were asked to verify these statements in Exercise 10.7.12. ■
Corollary 12.1.7 The cardinality of the empty set is 0.

Proof. We are required to demonstrate an example of a bijection N<0 →∅. But

N<0 = { n ∈N | n < 0 }=∅,

so Statement 2 of Proposition 12.1.6 tells that the empty function N<0 →∅ is
indeed a bijection. ■

12.2 Properties of finite sets and their cardinality

12.2.1 Finite sets versus finite sequences
Recall that a function f : N<n → A defines a finite sequence of elements from
the set A, by setting

a0 = f (0), a1 = f (1), a2 = f (2), . . . , an−1 = f (n−1).

If A is finite, then there exists such a function f that is bijective, which leads to
the following.

Fact 12.2.1 Characterization of finiteness using sequences. A set A is
finite if and only if there exists a finite sequence from A in which each element of
A appears exactly once.

Remark 12.2.2

1. The above fact makes an important connection between functions and
counting. If A is a finite set, f : N<n → A is a corresponding bijection, and
we create sequence {ak}m

k=0 with ak = f (k) as above, then we are able to list
the elements of A in sequence:

A = {a0,a1, . . . ,an−1}.

In turn, writing the elements of A in sequence is really just a way of
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counting them, in a manner that is roughly equivalent to counting on
your fingers (if you had a lot of fingers). In fact, counting the elements of
A totally orders the elements of A (a concept we will meet in a future
chapter). In Chapter 13, we will adapt this connection between functions
and counting to determine whether it is possible to “count” infinite sets.

2. We should note, however, that the above fact is essentially trivial once we
“unravel” the definitions of finite set and finite sequence, as both involve
a function with domain N<m for some m and codomain A.

Corollary 12.2.3 A set A is finite if and only if there exists a finite sequence from
A which contains each element of A at least once.

Proof idea. If we have a sequence that contains each element of A at least once,
we could turn it into a sequence that contains each element of A exactly once by
removing repeated terms. ■

12.2.2 Finite sets versus bijections, subsets, and unions

Bijections compose to create bijections (see Exercise 10.7.13). This fact lets us
relate finite sets to each other.

Fact 12.2.4 Bijection implies same cardinality. If one of A,B is finite and
there exists a bijection f : A → B, then both are finite and |A| = |B|.

Proof. Reconsider “one of A,B finite” as a disjunction: “A is finite or B is finite”.
Then break into cases.

Assume A is finite. Suppose |A| = n, so that there exists a bijection g : N<n → A.
Then f ◦ g : N<n → B is also a bijection, so |B| = n.

Assume B is finite. Suppose |B| = n. Repeat the argument from the previous
case, swapping roles of A and B and using the bijection f −1 : B → A in place of f .

■
Fact 12.2.5 Subset of finite is finite. Assume B is a finite set.

1. Every subset A ⊆ B is finite, with |A| ≤ |B|.

2. If f : C → B is an injection, then C is finite with |C| ≤ |B|.

Proof idea.

1. This is left to you as Exercise 12.6.1.

2. Let A represent the image f (C). Then A ⊆ B, so we can apply Statement 1
and Fact 12.2.4.

■
We may also relate cardinality of finite sets to the union operation.

Fact 12.2.6 Cardinality of unions. Suppose A and B are finite subsets of a
universal set U .

1. If A and B are disjoint, then |A⊔B| = |A|+ |B|.

2. |A∪B| = |A|+ |B|− |A∩B|.
Proof idea. The idea behind these formulas should be obvious once you draw
appropriate Venn diagrams, but formal proofs are left to you in Exercise 12.6.2.

■
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12.2.3 Cardinality of power sets of finite sets

Worked Example 12.2.7 What is the cardinality of P ({1,2,3, . . . ,k})?

Solution. We can solve this using recursion! In Example 11.2.4, we defined the
following sequence of subsets of N,

A0 =∅, A1 = {1}, A2 = {1,2}, A3 = {1,2,3},

. . . , Ak = {1,2, . . . ,k}, . . . ,

recursively. We can also express the sequence Nk = |P (Ak)| recursively. First,
N0 = 1. Then, since

Ak−1 = {1,2, . . . ,k−1}⫋ {1,2, . . . ,k−1,k}= Ak,

we can consider P (Ak−1) ⊆ P (Ak). (See Exercise 9.9.13.) In doing so, we can
break P (Ak) into the disjoint union

P (Ak)=P (Ak−1)⊔P (Ak−1)c.

Notice that the elements of P (Ak−1) are precisely those subsets of Ak that do
not contain the element k, and therefore the elements of P (Ak−1)c are precisely
those subsets of Ak that do contain the element k. So

B ∈P (Ak−1) ⇒ B∪ {k} ∈P (Ak−1)c.

This correspondence actually gives us a bijection

P (Ak−1)→P (Ak−1)c,

B 7→ B∪ {k}.

(Check!)
Now we have

Nk−1 = |P (Ak−1)| =
∣∣P (Ak−1)c

∣∣ .

Since
P (Ak)=P (Ak−1)⊔P (Ak−1)c,

we then have
Nk = Nk−1 +Nk−1 = 2Nk−1,

a recursively defined sequence. Solving this recurrence relation by iteration
yields

Nk = 2k.

□
Checkpoint 12.2.8 Verify that the map

P (Ak−1)→P (Ak−1)c,

B 7→ B∪ {k}.

in the solution to the preceding Worked Example is a bijection.
We can use the idea of Worked Example 12.2.7 to prove a similar but more

general fact.

Theorem 12.2.9 Cardinality of a power set. If |A| = n, then |P (A)| = 2n.

Proof idea. Since A has the same cardinality as the set {1,2,3, . . . ,n}, there exists
a bijection between the two sets. In Exercise 12.6.8, you are asked to prove that
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two sets of the same cardinality also have power sets of the same cardinality.
Using this fact and the result of Worked Example 12.2.7, we have

|P (A)| = |P ({1,2,3, . . . ,n})| = 2n.

■

12.2.4 Infinite sets

infinite set
a set that is not finite

|A| =∞ set A is infinite
|A| <∞ set A is finite

To demonstrate that a set A is infinite using the technical definition, we must
demonstrate that no bijection N<m → A can exist, for every cardinality value m.
But if A is infinite, there will be many injective functions N<m ,→ A for each m.
Therefore, one must demonstrate that no surjection N<m ↠ A can exist, for every
m.

Example 12.2.10 Demonstrating that a set is infinite from the definition.
Suppose we have an alphabet consisting of a single letter Σ= {x}. Then the set of
words

Σ∗ = {x, xx, xxx, . . . }

is infinite.
To verify this, we will argue that no function N<m → Σ∗ can be surjective,

no matter the cardinality value m. So suppose m ∈N is fixed but arbitrary, and
f : N<m →Σ∗ is an arbitrary function. Following the Test for Surjectivity (which
also describes how to demonstrate that a function is not surjective), we must
exhibit an example element in Σ∗ that is not the image under f of any domain
element in N<m.

Function f defines a finite sequence of words from Σ∗:

w0,w1,w2, . . . ,wm−1,

where each w j is the image f ( j). We have two cases.

Each w j is the empty word. In this case, clearly f cannot be surjective since the
word consisting of the single letter x is not in the sequence of outputs for f .

Otherwise. In this case, consider the word we get by concatenating the words
w0,w1, . . . ,wm−1 together twice over:

w = w0w1w2 · · ·wm−1w0w1w2 · · ·wm−1.

(Note that this is not multiplication, we are just writing the words one after
the other to create one big word.) Then this word is certainly longer than any
of the individual words w j, and so cannot be equal to one of those words. (The
reason we have concatenated all the w j twice over is so that we don’t have to
separately consider the case that all but one of the w j is empty, since in that case
concatenating all the w j just once over wouldn’t actually produce a result that is
longer than that one non-empty w j.) Since this long word is not in the sequence
of image elements for f , the function f cannot be surjective. □
Remark 12.2.11 While we have no hope of demonstrating that a set A is infinite
by demonstrating that functions N<m → A cannot be injective, if we wish we can
argue using injectivity by just turning things around. If a bijection N<m → A
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were possible, its inverse A →N<m would also be a bijection. So another way to
demonstrate that a set A is infinite is to demonstrate that no injection A →N<m
is possible, for every cardinality number m.

We can also demonstrate that a set is infinite by relating it to known infinite
sets.

Fact 12.2.12 Contains infinite subset implies infinite. Assume A is an
infinite set.

1. Every set B that contains A as a subset (i.e. B ⊇ A) is infinite.

2. If f : A → B is an injection, then B is also infinite.

Proof.

1. This is left to you as Exercise 12.6.4.

2. This is just the contrapositive of Statement 2 of Fact 12.2.5.

■
Worked Example 12.2.13 Show that if Σ ̸= ∅, then |Σ∗| = ∞, regardless of
whether |Σ| <∞ or |Σ| =∞.

Solution. If Σ ̸= ∅, then there exists some x ∈ Σ. Consider the restricted
alphabet Ξ = {x}. In Example 12.2.10, we demonstrated that Ξ∗ was infinite.
Clearly Ξ⊆Σ implies Ξ∗ ⊆Σ∗, so applying Statement 1 of Fact 12.2.12 we may
conclude that Σ∗ is also infinite. □

12.3 Relative sizes of sets

We have defined a set A to be finite when we can count its elements by matching
them bijectively with the elements of some counting set N<m. And in this case,
by defining |A| = m, we are declaring that A has the same “size” as N<m.

Expanding on this idea, we can think of every bijection as using the elements
of one set to “count” the elements of another.

same size sets A and B for which there exists a bijection A → B

Fact 12.3.1 Symmetry of size. If B has the same size as A, then A has the
same size as B.

Proof. If f : A → B is a bijection, then so is f −1 : B → A. ■
Fact 12.3.2 Transitivity of size. If A has the same size as B and B has the
same size as C, then A has the same size as C.

Proof. This is left to you as Exercise 12.6.5. ■
We expect our general notion of same size to match with just counting

elements of finite sets and getting the same result.

Fact 12.3.3 Finite sets with equal cardinality have the same size. Assume
A and B are finite sets. Then |A| = |B| if and only if A and B have the same size.

Proof.

Assume equal cardinality, show same size. Assume |A| = |B| = m. Then by
definition there exist bijections f : N<m → A and g : N<m → B. Now g ◦ f −1 is
a bijection A → B, so A and B have the same size according to the technical
definition.
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Assume same size, show equal cardinality. Assume A and B have the same size.
Then by definition there exists a bijection f : A → B. Now, we have also assumed
that A is finite, so there exists a bijection g : N<m → A, where m = |A|. Then
f ◦ g : N<m → B is a bijection that demonstrates |B| = m as well. ■
Warning 12.3.4 Your intuition may fail you when considering “sizes” of infinite
sets. In particular, it is possible to have |A| = |B| =∞, where A and B do not have
the same size.
Example 12.3.5 Sets of integers and natural numbers have the same size.
Even though N⫋Z, N and Z have the same size! The following defines a bijection
f : N→Z.

n 0 1 2 3 4 · · ·
f (n) 0 −1 1 −2 2 · · ·

This bijection can be expressed by the formula

f (n)=
{

m
2 , m even,

−m+1
2 , m odd.

□
Example 12.3.6 Sets of real numbers and natural numbers do not have
the same size. In Chapter 13, we will see that even though |N| = |R| =∞, the
sets N and R do not have the same size! □
Example 12.3.7 Intervals of real numbers of different lengths have the
same size. Recall from first-year calculus that for a,b ∈R with a < b, we define
the open interval from a to b to be the set of all real numbers strictly between
a and b:

(a,b)= { x ∈R | a < x < b } .

a b

Figure 12.3.8 An interval on the real number line.

It turns out that, even though they may have different lengths, the interval
(a,b) and the unit interval (0,1) have the same size! (That is, they somehow
contain the same “number” of numbers.)

Construct a bijection (0,1)→ (a,b) in two steps.

1. The map

f : (0,1)→ (0,b−a),

x 7→ (b−a)x,

is a bijection. (Check!)

2. The map

g : (0,b−a)→ (a,b),

x 7→ x+a,

is a bijection. (Check!)

Then g ◦ f : (0,1)→ (a,b) is a bijection.

0 1 0 b−a a b

f g

Figure 12.3.9 Scaling and translating the unit interval onto another interval.
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□
Example 12.3.10 A punctured circle has the same size as R. Define

S =
{

(x, y) ∈R2
∣∣∣∣ x2 + (y− 1

2
)2 = 1

4

}
, Ŝ = S∖ {(0,1)}.

Here, S is a circle in the plane with radius 1
2 and centre (0, 1

2 ), and Ŝ is the circle
S “punctured” at the “north pole”.

We claim that Ŝ has the same size as R. Construct a bijection Ŝ →R in two
steps.

1. Let X represent the x-axis in the plane, i.e.

X = { (x,0) | x ∈R }⊆R2.

Let f : Ŝ → X be defined as follows: for (x, y) ∈ Ŝ, let f (x, y) be the x-
intercept of the line through points (0,1), (x, y).

(0,1)

(0,0)

(x,y)

(
f (x,y),0

)

Figure 12.3.11 Projecting the punctured circle onto the real number line.

Then f is a bijection. (Check!)

2. We also have a bijection g : X →R by g(x,0)= x.

Therefore, the composition g ◦ f : Ŝ →R is a bijection. □
Example 12.3.12 Every interval of real numbers has the same size as
the entire set of real numbers. Example 12.3.7 and Example 12.3.10 can be
combined to demonstrate that every finite-length interval (a,b) of real numbers
has the same size as the entire set R of real numbers. See Exercise 12.6.6. □

12.4 Counting elements of finite sets with bijec-
tions

In a future chapter, we will begin learning how to count complicated collections by
counting the “choices” needed to determine an arbitrary element in the collection.
In this section, we look at how to count collections by finding a collection of the
same size which is easier to count.

Example 12.4.1 Counting paths with words. Consider paths in the 5×10
grid below that start at the bottom left and end at the top right, and only move
up or right at each step. (One such path is drawn in.) How many such paths are
there?
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Let P represent the set of all such paths. We can distinguish each element of
P by the sequence of directions it takes at each step. Let Σ= {R,U}, where R and
U stand for the directions “right” and “up”, respectively. Then for each path p ∈ P
we can build a word wp ∈ Σ∗ by setting the letters of wp to correspond to the
steps in the path. For example, the path in the diagram above would correspond
to the word RRURUURRRRURR.

This assignment of words in Σ∗ to paths in P is a function! Let’s call it
f : P →Σ∗, and set W = f (P), the image of f in Σ∗. This function is clearly one-
to-one, as different paths must produce different words of direction indicators.
And since every function maps its domain surjectively onto its image, we obtain
a bijection f : P →W by restricting the codomain. Therefore, we can count the
paths in P by instead counting the words in W!

Since each path in P takes exactly 13 steps, exactly 4 of which must be
upwards and exactly 9 of which must be to the right, we see that W consists
precisely of those words in Σ∗ that have length 13 and contain exactly 4 Us and
9 Rs. Once we learn some basic counting techniques later in the course, you will
be able to come back to this example to verify that

|P| = |W | = 715.

□

12.5 Activities

Activity 12.1 Use the definition of cardinality to verify that |A| = 8 for

A = {1,2,4,8,16,32,64,128}.

Activity 12.2 The steps below will guide you through a proof of the following
statement.

If B is finite and A ⊆ B, then A is also finite.

(a) Start by assuming that B is finite. Write out what this means. (You may
do this using the technical definition of finite set, or you may do this using
the sequence characterization of finiteness in Fact 12.2.1.)

(b) Now add the assumption that A ⊆ B. Try to use your technical expression
of the assumption “B is finite” from Task a to determine a similar technical
expression of the desired conclusion “A is finite.”

Activity 12.3 Use the sequence characterization of finiteness in Fact 12.2.1 to
prove the following statement.

If A and B are finite and do not intersect, then |A⊔B| = |A|+ |B|.

Hint. Use separate finite sequences to “count” the elements of A and B. Then
use these two sequences to build a sequence that “counts” the elements of A⊔B.

Activity 12.4 In each of the following, demonstrate that the two sets satisfy
the technical definition of same size by explicitly describing a bijection between
them.

(a) The set of natural numbers and the set of positive natural numbers.

(b) The set of natural numbers and the set of natural numbers that are greater
than 9,999,999.

(c) The set of even natural numbers and the set of odd natural numbers.
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(d) The set of even natural numbers and the set of natural numbers.

(e) The set of natural numbers and the set of integer powers of 2.

Activity 12.5 Set

A = {a,b,c,d,e}, Σ= {Y,N}.

(a) Demonstrate that P (A) and Σ∗
5 have the same size. (Recall that Σ∗

5 means
the set of words in Σ∗ of length exactly 5.) Do this not by determining the
cardinality of each of the two sets, but by showing that the sets satisfy the
technical definition of same size. As in Activity 12.4, this will require that
you explicitly describe a bijection between the two sets.

Hint. Think of a 5-letter word in the alphabet Σ as the answers to five
yes-or-no questions. How does such a string of answers correspond to some
subset of A?

(b) Describe how you could use the bijection you set up in Task a to turn
the problem of counting the number of subsets of A that have exactly 3
elements into a problem of counting a related collection of words in the
alphabet Σ.

(Note: You are not asked to actually determine the number of such subsets.
You are only asked to describe how the result of Task a can be adapted to
this counting problem.)

12.6 Exercises

1. Prove: If B is finite and A ⊆ B, then A is finite and |A| ≤ |B|.
2. Suppose that A, B, and C are finite subsets of a universal set U .

(a) Prove: If A and B are disjoint, then |A⊔B| = |A|+ |B|.

(b) Prove: |A∪B| = |A|+ |B|− |A∩B|.
Hint. See Exercise 9.9.5, and use the equality from Task a.

(c) Determine a similar formula for |A∪B∪C|.
Hint. Draw a Venn diagram first.

3. Use induction to prove directly that if |A| = n then |P (A)| = 2n. Use Worked
Example 12.2.7 as a model for your proof of the induction step.

4. Prove: If |A| =∞ and A ⊆ B, then |B| =∞.

5. Prove Fact 12.3.2.
6. Combine Example 12.3.7 and Example 12.3.10 to verify that the unit inter-

val (0,1) and R have the same size.

Hint. First map the punctured circle Ŝ onto some open interval in the
x-axis by “unrolling” Ŝ.

7. Use Example 12.3.7 and the function f (x)= tan x to prove that the interval
(−π/2,π/2) and R have the same size.

Hint. The function f (x)= tan x is not one-to-one, but it becomes one-to-one
if you restrict its domain to an appropriate interval

8. Prove that if A and B have the same size, then so do P (A) and P (B).

Hint. See Exercise 10.7.19.
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9. Suppose A is a set with |A| = n. Then we can enumerate its elements as
A = {a1,a2, . . . ,an}.

(a) Construct a bijection from the power set of A to the set of words in
the alphabet Σ= {T,F} of length n.

Note that there are two tasks required here.

(i) Explicitly describe a function f : P (A) → Σ∗
n by describing the

input-output rule: give a detailed description of how, given a
subset B ⊆ A, the word f (B) should be produced.

(ii) Prove that your function f is a bijection.

Hint. When determining the input-output rule for your function
f : P (A)→Σ∗

n, think of how one might construct an arbitrary subset
of A, and then relate that process to a sequence of answers to n true/
false questions.

(b) Use Task a to determine the cardinality of P (A). Explain.

Hint. See Note 1.3.1.

(c) Suppose k is some fixed (but unknown) integer, with 0 ≤ k ≤ n. Let
P (A)k represent the subset of P (A) consisting of all subsets of A that
have exactly k elements. Describe how your bijection from Task a,
could be used to count the elements of P (A)k.

Hint. Consider how restricting the domain might help.





CHAPTER 13

Countable and uncountable sets

13.1 Basics and examples

If A is a set that has the same size as N, then we can think of a bijection N→ A
as “counting” the elements of A (even though there are an infinite number of
elements to count), in exactly the same way that we use our counting sets N<m
to count finite sets.

countable
a set that is finite or has the same size as N

countably infinite
a countable set which has the same size as N

uncountable
a set that is not countable

Note 13.1.1

1. An uncountable set is necessarily infinite.

2. Two sets which have the same size (i.e. there exists a bijection between
them) are either both countable or both uncountable.

Fact 13.1.2 Characterization of countable sets using sequences. A
nonempty set A is countable if and only if there exists a sequence of elements from
A in which each element of A appears exactly once.

Proof idea. In case A is finite, the statement is precisely that of Fact 12.2.1.
So assume A is infinite, in which case a sequence of the type described in the
statement must also be infinite. Technically, an infinite sequence from A is a
function N→ A. The “each element of A” property is the same as saying the
function is surjective, and the “exactly once” property is the same as saying the
function is injective. So a sequence of the described kind is exactly the same as
bijection N→ A, which is what is required for A to be the same size as N (i.e.
countably infinite). ■
Remark 13.1.3 Compare this fact with Fact 12.2.1.

Theorem 13.1.4 Countability of integers and rationals. Sets Z and Q are
both countable.

Proof idea. We have already constructed a bijection N→ Z in Example 12.3.5,
which shows that Z is countable.

To show that Q is countable, we will use Fact 13.1.2 and construct an infinite
sequence which contains each element of Q exactly once. First, construct an

135
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infinite grid which contains all positive rational numbers. By zig-zagging through
the grid, we obtain an infinite sequence which contains each positive element of
Q at least once, though there are duplicates because an element of Q can have
many different representations as a fraction.

1/1

1/2

2/1

2/2

3/1

3/2

4/1

4/2

5/1

5/2

1/3 2/3 3/3 4/3

1/4 2/4 3/4

1/5 2/5

· · ·

. . .

. . .

. . .

...

Figure 13.1.5 A grid containing all posi-
tive rational numbers.

1/1

1/2

2/1

2/2

3/1

3/2

4/1

4/2

5/1

5/2

1/3 2/3 3/3 4/3

1/4 2/4 3/4

1/5 2/5

. . .

. . .

. . .

Figure 13.1.6 A path through the posi-
tive rational numbers.

The path through the grid creates the following sequence of positive rational
numbers. By crossing out duplicates, we obtain an infinite sequence which
contains each positive rational number exactly once.

1,
1
2

, 2, 3, ��SS1,
1
3

,
1
4

,
2
3

,
3
2

, 4, 5,

��SS2, ��SS1,
�
��A
AA

1
2

,
1
5

,
1
6

,
2
5

,
3
4

,
4
3

,
5
2

, . . .

Finally, interleave the negative rational numbers into the above sequence, and
insert 0 at the beginning.

0, 1, −1,
1
2

, −1
2

, 2, −2, 3, −3,
1
3

, −1
3

,

1
4

, −1
4

,
2
3

, −2
3

,
3
2

, −3
2

, 4, −4, 5, −5, . . .

■
Here is an example of an uncountable set. The argument to prove the set

is uncountable is a famous one, so we encapsulate it as the proof of a Lemma,
rather than just a plain Example.

Lemma 13.1.7 An uncountable set of real numbers. Let C represent the set
of all real numbers between 0 and 0.2 (including 0) whose decimal expansions
involve only the digits 0 and 1.

Set C is uncountable.

Proof.

The argument in this proof is called Cantor’s diagonal argument.

We will show that no sequence of numbers from C can contain every element
of C.

Suppose {ak} is an infinite sequence of elements of C. We can create an
element r ∈C which is not in the sequence as follows. Set

r = 0.r1r2r3r4 · · · ,

where rk is the digit in the kth decimal place of r, according to the following rules.

• If the kth decimal place of ak−1 is 0, set rk = 1.
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• If the kth decimal place of ak−1 is 1, set rk = 0.

Clearly every digit of r will be either a 0 or 1, and 0≤ r < 0.2, so r ∈C. (The reason
we use ak−1 instead of ak in the rules to create r is to make sure we consider
sequence element a0 somewhere in there.)

Now we have ak ̸= r for every k ∈ N, since r and ak differ in the (k+1)th

decimal place. Furthermore, r ∈C because it is between 0 and 0.2 and its decimal
expansion involves only digits 0 and 1. Therefore, sequence {ak} does not contain
every element of C because it does not contain r. ■
Remark 13.1.8

1. The “diagonal” part of the name Cantor’s diagonal argument refers to
the following. If the decimal expansions of the real numbers in the sequence
{ak} are written out in a grid so that each row is one of the numbers ak and
each column represents a specific decimal place in the sequence numbers,
then the rules to create r can be thought of as “flipping” the digits that
occur in the diagonal positions of this grid. (Draw the grid for yourself to
see the pattern!)

2. Later in this chapter we will use Lemma 13.1.7 to prove that R itself is
uncountable. (See Theorem 13.2.5.)

13.2 Properties

The following facts outline some relationships countability and the set operations.
They can be used to more easily prove that a set is countable or uncountable
using the already-known countability or uncountability of a related set.

Proposition 13.2.1 Countability properties.

1. Every subset of N is countable.

2. If there exists an injection A ,→N, then the set A is countable.

3. Suppose A ⊆ B. If B is countable, then so is A.

4. Suppose A ⊆ B. If A is uncountable, then so is B.

5. If A and B are countable, then A∪B and A∩B are both countable.

Proof outline.

1. Assume A ⊆N. If A is finite, then it is countable by definition. So assume
that |A| =∞. We can construct a sequence {ak} that contains each element
of A exactly once as follows.

a0 = smallest number in A,

a1 = next smallest number in A,

a2 = next smallest number in A,
...

Therefore, A is countable.

2. If f : A ,→N is injective, then f : A → f (A) is a bijection, so that A and its
image f (A) have the same size. But f (A) is countable by Statement 1, so
using the definition of countable along with Fact 12.3.2, conclude that A is
countable.
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3. If B is countable, then by definition there exists a bijection f : B →N. Then
f |A : A →N is an injection. Apply Statement 2.

4. This is the contrapositive of Statement 3, under the common assumption
A ⊆ B.

5. For A∩B, consider A∩B ⊆ A and apply Statement 3.

Now consider A ∪B. For simplicity, we will assume A ∩B = ∅, so that
A∪B = A⊔B. Since A and B are countable, we can write their elements
as sequences:

A = {a0, a1, a2, . . . }, B = {b0, b1, b2, . . . }.

We can then write the elements of A⊔B in a sequence by interleaving these
two sequences:

A⊔B = {a0, b0, a1, b1, a2, b2, . . . }.

■
Checkpoint 13.2.2 Prove A∪B is countable even in the case A∩B ̸=∅.

Hint. Consider the sets

A′ = A∖ (A∩B), B′ = B∖ (A∩B), C = A′⊔B′.

Then A∪B is the disjoint union of C and A∩B.

Example 13.2.3 Primes are countable. The set of prime numbers is countable,
since it is a subset of N. □
Example 13.2.4 Unit interval is uncountable. The unit interval (0,1) on the
real number line is uncountable because it contains the uncountable subset C
from Lemma 13.1.7. □
Theorem 13.2.5 Set R is uncountable.

Proof. This follows from Lemma 13.1.7 and Statement 4 of Proposition 13.2.1. ■

Example 13.2.6 The Cartesian product set R2 =R×R is uncountable because it
has an uncountable subset: the x-axis has the same size as R. □

13.3 More about relative sizes of sets

Question 13.3.1 What is the “size” of R? □
We know N, Z, and Q all have the same size (countably infinite). But R is so

large that it is uncountable, so it seems like R should be “larger” than N, Z, and
Q.

larger set set B is larger than set A if

(i) B has a subset the same size as A, and

(ii) every subset of B which is the same size as A is proper
smaller set

if B is larger than A, then A is smaller than B

Test 13.3.2 To show set B is larger than set A.

(i) Show there exists an injection A ,→ B.

(ii) Show that every injection A ,→ B cannot also be a surjection.



13.3. MORE ABOUT RELATIVE SIZES OF SETS 139

However, if one or both of A,B are finite, one can instead just verify that
|B| > |A|.
Remark 13.3.3

1. Matching up the parts of the Test with the parts of the definition of larger
set:

(i) The existence of an injection f : A ,→ B demonstrates that B has a
subset that is the same size as A, as restricting the codomain to
f : A → f (A) creates a bijection.

(ii) By definition, a subset C ⊆ B has the same size as A when there exists
a bijection A → C. Enlarging the codomain, such a bijection can be
thought of as an injection A ,→ B whose image is C ⊆ B. If no such
injection can also be surjective, then C ⫋B, i.e. C is a proper subset
of B.

2. In the second part of the test, one can simply show that every function
A → B cannot be a surjection, in which case surely every injection A ,→ B
cannot be a surjection. It may seem like it should be more difficult to prove
this more general statement, but if you will find that your argument that
every injection cannot be a surjection does not actually rely on the injective
assumption, then there is no need for that assumption.

Example 13.3.4 Set R is larger than each of the sets N, Z, and Q. □
Here follows an important comparison of set sizes.

Theorem 13.3.5 (Cantor) Every set is smaller than its own power set.

Proof. Let A represent an arbitrary set. We will apply the Larger Set Test to
demonstrate that P (A) is larger than A.

(i) There exists a natural injection

A ,→P (A),

x 7→ {x}.

(If A is empty, then this is just the empty function, which is always
injective by Statement 1 of Proposition 12.1.6.)

(ii) Suppose f : A →P (A) is an arbitrary function. Using the Surjective Func-
tion Test, we will demonstrate that it cannot be surjective by exhibiting an
element X ∈P (A) for which no element a ∈ A satisfies f (a)= X . (We will
not need to make the assumption that f is injective — see Statement 2 of
Remark 13.3.3.)

Note that for each a ∈ A, the image element f (a) ∈ P (A), being a power
set element, is a subset of A. So for each a ∈ A we can ask whether a is
contained in the subset f (a) or not. Collecting together the “or not” answers,
set

X = { a ∈ A | a ∉ f (a) } .

Note that X is a subset of A, so again this means that it is also an element
of P (A).

Could f (a)= X be possible for some a ∈ A? Since X ⊆ A, for each a ∈ A we
have either a ∈ X or a ∉ X .

Case a ∈ X . Then by definition of X above, we have a ∉ f (a). Since X
contains element a but f (a) does not, sets X and f (a) cannot be equal.
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Case a ∉ X . Then by definition of X above, we must have a ∈ f (a), since
otherwise a would satisfy the condition to be in X . But now f (a) contains
element a but X does not, so again sets X and f (a) cannot be equal. Since
f (a) = X is not possible in all cases, we have found an element in P (A)
that is not in the image f (A), as required to demonstrate that f is not
surjective.

■
Remark 13.3.6 Cantor’s Theorem implies that there are an infinite number of
“levels” of infinity! For, if A is an infinite set, then P (A) is a larger infinite set,
and P (P (A)) is a still larger infinite set, and P (P (P (A))) is a still larger infinite
set, . . . .

The size of the set of natural numbers N seems like the lowest possible level
of infinity, since every subset of N is either finite or has the same size as N. (See
Statement 1 of Proposition 13.2.1.) The set of real numbers R is larger than N,
since it contains N as a proper subset but is not itself the same size as N. So
writing |N| =∞ is not the same as writing |R| =∞, as they are evidently different
levels of infinity. Is there any level of infinity between these two?

Conjecture 13.3.7 Continuum Hypothesis. There does not exist a set larger
than N but smaller than R.
Remark 13.3.8 It is not known whether the Continuum Hypothesis is true! In
fact, it has been proved that the Continuum Hypothesis can be neither proved
nor disproved in certain common axiomatic systems for set theory!

We have seen that funny things can happen with sizes of infinite sets — for
example, N is an proper subset of Z, but the two have the same size! This is not
a defect in our definitions, it just demonstrates that for infinite sets, the subset
relation is not a good measure of size. But it also demonstrates that we should be
vigilant about other possible unintuitive consequences of our definitions, because
they might reveal defects in our definitions. For example, from our definitions of
smaller and larger sets, there is no obvious reason why there could not be some
weird example of a pair of sets A and B with both B larger than A and A larger
than B. Luckily, that cannot happen thanks to the following theorem.

Theorem 13.3.9 (Cantor, Bernstein) Suppose A and B are infinite sets. If
there exists both an injection A ,→ B and an injection B ,→ A, then A and B have
the same size.

Proof idea. Suppose f : A ,→ B and g : B ,→ A are injections. We need to exhibit a
bijection from A to B (or vice versa, but we will construct one from A to B).

For every element a ∈ A, we can construct a chain of alternating elements
from A and B as follows. Working forwards from a, the injection f maps a to
some element of B, and the injection g maps that element of B to some element
of A, which is mapped by f to some element of B, and so on.

a0 = a,

b0 = f (a0),

a1 = g(b0),

b1 = f (a1),

a2 = g(b1),
...

The chain will go on infinitely because the functions f and g always provide a
next element.

We can also try to trace the chain backwards: starting at our original element
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a ∈ A, we can look for some element of B that g maps to a, though at first
consideration it’s possible that none exists. If we do find such an element of B,
we can then look for some element of A that f maps to it, and so on. While the
chain extends infinitely in the forward direction, we cannot be sure at this point
that it will extend infinitely in the backward direction.

Now, every element of A can be placed into such a chain, and because f and
g are injective the chain in which we find an element a is always the same: the
next element in the chain is always f (a), and the element before a is always the
unique b in B so that g(b)= a (if such an element exists). And the elements after
f (a) and before b are also uniquely determined by the injectiveness of f and g.
And so on.

So we end up finding every element of A in a unique alternating chain, and
each chain has one of four patterns:

• a chain with some element repeated, in which case we could force the chain
to loop back on itself at the repetition to form a finite, circular chain;

• a chain with no repetition and no end or start;

• a chain with no repetition and no end, but the process to trace it backward
failed at some point, and the last element in the “backward” direction
(which we could view as the first element in the whole chain) is an element
of A; and

• a chain with no repetition and no end, but starts with an element of B.

Now that we have cut out possible repetition by creating circular chains, every
element of A appears exactly once in a unique chain, and by symmetry the same
can be said about B. We can then create a bijection from A to B by mapping
every element of A to the element of B that follows it in the chain it appears
in. Except for elements of A that appear in a chain that has a beginning with a
starting element from B — instead each of those elements of A should be mapped
to the element of B that precedes it in its chain. This will create a bijective
correspondence between the elements of A and B. ■

13.4 Activities

Activity 13.1 In each of the following, prove that the given set is countable by
exhibiting an explicitly defined bijective correspondence between it and N.

(a) The set of natural numbers excluding 0.

(b) The set of natural numbers that are greater than 9,999,999.

(c) The set of odd natural numbers.

(d) The set of integer powers of 2 (including both positive and negative expo-
nents).

Activity 13.2 Without cheating and looking at the proofs in this chapter, prove
each of the following statements. You may wish to make use of the characteriza-
tion of countability in Fact 13.1.2 instead of the technical definition of countable
set.

Note: Each statement except the first two can be proved directly from the
preceding statements.

(a) Every subset of N is countable.

(b) If two sets have the same size and one of them is countable, then so is the
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other.

(c) Every set that is the same size as a subset of N is countable.

(d) Every subset of a countable set is countable.

(e) Every set that is the same size as a subset of a countable set is countable.

(f) A set that contains an uncountable subset is uncountable.

Activity 13.3

(a) Prove that N×N is countable.

Hint. Use a zig-zag-through-a-grid method similar to the proof of the
countability of the rational numbers. (See Theorem 13.1.4 and its proof.)

(b) Prove that if A and B are both countable, then so is A×B.

Hint. You could do more zig-zagging, or you could use the statement of
Task a.

(c) Prove that if X , Y , and Z are each countable, then so is X ×Y ×Z.

Hint. Use the statement of Task b twice.

(d) What proof method do you think you would use to prove the following
statement?

If A1, A2, . . . , An are all countable, then so is

A1 × A2 ×·· ·× An.

Activity 13.4 The Infinite Orchard Problem. You own a magical apple
orchard that contains an infinite number of trees, each of which bears an infinite
number of apples. Describe a method to pick all of the apples in the orchard, one
apple at a time. (No shaking the trees, please! However, you may assume an
infinite amount of time.)

Activity 13.5 Prove that if A0, A1, A2, . . . is an infinite collection of sets, each of
which is countably infinite, then the union

∞⋃
n=0

An = A0 ∪ A1 ∪ A2 ∪·· ·

is also countably infinite.

Hint. What if each set was an apple tree?

Activity 13.6 Let F represent the set of all functions with domain {0,1} and
codomain N.

(a) Determine a bijective correspondence between F and N×N.

(b) Explain why Task a proves that F is countable.

Hint. See Activity 13.2 and Activity 13.3.

Activity 13.7 Let F′ represent the set of all functions with domain N and
codomain {0,1}.

Note that each element of F′ defines an infinite sequence of 0s and 1s.

(a) Suppose A is a countable subset of F′. (So A is an infinite list of infinite
sequences of 0s and 1s.)
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Describe how to construct an element of F′ that is definitely not in A. That
is, build an infinite sequence of 0s and 1s that is definitely not the same as
any of the infinite sequences in the infinite list of A.

Hint. Use Cantor’s diagonal argument from the proof of Lemma 13.1.7.

(b) Explain why Task a proves that F′ is uncountable.

Hint. F′ ⊆F′.
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CHAPTER 14

Graphs

14.1 Basics and examples

graph (working definition)
a diagram consisting of a finite collection of points linked by line
segments or arcs

graph (formal definition)
an ordered pair (V ,E), where V is a finite set and E is a finite,
unordered list of subsets of V , each of which has exactly 1 or 2
elements

vertex a point in a graph (i.e. an element of V )
node synonym for vertex
edge a line or arc linking two vertices (i.e. an element of E)
empty graph

the graph (∅,∅), with no vertices and no edges

Warning 14.1.1 The list E is not a set, since duplicate entries in this list have a
graphical meaning; see below.

An element e ∈ E represents an edge as follows. If e consists of exactly two
elements of V , draw a line between these two vertices. If e consists of exactly
one element of V , draw a line from this vertex to itself.

Example 14.1.2 A very basic graph. The graph G = (V ,E), where

V = {v1,v2,v3}, E = {
{v1,v2}, {v1,v3}, {v2,v3}

}
,

has three vertices and three edges.

v1

v2 v3

Figure 14.1.3 Diagram of the graph G = (V ,E).

□
Example 14.1.4 A slightly more complicated example graph. The graph
G = (V ,E), where

V = {v1,v2,v3,v4}, E = {
{v1,v2}, {v1,v2}, {v1,v2}, {v3}, {v3}

}
,

147
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has four vertices and five edges.

v1

v2

v3 v4

Figure 14.1.5 Diagram of the graph G = (V ,E).

□
Worked Example 14.1.6 Using a graph to solve a problem. Suppose we
have jugs A,B,C with capacities 8,5,3 litres, respectively. Jug A is full of water
and jugs B,C are empty. Can we divide the water into two exactly equal parts? If
so, find the most efficient pouring sequence.

Solution. Construct a graph with points labelled by elements (a,b, c) ∈N×N×N,
where a,b, c are the volumes of water in jugs A,B,C, respectively. Join two points
with a line segment if we can obtain one set of volumes from the other in a single
pour. We will ignore pours that return us to a configuration previously achievable
by fewer pours.

(8,0,0)

(3,5,0) (5,0,3)

(0,5,3)

(3,2,3) (5,3,0)

(6,2,0) (2,3,3)

(6,0,2)

(2,5,1)

(1,5,2)

(7,0,1)

(1,4,3)

(7,1,0)

(4,4,0)

(4,1,3)

Figure 14.1.7 Graph to track possible jug fill states.

Following the left leg of the graph gets us to the desired configuration in 7
pours. □

14.2 Properties of graphs

14.2.1 Properties of vertices and edges

adjacent vertices
linked by an edge

adjacent edges
share a common vertex

incident a pair of a vertex and edge where the edge links that vertex either to
itself or another vertex of the graph
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loop an edge which links a vertex to itself
parallel edges

edges which link the same vertices
simple graph

no loops or parallel edges
isolated vertex

a vertex that is incident with no edges
degree (of a vertex)

the number of times that the vertex is incident with an edge of the
graph

degv degree of vertex v

Note 14.2.1 In a simple graph, the degree of each vertex is equal to the number
of incident edges. However, in a non-simple graph, a loop is incident to its vertex
twice, and we count that in the degree:

degv = #{ edges that are incident to v but not loops at v}+2 ·#{ loops at v}.

Example 14.2.2 Properties of our very basic example graph. The graph of
Example 14.1.2 has the following properties.

• It is a simple graph.

• Each pair of vertices is adjacent.

• Each pair of edges is adjacent but not parallel.

• There are no loops.

• Each vertex is incident to two non-loop edges, so each vertex has degree 2.

□

Example 14.2.3 Properties of our slightly more complicated example
graph. The graph of Example 14.1.4 has the following properties.

• It is not a simple graph.

• There are three parallel edges linking v1 and v2.

• There are two loops at vertex v3 (and these are also parallel edges).

• The parallel edges between v1 and v2 are adjacent, as are the two loops at
v3.

• Vertices v1 and v2 are adjacent, and vertex v3 is adjacent to itself.

• Vertices v1 and v2 are incident to the three edges running between them,
and vertex v3 is incident to its two loops.

• Vertex v4 is isolated

• For degrees we have

degv1 = degv2 = 3, degv3 = 4, degv4 = 0.

□
The number of edges in a graph is an important measure both of how “con-
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nected” the graph is, as well as how much “redundancy” the graph contains.

|E| the number of edges in the graph G = (V ,E)

Theorem 14.2.4 Sum of degrees is twice the number of edges. Suppose
G = (V ,E) is a graph with vertex set V = {v1,v2, . . . ,vn}. Then,

degv1 +degv2 + . . .degvn = 2 |E| .

Proof idea. If an edge e is a loop at vertex vi, then it contributes 2 to degvi.
Otherwise, if edge e links vertices vi and v j (vi ̸= v j), then it contributes 1 to each
of degvi and degv j. In every case, each edge contributes exactly 2 to the sum of
the vertex degrees. ■

Corollary 14.2.5 Odd degrees are even. In every graph, the number of vertices
of odd degree is even.

Proof idea. Otherwise, the sum of the degrees of all vertices would be odd, which
contradicts the theorem above. ■

Worked Example 14.2.6 An odd fellow throws an odd party and invites an even
number of other equally-odd people. Each odd person at the party is friends with
an odd number of other odd people at the party. Is this odd party even possible?

Solution. Create a simple graph with the people at the party as vertices, where
two vertices are linked by a single edge if and only if the two people are friends.
As each person has an odd number of friends at the party, the degree of each
vertex is odd. But the number of party attendees is also odd, since there are an
even number of invitees, plus the host himself. So we have an odd number of
vertices each with odd degree, which the corollary above says is not possible. □

14.2.2 Subgraphs

subgraph a graph that is a part of a larger graph

G′ ⪯G graph G′ is a subgraph of graph G

Remark 14.2.7 Without a diagram, how can we tell if a graph G′ = (V ′,E′) is a
subgraph of another graph G = (V ,E)? First, each vertex of G′ should also be a
vertex of G, so that V ′ ⊆V . And also, each edge of G′ should also appear as an
edge in G. (Though we shouldn’t just write E′ ⊆ E, and not only because E′ and
E are actually sets — see Activity 14.2.)

Note 14.2.8 Just as ∅⊆ A and A ⊆ A for every set A, we consider (∅,∅)⪯G and
G ⪯G for every graph G.

Worked Example 14.2.9 Determine all possible subgraphs of the graph in
Example 14.1.2.

Solution. First, every graph contains the empty graph as a subgraph. Next, a
nonempty subgraph of this particular graph can contain one, two, or all three
vertices. We can write out all nonempty possibilities in a general way based on
the number of vertices in the subgraph. In each graph below we require the
vertex indices i, j,k to all be distinct and to satisfy 1≤ i, j,k ≤ 3.
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vi

vi

v j

vi

v j

v1

v2

v3

vi

v j

vk

vi

v j

vk

v1

v2 v3

Figure 14.2.10 All possible subgraphs of our basic example graph from Exam-
ple 14.1.2.

There are 3 subgraphs of each of the first three types in Figure 14.2.10. There
are also 3 subgraphs of the fourth and fifth types. Therefore, including the empty
graph, there are 18 subgraphs of this example graph. □

14.2.3 Complete graphs

complete graph
a simple graph in which every pair of distinct vertices is adjacent

Proposition 14.2.11 Properties of complete graphs.

1. For each n ≥ 0, there is a unique complete graph Kn = (V ,E) with |V | = n.

2. If n ≥ 1, then every vertex in Kn has degree n−1.

3. Every simple graph with n or fewer vertices is a subgraph of Kn.

(a) K1. (b) K2. (c) K3.

(d) K6.

Figure 14.2.12 Complete graphs with 1, 2, 3, and 6 vertices.

Checkpoint 14.2.13 Draw the complete graphs K4 and K5.

Checkpoint 14.2.14 Is there a complete graph K0?

14.3 Adding information to graphs

weighted graph (working definition)
a graph in which each edge is assigned a weight or cost, usually a
numerical value
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weighted graph (formal definition)
an ordered triple (V ,E,w), where (V ,E) is an ordinary graph and
w : E →W is a function with some set W as codomain

weights elements of the image w(E)⊆W

We usually label each edge with its weight on diagrams for the graph.

Example 14.3.1 A road map weighted by distances. A road map with
distances as weights is a weighted graph. Below is a simplified road map of
the area around Camrose, Alberta. The vertex set is the set of cities, and
the edge set is the set of highways. For example, the two-city set {Camrose,
Edmonton} represents the edge on the graph between Camrose and Edmonton,
and corresponds to Highway 21.

Edmonton

Camrose

94 km

Wetaskiwin 40 km

Leduc

35 km

35 km

Figure 14.3.2 Road map of the area around
Camrose, Alberta.

e w(e)
{Camrose, Edmonton} 94
{Edmonton, Leduc} 35
{Leduc, Wetaskiwin} 35
{Wetaskiwin, Camrose} 40

Figure 14.3.3 Table of values
for distance weight function.

The edges in the graph are weighted by the (rounded) highway distances
between cities. Formally, this is a function w from the edge set to the natural
numbers. The input-output relationship defining this function is tabulated above
right. □

Example 14.3.4 Variations on Example 14.3.1 include any kind of transportation
or communication network with transportation/communication lines as edges.
Possible weights assigned to an edge include: length of the line; amount of time
it takes a vehicle/message to travel along the line from one node to the next;
capacity of the line in vehicles/passengers/messages/data per unit time; etc.. □

directed graph (working definition)
a graph in which each edge can be given a direction, “pointing” to
one of its incident vertices

directed graph (formal definition)
an ordered pair (V ,E), where V is a finite set and E is an unordered,
possibly empty list of elements of V ×V

Again, elements of V are the vertices and elements of E are the edges of the
graph. For an ordinary graph, edges were represented by subsets of V because
when specifying an edge, the order of the vertices which are to be incident to
the edge is irrelevant. For a directed graph, the order of the vertices incident to
an edge now matters, so we use ordered pairs of vertices to specify an edge. If
e = (v,v′) ∈ E for some v,v′ ∈V , consider the direction of e to be v → v′.

Example 14.3.5 A basic directed graph. Consider

V = {v1,v2,v3,v4},

E = {(v1,v2), (v1,v2), (v2,v3), (v3,v2), (v4,v3), (v4,v4)}.
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We draw the graph G = (V ,E) with arrows to indicate the direction of edges.

v1 v2 v3 v4

Figure 14.3.6 Diagram of the directed graph G = (V ,E).

□
Checkpoint 14.3.7 Invent a formal definition for directed, weighted graph.

14.4 Important examples

Example 14.4.1 A power set graph. We can use a graph to visualize the
power set of a finite set A: let (P (A),E) be the directed graph where, for vertices
B,C ∈P (A) (that is, subsets B,C ⊆ A), the ordered pair (B,C) is an edge in E if
the following two conditions are satisfied:

(i) B ⫋C; and

(ii) there does not exist a subset D ⊆ A such that B ⫋ D ⫋C.

Note: The second condition is to avoid cluttering the graph with extra edges that
do not add any extra information.

For example, consider A = {a,b, c} and

P (A)= {∅, {a}, {b}, {c}, {a,b}, {a, c}, {b, c}, {a,b, c} } .

So we can draw a graph to represent the subset relationships of P (A), with
arrows to point from subset to superset.

∅

{a} {b} {c}

{a,b}

{a,c}

{b,c}

{a,b,c}

Figure 14.4.2 Directed graph to represent the subset relationships between
elements of P (A).

It is somewhat natural to draw the graph with the largest subsets of A at the
top (or at the bottom). If we decide that arrows will always point upwards, we
can unclutter our graph by just drawing lines instead of arrows for edges. □

We can use graphs to visualize other kinds of mathematical relationships.

Example 14.4.3 A division graph. For integers m,n, write m | n if m divides
n; that is, if n/m is also an integer. In this case, we say that m divides n.

Set
V = {2,3,4,5,6,7,8,9,10,11,12,13,14}.

Let G = (V ,E) be the directed graph where, for integers m,n ∈V with m < n, the
ordered pair (m,n) is an edge in E if the following two conditions are satisfied:

(i) m | n;

(ii) there does not exist an integer ℓ ∈V such that m | ℓ and ℓ | n, but ℓ ̸= m,n.
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We can use this directed graph to visualize the set V with respect to the divides
relationship. Again, we agree that arrows will always point up, but do not
actually draw them. Note that the prime numbers all appear at the bottom.

23 5 7 11 13

4
69

10 14

8
12

Figure 14.4.4 Directed graph to represent the relationship of division between
elements of V .

□
Example 14.4.5 Travelling salesman problem. You get a summer job with
the Prospective Student Office at the University of Alberta’s Augustana Campus
in Camrose, Alberta. In May and June, your job is to visit Alberta high schools
and meet with students who are thinking of applying to Augustana. Below is
a map of the cities and towns you must visit, given as a weighted graph with
distances in kilometres as weights. To save on gas, you would like to visit each
city and town exactly once, and do so while travelling the shortest distance
possible.

Edmonton

Camrose

94

Wetaskiwin
40

Leduc

35

Red Deer

124

Stettler

85

Drumheller

101

Calgary

146

Banff 130

Jasper

289

Edson

163

Rocky Mt. Hs.
84

35

97

80

165

137

202

331

270 199

Figure 14.4.6 Road map of major centres in Alberta as a weighted graph.

This is a difficult problem, and gets more difficult as the number of cities and
roads increases. □
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14.5 Activities

Activity 14.1 Draw all possible simple graphs with 4 vertices.

Hint. See Statement 3 of Proposition 14.2.11.

Activity 14.2 Suppose G = (V ,E) is a graph. Decide the truth of the following
statement.

Every pair of a subset V ′ ⊆ V and a subcollection E′ ⊆ E defines a
subgraph G′ = (V ′,E′) of G.

Activity 14.3 Draw a graph where the nodes are students present in today’s
class. Draw edges between pairs of students that are in the same group today.
Additionally, draw an edge between a member of your group and another student
if that pair was in a group together last class.

Activity 14.4 For each of the following graphs, write out its formal definition as
either a (regular) graph, a weigthed graph, or a directed graph, as appropriate.

(a)

C

D

BA

(b)

C

D

BA

blue yellow

cyan

yellow

red blue

(c)

C

D

BA

Activity 14.5 Consider the website Facebook as a graph where vertices are
profiles and edges represent “friendship”.

(a) Should this graph be a directed graph? Why or why not?

(b) Is this graph simple? complete? Justify your answers.

(c) What does the degree of a vertex represent?

(d) Could this graph have isolated vertices?

(e) Suppose the following graph is a subgraph of the Facebook graph.

P2P3

P6

P5 P7

P4P9 P10 P11

P8

P1
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(i) What is the largest party one of these people could throw where each
party-goer is Facebook friends with every other party-goer? Justify
your answer.

(ii) Assume all of the people in this graph live in the same geographic
area. Which pair of non-friends are most likely to become friends
in the future? Which pair of non-friends are least likely to become
friends in the future? Justify your answers.

14.6 Exercises

1

2

3

4

5

6
7

8

9

10

11

Figure 14.6.1 An example graph.

1. Consider the graph in Figure 14.6.1.

(a) Are vertices 1 and 2 incident?

(b) Are any vertices adjacent to themselves?

(c) Is vertex 3 adjacent to vertex 6?

(d) Is this a simple graph?

(e) Compute the degree of each vertex in the graph. Then verify that
the sum of the degrees is equal to twice the number of edges. (See
Theorem 14.2.4.)

2.

(a) How many edges does the complete graph with ten vertices have?

Hint. See Theorem 14.2.4.

(b) Generalize your result to a formula for the number of edges in the
complete graph with n vertices.

3.

(a) Draw an example of a simple graph that has no vertices of odd degree.

(b) Draw an example of a simple graph that has no vertices of even degree.

4. Given a collection of sets A1, A2, . . . , An, the intersection graph of the col-
lection is the simple graph that has a vertex for each of the sets in the
collection, with two vertices joined by an edge if and only if the two corre-
sponding sets have nonempty intersection. Draw the intersection graph of
the following collection of sets.

A1 = {1,2,3,4,5},

A2 = {2,4,6,8},

A3 = {3,5,12},

A4 = {5,8,10}.
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Complement of a graph. Exercises 5–7 concern the following definition.

complement (of a simple graph G)
the simple graph that has the same vertex set as G, but in which two
vertices are joined by an edge if and only if those same two vertices
are not joined by an edge in G

5. Draw the complement of the simple graph in Figure 14.6.2.

1
2

3
4

5

Figure 14.6.2 A simple graph.
6. What is the complement of a complete graph?
7. Suppose G is a simple graph with n vertices. Determine a relationship

between the number of edges in G, the number of edges in the comple-
ment of G, and the number of edges in the complete graph Kn with n
vertices.

Hint. Recall that every simple graph with n vertices is a subgraph of
Kn.
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Paths and connectedness

15.1 Motivation

Example 15.1.1 Driving routes on a graph. Looking at a map of Alberta,
you might decide that there are three reasonable driving routes from Camrose
to Red Deer and three reasonable driving routes from Red Deer to Drumheller.
Define a graph G = (V ,E) with cities as vertices and routes as edges. If we travel
between Camrose, Red Deer, and Drumheller on these routes, we find that any
multi-city trip is a finite sequence from V ∪E which starts and ends at a vertex
and alternates between vertices and edges.

C

R
r2

D
r5

r1

r3

r4

r6

Figure 15.1.2 Driving routes between Camrose, Red Deer, and Drumheller.

For example,
C, r1,R, r4,D, r5,R, r2,C, r3,R, r6,D

is a trip that travels back and forth between Camrose and Drumheller, via Red
Deer each time, and that never uses the same route twice. Notice that we cannot
extend this trip without repeating a route. □

15.2 Walks, trails, and paths

Suppose G = (V ,E) is a graph.

walk a finite sequence v0, e1,v1, e2, . . . ,vn−1, en,vn of elements from V ∪E,
with each vi ∈V and each e i ∈ E, such that edge e i connects vertices
vi−1 and vi

closed walk
a walk that ends at the same vertex at which it started (that is,
vn = v0)

open walk
a walk that isn’t closed (that is, vn ̸= v0)

trail a walk that traverses no edge more than once
path a walk that passes through no vertex more than once, except possibly

the endpoints v0,vn

159
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Note 15.2.1 We may also apply the adjectives open and closed to trails and
paths.

Example 15.2.2 Consider the graph in Example 15.1.1.

1. The “trip” we found in the example is a trail of maximal length starting at
vertex C.

2. The walks C, r1,R, r4,D and C, r1,R, r2,C are both paths, the first open
and the second closed.

3. The walk C, r1,R, r4,D, r4,R is neither a path nor a trail.

□

Example 15.2.3 Paths and trails. Consider the following graph.

v3
e6 v4e4

v2

e5

v1 e1

e2 e3

Figure 15.2.4 A example graph to illustrate paths and trails.

This graph has the following properties.

1. Every path or trail passing through v1 must start or end there but cannot
be closed, except for the closed paths:

• v1;

• v1, e1,v2, e1,v1;

• v2, e1,v1, e1,v2;

2. Walk v1, e1,v2, e5,v3, e4,v4, is both a trail and a path.

3. Walk v1, e1,v2, e5,v3, e6,v3, e4,v4, is a trail but not a path.

□

Worked Example 15.2.5 Consider again the graph in Figure 15.2.4 from Exam-
ple 15.2.3. How many trails from v3 to v4 exist? How many of those trails are
paths? Are there any paths from v3 to v4 that are not trails?

Solution. We can solve this using a graph! The graph in Figure 15.2.6 was
created by mapping out all possible trails starting at v3 and ending at v4, moving
across one edge at a time. Each node in this new (directed) graph is labelled with
a partial walk that is a continuation of the walk assigned to the node above it.
Each leg in the graph stops when the associated walk being followed reaches v4
and cannot be continued without repeating another edge. To save space in the
node labels, we have used “. . . ” to mean the walk from the previous node.

Counting all the nodes in the graph of Figure 15.2.6 that are labelled with a
walk that ends in v4, we see that there are ten trails from v3 to v4. Also, we can
easily see that only three of the trails are paths.

We can use the same technique to map out all paths from v3 to v4, but this
time we terminate a leg when we cannot move off a vertex without repeating a
vertex that is already visited in that walk. (Note that the walk v3, e6,v3 is a path,
but if we extend this walk in any way it will no longer be a path.)
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From the result in Figure 15.2.7, we see that there are only three paths from
v3 to v4, and each of them is a trail.

...,e3,v4 ...,e2,v4

...,e2,v2 ...,e3,v2

v3,e4,v4

...,e2,v4 ...,e3,v4

v3,e5,v2

...,e3,v4 ...,e2,v4

...,e2,v2 ...,e3,v2
...,e2,v4 ...,e3,v4

...,e4,v4 ...,e5,v2

v3,e6,v3

v3

Figure 15.2.6 Mapping the trails from v3 to v4 in the graph of Figure 15.2.4.

...,e2,v2 ...,e3,v2

v3,e4,v4

...,e2,v4 ...,e3,v4

v3,e5,v2
v3,e6,v3

v3

Figure 15.2.7 Mapping the paths from v3 to v4 in the graph of Figure 15.2.4.

□

Proposition 15.2.8 Every open path is a trail.

Proof. We will prove the contrapositive: a walk that is not a trail cannot be an
open path. So suppose W is a walk in a graph, and that W traverses edge e twice.

Case e is a loop. Then W passes through the vertex incident to e at least three
times, hence is not a path.

Case e is not a loop. Write e = {v,v′}. Initially, there are two possibilities to
consider. If each of the two assumed traversals of e moves from v to v′, then
W passes through each of v,v′ at least twice, and hence is not a path. If the
two assumed traversals of e move v to v′ and v′ to v respectively, then W passes
through v at least twice. If W traverses v twice because it both starts and ends
there, then W is not open. If W is open and traverses v twice, then W is not a
path. So in any case, W is not an open path. ■

Note 15.2.9 In Activity 15.1, you are asked to create counterexamples of some
statements related to the above proposition.
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15.3 Connected vertices, graphs, and components

connected vertices
a pair of vertices v,v′ such that there exists a walk beginning at v
and ending at v′

connected graph
every pair of vertices is connected

Example 15.3.1 A connected graph.

□
Example 15.3.2 A nonconnected graph.

□
Being connected is a symmetric relationship between vertices, and walks

connecting vertices can be shortened to paths.

Proposition 15.3.3 Characterizations of connected vertices. Assume v,v′

are vertices in a graph. Then the following are equivalent.

1. Vertices v,v′ are connected.

2. There exists a walk beginning at v and ending at v′.

3. There exists a path beginning at v and ending at v′.

4. There exists a walk beginning at v′ and ending at v.

5. There exists a path beginning at v′ and ending at v.

Proof idea. As usual, we prove the equivalence of multiple statements using a
cycle of logical implications.

Statement 1 implies Statement 2. This is the definition of connected vertices.

Statement 2 implies Statement 3. Suppose v0, e1,v1, . . . ,vn−1, en,vn is a walk
with v0 = v and vn = v′. If this walk is not a path, then there is a repeated vertex.
Suppose v j = vi with j > i. Then

v0, e1,v1, . . . ,vi−1, e i,v j, e j+1, . . . ,vn−1, en,vn

is also a walk from v to v′. Keep removing repeated vertices in this way until a
path is obtained.

Statement 3 implies Statement 4. Just reverse the order of the vertices and
edges in the path from v to v′ to obtain a walk in the other direction.

Statement 4 implies Statement 5. As before, if the walk from v′ to v is not a path,
each pair of repeated vertices can be eliminated by “snipping out” the portion of
the walk between them.

Statement 5 implies Statement 1. Reverse the path from v′ to v to obtain a walk
from v to v′, thereby satisfying the definition of connected vertices. ■



15.3. CONNECTED VERTICES, GRAPHS, AND COMPONENTS 163

A nonconnected graph can be considered to simply be a collection of connected
subgraphs.

connected component (working definition)
a connected subgraph of a graph which is not contained in any larger
connected subgraph of that graph

connected component (formal definition)
a subgraph G′ of a graph G that satisfies the following:

(i) G′ is connected;

(ii) if G′′ is a subgraph of G such that G′′ is connected and G′ ⪯G′′,
then G′′ =G′

Example 15.3.4 Breaking a nonconnected graph into connected compo-
nents. Considering Figure 15.3.5 below as a single graph, we have placed the
connected components (of which there are three) into boxes.

Figure 15.3.5 A nonconnected graph as a collection of connected subgraphs.

This nonconnected graph has other connected subgraphs. For example, the
subgraph that contains only the left-most two vertices joined by a single edge is
a connected subgraph. But that connected graph is not a connected component
because it is a subgraph of a larger connected subgraph. □
Example 15.3.6 Connected components do not depend on how the graph
is represented diagrammatically.

(a) Overlapping connected components.

(b) Non-overlapping connected components.

Figure 15.3.7 Two different representations of the same nonconnected graph.
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The two graphs in Figure 15.3.7 are in fact the same graph, just with different
diagrammatic representations. In the second version of the graph, we have again
identified connected components by placing each of them in a box. □

Example 15.3.8 A connected graph has one component. If a graph is
connected, then the entire graph is a largest connected subgraph possible.

Figure 15.3.9 A connected graph with one connected component.

□
Note 15.3.10 As in our working definition, informally the connected compo-
nents of a graph G are the “largest” subgraphs of G that are connected. The
second condition in the formal definition is just a positive way of stating the
working definition. We will make the general notion of “largest” more precise in
a similar way in Chapter 19 (see the definition of maximal element, the Test
for Maximal/Minimal Elements, as well as Example 19.5.7).

Theorem 15.3.11 A lower bound for the number of edges in a connected
graph. If G = (V ,E) is connected and |V | = n, then |E| ≥ n−1.

Proof. By (strong) induction.

Base case n = 1. Every graph with only one vertex is connected and satisfies
|E| ≥ 0.

Induction step. Assume k ≥ 1 and the statement is true for all n ≤ k. Let
G = (V ,E) be a connected graph with k+1 vertices. We must show |E| ≥ k.

Arbitrarily choose some vertex v0 ∈ V , and let G′ = (V ′,E′) be the graph
obtained from G by removing v0 and all edges incident to it. Unfortunately,
G′ might not be connected. Let G′

1, . . . ,G′
ℓ

be its connected components. Write
G′

i = (V ′
i ,E′

i), and let ni =
∣∣V ′

i

∣∣. Then each G′
i is connected and has at most k

vertices, so the induction hypothesis applies. Also note that n1+·· ·+nℓ = k, since
every vertex of G except v0 is part of exactly one subgraph G′

i.

v0 G′...

(a) “Extra” vertex v0 and
the remaining subgraph
G′.

v0

G′
1

G′
2...

...
G′
ℓ

(b) Subgraph G′ split
into connected compo-
nents.

Figure 15.3.12 Removing “extra” vertex v0, splitting remaining subgraph into
connected components.

Therefore, using our induction hypothesis we may calculate

|E| =
∣∣E′∣∣+|{edges in G incident to v0}|

=
∣∣E′

1
∣∣+·· ·

∣∣E′
ℓ

∣∣+|{edges in G incident to v0}|
≥ (n1 −1)+·· ·+ (nℓ−1)+|{edges in G incident to v0}|
= k−ℓ+|{edges in G incident to v0}| .
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However, since G is connected, v0 must be the glue keeping the subgraphs {G′
i}

together. That is, for each i there must be at least one edge between v0 and some
vertex of G′

i. Therefore,

|E| ≥ k−ℓ+|{edges in G incident to v0}|
≥ k−ℓ+ℓ
= k.

■

15.4 Articulation vertices, bridges, and edge con-
nectivity

articulation vertex
a vertex of a graph such that, if it were to be removed (along with
any edges incident to it), the resulting subgraph would have more
connected components than the original

bridge an edge of a graph such that, if it were to be removed, the resulting
subgraph would have more connected components than the original

Example 15.4.1 An articulation vertex. In the graph of Figure 15.4.2,
the central vertex that is common to both diamond-shaped subgraphs is an
articulation vertex, as removing it and all edges incident to it would leave two
unconnected “ears” on the outside of the two diamond shapes.

Figure 15.4.2 A graph featuring a single, central articulation vertex.

□
Example 15.4.3 A bridge between two articulation vertices. In the graph
of Figure 15.4.4, edge e is a bridge, and each of v and v′ are articulation vertices.

v v′e

Figure 15.4.4 A graph featuring a bridge between two articulation vertices.

□
Remark 15.4.5 In the proof of Theorem 15.3.11, our conception was that “extra”
vertex v0 was an articulation vertex, where removing it would create a subgraph
G′ that would be split into connected components G′

1, . . . ,G′
ℓ
. (Though it is

possible v0 is not an articulation vertex, if subgraph G′ is connected.)

edge connectivity
the minimum number of edges that must be removed from a con-
nected graph to obtain a nonconnected subgraph
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Remark 15.4.6 Edge connectivity measures redundancy in the graph, as each
edge that can be removed without breaking the graph into nonconnected sub-
graphs must be incident to a pair of vertices that remain connected via some
other walk through the graph.

Example 15.4.7 The edge connectivity of the graph in Figure 15.4.2 is 2. □

Example 15.4.8 Edge connectivity in a graph with a bridge. A bridge
represents a “single point of failure,” and every graph that contains a bridge has
edge connectivity 1. For example, removing the single edge e in the graph of
Figure 15.4.4 breaks the graph into two nonconnected subgraphs. □

Proposition 15.4.9 Two upper bounds for edge connectivity. Suppose
G = (V ,E) is a connected graph. Let n = |V |, e = |E|, and let d be the smallest
degree of any of the vertices of G. Then the edge connectivity of G cannot be greater
than either of the integers d or ⌊2e/n⌋.
Proof. First, if v is a vertex of G with degv = d, then removing all of the edges
incident to v will cause v to become isolated and G to become nonconnected. So
the edge connectivity of G cannot be greater than d.

Next, recall that the sum of the degrees of the vertices of G is equal to 2e
(Theorem 14.2.4). Using this, we have

2e = degv1 +degv2 +·· ·+degvn ≥ d+d+·· ·+d = nd.

So d ≤ 2e/n. The number 2e/n is rational, but may not be an integer. However,
d is definitely an integer, so we must have d ≤ ⌊2e/n⌋. Since we have already
concluded that the edge connectivity of G is no greater than d, it also can be no
greater than ⌊2e/n⌋. ■

Remark 15.4.10 With n and e as in the statement of the theorem, 2e is equal to
the sum of the degrees of the vertices (Theorem 14.2.4), so 2e/n is equal to the
average degree of vertices in the graph.

Worked Example 15.4.11 Your tree fort rivals have set up a communication
system of tin cans and strings. You have mapped out their network as in Fig-
ure 15.4.12. To minimize the risk of crab apple welts, what is the minimum
number of strings you must cut to disrupt their communications?

DELTA CHARLIE

BRAVO

ALPHAHQ

ECHO

Figure 15.4.12 TreeFort CommNet.

Solution. There are 6 nodes and 10 edges, so Proposition 15.4.9 tells that the
edge connectivity must be no greater than ⌊20/6⌋ = 3. By inspection, the edge
connectivity is not 1 as there are no bridges. However, we may isolate either fort
ALPHA or ECHO with two snips. □
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15.5 Activities

Activity 15.1 In each of the following, devise a graph that contains the requested
type of walk. (You do not need to create one graph that contains all three types
of walks; you may draw three separate graphs.)

(a) A closed path that is not a trail.

(b) An open trail that is not a path.

(c) A closed trail that is not a path.

Activity 15.2 Devise a graph with exactly four vertices, each of which has degree
5, so that the graph is

(a) nonconnected.

(b) connected.

Activity 15.3 In each of the following, devise a connected graph with at least five
vertices that has the requested properties. Do so without looking at the example
graphs in this chapter. (You do not need to create one graph that contains all of
the properties; you may draw a separate graph for each task below.)

(a) Contains a bridge.

(b) Every edge is a bridge.

(c) Contains an articulation vertex.

(d) Every vertex of degree at least 2 is an articulation vertex.

Activity 15.4 Does increasing the number of edges in a graph increase its edge
connectivity?

Activity 15.5

3 4

21

7 8

65

Figure 15.5.1 A nonconnected graph.

In the graph of Figure 15.5.1, explain why the subgraph formed by vertices 2,
3, and 4, along with all edges incident to these vertices, fails the formal definition
of connected component. Identify which of the two conditions of this formal
definition the subgraph fails, and explicitly describe how the subgraph fails to
meet that condition.

Activity 15.6 Suppose G is a simple, nonconnected graph with n vertices that is
maximal with respect to these properties. That is, if you tried to make a larger
graph in which G is a subgraph, this larger graph will lose at least one of the
properties (a) simple, (b) nonconnected, or (c) has n vertices.

What does being maximal with respect to these properties imply about G?
That is, what further properties must G possess because of this assumption?

Activity 15.7 An Euler circuit is a closed trail in a connected graph G that
traverses every edge of G. Since it must be a trail, you could say that an Euler
circuit traverses each edge of G exactly once (as well as ending at the same node
at which it begins).
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Prove that if a connected graph contains an Euler circuit, then every vertex
in that graph must have even degree.

15.6 Exercises

Recognizing paths and trails. In each of Exercises 1–4, you are given a walk
through a graph. Determine whether the walk is a path, a trail, or neither. Also
determine whether the walk is open or closed.

1. v1, e1,v2, e2,v3, e3,v4, e12,v6, e6,v3.

2. v1, e1,v2, e2,v3, e3,v4, e4,v5, e5,v6, e6,v3, e7,v7, e8,v1.

3. v1, e8,v7, e7,v3, e7,v7, e8,v1.

4. v3, e3,v4, e4,v5, e5,v6, e6,v3.

5. Consider the graph in Figure 15.6.1.

1
2

3

4
5

6

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

Figure 15.6.1 An example graph.

(a) Determine four different paths from vertex 1 to vertex 5.

(b) Determine four different trails from vertex 1 to vertex 5, none of which
are paths.

(c) Determine four different walks from vertex 1 to vertex 5, none of
which are trails.

6. Consider the graph in Figure 15.6.2.

1

2

3

4

5

6

Figure 15.6.2 An example graph.

(a) How many different trails are there from vertex 1 to vertex 5?

(b) How many different paths are there from vertex 1 to vertex 5? (Hint:
See Proposition 15.2.8.)

(c) How many different walks are there from vertex 1 to vertex 5?

Recognizing bridges. In each of Exercises 7–10, identify each edge that is a
bridge.

7.
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1

2

3

4

5

6

8.

1

2

3

4

5

9.

0

1 2 3

4

567

8

10. The complete graph with n vertices.
11. Among all possible nonconnected graphs with n vertices, let H be one with

the maximum number of edges. Prove that H has exactly two connected
components.

Hint. Argue by contradiction.
12. Suppose G is a connected graph that contains a closed path that is also a

trail. Prove that it is possible to remove any single edge from this path and
be left with a connected subgraph of G. That is, prove that no edge in this
path could be a bridge.

13. Prove that a graph in which every edge is a bridge cannot have a closed
path that is also a trail.





CHAPTER 16

Trees and searches

16.1 Motivation

Example 16.1.1 Reducing redundancy. You have set up your own tree-fort
communication system out of tin cans and strings. (See Worked Example 15.4.11.)
However, peace has broken out and your communication system is underused. To
address the crippling tin-can-and-string stilts shortage, you want to dismantle
as much of your network as possible without disrupting communications.

DELTA CHARLIE

BRAVO

ALPHAHQ

ECHO

Figure 16.1.2 TreeFort CommNet.

Closed paths are redundant, as communication could be routed around such a
path in two directions. So try to eliminate closed all paths; two possible solutions
appear in Figure 16.1.3.

DELTA CHARLIE

BRAVO

ALPHAHQ

ECHO

(a) One possible result of removing
redundancy.

DELTA CHARLIE

BRAVO

ALPHAHQ

ECHO

(b) Another possible result of remov-
ing redundancy.

Figure 16.1.3 TreeFort CommNet (after removing redundant communication
paths).

□

171
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Remark 16.1.4 A more difficult modification of the above example would be to
include the length of string in each communication link as a weight for that edge
in the graph, and then try to determine a configuration that removes the most
string from the network without disrupting communications.

16.2 Basics

trivial path
a path that consists of a single vertex

cycle a closed path
proper cycle

a nontrivial cycle that is also a trail

Note 16.2.1 If G contains vertices v,v′ and edge e = {v,v′}, then v, e,v′, e,v is a
nontrivial cycle which is not proper.

acyclic graph
contains no proper cycles

forest synonym for acyclic graph
tree a connected, acyclic graph

Example 16.2.2 A forest of trees. The graph in Figure 16.2.3 is acyclic. Each
of its connected components is a tree.

Figure 16.2.3 A nonconnected acyclic graph.

□
Example 16.2.4 Decision trees are trees. In Worked Example 15.2.5, we
attempted to determine all possible trails from one node to another in a given
graph. The graph in Figure 15.2.6 that we used to explore possible trails in the
given graph is an example of a decision tree — at each node we “branched out”
to new possibilities in continuing the trail. As the name suggested, the connected
graph we ended up with is a tree. □
Proposition 16.2.5 Subgraphs of forests.

1. Every subgraph of an acyclic graph is acyclic.

2. Every connected subgraph of an acyclic graph is a tree. In particular, each
connected component of an acyclic graph is a tree.
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16.3 Identifying trees

Theorem 16.3.1 Characterizations of trees. The following are equivalent for
a graph G = (V ,E) with |V | = n vertices.

1. Graph G is a tree.

2. Graph G is acyclic but the addition of any new edge would create a cycle.

3. Graph G contains no loops and contains exactly one path between each pair
of distinct vertices.

4. Graph G is connected but every edge of G is a bridge.

5. Graph G is connected and has exactly |E| = n−1 edges.

6. Graph G is acyclic and has exactly |E| = n−1 edges.

Proof of the equivalence of Statements 1–4.

Statement 1 implies Statement 2. Suppose G is a tree. By definition, it is acyclic.
Furthermore, suppose we add an edge between vertices v,v′. Since trees are
connected, there was already a path from v to v′ in G. Traversing the new edge
from v′ back to v closes that path to a cycle.

Statement 2 implies Statement 3. Considering the contrapositive, we will assume
that Statement 3 is false, and prove that this implies that Statement 2 must also
be false.

For Statement 3 to be false, one of the following must be true.

(i) Loops exist in G.

(ii) Some pair of distinct vertices in G is not connected.

(iii) Some pair of distinct vertices in G is connected by more than one path.

In the first case, G would not be acyclic, as a loop is the most basic form of
cycle. In the second case, adding an edge between these two vertices that were
previously unconnected by a path would not create a cycle, as the rest of that
cycle other than the new edge would have been a path between the two vertices.
And in the third case, if a pair of vertices is connected by more than one path
then the parts of two such paths that are different could be concatenated (one
forward, one reversed) to create a cycle, so that G must be not be acyclic.

Thus, in all cases that make Statement 3 false, Statement 2 is also false.

Statement 3 implies Statement 4. Again, we will consider the contrapositive,
assuming that Statement 4 is false and proving that Statement 3 is also false.

For Statement 4 to be false, one of the following is true.

(i) Graph G is not connected.

(ii) Some edge in G is not a bridge.

In the first case, G must contain at least one pair of vertices that is not connected
by any path. For the second case, suppose edge e in G is a loop. If e is a loop, then
G contains loops. If e is not a loop, then it is an edge between a pair of distinct
vertices, say v and v′. But then removing e from G would leave a subgraph G′

that still contains both v and v′, and which is still connected. So this subgraph
(and hence G) must contain a path between v and v′ that does not involve e. On
the other hand, v, e,v′ is also a path between v and v′. So v,v′ is a pair of distinct
vertices in G for which there is more than one path between them.
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Thus, in all cases that make Statement 4 false, Statement 3 is also false.

Statement 4 implies Statement 1. Again, we consider the contrapositive of this
logical implication, assuming that Statement 1 is false and proving that State-
ment 4 is also false. However, since both statements contain the substatement
that G is connected, we will not negate that part.

So assume that G is connected but contains a proper cycle. We aim to prove
that at least one edge in G is not a bridge. In Activity 16.4, you are asked to prove
that none of the edges in the proper cycle that G contains is a bridge, which will
complete the proof. ■
Proof of the equivalence of Statement 1, Statement 5, and Statement 6.

Statement 1 implies Statement 5. Assume that G is a tree. Then it is connected.
To prove that the number of edges is |E| = n−1, we proceed by (strong) induction
on n, the number of vertices in G.

For the base base case of n = 1, |E| = 0 is the only possibility, as loops are not
allowed in a tree.

Now the induction step. Assume that every tree with k < n vertices has k−1
edges. Choose some edge in G. By Statement 4, removing that edge creates two
connected components, G1 and G2. As G is acyclic, these connected components
are both trees (Statement 2 of Proposition 16.2.5). Let k1,k2 represent the
number of vertices in G1,G2, respectively, so that k1 + k2 = n. Since each of k1
and k2 must be strictly less than n, we may apply our indution hypothesis to
each of G1 and G2, so that G1 has exactly k1 −1 edges and G2 has exactly k2 −1
edges.

subtree G1

k1 vertices
k1 < n ⇒

k1 −1 edges

subtree G2

k2 vertices
k2 < n ⇒

k2 −1 edges

Figure 16.3.2 Tree G splits into subtrees G1,G2 after removal of an edge.

Adding up the number of edges in G1 and G2, along with the single edge
in G that was removed to create these two connected components, we obtain
|E| = (k1 −1)+ (k2 −1)+1= (k1 +k2)−1= n−1, as desired.

Statement 5 implies Statement 6. Consider the contrapositive of this logical
implication, assuming that Statement 6 is false and proving that Statement 5
is also false. However, since both statements contain the substatement that
|E| = n−1, we will not negate that part.

So assume that G has n−1 edges, but contains a proper cycle. We must prove
that G cannot be connected in this case. Choose an edge e in the proper cycle and
create a subgraph G′ by removing e. Subgraph G′ now has n vertices but n−2
edges, and so by the contrapositive of Theorem 15.3.11 G′ cannot be connected.
That means that G′ contains a pair of vertices v1,v2 between which no walk
exists. If there is a walk between v1,v2 in G but not in G′, then that walk must
involve the chosen e. But then there would be another walk between v1,v2 in
G avoiding e via the rest of the proper cycle containing e. And this other walk
would be in G′ since it does not involve e. Except that we assumed there was
no walk between v,v′ in G′, hence there also can be no walk between them in G.
Thus, G is not connected.

Statement 6 implies Statement 1. Again, consider the contrapositive of this logi-
cal implication, assuming that Statement 1 is false and proving that Statement 6
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is also false. However, since both statements contain the substatement that G is
acyclic (part of the definition of tree), we will not negate that part.

So assume that G is acyclic but not a tree, i.e. that G is not connected. We
must prove that the number of edges in G is different from n−1, where n is
the number of vertices in G. Let G1,G2, . . . ,Gℓ be the connected components of
G. Now, since G is assumed acyclic, each of these connected components is a
tree (Statement 2 of Proposition 16.2.5). We have already proved above that
Statement 1 implies Statement 5, so if we write ki for the number of vertices in
component G i, then we may conclude that the number of edges in component G i
is ki −1. As the components make up the entire graph G, we may add up the
vertices and edges in each component to get the totals in the full graph:

n = k1 +k2 +·· ·+kℓ,

|E| = (k1 −1)+ (k2 −1)+·· ·+ (kℓ−1)

= (k1 +k2 +·· ·+kℓ)−ℓ
= n−ℓ.

Since we assume G is not connected, we have ℓ≥ 2, and so |E| ̸= n−1 as desired.
■

16.4 Depth-first and breadth-first searches

Let G be a graph. Given vertices v,v′ of G, we might wish to find a path from v
to v′, if one exists. We can do this by constructing a tree T ⪯G.

Algorithm 16.4.1 Depth-first search. To create a tree T that is a subgraph of
a graph G wherein a path (in G) from v to v′ is evident, begin with T containing
the single vertex v and no edges. Set x = v.

1. Look for a vertex y of G which is adjacent to x but not already in T. If such
a y is found, go to Step 2. Otherwise, go to Step 3.

2. Adjoin y and a single edge between x and y to T. If y = v′, stop — a path
from v to v′ exists and is now contained in T. Otherwise, set x = y and
return to Step 1.

3. If you have arrived here immediately after beginning the algorithm (i.e. with
x still set to be v), stop — there is no path from v to v′. Otherwise, return to
the vertex z adjoined before x. Set x = z and return to Step 1.

Note 16.4.2 In Step 1 of the algorithm, there is no specification on how to choose
a single y satisfying the search criteria from multiple possibilities. In other
words, there is flexibility in the implementation of the algorithm here, and
for the problem at hand there may be implementation choices that are more
expedient then others.

Example 16.4.3 Carrying out a depth-first search. We perform a Depth-first
search on the graph in Figure 16.4.4, attempting to find a path from vertex 1 to
vertex 9. In carrying out the algorithm, if we always choose the vertex with the
smallest label in Step 1, we obtain the graph in Figure 16.4.5(a). The graph in
Figure 16.4.5(b) is the result of always choosing the vertex with the largest label.
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1 823
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5

7

612
9

11

10

Figure 16.4.4 An example graph to illustrate depth-first search.

1

2

3

4

6 12

5

7

8 9

(a) Result of always choosing to move to the next adjacent
vertex of smallest index.

1

8

7

11

9

(b) Result of always choosing to move to the next adjacent
vertex of largest index.

Figure 16.4.5 Results of two different implementation choices in a depth-first
search.

□
The depth-first search will not necessarily yield the shortest path from v to v′.

The following algorithm will.

Algorithm 16.4.6 Breadth-first search. To create a tree T that is a subgraph
of a graph G wherein the shortest path in G from v to v′ is evident, begin with T
containing the single vertex v and no edges.

1. For each vertex x in T added in the last application of this step (or, in the
case of the first application of this step, for x = v), adjoin all vertices of G
that are adjacent to x and not already in T, along with a single edge between
each such vertex and x. If at least one vertex has been adjoined to T in this
step, proceed to Step 2. Otherwise, stop — there is no path from v to v′ in G.

2. If v′ was one of the vertices adjoined in Step 1, stop — a path from v to v′
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exists and is now contained in T. Otherwise, return to Step 1.

Example 16.4.7 Carrying out a breadth-first search. Below is the result of
the breadth-first algorithm, carried out to find a path from 1 to 9 in the graph in
Figure 16.4.4 from Example 16.4.3.

1

2
5 7 8

3 4 6 9 11

Figure 16.4.8 The result of a breadth-first search.

□

16.5 Spanning trees

spanning subgraph
a subgraph that contains all the vertices of the parent graph

spanning tree
a spanning subgraph that is a tree

Example 16.5.1 Spanning trees for the complete graph K4. Here is the
complete graph with four vertices.

And here are ten different spanning trees for K4.

□
If we carry out either of the depth-first or breadth-first search algorithms,

but aren’t looking for a path between specific vertices, the end result will be a
spanning tree for the original graph.

depth-first spanning tree
the result of performing the depth-first search algorithm on a graph,
continuing until all vertices in the original graph appear in the
search tree

breadth-first spanning tree
the result of performing the breadth-first search algorithm on a
graph, continuing until all vertices in the original graph appear in
the search tree
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Example 16.5.2 Depth-first and breadth-first spanning trees. Figure 16.5.3
contains depth-first and breadth-first spanning trees for the graph in Figure 16.4.4,
our source of examples for depth-first search (Example 16.4.3) and breadth-first
search (Example 16.4.7).

1

2

3

4

6 12

5

7

8

9

10 11

(a) Depth-first spanning tree for the graph in Figure 16.4.4.

1

2
5 7 8

3 4 6 9 11

12 10

(b) Breadth-first spanning tree for the graph in Fig-
ure 16.4.4.

Figure 16.5.3 Examples of depth- and breadth-first spanning trees.

□

16.6 Binary searches

binary search tree
a tree in which every node has degree 1 or 3, except for a single node
of degree 2

initial node
the unique node of degree 2 in a binary search tree

terminal node
a node of degree 1 in a binary search tree

binary search
the construction of a binary search tree through a series of “either-or”
decisions

Worked Example 16.6.1 Estimate the root of f (x)= 4x3 +6x2 +3x−1 that lies
in (0,1) to 2 decimal places.

Solution. The Intermediate Value Theorem from first-year calculus says that
if f is continuous on the closed interval [a,b] and f (a), f (b) are nonzero and
opposite signs, then f has a root in the open interval (a,b). We have f (0)=−1< 0
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and f (1)= 12> 0, so there is indeed a root in (0,1). The graph in Figure 16.6.2
was obtained by performing a binary search by splitting into subintervals.

(0,1)

(0,0.5) (0.5,1) f (0.5)> 0

(0,0.25) (0.25,0.5) f (0.25)> 0

(0,0.13) (0.13,0.25) f (0.13)< 0

(0.13,0.19) (0.19,0.25) f (0.19)< 0

(0.19,0.22) (0.22,0.25) f (0.22)< 0

(0.22,0.23) (0.23,0.25) f (0.23)> 0

(0.22,0.225) (0.225,0.23)

Figure 16.6.2 A binary search tree search for the root of a polynomial.

Since f (0.225)> 0, the root must be in the subinterval (0.22,0.225). This tells
us to round down to 0.22 instead of rounding up to 0.23, so we conclude that the
root is approximately 0.22. □

16.7 Activities

Activity 16.1
(a) Draw two different connected graphs with five vertices each in which every

edge is a bridge.

(b) How many edges are in each of the examples that you drew in Task a?

(c) Would it be possible to add an edge to either of the examples that you drew
in Task a without creating a cycle?

Activity 16.2

(a) Draw two different simple graphs with 5 vertices in which every pair of
vertices has a single path between them.

(b) How many edges are in each of the examples that you drew in Task a?

(c) Would it be possible to add an edge to either of the examples that you drew
in Task a without creating a cycle?

Activity 16.3 Suppose that G is a connected graph that consists entirely of a
proper cycle. (See Figure 16.7.1.)
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Graph G

Figure 16.7.1 A graph that consists entirely of a proper cycle.

Let G′ represent the subgraph of G that results by removing a single edge.
Argue that G′ remains connected.

Activity 16.4 Suppose that H is a connected graph that contains a proper cycle.
Let H′ represent the subgraph of H that results by removing a single edge from
H, where the edge removed is part of the proper cycle that Hcontains. Argue
that H′ remains connected.

Notes.

• Your argument here needs to be (slightly) different from your argument in
Activity 16.3.

• Make sure you are using the technical definition of connected graph in
your argument. What are you assuming about H, and what do you need to
verify about H′?

16.8 Exercises

1. Prove that if a graph contains a closed trail then it also contains a proper
cycle.

Spanning trees. For each of the graphs in Exercises 2–3, draw a spanning tree
by inspection.

2.

1 2

3.

1
2

3

4

5

Reducing to a spanning tree. For each of the graphs in Exercises 4–5, use
the following algorithm to obtain a spanning tree.

• If the graph contains a proper cycle, remove one edge of that cycle.

• If the resulting subgraph contains a proper cycle, remove one edge of that
cycle.

• If the resulting subgraph contains a proper cycle, remove one edge of that
cycle.

• etc..

• Continue until there are no proper cycles left.



181

4.
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Depth-first and breadth-first spanning trees. For each of the graphs in
Exercises 6–8, determine both a depth-first and breadth-first spanning tree. Use
any vertex you like as the starting node.

6.
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CHAPTER 17

Relations

17.1 Basics

relation (working definition)
a rule which assigns to some elements of a set A several elements
from a set B

a R b element a ∈ A is related to element b ∈ B by relation R
relation on a set

a relation between elements of the same set

Remark 17.1.1 Compare this working definition of relation with our working
definition of function in Section 10.1.

As the name implies, a relation describes some relationship of elements of a
set A to elements of a set B.

Example 17.1.2 Pet relation. Let C represent the set of living cats, and let H
represent the set of living humans. Then one relationship between elements of
these two sets can be expressed by writing c R h to mean that cat c is the pet of
human h. □
Example 17.1.3 Parent relation. Let H represent the set of living humans.
Then one type of relationship between elements of this set can be expressed by
writing h1 R h2 to mean that human h1 is the parent of human h2. □
Example 17.1.4 Division relation. One type of relationship between elements
of N>0 can be expressed by writing m | n to mean that nonzero natural number
m divides nonzero natural number n. □

Just as with functions, we want to avoid the use of the undefinable word
“rule”. Notice that a relation just pairs elements of a set A with elements of a set
B; we have seen this before.

relation (formal definition)
a subset of a Cartesian product

With this formal definition, writing R ⊆ A×B becomes the same as saying
“R is a relation between elements of A and B,” and writing (a,b) ∈ R becomes the
same as writing a R b.

Note 17.1.5 With this formal definition, a relation on a set A means a subset of
A× A.

Remark 17.1.6 Recall that our formal definition of function states that a
function A → B is a special kind of subset of A×B. But every subset of A×B can

185
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be considered as a relation, so a function is a special kind of relation.
The difference is that a function A → B must assign exactly one element of B

to each element of A, whereas a relation from A to B can assign any number of
elements of B (even zero) to each element of A. That is, a relation does not have
to be well-defined, and can be left undefined on some elements of A.

See. Example 10.1.16 and Example 10.1.17.

Example 17.1.7 Identity relation. Consider

R = { (a,a) | a ∈ A }⊆ A× A.

Then a1 R a2 means a1 = a2. This relation is the same as the identity function
idA : A → A. □
Example 17.1.8 Element relation. Consider

R = { (a,C) | a ∈ C }⊆ A×P (A).

Then a R C means a ∈ C. This relation is in general not a function, since it is not
well-defined: an element of A can be contained in several subsets of A. □

A relation between pairs of objects, such as the ones we have considered so
far, is sometimes called a binary relation. But we can consider relationships
between collections of more than two objects.

ternary relation
a subset of A×B×C for sets A,B,C

Example 17.1.9 A human (usually) has two biological parents. Let H
represent the set of all living humans. Then we can define a ternary relation
R ⊆ H3 by taking (h1,h2,h3) ∈ R to mean that humans h1,h2 are the parents of
human h3. □

17.2 Operations on relations

Viewing relations as subsets of Cartesian products suggests ways to build new
relations from old.

union (of relations R1,R2)
the relation where a (R1 ∪R2) b means that at least one of a R1 b or
a R2 b is true

intersection (of relations R1,R2)
the relation where a (R1 ∩R2) b means that both a R1 b and a R2 b
are true

complement (of relation R)
the relation where a Rc b means that a R b is not true

a ̸ R b alternative notation for a Rc b

Note 17.2.1 Considering relations as subsets of Cartesian products, the above
relation operations mean precisely the same thing as the corresponding set
operations.

Example 17.2.2 Union of “less than” and “equal to” relations. Consider
the relations < and = on R, and let R be the union <∪=. Then x R y means that
at least one of x < y or x = y is true. That is, R is the same as the relation ≤. □
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Example 17.2.3 Sibling relations. Let H represent the set of all living humans.
Let relations RF ,RM ⊆ H×H be defined by

• a RF b if a,b have the same father; and

• a RM b if a,b have the same mother.

Set RP = RF ∩RM . Then a RP b means that a,b have the same parents. □

Example 17.2.4 Complement of the subset relation. Let U be a universal
set and consider the relation ⊆ on P (U). Then A ⊆c B means that A is not a
subset of B, which can only happen if some elements of A are not in B. In other
words, A ⊆c B means that A∩Bc ̸=∅.

Careful. Relation A ⊆c B does not (necessarily) mean A ⊆ Bc. Draw a represen-
tative Venn diagram to see why.

□
Unlike functions, which can only be reversed if bijective, every relation can

be reversed by simply stating the relationship in the reverse order.

inverse (of a relation R)
the relation where b R−1 a means that a R b is true

Note 17.2.5

• As subsets of Cartesian products, if R ⊆ A ×B, then R−1 ⊆ B× A, and
(a,b) ∈ R if and only if (b,a) ∈ R−1.

• A relation R and its inverse R−1 express the same relationship between
elements of two sets A and B, just phrased in the opposite order. In logical
terms, b R−1 a ⇔ a R b.

Example 17.2.6 Parent/child relations. Let H represent the set of all living
humans, and let R represent the relation on H where h1 R h2 means human
h1 is the parent of human h2. Then h2 R−1 h1 means human h2 is the child of
human h1. Both relations express the same information, but in a different order.

□
Example 17.2.7 Inverse of division relation. Recall that | is a relation on
N>0 where m | n means that m divides n. Then for the inverse relation, n|−1m
means n is a multiple of m. Both relations express the same information, but in
a different order. □
Example 17.2.8 Inverse of logical equivalence. Let L represent the set of all
possible logical statements. We have a relation ≡ on L, where A ≡ B means that
logical statement A involves the same statement variables and has the same
truth table as logical statement B. Since A ≡ B if and only if B ≡ A, we conclude
that the logical equivalence relation on L is its own inverse. □

There are two more set-theoretic ideas we can reinterpret as relations.

empty relation
the relation between sets A and B corresponding to the empty subset
∅⊆ A×B, so that a∅ b is always false

universal relation
the relation between sets A and B corresponding to the full subset
U = A×B ⊆ A×B, so that a U b is always true
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17.3 Properties of relations

Here we list some important properties a relation R on a set A can have.

17.3.1 Reflexivity

reflexive a R a is true for all a ∈ A

Example 17.3.1 A reflexive and a non-reflexive relation on the set of real
numbers. The relation ≤ on R is reflexive, but the relation < is not. □
Test 17.3.2 Reflexive relation. To verify that relation R on set A is reflexive,
prove that (∀a ∈ A)(a R a).

17.3.2 Symmetry and antisymmetry

symmetric
for every pair of elements a1,a2 ∈ A for which a1 R a2 is true, a2 R a1
is also true

Example 17.3.3 Sibling relation is symmetric, brother/sister relation
is not. On the set of all living humans, the relation “a is the sibling of b” is
symmetric, but neither the relation “a is the brother of b” nor the relation “a is
the sister of b” is symmetric. □
Test 17.3.4 Symmetric relation. To verify that relation R on set A is symmetric,
prove that

(∀a1 ∈ A)(∀a2 ∈ A)(a1 R a2 ⇒ a2 R a1).

antisymmetric
for every pair of distinct elements a1,a2 ∈ A, either a1 ̸ R a2 or
a2 ̸ R a1 (or both)

Remark 17.3.5 The distinct part of the definition is important, since if a1,a2 ∈ A
are not distinct (i.e. a2 = a1), then obviously both a1 R a2 and a2 R a1 can be
simultaneously true because they are the same statement.

Example 17.3.6 An antisymmetric relation on real numbers. The relation
≤ on R is antisymmetric. □
Example 17.3.7 A relation can be neither antisymmetric nor symmetric.
On A = {a,b, c}, the relation

R = {(a,b), (b,a), (a, c)}⊆ A× A

is neither antisymmetric nor symmetric. □
Example 17.3.8 A relation can be both antisymmetric and symmetric.
The identity relation on any set, where each element is related to itself and only
to itself, is both antisymmetric and symmetric. □
Remark 17.3.9 As Example 17.3.7 and Example 17.3.8 demonstrate, antisymme-
try is not the opposite of symmetry. However, for a relation R on set A, we may
think of symmetry and antisymmetry as being at opposite ends of a spectrum,
measuring how often we have both a1 R a2 and a2 R a1 for a1 ̸= a2.
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By definition, antisymmetry is when we never have both. On the other hand,
symmetry is when we always have both or neither; that is, for every distinct pair
a1,a2 ∈ A, we either have both a1 R a2 and a2 R a1, or we have both a1 ̸ R a2
and a2 ̸ R a1. However, a relation can fall between symmetry and antisymmetry
on the spectrum, such as in Example 17.3.7, where we sometimes have both (e.g.
both a R b and b R a for that example relation) and we also sometimes have only
one (e.g. a R c but c ̸ R a for that example relation).

The equality relation on a set is a special case that is both symmetric and
antisymmetric. In fact, equality is essentially the only relation that is both
symmetric and antisymmetric — see Exercise 17.6.22.

In symbolic language, the definition of antisymmetric relation is

(∀a1 ∈ A)(∀a2 ∈ A)(a1 ̸= a2 ⇒ a1 ̸ R a2 ∨a2 ̸ R a1).

However, in practise we usually prove antisymmetry using one of two logically
equivalent formulations.

Test 17.3.10 Antiymmetric relation. To verify that relation R on set A is
antisymmetric, prove either one of the following logical statements.

• (∀a1 ∈ A)(∀a2 ∈ A)(a1 ̸= a2 ∧a1 R a2 ⇒ a2 ̸ R a1)

• (∀a1 ∈ A)(∀a2 ∈ A)(a1 R a2 ∧a2 R a1 ⇒ a2 = a1)

Remark 17.3.11 The first formulation for proving antisymmetry provided above
can be thought of as just a different way to say that it is not possible to have
both a1 R a2 and a2 R a1 for distinct elements a1,a2. The second formulation
essentially says that the only possible way to have both a1 R a2 and a2 R a1 is if
a2 = a1.

Note 17.3.12 In Exercise 17.6.21 you are asked to prove that each of the two
different ways of verifying that a relation is antisymmetric provided in the test
above are equivalent.

17.3.3 Transitivity

transitive for every triple of elements a1,a2,a3 ∈ A for which both a1 R a2 and
a2 R a3 are true, a1 R a3 must also be true

Example 17.3.13 Ancestry is transitive. The relation on the set of all humans
who ever lived defined by “a is the ancestor of b” is transitive. □
Test 17.3.14 Transitive relation. To verify that relation R on set A is transitive,
prove that

(∀a1 ∈ A)(∀a2 ∈ A)(∀a3 ∈ A)(a1 R a2 ∧a2 R a3 ⇒ a1 R a3).

17.4 Graphing relations

Recall that if R is a relation on a set A, then formally R is a subset A× A. In
other words, R is a collection of ordered pairs of elements from A.

Also recall that in a directed graph, the edge collection is formally defined to
be a collection of ordered pairs of vertices. So when the set A is finite, we may
regard A as a set of vertices and R as a collection of (directed) edges in a graph!

To summarize, we may represent a relation R ⊆ A× A by the directed graph
(A,R). The vertices of the graph are the elements of A, and for elements a1,a2 ∈
A, we draw an arrow from a1 to a2 if a1 R a2 is true.



190 CHAPTER 17. RELATIONS

Example 17.4.1 Graph of the division relation on a finite set of natural
numbers. Recall that for natural numbers m and n, m | n means “m divides n”.
Consider this relation on the finite set A = {2,3,4,5,6,7,8,9,10}. The graph of
this relation appears in Figure 17.4.2.

6 9

4

10 8

2
3 75

Figure 17.4.2 Graph of the division relation on a small set of natural numbers.

Note that each vertex has a loop since every number divides itself. □

Example 17.4.3 Graph of an inverse relation. Using the same division
relation on the same set A as in Example 17.4.1 above, we may obtain the graph
for the inverse relation by just reversing the direction of all the arrows in the
graph in Figure 17.4.2. □

Question 17.4.4 How are the properties of a relation reflected in its graph? □

Reflexive relations. In this case, a R a is true for every element a ∈ A, so
every vertex has a loop. For example, the relation in Example 17.4.1 is reflexive,
and we see this mirrored in the graph in Figure 17.4.2 by the placement of a loop
at every node.

Remark 17.4.5 When a relation is understood to be reflexive, we often omit the
loops from its graph to reduce visual clutter.

Symmetric relations. In this case, the conditional a1 R a2 ⇒ a2 R a1 is always
true. Therefore, in the graph for R, whenever we have an arrow from a1 to a2,
we must also have an arrow from a2 to a1.

Example 17.4.6 Graph of a symmetric relation. On the set A = {a,b, c,d},
the relation

R = {(a,b), (b,a), (b, c), (c,b)}

is symmetric, and we see this property reflected in the graph in Figure 17.4.7,
as each pair of related (distinct) nodes has an arrow in each direction between
them.

a b c d

Figure 17.4.7 The graph of a basic symmetric relation.

□
Remark 17.4.8 When R is symmetric, arrows are essentially meaningless since
between every pair of vertices we will have either no arrows or one arrow in each
direction. So we may as well draw the graph for R as an ordinary (undirected)
graph instead of a directed graph, replacing each pair of arrows with a single
edge.

Example 17.4.9 Simplified graph of a symmetric relation. The relation in
the previous example is more concisely depicted graphically as in Figure 17.4.10
below.
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a b c d

Figure 17.4.10 The simplified graph of a basic symmetric relation.

□

Antisymmetric relations. In this case, we never have both a1 R a2 and
a2 R a1 for a1 ̸= a2, so in the graph for R, no pair of vertices can have two
oppositely-directed arrows between them.

Example 17.4.11 Graph of an antisymmetric relation. On the set A =
{a,b, c,d}, the relation

R = {(a,a), (a,b), (c,b)}

is antisymmetric, and we see this property reflected in the graph in Figure 17.4.12,
as each pair of distinct nodes has at most one arrow between them.

a b c d

Figure 17.4.12 The graph of a basic antisymmetric relation.

□

Transitive relations. In this case, the conditional a1 R a2 ∧a2 R a3 ⇒ a1 R a3
is always true. Therefore, in the graph for R, every “chain” of two arrows has a
corresponding “composite” arrow.

Example 17.4.13 Graph of an transitive relation. On the set A = {a,b, c,d, e},
the relation

R = {(a,b), (b, c), (a, c), (d, e), (e,d), (d,d), (e, e)}

is transitive, and we see this property reflected in the graph in Figure 17.4.14, as
each pair of arrows forming a “chain” between three nodes has a corresponding
“composite” arrow from the first node in the chain to the third.

a b c d e

Figure 17.4.14 The graph of a basic antisymmetric relation.

□
Remark 17.4.15 In the graph of a transitive relation, we often omit the “com-
posite” arrows to reduce visual clutter, as we can infer from “chains” of arrows
where the “composite” arrows would go. For example, we did this in both the
power set graph in Example 14.4.1 (see Figure 14.4.2) and in the division graph
in Example 14.4.3 (see Figure 14.4.4). It should be obvious that the relations “is
a subset of” and “divides” are transitive, so there was no need to clutter up the
graphs of those relations with extra “composite” arrows — we could trace the fact
that one set was a subset of another or the fact that one number divides another
by following a chain of arrows through intermediate nodes, as necessary.

17.5 Activities

Activity 17.1 In each of the following, describe the requested combination of
relations in words (i.e. in the form “a is related to b if . . . ”). Try to “simplify” your
description, if possible.

In Task h and Task i, the symbol ≡k represents a relation on Z, where m ≡k n
means that m and n have the same remainder when divided by k. (It may help
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to know that this is equivalent to k dividing the difference m−n.)
(a) <∪> on R.

(b) Union of “longer than” and “shorter than” on Σ∗ for some alphabet Σ.

(c) Union of “longer than”, “shorter than”, and “same length as” on Σ∗ for some
alphabet Σ.

(d) Intersection of “longer than” and “shorter than” on Σ∗ for some alphabet Σ.

(e) The complement of ≤ on R.

(f) The inverse of ≤ on R.

(g) The inverse of “x R y if 2x+3y= 0” on R.

(h) The intersection of ≡5 and ≡7 on Z.

(i) The intersection of ≡2 and ≡4 on Z.

Activity 17.2 In each of the following, you are given a set A and a relation R on
A. Determine which of the properties reflexive, symmetric, antisymmetric,
and transitive R possesses.

(a) A =R, R is <.

(b) A is the set of all straight lines in the plane, R means “is parallel to.”

(c) A is the set of all straight lines in the plane, R means “is perpendicular to.”

(d) A =Σ∗ for some alphabet Σ, R means “is the same length as.”

(e) A =Σ∗ for some alphabet Σ, R means “is shorter than.”

(f) A =Σ∗ for some alphabet Σ, x is some fixed choice of letter in Σ, R means
“contains the same number of occurrences of x as.”

(g) A is an arbitrary set, R is the empty relation.

(h) A is an arbitrary set, R is the universal relation.

Activity 17.3

(a) Suppose R is a relation on a set A. Convince yourself that R ∪R−1 is
symmetric. (See the Symmetric Relation Test.)

(b) Recall that | represents the relation “divides” on sets of integers. Draw the
directed graph for | on the set A = {2,4,6,8,10,12,14,16}. Then describe
how to obtain the graph for the symmetric relation |∪ |−1 as an undirected
graph from the graph of R using only an eraser.

Activity 17.4 For each of the properties reflexive, symmetric, antisymmetric,
and transitive, carry out the following.

Assume that R and S are nonempty relations on a set A that both have the
property. For each of Rc, R ∪S, R ∩S, and R−1, determine whether the new
relation

(i) must also have that property;

(ii) might have that property, but might not; or

(iii) cannot have that property.

Any time you answer Statement i or Statement iii, outline a proof. Any time
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you answer Statement ii, provide two examples: one where the new relation has
the property, and one where the new relation does not. (You may use graphs to
describe your examples.)

17.6 Exercises

Directed graph for a relation. In each of Exercises 1–4, you are given a
relation on a specific set. Draw a directed graph that represents the relation.

1. Relation ⫋ on P ({a,b, c}).

2. Relation < on {1,2,3,4}.

3. Relation ≡3 on N<13.

4. Relation “has the same number of occurrences of the letter a as” on Σ∗
4

for alphabet Σ= {a,z}.
5. Recall that a relation on a set A is just a subset of the Cartesian product

A×A. Write out all relations on the set A = {a,b} as subsets of A×A. Which
of these relations are reflexive? Symmetric? Antisymmetric? Transitive?

Testing reflexivity/symmetry/antisymmetry/transitivity. In each of Ex-
ercises 6–17, you are given a relation on a specific set. Determine which of the
properties reflexive, symmetric, antisymmetric, and transitive the given
relation possesses.

6. Relation < on R.
7. Relation ≥ on R.
8. Relation | on Z.
9. Relation ⊆ on P (X ), where X is an arbitrary, unspecified set.

10. Relation “is taller than” on the set of all living humans.

11. Relation “is parallel to” on the set of all straight lines in the plane.

12. Relation “is perpendicular to” on the set of all straight lines in the plane.

13. Relation “has the same length as” on Σ∗, where Σ is an arbitrary, un-
specified alphabet set.

14. Relation “is shorter than” on Σ∗, where Σ is an arbitrary, unspecified
alphabet set.

15. Relation “contains the same number of occurrences of the letter x as”
on Σ∗, where Σ is an arbitrary, unspecified alphabet set and x is some
fixed choice of letter in Σ.

16. Relation ⇔ on the set of all logical statements involving the statement
variables p1, p2, p3, . . ..

17. Relation R defined by “a1 R a2 if f (a1) = f (a2)” on a set A, where
f : A → B is an arbitrary, unspecified function.

Properties of relations reflected in their graphs. In each of Exercises 18–19,
you are given a list of properties. Draw the directed graph of a relation on the
set {a,b, c,d} that possesses the given properties.

18. Symmetric and transitive, but neither reflexive nor antisymmetric.

19. Reflexive, antisymmetric, and transitive, but not symmetric.
20. Prove that a relation is symmetric if and only if it is equivalent to its own

inverse relation.
21. As described in Section 17.3, the definition of antisymmetric relation can
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be formulated in symbolic language as

(∀a1 ∈ A)(∀a2 ∈ A)(a1 ̸= a2 ⇒ a1 ̸ R a2 ∨a2 ̸ R a1).

Prove that each of the two conditionals provided in the Antisymmetric
Relation Test are equivalent to the symbolic formulation of the definition of
antisymmetric given above.

22. Suppose R is a relation on a set A that is both symmetric and antisymmetric.
Prove that R is a subset of the identity relation { (x, x) | x ∈ A }.
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Equivalence relations

18.1 Motivation

There are often situations where we want to group certain elements of a set
together as being “the same.”

Example 18.1.1 At the end of this course, your instructor will assign each
student a grade. In this system, every student who receives a “B” had roughly
the same performance in the course (in principle, anyways). That is, consider the
set of all students in this course — from the point of view of the grading system,
the students in the subset of “B” students are all equivalent in performance. □

18.2 Basics and examples

What properties should a relation on a set have to be useful as a notion of
“equivalence”?

• Each object in the set should be equivalent to itself. So the relation should
be reflexive.

• Equivalence should be bidirectional. That is, a pair of equivalent objects
should be equivalent to each other. So the relation should be symmetric.

• We should be able to infer equivalence from chains of equivalence. So the
relation should be transitive.

equivalence relation
a relation on a set that is reflexive, symmetric, and transitive

≡ symbol for an abstract equivalence relation (instead of the letter R
that we’ve been using for abstract relations up until now)

Worked Example 18.2.1 Let L be the set of all possible logical statements built
out of the statement variables p1, p2, p3, . . .. Show that logical equivalence of
statements is an equivalence relation on L.

Solution.

Reflexive. We have A ⇔ A for every statement A, since A has the same truth
table as itself.

Symmetric. If A ⇔ B, then A,B have the same truth table, so B ⇔ A.

Transitive. If A ⇔ B and B ⇔ C, then A has the same truth table as B, which

195
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has the same truth table as C. So A has the same truth table as C, i.e. A ⇔ C.
□

Here is an important equivalence relation on N or on Z.

equivalence modulo n
an equivalence of integers, where two integers are equivalent if they
have the same remainder when divided by n

m1 ≡n m2 integers m1,m2 are equivalent modulo n

Checkpoint 18.2.2 Verify that equivalence modulo n is an equivalence relation.

18.3 Classes, partitions, and quotients

As desired (see Section 18.1), an equivalence relation can be used to group
equivalent objects together.

Example 18.3.1 Consider ≡5 on N. Notice that the elements in each of the
following sets are all equivalent to each other with respect to ≡5.

{0,5,10,15, . . . }

{1,6,11,16, . . . }

{2,7,12,17, . . . }

{3,8,13,18, . . . }

{4,9,14,19, . . . }

Also notice that N is the disjoint union of the above sets.
In fact, we could do the same for every divisor n, not just for n = 5, as N is

also the disjoint union of the sets

{0, n, 2n, 3n, . . . },

{1, n+1, 2n+1, 3n+1, . . . },

{2, n+2, 2n+2, 3n+2, . . . },
...

{n−1, n+ (n−1), 2n+ (n−1), 3n+ (n−1), . . . },

and again elements in each of the above sets are all equivalent to each other with
respect to ≡n. □

equivalence class (of an element a)
the subset of A consisting of all elements that are equivalent to the
given element a ∈ A, relative to a specific equivalence relation ≡ on
A; i.e. the set

{ x ∈ A | x ≡ a }
[a] the equivalence class of the element a ∈ A relative to some specific

equivalence relation on A

Example 18.3.2 Equivalence classes of natural numbers modulo 5. If we
divide 8 by 5, we get 1 with 3 remainder. So the equivalence class of 8 relative to
≡5 consists of all natural numbers that have remainder 3 when divided by 5:

[8]= {3,8,13,18, . . . }.
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Now, 3 is in this class because when we divide 3 by 5 we get 0 with 3 remainder.
But if we had started with 3 instead of 8, we would have also said that the
equivalence class of 3 relative to ≡5 consists of all natural numbers that have
remainder 3 when divided by 5:

[3]= {3,8,13,18, . . . }.

□
Proposition 18.3.3 Properties of equivalence classes. Suppose ≡ is an
equivalence relation on a nonempty set A.

1. For every a ∈ A, we have a ∈ [a].

2. For a,a1,a2 ∈ A with a1,a2 ∈ [a], we have a1 ≡ a2.

3. For each pair a1,a2 ∈ A, we have a1 ≡ a2 if and only if [a1]= [a2].

4. For each pair a1,a2 ∈ A, we have a1 ̸≡ a2 if and only if [a1]∩ [a2]=∅.

Proof of Statement 1. This is just the reflexive property, a ≡ a. ■

Proof of Statement 2. If a1,a2 ∈ [a], then by definition we have both a1 ≡ a and
a2 ≡ a. Applying symmetry to the latter equivalence, we may write a1 ≡ a ≡ a2,
to which we may apply transitivity to obtain a1 ≡ a2, as desired. ■

Proof of Statement 3.

(⇒) Suppose a1 ≡ a2. To verify [a1] = [a2], we follow the Test for Set Equality.
First, assume x is an arbitrary element in [a1]. Then x ≡ a1 ≡ a2, so x ≡ a2
by the transitive property. Therefore, x ∈ [a2], as required. This shows that
[a1] ⊆ [a2]; the argument to show [a2] ⊆ [a1] is almost exactly the same, just
using the symmetric property to first obtain a2 ≡ a1.

(⇐) By Statement 1 of this proposition, we have a1 ∈ [a1]. If we assume [a1]=
[a2], then we also have a1 ∈ [a2], which means that a1 ≡ a2, as required. ■

Proof of Statement 4. Let us prove the equivalent “double contrapositive” bicondi-
tional a1 ≡ a2 ⇔ [a1]∩ [a2] ̸=∅. (See Worked Example 2.1.4.)

(⇒) Suppose a1 ≡ a2. Then [a1]= [a2] by Statement 3, so

[a1]∩ [a2]= [a1]∩ [a1]= [a1] .

But [a1] is nonempty by Statement 1.

(⇐) Suppose [a1]∩[a2] ̸=∅. Then there exists some element x ∈ A that is in both
[a1] and [a2], so that both x ≡ a1 and x ≡ a2. By the symmetric property, we have
a1 ≡ x, and combining this with x ≡ a2 in the transitive property gives a1 ≡ a2.

■
Statement 3 of Proposition 18.3.3 tells us that any member of an equivalence

class may be used to define the class.

equivalence class representative
an element a ∈ A used to define the equivalence class

[a]= { x ∈ A | x ≡ a }
complete set of equivalence class representatives

a subset C ⊆ A so that for each x ∈ A there exists exactly one a ∈ C so
that x ∈ [a]
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Remember that elements that are equivalent to one another relative to some
equivalence relation are viewed to be “essentially the same” from the point of
view of the property used to define the equivalence relation. So different but
equivalent elements become interchangeable (see Section 18.1). When we have
a complete set of representatives for the equivalence classes, we are deciding
to always interchange an element for the chosen representative of the class
containing that element.

Example 18.3.4 A complete set of equivalence class representatives for
natural numbers modulo 5. Continuing Example 18.3.2, we could represent
the class of numbers that have remainder 3 by the number 8:

[8]= {3,8,13,18, . . . }.

But it seems more “natural” to represent this class by the number 3:

[3]= {3,8,13,18, . . . }.

Notice that each of the numbers 0,1,2,3,4 has a different remainder when
divided by 5, so no two of them are equivalent. That also means that each is
in a different class (Statement 4 of Proposition 18.3.3). But when we go past
4, the remainders when divided by 5 start repeating: each of the numbers in
the list 5,6,7,8,9 has the same remainder as the number in the corresponding
position in the list 0,1,2,3,4. And then the remainders repeat again when we
go past 9. And so on. So it seems “natural” to use 0,1,2,3,4 as a complete set of
representatives of the equivalence classes for N modulo 5:

[0]= {0,5,10,15, . . . },

[1]= {1,6,11,16, . . . },

[2]= {2,7,12,17, . . . },

[3]= {3,8,13,18, . . . },

[4]= {4,9,14,19, . . . }.

□
The definition of complete set of equivalence class representatives

implicitly assumes that the equivalence classes “fill up” the whole set A. But
that is always precisely the case.

partition a collection of subsets of a set A that are pairwise disjoint and whose
union is A

partition cell
one of the subsets that make up a partition of a set

A

A1 A2 A3 · · · An

Figure 18.3.5 A diagram illustrating a partition of a set, so that A = A1 ⊔ A2 ⊔
A3 ⊔·· ·⊔ An.



18.3. CLASSES, PARTITIONS, AND QUOTIENTS 199

Remark 18.3.6 In essence, partition is just a synonym for disjoint union. So
a collection of subsets form a partition when each element of the set is in exactly
one partition cell.

Note 18.3.7 It is not necessary for a partition of a set to be made up of a finite
(or even countable) number of cells; see the examples below.

Theorem 18.3.8 Equivalence classes form a partition. If ≡ is an equivalence
relation on a set A, then the equivalence classes with respect to ≡ are a partition
of A.

Proof idea. This theorem claims that every element of A is in exactly one equiva-
lence class. But this follows from the statements of Proposition 18.3.3. ■
Example 18.3.9 Equivalence classes modulo n. Generalizing Example 18.3.4,
each of the numbers 0,1,2,3, . . . ,n−1 is its own remainder when divided by n.
And then the pattern of remainders repeats, starting over at remainder 0, when
we continue on to the numbers n,n+1, . . .. So 0,1,2,3, . . . ,n−1 is a complete set
of equivalence class representatives, and the classes modulo n partition N into
the disjoint subsets

[0]= {0, n,2n, 3n, . . . },

[1]= {1, n+1,2n+1, 3n+1, . . . },

[2]= {2, n+2,2n+2, 3n+2, . . . },
...

[n−1]= {n−1, 2n−1,3n−1, 4n−1, . . . }.

□
Example 18.3.10 Let L be the set of all lines in the plane, and consider ℓ1 ≡ ℓ2
if ℓ1,ℓ2 are parallel. Then ≡ partitions L into sets of parallel lines. □
Example 18.3.11 Recall that for alphabet Σ, Σ∗

n is the subset of Σ∗ consisting of
all words whose length is exactly n. Then

Σ∗
0 ,Σ∗

1 ,Σ∗
2 , . . .

is a partition of Σ∗. (See Exercise 9.9.9.)
Recall that a relation on Σ∗ can be defined as a subset of Σ∗×Σ∗. So consider

the relation R on Σ∗ defined by

R = (Σ∗
0 ×Σ∗

0 ) ⊔ (Σ∗
1 ×Σ∗

1 ) ⊔ (Σ∗
2 ×Σ∗

2 ) ⊔ ·· ·

Then R is the equivalence relation on Σ∗ where w R y if |w| = |y|, and its equiva-
lence classes are precisely the sets Σ∗

n, n ≥ 0. □
Theorem 18.3.12 Partitions arise from equivalence relations. Given a
partition of a set A, there exists an equivalence relation ≡ on A whose equivalence
classes are precisely the cells of the partition.

Proof idea. Given a partition of A, for each a ∈ A there exists exactly one partition
cell containing a. So define a1 ≡ a2 to mean “elements a1,a2 are contained in the
same partition cell of A.” ■
Remark 18.3.13 Theorem 18.3.8 and Theorem 18.3.12 combine to provide, for
each set A, a bijective correspondence

{equivalence relations on A} ←→ {partitions of A}.
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Worked Example 18.3.14 Determining an equivalence relation from a
partition. Determine an explicit equivalence relation ≡ on Z for which the
equivalence classes give the following partition.

Z = ·· · ⊔ {−3,−2,−1} ⊔ {0,1,2} ⊔ {3,4,5} ⊔ ·· ·

Solution. Notice that each cell in the partition contains a multiple of 3 along
with the next two consecutive integers. So one way to explicitly define the
corresponding equivalence relation is: for a,b ∈Z, define a ≡ b to be true if there
exists n ∈Z such that 3n ≤ a,b ≤ 3n+2. (Note: Details showing that this is an
equivalence relation are omitted.) □

quotient (of a set A relative to an equivalence relation ≡)
the subset of P (A) whose elements are the equivalence classes of ≡

A/≡ the quotient of A relative to equivalence relation ≡, so that

(A/≡)= { [a] | a ∈ A }

Example 18.3.15 A quotient described by class representatives. Consider
the partition of Z from Worked Example 18.3.14, and the corresponding equiva-
lence relation ≡. To describe Z/≡, we just need to pick a representative of each
class. The most obvious way in this case is

(Z/≡)= {. . . , [−3] , [0] , [3] , [6] , . . . }.

□
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Worked Example 18.3.16 Determining a quotient. Let ≡ represent the
equivalence relation on Z defined by

(i) 0≡ 0, and

(ii) for non-zero m,n ∈Z,

m ≡ n if
m
|m| =

n
|n| .

Determine the corresponding partition and quotient of Z.
Solution. First notice that 0 will be in an equivalence class all by itself. Next,
consider the values that m/ |m| can possibly take.

• If m > 0, then |m| = m so m/ |m| = 1.

• If m < 0, then |m| = −m so m/ |m| = −1.

So this equivalence relation is just a fancy way of saying that m,n have the same
sign. Therefore, all positive numbers will be in the same equivalence class, and
all negative numbers will be in the same equivalence class. It now makes sense
that 0 is in a class by itself, since 0 is neither positive nor negative. The partition
of Z corresponding to ≡ is then

Z = {. . . ,−3,−2,−1} ⊔ {0} ⊔ {1,2,3, . . . }.

To describe Z/≡, we just need to pick a representative of each equivalence class.
One possibility is

Z= [−1]⊔ [0]⊔ [1] ,

so that
(Z/≡)= {[−1] , [0] , [1]}.

□

natural projection (on a set A relative to an equivalence rela-
tion ≡)

the function A → (A/≡) defined by a 7→ [a]

Note 18.3.17 The natural projection A → (A/≡) is always surjective, but it is
almost never injective.

Example 18.3.18 Natural projection modulo-5. Recall that ≡5 represents
the modulo-5 equivalence relation on N. In Example 18.3.4 we determined that
there are five equivalence classes, represented by elements 0,1,2,3,4, so that

(N/≡5)= {[0] , [1] , [2] , [3] , [4]}.

Below are some examples of images of elements under the natural projection.

2 7→ [2] 7 7→ [2] 104 7→ [4] 76 7→ [1] 2045 7→ [0] .

□

18.4 Important examples

Example 18.4.1 Equality is the strongest form of equivalence. The
“strongest” equivalence relation on a set A is the identity relation, where a ≡ b
if and only if a = b. In this case, each equivalence class is a singleton: [a]= {a}
for each a ∈ A. This equivalence relation yields the “finest” or most “granular”



202 CHAPTER 18. EQUIVALENCE RELATIONS

partition of A, into the union of all the singleton sets in P (A). Here, the quotient
A/≡ is essentially the same as A: the natural projection A → (A/≡) is a bijection.

□
Example 18.4.2 Even and odd. We can partition N into the subsets of even and
odd numbers. This is the same partition obtained from the modulo-2 equivalance
relation ≡2, and we have quotient

(N/≡2)= {[0] , [1]}.

This quotient is how we construct boolean algebra (see Chapter 3). The conven-
tion 1+1= 0 in boolean algebra comes from defining addition in the quotient so
that

[1]+ [1]= [1+1]= [2]= [0] .

□
Example 18.4.3 Modulo-n arithmetic. Similarly to Example 18.4.2, if we
consider the modulo-n equivalence relation ≡n on N, we have

(N/≡n)= {[0] , [1] , [2] , . . . , [n−1]}.

We can transfer the arithmetic of N to N/≡n by defining

[m]+ [n]= [m+n] , [m] · [n]= [mn] .

For example, in modulo-5 arithmetic,

[2]+ [4]= [6]= [1]

and
[2] · [4]= [8]= [3] .

□
Checkpoint 18.4.4 (Bonus content) Properties of modulo-n arithmetic.
There are a few things to check about this new modulo-n arithmetic.

1. Check that modulo-n addition and multiplication are well-defined; that
is, make sure the result of each of these operations never depends on the
choices of representatives of the equivalence classes involved.

2. Check that modulo-n addition and multiplication satisfy all the usual rules
of arithmetic. That is, check that modulo-n addition and multiplication are
both associative and commutative, and that multiplication distributes
over addition.

3. The natural numbers 0 and 1 play special roles inNwith respect to ordinary
addition and multiplication, respectively. Do their equivalence classes [0]
and [1] play the same special roles in N/ ≡n with respect to modulo-n
addition and multiplication, respectively?

Example 18.4.5 Same image under a function. For a function f : A → B, we
may consider elements of the domain equivalent if they produce the same output
under f . That is, the relation ≡ f on A defined by “a1 ≡ f a2 means f (a1)= f (a2)”
is an equivalence relation. □
Checkpoint 18.4.6 Classes of the “same image” relation for an injective
function. Suppose f : A → B is a function, and consider the equivalence relation
≡ f on A described in Example 18.4.5. How could one tell whether or not f is
injective by looking at the equivalence classes in A under ≡ f ?
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Example 18.4.7 Inverting a non-injective function. Equivalence relations
allow us to take another point of view of the concept of inverse image of an
element from Section 10.5.

Suppose f : A → B, and consider the equivalence relation ≡ on A described in
Example 18.4.5. Then we may create a new, “induced” function

f̃ : (A/≡)→ B,

[a] 7→ f (a).

A
[a]

B

f (a)
a

f̃

Figure 18.4.8 Diagram illustrating the induced map f̃ .

In this function definition, an entire equivalence class is being mapped to the
output image of one of the elements of that class under the original function f .
But under this equivalence relation, each element in a specific equivalence class
shares the same output image in the codomain as all the other elements in that
class. For this reason, allowing our input-output rule definition f̃

(
[a]

)= f (a) to
depend on the choice of class representative a is well-defined, and hence is a
function.

See. Example 10.1.17.

Moreover, the induced function f̃ is always injective, even if f is not. If
we assume that f is surjective (or, if f is not surjective we could replace our
codomain B with the image set f (A) so that f is surjective — see restricting the
domain), then f̃ will also be surjective, hence bijective. This means that f̃ is
invertible, with inverse

f̃ −1 : B → (A/≡ f ),

b 7→ { a ∈ A | f (a)= b }= f −1(
{b}

)
.

In some sense f̃ −1 is an inverse of f , except that it is a function B → (A/≡ f )
instead of B → A. □

18.5 Graph for an equivalence relation

Given an equivalence relation on a finite set A, what will we observe if we draw
the relation’s graph?

• Since an equivalence relation is reflexive, we might as well omit the loops
at each node.

• Since an equivalence relation is symmetric, we might as well replace the
pairs of arrows between each related pair of nodes with a single edge,
turning the directed graph into an ordinary graph.

• Since an equivalence relation partitions a set into a disjoint union of
equivalence classes (Theorem 18.3.8), the graph of an equivalence relation
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will be disconnected, with each connected component representing a specific
equivalence class.

• Since each element in an equivalence class is equivalent to every other
element in the class (Statement 2 of Proposition 18.3.3), each connected
component in the graph will be complete.

Example 18.5.1 Graph of the “same cardinality” equivalence relation.
Let A = {a,b, c,d}, and let ≡ be the equivalence relation on P (A) defined by
B ≡ B′ if |B| =

∣∣B′∣∣. That is, two subsets of A will be considered equivalent if they
contain the same number of elements. Figure 18.5.2 contains the graph for ≡,
with reflexive loops and symmetric bidirectional arrows omitted.

∅

{a} {b}

{c} {d}

{a,b} {a,c}

{a,d} {b,c}

{b,d} {c,d}

{b,c,d} {a,c,d}

{a,b,d} {a,b,c}

A

[{a,b}]

[A][∅]

[{a}] [{a,b,c}]

Figure 18.5.2 Graph for equivalence of cardinality on a power set.

□

18.6 Activities

Activity 18.1 For each of the relations provided, carry out the following steps.
(i) Verify that the relation is an equivalence relation on the set A.

(ii) Consider a few example equivalence classes, for the specific example rep-
resentative elements provided (if applicable). What other elements are in
that class?

(iii) Devise a general way to describe every equivalence class, using your expe-
rience from the example classes already considered (if applicable). Make
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your class descriptions more meaningful than just “all elements equivalent
to a specific representative element.”

(iv) List/describe all elements in the quotient A/≡.

(a) Relation ≡ on A =Z, where m ≡ n means m2 = n2. Example equivalence
classes for 1,10,−2,0.

(b) Relation ≡ on A = R×R, where (x1, y1) ≡ (x2, y2) means x2
1 + y2

1 = x2
2 + y2

2 .
Example equivalence classes for (1,1), (3,4), (

p
2/2,−

p
2/2), (0,0).

(c) Relation ≡ on A = R×R, where (x1, y1) ≡ (x2, y2) means y2
1 − x1 = y2

2 − x2.
Example equivalence classes for (0,0), (0,1), (1,−1).

(d) Relation ≡ on A =P ({a,b, c,d}), where X ≡Y means |X c| = |Y c|. Example
equivalence classes for ∅, {a}, {a,b}, {a,b, c}, {a,b, c,d}.

(e) Relation ≡ on the vertex set A =V of a graph G, where v ≡ v′ means there
exists a path in G from v to v′.

(f) Given function f : A → B, the relation ≡ on the domain A, where a1 ≡ a2
means f (a1)= f (a2).

Activity 18.2 A sequence from a set A could also be called an ordered list. For
example, given distinct a1,a2 ∈ A, the finite sequences a1,a1,a2 and a1,a2,a1
are different sequences, because order matters in a sequence. However, as an
unordered list, a1,a1,a2 is the same as a1,a2,a1.

Write SA for the set of all finite sequences from A. Devise an equivalence
relation ≡ on SA such that the quotient set SA /≡ represents the set of all finite
unordered lists from A.

Hint. When should two different finite sequences be considered equivalent as
unordered lists?

Activity 18.3 Suppose ≡ and ≡′ are equivalence relations on a set A. Determine
which of the following are also equivalence relations.

(a) ≡c

(b) ≡∪≡′

(c) ≡∩≡′

See Activity 17.4.

18.7 Exercises

1. Let ≡ represent the relation on R×R where (x1, y1)≡ (x2, y2) means y1−x2
1 =

y2 − x2
2.

(a) Verify that ≡ is an equivalence relation.

(b) Describe the equivalence classes [(0,0)], [(0,1)], and [(1,0)] geometri-
cally as sets of points in the plane.

2. Given a connected (undirected) graph G, we can define a relation on the set
V of vertices in G as follows: let v1Rv2 mean that there exists a trail within
G beginning at vertex v1 and ending at vertex v2 that traverses an even
number of edges.

(a) Prove that R is an equivalence relation on V .
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(b) Determine the equivalence classes for this relation when G is the
graph below.

a

f

b

g

d
c e

Equivalence relations and classes. In each of Exercises 3–12, you are given
a set A and a relation R on A. Determine whether R is an equivalence relation,
and, if it is, describe its equivalence classes. Try to be more descriptive than just
“[a] is the set of all elements that are equivalent to a.”

3. A = {a,b, c}; R = {(a,a), (b,b), (c, c), (a,b), (b,a)}.

4. A = {−1,0,1}; R = {(x, y)|x2 = y2}.
5. A is the power set of some set; R is the subset relation.
6. A = R; x1 R x2 means f (x1) = f (x2), where f : R→ R is the function

f (x)= x2.
7. A is some abstract set; a1 R a2 means f (a1)= f (a2), where f : A → B is

an arbitrary function with domain A.
8. A is the set of all “formal” expressions a/b, where a,b are integers and

b is nonzero; (a/b) R (c/d) means ad = bc.
Note: Do not think of a/b as a fraction in the usual way; instead

think of it as a collection of symbols consisting of two integers in a
specific order with a forward slash between them.

9. A is the power set of some finite set; X R Y means |X | = |Y |.
10. A is the set of all straight lines in the plane; L1 R L2 means L1 is

parallel to L2.
11. A is the set of all straight lines in the plane; L1 R L2 means L1 is

perpendicular to L2.

12. A =R×R; (x1, y1) R (x2, y2) means x2
1 + y2

1 = x2
2 + y2

2 .

Hint. Does the expression x2+ y2 remind you of anything from geome-
try?
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Partially ordered sets

19.1 Motivation

In many of the sets we encounter, there is some notion of elements being “less
than or equal to” other elements in the set.

Example 19.1.1 Comparing numbers. In N, Z, Q, or R, we use the usual ≤ to
describe when one number is (literally) less than or equal to another. □
Example 19.1.2 Subset relationship as a measure of relative size. If A,B
are subsets of a universal set U such that A is a subset of B, we might think of
A as being “less than or equal to” B. The relation ⊆ on P (U) acts very similarly
to how ≤ acts on a set of numbers. □
Warning 19.1.3 The idea of A ⊆ B expressing a “less than or equal to”-like
relationship between A and B is very different from cardinality-based ideas of
smaller/larger for sets. See also Example 19.2.5.

Example 19.1.4 Subgraph relationship as a measure of relative size.
Similar to Example 19.1.2, if H and H′ are subgraphs of a graph G such that
H′ is a subgraph of H, we might think of H′ as being “less than or equal to” H.
That is, if we write S (G) to mean the set of all subgraphs of G, then we can use
the subgraph relation ⪯ to describe when one subgraph of G is “smaller than or
equal to” another. □

19.2 Definition and examples

Notice that in each of the examples in Section 19.1, the notion of “is smaller than”
is defined via a relation. We will use ≤ on N as our model for a relation on a set
that can be thought of as expressing “is smaller than or equal in size to.”

• Every element in the set should be “smaller than or equal to” itself, so the
relation should be reflexive.

• Relative size should never be bidirectional for distinct elements in the set,
so the relation should be antisymmetric.

• We should be able to infer size relationships from chains of them, so the
relation should be transitive.

Notice that these are the same properties as for an equivalence relation, except
that we have flipped symmetric to antisymmetric. Make sure to keep this

207
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straight!

partial order
a relation that is reflexive, antisymmetric, and transitive

partially ordered set
a set equipped with a particular partial order

⪯ symbol for an abstract partial order
strictly less/smaller than

a ⪯ b and a ̸= b
a ≺ b a is strictly less/smaller than b

Warning 19.2.1 We previously used the symbol ⪯ to mean exclusively “is a
subgraph of,” but that was in anticipation of the introduction of this symbol to
now mean a general partial order.

Example 19.2.2 “Less than or equal to” versus “less than” on sets of
numbers. The usual notion of ≤ is a partial order on N (or Z or Q or R), but < is
not. □
Example 19.2.3 Subset relation. For every set U, the relation ⊆ is a partial
order on P (U), but ⫋ is not. □
Example 19.2.4 Subgraph relation. For every graph G, the subgraph relation
⪯ is a partial order on S (G), the set of subgraphs of G. □
Example 19.2.5 Comparing cardinalities. Suppose U is a universal set, and
consider the collection of finite subsets of U. Then we have a natural way to
compare sizes of these subsets: write A R B to mean |A| ≤ |B|. However, this
relation is not a partial order as it is not antisymmetric. This is because it is
possible to have both A R B and B R A with A ̸= B, in the case that |A| = |B|.
Changing the relation to mean |A|≨ |B| doesn’t help, since then it wouldn’t be
reflexive.

Now suppose the universal set U is infinite and consider all (hence possibly
infinite) subsets of U. In this case we have a more general idea of smaller and
larger, where A is smaller than B if there exists an injection A ,→ B but no
bijection A → B. This more general notion of size comparison via cardinality
suffers the same flaws as in the finite set case, as it is not reflexive, and if we try
to fix that by adding “or same size as” then it will not be antisymmetric.

However, in both finite and (possibly) infinite cases, we can turn cardinality
comparison into a partial order using “smaller than or equal to”, where “smaller”
must mean strictly smaller in terms of cardinality, but “equal” means equality of
sets rather than equality of cardinality. □
Example 19.2.6 English alphabetic order. Let Σ = {a, b, c, . . . , y, z}, and
consider alphabetic order on the set of words Σ∗; e.g.

gqtiu⪯ ppb, aaay⪯ aaaz, aaa⪯ aaaa.

Alphabetic ordering is a partial order on Σ∗. □
Example 19.2.7 Lexicographic order. We can generalize the previous exam-
ple: if Σ is a partially ordered alphabet set equipped with partial order ⪯, then
we may inductively define a partial order ⪯∗ on Σ∗ by:

• ;⪯∗w for every w ∈Σ∗, where ; is the empty word;

• for a,b ∈Σ, considering these letters as words of length 1 in Σ∗ take a⪯∗b
to mean a ⪯ b in Σ;
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• for letters a1,a2 ∈Σ and words w1,w2 ∈Σ∗, take a1w1⪯∗a2w2 to mean that
either

(i) a1 ̸= a2 and a1 ⪯ a2, or

(ii) a1 = a2 and w1⪯∗w2.

This is called lexicographic or dictionary order on Σ∗. □
Example 19.2.8 Ordering Cartesian products. We can employ a similar tac-
tic for Cartesian products. If ⪯A ,⪯B are partial orders on sets A,B, respectively,
we can define a partial order ⪯ on A×B by allowing (a1,b1) ⪯ (a2,b2) to mean
that either

(i) a1 ̸= a2 and a1 ⪯A a2, or

(ii) a1 = a2 and b1 ⪯B b2.

This is also called lexicographic order. □
Example 19.2.9 Larger/greater than is a partial order. We can flip “smaller/
less than or equal to” around to “larger/greater than or equal to.” For example,
for elements m,n ∈N, write m ⪯ n to mean m ≥ n. Then ⪯ is a partial order on N.

This is an instance of a more general pattern. Given a partial order ⪯ on a
set A, the inverse relation ⪯−1, where a1 ⪯−1 a2 means a2 ⪯ a1, is also a partial
order on A, called the dual order. □
Example 19.2.10 Transferring ≤ on N to a power set. Let A = {a,b, c,d},
and let us “encode” each element of P (A) by the following algorithm.

Given input element X ∈P (A) (that is, given input X that is a subset of A):

(i) Initialize encoded value r = 0.

(ii) If X contains a, add 1 to r.

(iii) If X contains b, add 2 to r.

(iv) If X contains c, add 4 to r.

(v) If X contains d, add 8 to r.

(vi) Set encode(X ) to be the final value of r.

For example,

encode
(
{b}

)= 2, encode(∅)= 0,

encode
(
{a, c}

)= 1+4= 5, encode(A)= 1+2+4+8= 15.

This encoding process is one-to-one; that is, no two subsets of A will output the
same encoded value.

Now define ⪯ on P (A) by taking X ⪯Y to mean encode(X )≤ encode(Y ). For
example,

{a,b, c}⪯ {d}, {a,d}⪯ {b,d},

and both

∅⪯ X , X ⪯ A

are true for every subset X ⊆ A.
The facts that ≤ is a partial order on N and that this encoding process is

one-to-one will combine to make ⪯ a partial order. □
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Example 19.2.11 Pulling a partial order back through an injection.
Generalizing Example 19.2.10, suppose f : A ,→ B is an injection where B is
partially ordered by ⪯B. Then we can “pull back” the partial order on B to create
a partial order on A as follows: define a1 ⪯A a2 to mean that f (a1) ⪯B f (a2) is
true. Note that the assumption that f is injective is essential to guarantee that
⪯A will be antisymmetric. □

19.3 Graph for a partial order

Hasse diagram
a diagram for the graph for a partial order on a finite set A, omitting
reflexive loops and transitive “composite” edges, and placing “smaller”
elements lower on the diagram instead of using arrows

Example 19.3.1 Hasse diagram for division of integers. Let A = {2,4,6,8,10,12}.
The Hasse diagram of the partial order | (i.e. “divides”) on A appears in Fig-
ure 19.3.2. Notice that 2 is not joined directly to either 8 or 12, since we can use
transitivity and the facts that 2 | 4 and 2 | 6 to infer 2 | 8 and 2 | 12, respectively,
from the diagram.

10

8 12

4 6

2

Figure 19.3.2 The Hasse diagram for the “divides” partial order on a finite set of
integers.

□
Remark 19.3.3 See Example 14.4.3 for another example of a graph for the
“divides” relation.

Example 19.3.4 Hasse diagram for subset order. The graph from Ex-
ample 14.4.1 has been reproduced in Figure 19.3.5 as a Hasse diagram, and
represents the partial order ⊆ on P ({a,b, c}).

∅

{a} {b} {c}

{a,b}

{a,c}

{b,c}

{a,b,c}

Figure 19.3.5 The Hasse diagram for the subset partial order on the power set
of a finite set.

□
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19.4 Total orders

comparable elements
elements a,b in a partially ordered set such that either a ⪯ b or b ⪯ a

incomparable elements
elements that are not comparable

Example 19.4.1 Comparable and incomparable subsets. Let U represent
some universal set containing at least two elements, and consider P (U) partially
ordered by ⊆.

• Both the empty set ∅ and the universal set U are comparable to every
element of P (U).

• For x, y ∈U with x ̸= y, then {x}, {y} are incomparable.

• In fact, for every non-empty, proper subset A ⫋ U there exists a subset
B ⊆U which is incomparable to A: take B = Ac.

However, do not let the second two points above lead you astray: it is not
necessary for subsets to be disjoint in order to be incomparable. As long as each
of a pair of subsets contains an element that the other doesn’t, then the two will
be incomparable by ⊆. □

total order
a partial order on a set such that every pair of elements is comparable

totally ordered set
a set equipped with a total order

Example 19.4.2 Subset order is not total. For universal set U, order ⊆ on
P (U) is not total except when |U | ≤ 1. □
Example 19.4.3 Usual order of numbers is total. Our usual order for
numbers, ≤, is a total order on N, on Z, on Q, or on R. □
Example 19.4.4 Total order on alphabet induces total order on words. If
⪯ is a total order on an alphabet Σ, then the lexicographic order ⪯∗ described in
Example 19.2.7 is a total order on the set of words Σ∗. □
Example 19.4.5 Pulling back a total order through an injection. If B is
totally ordered and we use an injection f : A ,→ B to “pull back” the order on B to
an order on A (see Example 19.2.11), then the newly created order on A will also
be total. □
Example 19.4.6 Countable can be totally ordered. If A is a countably
infinite set, then there exists a bijection f : N→ A. We can use the inverse
f −1 : A →N to “pull back” the usual total order ≤ on N to a total order on A (see
Example 19.4.5).

Another point of view on this is that our bijection f creates an infinite se-
quence

a0,a1,a2, . . . ,

where each element of A appears exactly once. This sequence can be turned into
a specification of the total order on A by just turning the commas into ≤ symbols:

a0 ≤ a1 ≤ a2 ≤ ·· · .
□
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Remark 19.4.7 The pattern of Example 19.4.6 becomes even simpler when we
apply it to a finite set: a total order on a finite set is no different than an ordering
of the set elements into a list, as

a0,a1,a2, . . . ,an

can simply be turned into

a0 ≤ a1 ≤ a2 ≤ ·· · ≤ an,

and vice versa.

Question 19.4.8 If A is a finite, totally ordered set, what does the corresponding
Hasse diagram look like? □

The answer to this question is contained in Remark 19.4.7.

Fact 19.4.9 A partial order on a finite set is total if and only if its Hasse diagram
forms a single vertical line.

Example 19.4.10 A totally ordered finite set. Figure 19.4.11 exhibits the
Hasse diagram for the total order | on the set {2,4,8,16,32}, though we have
drawn the diagram on a slant from the vertical to be make it easier to see the
entire diagram at a glance.

2
4

8

16

32

Figure 19.4.11 A Hasse diagram of a totally ordered set.

□

19.5 Maximal/minimal elements

Each of the following definitions are for a subset B of a partially ordered set A.

upper bound
an element u ∈ A such that b ⪯ u for all b ∈ B

least upper bound
an upper bound for B ⊆ A that is less than every other upper bound

maximum element
an upper bound for B that is contained in B

lower bound
an element ℓ ∈ A such that ℓ⪯ b for all b ∈ B

greatest lower bound
a lower bound for B ⊆ A that is greater than every other lower bound

minimum element
a lower bound for B that is contained in B

Warning 19.5.1

1. An upper or lower bound does not need to belong to the subset for which it
is a bound.

2. A set (or subset) does not necessarily have either a maximum or minimum
element.
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Fact 19.5.2 If a subset of a partially ordered set contains a maximum element,
then that maximum element is unique. And similarly for a minimum element.

Proof. You are asked to prove this in Activity 19.5. ■
Example 19.5.3 Maximums, minimums, and bounds in R. Consider the
usual (total) order ≤ on R.

• The full set R has neither a maximum nor minimum element.

• The subset (0,1) has many upper bounds (anything ≥ 1) and many lower
bounds (anything ≤ 0). However, we would refer to 1 as the least upper
bound and to 0 as the greatest lower bound of (0,1).

• The subset (0,1) has no maximum or minimum element. However, the
subset [0,1] has maximum 1 and minimum 0.

□
Example 19.5.4 Maximums, minimums, and bounds in a power set.
Suppose U is a universal set, and consider P (U) partially ordered by ⊆ as usual.
In the full set P (U), the unique maximum element is U, which is just another
way of saying that every element of P (U) is a subset of U. And the unique
minimum element is ∅, which is just another way of saying that the empty set is
a subset of every subset of U .

Now consider a subset A ⊆ P (U), so that A is a collection of subsets of U.
Because of the existence of maximum and minimum elements, these elements
also serve as an upper and lower bound, respectively, for A. However, one can
also find a least upper bound for A by taking the union of all the subsets of U
contained in A, and one can find a greatest lower bound by taking the intersection
of all the subsets of U contained in A. □

The next two definitions are stated for elements in a partially ordered set,
but could also be understood for elements in a subset of a partially ordered set,
as every subset of a partially ordered set is also a partially ordered set.

maximal element
an element for which no other element is larger

minimal element
an element for which no other element is smaller

Remark 19.5.5 The difference between maximum and maximal is subtle. A
maximum element must be larger than (and hence comparable to) every other
element of A, while a maximal element must only be larger than every other
element of A to which it is comparable. The distinction between minimum and
minimal is similar.

Test 19.5.6 Maximal/minimal elements.

1. To verify that m ∈ A is maximal, prove either the original definition

(∀x ∈ A)(x ̸= m ⇒ m⪯̸ x),

or prove the equivalent contrapositive formulation

(∀x ∈ A)(m ⪯ x ⇒ x = m).

2. To verify that m ∈ A is minimal, prove either the original definition

(∀x ∈ A)(x ̸= m ⇒ x⪯̸ m),
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or prove the equivalent contrapositive formulation

(∀x ∈ A)(x ⪯ m ⇒ x = m).

Example 19.5.7 Connected components are maximal. Consider the graph
G in Figure 19.5.8.

Figure 19.5.8 An example non-connected graph.

Let S (G) represent the collection of subgraphs of G, partially ordered by
the subgraph relation. (By my count, |S (G)| = 110.) Let C (G) represent the
collection of connected subgraphs of G. (By my count, |C (G)| = 15.) A maximal
elements of C (G) would have to be a connected subgraph of G that is contained
in no larger connected subgraph of G — but this is precisely the definition of
connected component. Hence C (G) has three maximal elements, the three
connected components you see in Figure 19.5.8. However, a maximum element of
C (G) would be a connected subgraph of G which contains every other connected
subgraph of G, and the existence of multiple connected components in this
example non-connected graph makes such a subgraph impossible. □

Remark 19.5.9 If you compare both our informal definition and formal definition
of connected component with our definition of maximal element and our Test
for Maximal/Minimal Elements, you should find that the definition of connected
component means precisely a maximal subgraph with respect to the property
of being connected.

Worked Example 19.5.10 Let A = {a,b, c}. Given the Hasse diagram for ⊆ on
P = P (A)∖ {A} in Figure 19.5.11, determine all maximal/maximum/minimal/
minimum elements, if they exist.

∅

{a}

{b}

{c}

{a,b} {a,c} {b,c}

Figure 19.5.11 The Hasse diagram for ⊆ on an “uncapped” power set.

Solution. The element {a,b} is maximal, since each node in the Hasse diagram
that is adjacent to {a,b} is below it. The same reasoning confirms that {a, c}, and
{b, c} of are also maximal. However, none of them is a maximum, since none of
them is larger than the other two.

The element ∅ of P is a minimal element, since each node that is adjacent
to it is above it. And it is the only minimal element. Furthermore, ∅ is the
minimum element, since for every other node there is a walk upwards from ∅ to
that node. □
Warning 19.5.12 Just drawing a node higher or lower in a Hasse diagram
does not necessarily make it larger or smaller, respectively, when compared to
other elements via the partial order. For example, in the Hasse diagram of
Figure 19.5.11, we could have drawn the node for {a, c} at a higher location, but
that would not make it larger than {a,b} and {b, c}, since there still would not
have been any edges or chains of edges from {a, c} downward to those other two
nodes.
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Fact 19.5.13 If the partially ordered set A has a maximum element, then that
element is also the only maximal element of A. Similarly, the minimum element,
if it exists, is the only minimal element of A.

Proof idea. Assume A has a maximum element. Then every element of A is
both comparable to and smaller than that maximum element, so no element is
larger than it. Therefore, this maximum must be maximal. And no other element
could be maximal, because to be maximal means there are no elements which
are larger. But our maximum element is always larger. ■
Warning 19.5.14 A maximum element must be maximal and must be the only
maximal. But a maximal element, even if it is the only one, need not be the
maximum.

Example 19.5.15 A partially ordered set with exactly one maximal ele-
ment but no maximum element. Consider

A = {3}∪ {2,4,8,16,32,64, . . . ,2n, . . . },

partially ordered by |, the “divides” relation. There is no element of A that is
divisible by 3 (except 3 itself), so there is no element of A that is larger than 3.
Therefore, 3 is maximal. Moreover, 3 is the only maximal element in A, since
every power of 2 divides the next power of 2. However, there is no maximum
element in A, since there is no element of A which is divisible by every other
element of A. □
Example 19.5.16 A partially ordered set with infinitely many maximal/
minimal elements but no maximum/minimum element. Consider A⫋P (N),
where

A=P (N)∖ {∅,N}.

So A is the set of all nonempty, proper subsets of N. Under the partial order ⊆,
A has neither a maximum nor a minimum element, but for every n ∈N, {n} is a
minimal element and N∖ {n} is a maximal element of A. □

19.6 Topological sorting

Sometimes we want to turn a partial order into a total order. What makes an
order partial instead of total is the presence of pairs of incomparable elements.
So to convert our partial order into a total order we just need to impose an order
relation on those previously incomparable element pairs. However, for each pair
of incomparable elements there is a choice to be made of which will become the
smaller and which the larger in the new total order. And we cannot carry out
these choices completely arbitrarily, because we risk contradicting the required
properties of a partial order (see Example 19.6.1).

The following definitions apply to a partial order ⪯ on a set A.

compatible total order
a total order ≤ on A such that if a1 ⪯ a2 then a1 ≤ a2

topological sorting
a process for determining a compatible total order

Example 19.6.1 A failed attempt at topological sorting. The relation ⊆ on
P (N) is a partial order but not a total order. Consider what happens when we
begin trying to build a total order on P (N) out of ⊆ by choosing relations between
previously incomparable elements arbitrarily.
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• Elements {1}, {2,3} are ⊆-incomparable; choose {2,3}≤ {1}.

• Elements {1}, {2} are ⊆-incomparable; choose {1}≤ {2}.

• . . .

Now, {2}⊆ {2,3} is already true, so to be compatible we must set {2}≤ {2,3} in the
new total order. But now {1}≤ {2}≤ {2,3} would dictate {1}≤ {2,3} to satisfy the
transitive property, but this contradicts our first arbitrary choice above. □
Note 19.6.2 If A is countable, whether finite or countably infinite, then specifying
a total order on A amounts to writing the elements of A in an ordered list. (See
Example 19.4.6 and Remark 19.4.7.) In that case, topological sorting amounts to
creating such an ordered list so that if a ⪯ b then a appears before b in the list.

Algorithm 19.6.3 Topological sorting. If A is a finite partially ordered set
with respect to ⪯, we can specify a compatible total order ≤ on A by writing the
elements of A in a list

a0 ≤ a1 ≤ ·· · ≤ an−1

as follows, where n = |A|.

1. Initialize i = 0 and A0 = A.

2. Choose a minimal element of A i; let ai represent the chosen element.

3. Set A i+1 = A i ∖ {ai} (i.e. create a smaller partially ordered set by discarding
ai).

4. Increment i by 1. If i < n then go back to Step 2. Otherwise, if i = n then A i
should now be empty, so stop — the desired compatible order has now been
specified.

Note 19.6.4 In Step 2 of the algorithm, if A i contains a minimum element, then
you must choose that element, since in that case no other minimal element can
exist (see the Fact 19.5.13).

Worked Example 19.6.5 Consider

A =P ({0,1,2})= {
∅, {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}

}
.

Apply Algorithm 19.6.3 to determine a total order ≤ on A that is compatible with
⊆.
Solution 1 (Algorithm solution). In A0 = A, we must choose a0 =∅, since it is
the minimum. Now remove a0 so that

A1 =
{
{0}, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}

}
.

Choose a minimal element from A1: let a1 = {2}. Now remove a1; set

A2 =
{
{0}, {1}, {0,1}, {0,2}, {1,2}, {0,1,2}

}
.

Choose a minimal element from A2: let a2 = {0}. Now remove a2; set

A3 =
{
{1}, {0,1}, {0,2}, {1,2}, {0,1,2}

}
.

Choose a minimal element from A3: let a3 = {0,2}. Now remove a3; set

A4 =
{
{1}, {0,1}, {1,2}, {0,1,2}

}
.

We must choose a4 = {1}, since it is the minimum in A4. Now remove a4; set

A5 =
{
{0,1}, {1,2}, {0,1,2}

}
.
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Choose a minimal element from A5: let a5 = {1,2}. Now remove a5; set A6 ={
{0,1}, {0,1,2}

}
. We must choose a6 = {0,1}, since it is the minimum in A6. There

is only one element left; set A7 =
{
{0,1,2}

}
and choose a7 = {0,1,2}. So we have

∅≤ {2}≤ {0}≤ {0,2}≤ {1}≤ {1,2}≤ {0,1}≤ {0,1,2}.

Notice that the maximum element of A ended up at the “top” of the total order
and the minimum element was forced to the “bottom.”

Solution 2 (Graphical solution). We can perform the algorithm of topological
sorting graphically; at each step, choose a vertex that has no adjacent vertices
below it in the graph, then cross that vertex and any adjacent edges out of the
graph. (See Figure 19.6.6.)

Our end result is a list of our choices, in order:

∅≤ {2}≤ {0}≤ {0,2}≤ {1}≤ {1,2}≤ {0,1}≤ {0,1,2}.

Notice that the maximum element of A ended up at the “top” of the total order
and the minimum element was forced to the “bottom”.
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∅

{0} {1} {2}

{0,1} {0,2} {1,2}

{0,1,2}

(a) Choose a0 =∅.

∅
×

{0} {1} {2}

{0,1} {0,2} {1,2}

{0,1,2}

(b) Choose a1 = {2}.

∅
×

{0} {1} {2}
×

{0,1} {0,2} {1,2}

{0,1,2}

(c) Choose a2 = {0}.

∅
×

{0}
×

{1} {2}
×

{0,1} {0,2} {1,2}

{0,1,2}

(d) Choose a3 = {0,2}.

∅
×

{0}
×

{1} {2}
×

{0,1} {0,2}
×

{1,2}

{0,1,2}

(e) Choose a4 = {1}.

∅
×

{0}
×

{1}
×

{2}
×

{0,1} {0,2}
×

{1,2}

{0,1,2}

(f) Choose a5 = {1,2}.

∅
×

{0}
×

{1}
×

{2}
×

{0,1} {0,2}
×

{1,2}
×

{0,1,2}

(g) Choose a6 = {0,1}.

∅
×

{0}
×

{1}
×

{2}
×

{0,1}
×

{0,2}
×

{1,2}
×

{0,1,2}

(h) Choose a7 = {0,1,2}.

Figure 19.6.6 Example of a graphical approach to topological sorting.

□

Note 19.6.7 Compatible total orders are not unique: in the previous worked
example, the order in which the elements of A were originally written represents
another compatible total order:

∅≤ {0}≤ {1}≤ {2}≤ {0,1}≤ {0,2}≤ {1,2}≤ {0,1,2}.
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19.7 Activities

Activity 19.1 Let F ⊆N represent the set of all divisors of 30. Let A = {a,b, c}.
Note: In Task c you will compare your work from Task a and Task a, so keep

your work!
(a) Draw the Hasse diagram for the subset partial order ⊆ on P (A).

(b) Draw the Hasse diagram for the “divides” partial order | on F.

(c) Compare your two Hasse diagrams. Can you devise a function f : F →P (A)
that would deserve to be called an order-preserving correspondence
between F and P (A)?

Activity 19.2 Suppose ⪯ is a partial order on a set A. Verify that the inverse
relation ⪯−1 is also a partial order on A by verifying that it is reflexive, anti-
symmetric, and transitive.

Activity 19.3 Let A = {a,b, c,d, e}. Carry out the following steps for each of the
scenarios below.

(i) Draw the Hasse diagram for a partial order on A with the requested
features.

(ii) In your diagram, identify all maximal/minimal elements.

(iii) Identify all pairs of incomparable elements.

(a) A has both a maximum and a minimum.

(b) A has a maximum but no minimum.

(c) A has a minimum but no maximum.

(d) A has neither a maximum nor a minimum.

Activity 19.4 Suppose ⪯ is a partial order on the set A = {0,1,2} such that 1 is a
maximal element. What are the possibilities for the Hasse diagram of ⪯?

Activity 19.5 Using the proper strategy for proving uniqueness (see Proce-
dure 6.10.2), prove that if a partially ordered set A has a maximum element,
then that element is the unique maximum element.

How can your proof be modified to show that a minimum element is also
unique?

Activity 19.6 Recall that (a,b)⊆R means an open interval on the real number
line:

(a,b)= { x ∈R | a < x < b } .

Let ≤ be the usual “less than or equal to” total order on the set

A = (−2,0)∪ (0,2).

Consider the subset
B =

{
− 1

n

∣∣∣∣ n ∈N, n ≥ 1
}
⊆ A.

Determine an upper bound for B in A. Then formally prove that B has no least
upper bound in A by arguing that every element of A fails the criteria in the
definition of least upper bound.
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19.8 Exercises

Recognizing a partial order from its graph. In each of Exercises 1–2, you
are given a directed graph for a relation on the set A = {a,b, c,d}. Determine
whether the relation is a partial order. Justify your answers.

1.

dc

ba
2.

dc

ba

Testing partial orders. In each of Exercises 3–6, you are given a set A and a
relation R on A. Determine whether the relation is a partial order. Justify your
answers.

3. A is the set of all Augustana students; a R b means that student a has
a higher GPA than student b.

4. A is the power set of some finite set; S R T means |S| ≤ |T|.
5. A is the set of words on some alphabet; w R w′ means |w| ≤

∣∣w′∣∣, where
|w| means the length of word w.

6. A =R×R; (x1, y1) R (x2, y2) means x1 ≤ x2 and y1 ≤ y2.

Drawing Hasse diagrams. In each of Exercises 7–8, you are given a finite,
partially ordered set A. Draw the Hasse diagram.

7. A =P ({1,2,3,4}) under the subset relation.
8. A = Σ∗

4 , the set of words of length 4 in the alphabet Σ = {0,1}, under
dictionary order.

9. Draw all possible valid Hasse diagrams for each of the sets A = {a,b} and
B = {a,b, c}. (Thus, you will have determined all possible partial orders on
those sets.)

10. Consider the “divides” relation | on N>0. Provide an example of a set A ⊆N>0

(a) that is finite, and on which | is a total order.

(b) that is infinite, and on which | is a total order.

(c) on which | is a partial order but not a total order.
11. Let A = {0,1,2}, and consider the partial order ⊆ on the power set P (A).

List all pairs of incomparable elements in P (A).

Determining maximal/maximum/minimal/minimum elements. In each of
Exercises 12–16, you are given a partially ordered set A. Determine any and all
maximal, maximum, minimal, and minimum elements.

12. A =N>0 under the usual ≤.
13. A =Q>0 under the usual ≤.
14. A =N∖ {0,1} under the “divides” relation |.
15. A = {2,5,11,13,22,65,110,143,496} under the “divides” relation |.
16. A is the set of the first ten prime numbers under the “divides” relation

|.
17. Suppose ⪯ is a partial order on the set A = {0,1,2} such that 1 is a maximal

element. What are the possibilities for the Hasse diagram of ⪯?
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Topological sorting. In each of Exercises 18–19, you are given the Hasse
diagram for a partially ordered set A. Use the Topological sorting algorithm to
determine a compatible total order on A.

18.

α

β γ

δ ϵ ζ

η θ

19.

α

β γ δ ϵ

ζ

η

θ ι κ

λ
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CHAPTER 20

Counting

20.1 Motivation

You probably learned to count before you even started kindergarten. But effi-
ciently counting large collections can be difficult!

Example 20.1.1 Examples of counting large collections.

• How many different ways can you choose your winning numbers for the
lottery?

• How many different possible seating charts could be made for the students
in this course in the assigned classroom?

• How many different ways are there for you to choose courses to satisfy your
degree requirements?

• How many bijections between the sets {0,1,2,3,4,5} and {a,b, c,d, e, f }
exist?

• How many total orders on the set {0,1,2,3,4,5} exist?

• How many partial orders on the set {0,1,2,3,4,5} exist?

□

20.2 Addition and subtraction rules

As usual in mathematics, breaking a big problem into smaller parts is a useful
strategy.

Theorem 20.2.1 Addition Rule. Assume U is a finite set.

1. If U = A1 ⊔ A2, then |U | = |A1|+ |A2|.

2. If U = A1 ∪ A2, then |U | = |A1|+ |A2|− |A1 ∩ A2|.
Proof idea. After recalling the definition of disjoint union, Statement 1 should
be obvious. To prove Statement 2, apply Statement 1 to the following disjoint
unions:

U = A1 ⊔ (A2∖ A1), A2 = (A2∖ A1)⊔ (A1 ∩ A2).

Then combine the resulting equalities of cardinalities. ■

225
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Remark 20.2.2 Statement 1 of Theorem 20.2.1 can be extended to a disjoint
union of any number of subsets.

Worked Example 20.2.3 Counting by breaking into cases. How many
words of length 3 or less are there using alphabet Σ= {α,ω}?

Solution. Write Σ∗
≤3 to mean the set of words in alphabet Σ of length 3 or less.

Then
Σ∗
≤3 =Σ∗

0 ⊔Σ∗
1 ⊔Σ∗

2 ⊔Σ∗
3 ,

so we can break into cases based on length and then apply the Addition Rule.

Count Σ∗
0 . There is only one word of length 0: the empty word. So

∣∣Σ∗
0

∣∣= 1.

Count Σ∗
1 . There are only two words of length 1: the single-letter words wα =α

and wω =ω. So
∣∣Σ∗

1

∣∣= 2.

Count Σ∗
2 . We can count be simply listing the elements:

Σ∗
2 = {αα,αω,ωα,ωω}.

So
∣∣Σ∗

2

∣∣= 4.

Count Σ∗
3 . This time we will just use inductive reasoning. Each word in Σ∗

2 may
be extended to a word in Σ∗

3 by appending either an α or an ω onto the end. So
there must be twice as many words in Σ∗

3 as in Σ∗
2 , i.e.

∣∣Σ∗
3

∣∣= 8.

Total count. Using the Addition Rule, we obtain the total by adding up our
preliminary results: ∣∣Σ∗

≤3
∣∣= 1+2+4+8= 15.

□

Another common strategy in mathematics is to consider the opposite.

Theorem 20.2.4 Subtraction Rule. Assume U is a finite set. For every subset
A ⊆U , we have |A| = |U |− |Ac|.

Proof idea. Since U = A⊔ Ac is always true, simply apply Statement 1 of Theo-
rem 20.2.1 to this disjoint union and rearrange to isolate |A|. ■

Example 20.2.5 Counting by counting the complement. For alphabet
Σ= {a, b, c, . . . , y, z}, how many words in Σ∗

2 do not begin with the letter a? It’s
much easier to count the number of words in Σ∗

2 that do begin with a, as there
are only 26 possibilities for the second letter.

Later in this chapter we will learn a rule that will allow us to easily calcu-
late the total number of words in Σ∗

2 to be 262 (see Worked Example 20.3.10).
Accepting this fact for the moment, we can then use the Subtraction Rule to
compute

#{2-letter words not beginning with a}=
∣∣Σ∗

2
∣∣−#{2-letter words beginning with a}

= 262 −26

= 26(26−1)

= 26 ·25.

□
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20.3 Multiplication rule

Worked Example 20.3.1 Counting a small Cartesian product. What is
|A×B| for A = {0,1,2,3} and B = {−1,0,1}?

Solution. We can solve this by just writing out the elements of A ×B and
counting them.

A×B = {(0,−1), (0,0), (0,1), (1,−1), (1,0), (1,1),

(2,−1), (2,0), (2,1), (3,−1), (3,0), (3,1)}

So |A×B| = 12. □
Worked Example 20.3.2 Counting a large Cartesian product. What is
|C×D| for C = {a,b, c, . . . , z} and D = {0,1,2, · · · ,99}?

Solution. Writing out all the elements of C×D and then counting them all
seems like a lot of work. Instead, using our experience from Worked Exam-
ple 20.3.1, notice that we usually perform the task of writing the elements of a
Cartesian product in a pattern to make sure we get them all. One-by-one we pick
a single element of the first set C, and pair it up with every element of the second
set D. From this pattern we see that for each c ∈ C, there are |D| elements of
C×D with c as the first coordinate, and there are |C| such groupings of elements
from C×D. So we arrive at

|C×D| = |C| · |D| = 26 ·100= 2600.

□
Checkpoint 20.3.3 For sets X and Y , define an equivalence relation on X ×Y
whose equivalence classes partition X×Y in the manner described in the provided
solution to Worked Example 20.3.2. Then describe how the number of classes
and the number of objects in each class correspond to |X | and |Y |.
Theorem 20.3.4 Multiplication Rule. If there are m ways to perform task S
and n ways to perform task T, then there are mn ways to perform task S followed
by task T.

Warning 20.3.5 The Multiplication Rule only applies to consecutive tasks S,T
such that the number of ways of performing task T is independent of the choice
made in performing task S.

Example 20.3.6 Counting Cartesian product elements by constructing
an arbitrary element. To create a specific example of an element from A×B,
we must first choose an element of A to be the first coordinate (task S), then
choose an element of B to be the second coordinate (task T). There are m = |A|
ways to perform task S and n = |B| ways to perform task T. Therefore, the
Multiplication Rule says there are mn ways to construct an element of A×B,
which means |A×B| = mn. □
Example 20.3.7 Choosing candidates. Suppose you are a casting director
and need to select both a primary actor and an understudy for the lead role in a
play. If n actors audition for the role, then there are n different ways to select
the primary actor. Once this choice is made, there remain n−1 different ways to
the select the understudy. Hence there are n(n−1) ways to cast the role.

Now, the actual pool of candidates for understudy will differ based on which
actor is offered the lead role. However, no matter who is chosen for the lead, the
number of remaining candidates for understudy is the same. □
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Note 20.3.8 We may extend the Multiplication Rule to any (finite) number of
consecutive tasks.

Example 20.3.9 Cardinality of Cartesian product of many sets. If
A1, A2, . . . , Am are finite sets with

∣∣A j
∣∣= m j, then

|A1 × A2 ×·· ·× Aℓ| = m1m2 · · ·mℓ.

□
Worked Example 20.3.10 Words of a given length. Recall that, given
alphabet Σ and number n ∈N, Σ∗

n is the set of words of length n. If |Σ| = m, what
is

∣∣Σ∗
n
∣∣?

Solution. To construct a specific example word w ∈Σ∗
n, there are:

• m ways to choose the first letter,

• m ways to choose the second letter,

• . . . ,

• m ways to choose the nth letter.

So there are
m ·m ·m · · · · ·m︸ ︷︷ ︸

n factors

= mn

ways to construct w. We conclude
∣∣Σ∗

n
∣∣= mn. □

Worked Example 20.3.11 Words with no repeated letters. Suppose |Σ| = 5.
How many words in

∣∣Σ∗
5

∣∣ have no repeated letters? (That is, in which no two
letters are the same?)

Solution. To construct a specific example word w ∈Σ∗
5 in which no two letters

are the same, there are

• 5 ways to choose the first letter,

• 4 remaining ways to choose the second letter,

• 3 remaining ways to choose the third letter,

• 2 remaining ways to choose the fourth letter, and

• only 1 remaining way to choose the last letter.

So there are
5 ·4 ·3 ·2 ·1= 120

ways to construct w.
Similar to Example 20.3.7, while the actual pool of candidates for the next

letter at each step will differ based on which letters have been chosen already,
the number of remaining letters is always independent of which letters have
actually been chosen so far. So the Multiplication Rule can be applied to this
problem exactly as we have applied it. □

Worked Example 20.3.12 Palindromes. Let Σ= {a, b, c, . . . , y, z}. How many
palindromes w with 3≤ |w| ≤ 6 are there in Σ∗?

Solution. Break into cases based on the length of w.

Case |w| = 3. Once we choose the first letter, the last is chosen for us, but we are
still free to choose the middle letter. So there are 262 palindromes of length 3.
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Case |w| = 4. Once we choose the first two letters, the last two are chosen for us.
So there are also 262 palindromes of length 4.

Case |w| = 5. Once we choose the first two letters, the last two are chosen for us,
but we are still free to choose the middle letter. So there are 263 palindromes of
length 5.

Case |w| = 6. Once we choose the first three letters, the last three are chosen for
us. So there are also 263 palindromes of length 6.

Total. Applying the Addition Rule to these non-overlapping cases, we obtain

262 +262 +263 +263 = 262(1+1+26+26)

= 54 ·262

= 36,504

as the number of palindromes length 3 to 6. □

Worked Example 20.3.13 Set A = {a,b, c} and B = {0,1,2,3,4}. How many
functions A → B exist? How many of these are injections? How many are
surjections?

Solution.

Number of functions. A function f : A → B can be constructed in three steps:
choose f (a), then choose f (b), then choose f (c). Each of the steps can be carried
out in |B| = 5 ways. So the number of functions is 53 = 125.

Number of injections. An injection f : A ,→ B can be constructed in three steps:
choose f (a), then choose f (b) to be different from f (a), then choose f (c) to be
different from both f (a) and f (b). First step has |B| = 5 choices. Second step
has |B∖ { f (a)}| = 4 choices. Third step has |B∖ { f (a), f (b)}| = 3 choices. So the
number of injections is 5 ·4 ·3= 60.

A look ahead. Notice that the number of injections has turned out to be

|B|!
(|B|− |A|)! .

We will understand better how this formula arises in Section 21.4.

Number of surjections. Suppose f : A → B. Since |A| = 3, the largest that | f (A)|
can be is 3, which occurs when f is injective. However, even in such a largest
case it is still smaller then |B|, so no surjections exist. That is, the number of
surjections is 0. □

20.4 Division rule

Sometimes it is easier to count a related but more structured collection, where
the collection we actually want to count corresponds to equivalence classes of the
more structured collection.

Theorem 20.4.1 Division Rule. Suppose ≡ is an equivalence relation on a finite
set A so that the equivalence classes all have the same number of elements.
Then

#{equivalence classes}= |A|
common size of classes

.
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That is,

|A/≡| = |A|
|[a]| ,

where a is an arbitrary element of A.

Proof. Write N for the number of equivalence classes, and write C for the common
cardinality of the classes. We know that the equivalence classes partition the set
A, so using the Addition Rule we have

|A| = |[a1]|+ |[a2]|+ · · ·+ |[aN ]| ,

where a1,a2, . . . ,aN are a complete set of equivalence class representatives. But
we have assumed that these class cardinalities are all equal to each other, with
each class satisfying

∣∣[a j
]∣∣= C. So

|A| = C+C+·· ·+C︸ ︷︷ ︸
N terms

= NC,

which leads to
N = |A|

C
,

as desired. ■

Worked Example 20.4.2 Equivalent words. Let Σ = {α,β,γ}. How many
words in Σ∗

4 contain exactly two αs, one β and one γ?

Solution. Write Λ for the collection of words in Σ∗
4 of the type described. In-

stead of trying to count Λ directly, consider the following more structured collec-
tion.

Write Σ′ = {α1,α2,β,γ}, and let Λ′ be the set of words in (Σ′)∗4 that have no
repeated letters. Similar to Worked Example 20.3.11, we have

∣∣Λ′∣∣= 4 ·3 ·2 ·1= 24.

For each pair of these words, write w1 ≡ w2 if the following two conditions hold.

(i) At whatever position w1 contains α1, w2 contains either α1 or α2 at that
same position.

(ii) At whatever position w1 contains α2, w2 contains either α1 or α2 at that
same position.

You may check that ≡ defines an equivalence relation on Λ′. Each class consists
of exactly two words {w1,w2}, where w2 has an α2 where w1 has an α1 and an
α1 where w1 has an α2. For example, one class of Λ′/≡ is

[
α1βα2γ

]= {α1βα2γ,α2βα1γ}.

Effectively, the classes remove the distinction between α1 and α2, so that they
might as well be the same letter, say, α. In other words, there is a bijective
correspondence between the classes in Λ′/≡ and the words in Λ. Using the
Division Rule, we have

|Λ| =
∣∣Λ′/≡

∣∣=
∣∣Λ′∣∣

2
= 24

2
= 12.

□
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20.5 Pigeonhole principle

20.5.1 Regular strength version

Theorem 20.5.1 Pigeonhole Principle (formal version). If A,B are finite
sets with |B| < |A|, then no function A → B can be an injection.

Proof. This principle is just the contrapositive of Statement 2 of Fact 12.2.5. ■
Corollary 20.5.2 Pigeonhole Principle. If m objects are placed in n containers,
where m > n, then at least one container must contain more than one object.

Proof. Let A be the set of objects and B the set of containers, so that

|B| = n < m = |A| .

Also let f : A → B represent the function where f (a)= b means that object a has
been placed in container b. Then the Theorem 20.5.1 tells us that f cannot be
an injection, which means that there is at least one pair of distinct objects a1,a2
with f (a1)= f (a2). ■
Worked Example 20.5.3 Too few seats. Your car has five seats, but you also
have five friends who need a ride home. How will everyone fit?

Solution. Using the people who need to get home (i.e. your friends and you) as
objects and car seats as containers, Pigeonhole Principle says that someone will
have to sit on someone else’s lap. □
Worked Example 20.5.4 Dessert logistics. The cafeteria puts out 200 choco-
late puddings and 200 tapioca puddings. If 201 students each grab a bowl of
pudding, what is the minimum number of tapioca puddings that have been
taken?

Solution. Since 201> 200, there is no injection

{students who took a pudding} ,→ {bowls of chocolate pudding}.

(Or: use students as objects, bowls of chocolate pudding as containers.)
But we can’t actually have two students take the same bowl of pudding, so at

least one student must eat tapioca. □
Worked Example 20.5.5 Matching pairs. Suppose A ⊆ {1,2, . . . ,20}. How big
must |A| be to ensure that there exist two elements of A whose sum is 21?

Solution. Collect together the (unordered) pairs of numbers that add to 21:

B = {
{1,20}, {2,19}, . . . , {10,11}

}⊆P ({1,2, . . . ,20}).

Notice that |B| = 10. Thinking of the elements of B as containers and elements
of A as objects, place object a into container b if a ∈ b. We need one more object
than container to ensure some container receives two objects, so the answer is
|A| ≥ 11. □
Worked Example 20.5.6 Matching modulo m. Suppose m ∈ N and A ⊆ N
such that 0< m < |A| <∞. Show that there exist distinct a1,a2 ∈ A that have the
same remainder when divided by m.

Solution. The set of possible remainders is N<m = {0,1,2, · · · ,m−1}. Computing
remainder after division by m defines a function A →N<m. Since |N<m| = m < |A|,
this function cannot be an injection.

(Or: use elements of A as objects, possible remainders when dividing a
number by m as containers.) □
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20.5.2 Strong version

Recall that given a function f : A → B, we can define an equivalence relation ≡
on A by taking a1 ≡ a2 to mean f (a1)= f (a2) (see Example 18.4.5). In this way,
we can regard f as placing objects (elements of A) into containers (elements of
B), so that object a ∈ A is “placed” in container b ∈ B when f (a)= b.

Theorem 20.5.7 Pigeonhole Principle (strong form, formal version).
Suppose f : A → B, with A,B finite, and let ≡ be the equivalence relation on A
where a1 ≡ a2 means f (a1)= f (a2).

If |A| > ℓ · |B| for some ℓ ∈N, then at least one of the equivalence classes of A
with respect to ≡ has more than ℓ elements.

Proof. Consider the contrapositive:

if every equivalence class of A has no more than ℓ elements, then
|A| ≤ ℓ · |B|.

Since B is finite and f (A)⊆ B, then also f (A) is finite and we can enumerate its
elements. Write f (A)= {b1,b2, . . . ,bn}. Each element of f (A) corresponds to an
equivalence class of A.

A

...

[a1]

[a2]

[an]

B

b1= f (a1)

b2= f (a2)
f

bn= f (an)

...
...

Figure 20.5.8 Diagram of equivalence classes under the “have same image”
equivalence.

In this diagram, the ai are representative elements of the class of elements
of A that are mapped to bi by f . In particular, we must have f (ai)= bi for each
index i.

We are assuming that each class [ai] contains no more than ℓ elements; i.e.
|[ai]| ≤ ℓ. Since an equivalence relation always partitions a set A into the disjoint
union of its equivalence classes, we have

|A| = |[a1]|+ |[a2]|+ · · ·+ |[an]|
≤ ℓ+ℓ+·· ·+ℓ︸ ︷︷ ︸

r terms

= ℓn
= ℓ · | f (A)| .

But f (A) is a subset of the finite set B, and so | f (A)| ≤ |B|. Combining this with
the calculation above gives

|A| ≤ ℓ · | f (A)| ≤ ℓ · |B| .

■
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Corollary 20.5.9 Pigeonhole Principle (strong form, informal version).
If m objects are placed in n containers, with m > ℓn for some ℓ ∈N, then at least
one container contains more than ℓ objects.

Proof idea. Again, let A be the set of objects and B the set of containers, so that

|A| = m > ℓn = ℓ · |B| .

Then apply the Pigeonhole Principle (strong form, formal version). ■
Note 20.5.10 The Pigeonhole Principle (strong form, formal version) is a general-
ization of the Pigeonhole Principle (formal version). A function is an injection
precisely when no two distinct elements of the domain produce the same output
image, so using ℓ= 1 in the strong form gives back the original form.

Worked Example 20.5.11 Handing out coins. Show that if thirteen coins are
distributed to six children, then at least one child will receive at least three coins.

Solution. Using coins as objects and children as containers, the given state-
ment is just the Pigeonhole Principle (strong form, formal version) with ℓ= 2: we
have 13 objects and 6 containers, and 13> 2 ·6. (Note: Since coins are discrete
objects, “more than two” and “at least three” are the same thing.) □
Remark 20.5.12 It is worthwhile to think about how the strong form of the
Pigeonhole Principle could be proved directly. Consider the diagram in Fig-
ure 20.5.8: the “tipping point” between |A| ≤ ℓ · |B| and |A| > ℓ · |B| is when f is
surjective and each of the equivalence classes has exactly ℓ elements. When f is
surjective, there are |B| equivalence classes in A. Since A is the disjoint union of
its equivalence classes under ≡, we have |A| = ℓ · |B|. If we add one more element
to A, it will have to be included in one of the equivalence classes, and that class
will now have size greater than ℓ.

Worked Example 20.5.13 Handing out pudding. The cafeteria puts out 100
chocolate, 100 tapioca, and 100 butterscotch puddings. How many students must
grab a pudding before we can be certain that at least one of the flavours has at
least half of the bowls taken?

Solution 1 (Using “tipping point” thinking). The “tipping point” is exactly 49
bowls of each flavour taken, which requires 3 ·49= 147 students. After the 148th

student, we will definitely have 50 bowls of one of the flavours taken.

Solution 2 (Direct use of the Pigeonhole Principle). Consider students as
objects (m of them — this is the unknown to be determined) and flavours as
containers (3 of them). To determine the appropriate value of ℓ to use, consider
that “at least half” in this problem means “at least 50”, which is the same as
“more than 49”. So choose ℓ= 49. In that case, we need m > 49 ·3= 147, bringing
us to the answer of m = 147+1= 148 students. □

20.6 Activities

Activity 20.1 A standard Alberta license plate has three letters followed by three
or four digits.

(a) How many different vehicles can the province license with this scheme?

(b) Do you think the province was right to expand license plates by adding
another digit, or do you think it should have added another letter instead?
(Or, as a third possibility, is it irrelevant in practical terms?)

Hint. The figure 263 = 17576 may help you decide.
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Activity 20.2

(a) You roll a six-sided die ten times. How many different sequences of rolls
are possible?

(b) Describe how Task a relates to the problem of determining
∣∣Σ∗

10

∣∣ for a
suitable alphabet Σ.

Activity 20.3 Let Σ= {a, b, c, . . . , y, z}. How many words in Σ∗
5 end in the letter

z? How many do not?

Activity 20.4 You and your five housemates pick names out of a hat each week to
determine who is going to clean the toilet. Over a three-week period, how many
different sequences of toilet bowl cleaners could be determined in this fashion

(i) if names are placed back in the hat after each draw?

(ii) if names are not placed back in the hat after each draw?

Activity 20.5 How many natural numbers between 1 and 1,000,000 (inclusive)
contain the digit 5?

Hint. You might instead count how many numbers don’t contain the digit 5.

Activity 20.6 How many natural numbers between 100 and 999 (inclusive) have
no repeated digits? Of these, how many are odd?

Hint. There’s no rule that when you “construct” an arbitrary object of this type
that you have to choose the first digit first.

Activity 20.7 Use the Pigeonhole Principle to prove that in every set of three
integers there exists a pair whose difference is even.

Hint. What kinds of numbers add up to an even sum?

Activity 20.8 You have a list of the names of twenty students. Ten of the students
are domestic students and the other ten are out-of-province students. How many
students must you select from the list to be certain to form a group that contains
at least one domestic student and at least one out-of-province student?

Activity 20.9 Let n be a fixed natural number. Determine the smallest number
M for which the following statement is true: every subset of

N<2n+1 = {0,1,2,3, . . . ,2n}

of size M contains at least one odd number.

Activity 20.10 You’re cleaning up your little nephew’s toy room. There are T
toys on the floor and n empty toy storage boxes. You randomly throw toys into
boxes, and when you’re done the box with the most toys contains N toys.

(a) What is the smallest that N could be when T = 2n+1?

(b) What is the smallest that N could be when T = kn+1?

(c) Now suppose that the number of toys T satisfies

T < n(n−1)
2

.

Prove that when you are done cleaning up, there will be (at least) one pair
of boxes that contain the same number of toys.

Hint. Argue the contrapositive by assuming that every box ends up a
different number of toys. What is the fewest number of toys you could have
started with?
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20.7 Exercises

1. You are trying to decide how to top your ice-cream sundae. You have five
choices of sprinkles, four choices of cookie crumbs, five choices of fruit, and
three choices of chocolate chunks. For each category of topping, you may
choose only one of the available options, or you may choose to skip that
category altogether. How many different sundaes could you create out of
these choices?

2. You turn eighteen and your trust fund finally starts paying out. You decide
to buy a vehicle, and eventually narrow things down to a choice between
five SUVs, four sports cars, and two motorcycles. How many ways are there
to choose a vehicle? How many ways are there to choose one vehicle of each
type?

3.

(a) Use the Multiplication Rule to demonstrate that the truth table of a
logical statement with n statement variables requires 2n rows. That
is, demonstrate that there are 2n different possible combinations of
input truth values for n statement variables.

(b) How many different truth tables involving n statement variables
exist?

4. Recall that if A is a finite set with |A| = n, then |P (A)| = 2n. Use the
Multiplication Rule to verify this formula by considering the construction of
an arbitrary subset of A as a process of making n “either-or” decisions.

5. It is the year 2030, and Alberta has succeeded in seceding from Canada and
has become the landlocked Kingdom of Albertania. The King decrees that
the kingdom’s citizens will all be assigned a hexadecimal ID. That is, using
alphabet

Σ= {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e, f},

IDs will be words from Σ∗. However, the king is vain and doesn’t want any
such ID to contain his initials, jk.

For each n ≥ 1, let sn represent number of allowable IDs of length n.

(a) Compute s1, s2, and s3.

(b) Determine a recurrence relation for sn which is valid (at least) for
n ≥ 3.

Hint. For each allowable word of length n−1 you can create a word
of length n by adding a new letter onto the end. But you want your
new word to also be allowable, so be careful about what you add onto
the end!





CHAPTER 21

Permutations

21.1 Factorials

In counting, factorials come up a lot.

n! for natural number n, notation for the computation for-
mula

n(n−1)(n−2) · · ·2 ·1

Example 21.1.1 Two factorial calculations.

3!= 3 ·2 ·1= 6, 7!= 7 ·6 ·5 ·4 ·3 ·2 ·1= 5,040.

□
Example 21.1.2 Factorial factors. A factorial contains every smaller factorial
as a factor. For example,

7!
3!

= 7 ·6 ·5 ·4 ·��(3!)

�3!
= 7 ·6 ·5 ·4= 840.

□
Convention 21.1.3 To avoid division by zero in certain formulas, define 0! =
1. This choice is also made to be consistent with the methods for counting
permutations we will explore in this chapter.

21.2 Definition

We often want to count how many ways we can “mix up” the objects in a collection.

permutation a bijection from a finite set to itself

Remark 21.2.1 Once you have written the elements of a finite set in some order,
think of a permutation as a way of re-ordering them.

Example 21.2.2 Permutations of three objects. Figure 21.2.3 contains tables
of values for all six possible permutations of the set A = {a,b, c}. We have grouped
them according to: all elements fixed; one element fixed and two mixed; all
elements mixed.

237
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x a b c
idA(x) a b c

x a b c
fa(x) a c b
fb(x) c b a
fc(x) b a c

x a b c
sr(x) c a b
sl(x) b c a

Figure 21.2.3 All possible permutations on three objects.

□

21.3 Counting permutations

Theorem 21.3.1 For |A| = n, there are n! permutations on A.

Informal proof. We want to count the number of ways of constructing an ordered
list of the n elements of A. There are n ways to choose the first element in the
list, n−1 ways to choose the second, n−2 ways to choose the third, and so on,
ending at a single way to choose the nth. By the Multiplication Rule, there are

n · (n−1) · (n−2) · · · · ·1= n!

ways to construct such a list. ■

Formal proof. By induction.

Base case n = 1. If |A| = 1, then A consists of a single element, say A = {a}.
There is only one possible permutation of A, and that is the identity function
idA : A → A defined by idA(a) = a. Thus, we have verified that there is 1! = 1
permutation of A.

Induction step. Let k ≥ 1 be a fixed integer. Our induction hypothesis is to
assume that if B is any set with |B| = k elements, then there are k! permutations
on B. We want to use this hypothesis to prove that if A is a set with |A| = k+1
elements, then there are (k+1)! permutations on A.

Write A = {a0,a1, . . . ,ak} and B = {a1,a2, . . . ,ak}. Then B is a subset of A that
contains k elements, and so by our induction hypothesis there are k! permutations
on B. For every such permutation of B, we can construct k+1 permutations of A
by “inserting” a0 at different positions in the output list. For example, consider
how the identity permutation on B can be turned into k+1 different permutations
on A — see Figure 21.3.2.
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x a1 a2 a3 . . . ak−1 ak

idB(x) a1 a2 a3 . . . ak−1 ak

↓

x a0 a1 a2 a3 . . . ak−1 ak

id(0)
B (x)= idA(x) a0 a1 a2 a3 . . . ak−1 ak

id(1)
B (x) a1 a0 a2 a3 . . . ak−1 ak

id(2)
B (x) a1 a2 a0 a3 . . . ak−1 ak

id(3)
B (x) a1 a2 a3 a0 . . . ak−1 ak
...

...
id(k−1)

B (x) a1 a2 a3 a4 . . . a0 ak

id(k)
B (x) a1 a2 a3 a4 . . . ak a0

Figure 21.3.2 Inserting an extra element at various positions of a permutation
to create new, longer permutations.

Each of the k! permutations of B can be used to construct k+1 permutations
of A, in the same fashion as we have above for the identity permutation of B. So
we have in total (k+1) ·k!= (k+1)! permutations of A, as required. ■
Remark 21.3.3 When applying the method of mathematical induction in the
formal proof, we began our base case at n = 1. But the formula n! is still valid for
the number of permutations of the empty set. In this case, n = 0 and so n!= 0!= 1
by Convention 21.1.3. And there is indeed exactly one permutation of the empty
set — the empty function. (See Statement 2 of Proposition 12.1.6.)

Each of the provided proofs for Theorem 21.3.1 above contains an idea that is
of practical use in counting collections.

• In the informal proof, we used the Multiplication Rule to count the number
of ways to construct an ordered list, where the tasks in the construction
are choosing the elements in the list one at a time. (We used this similar
thinking often in Chapter 20, though we didn’t explicitly connect the
Multiplication Rule to ordered lists.)

• In the formal proof, we used the idea of “inserting” an object into an existing
ordered list to create a new ordered list.

Worked Example 21.3.4 Distributing items. For a class of twenty students,
in how many different orders can a professor hand back marked tests:

1. In total?

2. If Karishma’s test must be handed back first?

3. If Elizabeth’s and Ruijing’s tests cannot immediately follow one another?

Solution.

1. A test distribution order is the same thing as a permutation of the students
in the class, so there are 20! different handback orders (approximately 2.4
quintillion).

2. This is just the number of ways of ordering the remaining nineteen stu-
dents’ papers, which is 19! (approximately 122 quadrillion).

3. It is easier to count the ways that they do follow each other. One way to
do this is as follows. Remove Elizabeth’s test from the pile. There are now
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19! ways to order the remaining nineteen papers. There are two ways to
insert Elizabeth’s test back into any such ordering — either immediately
before or after Ruijing’s paper. So there are 2 ·19! orderings we do not want.
Therefore, applying the Subtraction Rule yields answer

20!−2 ·19!= 20 ·19!−2 ·19!= 18 ·19!.

□
Worked Example 21.3.5 Words using the entire alphabet. For an alphabet
Σ with |Σ| = n, how many words in Σ∗ contain each element of the alphabet
exactly once?

Solution. Here we just want to order all the elements of Σ into a word, so the
answer is n!.

Compare. See Worked Example 20.3.11.

□
Remark 21.3.6 Worked Example 21.3.5 justifies the convention 0!= 1, since if
|Σ| = 0, then Σ∗ contains exactly one word: the empty word ;. And in this case it
is vacuously true that ; contains each element of Σ exactly once.

Worked Example 21.3.7 Counting total orders. If |A| = n, how many
different total orders on A exist?

Solution. Specifying a total order on A really just means ordering the elements
of A:

a1 ≤ a2 ≤ a3 ≤ ·· · ≤ an.

So there are n! possible total orders. □
Worked Example 21.3.8 Counting colour patterns. How many different
colour patterns can we obtain by placing three red bottles and five blue bottles
on a shelf? (Assume the bottles are indistinguishable except by colour.)

Solution. Let’s use the Division Rule, where first we will count a more struc-
tured collection. If the bottles of the same colour were distinguishable from
each other, we would have 8! ways of lining them up on the shelf. Assuming
indistinguishability, we now consider two orderings with the same colour pattern
but mixed up red and/or blue bottles to be equivalent. For example, the two
orderings

R1 B1 B2 R2 R3 B3 B4 B5,

R2 B5 B3 R1 R3 B1 B4 B2,

of distinguishable bottles create the same colour pattern, and so are equivalent.
Once red and blue bottle positions are determined, we can permute the reds
(3! ways) and blues (5! ways) independently, so each equivalence class inside
the collection of orderings of distinguishable bottles contains 3! ·5! equivalent
orderings. Applying the Division Rule, we arrive at

8!
3! ·5!

= 8 ·7 ·6
3 ·2 = 56

possible colour patterns. □
Worked Example 21.3.9 Circular orderings. How many different seating
arrangements of ten people around a round table are possible, if no one is
considered to be at the “head” or “foot” of the table?

Solution 1. Let’s use the Division Rule, where first we will count a more struc-



21.4. PERMUTATIONS OF SUBSETS 241

tured collection. There are 10! ways to line the 10 people up. Wrapping the end of
the line around to meet the beginning forms a circular seating arrangement. But
“rotating” around the line (10 possible rotations) yields an equivalent circular
seating arrangement. So the answer is

10!
10

= 9!.

Solution 2. Force one particular person to always be the “start” of the seating
arrangement, no matter what physical seat they are sitting in, and ignoring the
fact that a circular arrangement really has no “start.” Then there are 9! ways to
arrange the remaining 9 people around the table starting from the seat to the
left of the “start” person. □

21.4 Permutations of subsets

Sometimes we want to create an ordered list of a certain length from a larger
pool of candidates.

permutation of size k
an ordered list of k elements from a given set A, with |A| ≥ k

P(n,k) the number of permutations of size k taken from a set of size n
Pn

k , nPk alternative notation choices for P(n,k)

Example 21.4.1 Visualizing P(4,2). Consider A = {1,2,3,4}, so that n = |A| = 4.
There are 4!= 24 permutations of A.

x 1 2 3 4
idA(x) 1 2 3 4
p1(x) 1 2 4 3
p2(x) 1 3 2 4
p3(x) 1 3 4 2
p4(x) 1 4 2 3
p5(x) 1 4 3 2
p6(x) 2 1 3 4
p7(x) 2 1 4 3
p8(x) 2 3 1 4
p9(x) 2 3 4 1
p10(x) 2 4 1 3
p11(x) 2 4 3 1

x 1 2 3 4
p12(x) 3 1 2 4
p13(x) 3 1 4 2
p14(x) 3 2 1 4
p15(x) 3 2 4 1
p16(x) 3 4 1 2
p17(x) 3 4 2 1
p18(x) 4 1 2 3
p19(x) 4 1 3 2
p20(x) 4 2 1 3
p21(x) 4 2 3 1
p22(x) 4 3 1 2
p23(x) 4 3 2 1

Figure 21.4.2 Permutations of a set of size 4.

Notice that the permutations above have been grouped into pairs, where the
two permutations in a given pair have the same two first elements in the same
order. From this, we can conclude that there are only 24/2= 12 permutations of
size k = 2 from A. □
Theorem 21.4.3 Computing P(n,k). We have

P(n,k)= n!
(n−k)!

= n(n−1)(n−2) · · · (n−k+1).
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Proof. One way to construct an ordered list of k elements from a set A, where
|A| = n, is as in Example 21.4.1. Form an ordered list of all the elements of A (n!
ways), and then take the first k elements from that list. But we get the same
ordered list of length k no matter how the last n−k elements are ordered. That
is, we consider any two orderings of all n elements to be equivalent if the first k
elements in the list are the same between the two. As there are (n−k)! different
ways the last n−k elements could be ordered while keeping the first k elements
the same, each equivalence class has size (n− k)!. Applying the Division Rule,
we obtain the desired formula

P(n,k)= #{orderings of all n elements}
#{reorderings of the last n−k elements}

= n!
(n−k)!

.

■

Remark 21.4.4 The number P(n,n) represents the number of ways to construct
an ordered list of n elements chosen from a set of n elements, so P(n,n) =
n!. The convention 0! = 1 ensures that our formula for P(n,k) expressed in
Theorem 21.4.3 remains valid in the case k = n.

Worked Example 21.4.5 Elections. A class of twenty discrete mathematics
students decides to elect a class president and vice-president. How many possible
outcomes to the election process are there?

Solution. An arbitrary way to elect students to these offices would be to line
all the students up and choose the first two students in line to be the president
and vice-president, respectively. Therefore, there are

P(20,2)= 20!
(20−2)!

= 20 ·19= 380

possible outcomes to the election. □

Worked Example 21.4.6 Ranking choices. You go to the horsetrack to bet on
a race. From a field of nine horses, how many ways are there to make a “Trifecta”
bet (i.e. specify the first three finishers in order)?

Solution. There are

P(9,3)= 9!
(9−3)!

= 9 ·8 ·7= 504

possible such bets. □

Worked Example 21.4.7 Words with no repeated letters. For alphabet
Σ= {a, b, c, . . . , y, z}, how many four-letter words made up of distinct letters are
there in Σ∗?

Compare. See Worked Example 20.3.11.

Solution. A four-letter word with no repeated letters is the same as a permuta-
tion of size 4, so the number of such words is

P(26,4)= 26!
(26−4)!

= 26 ·25 ·24 ·23= 358,800.

□

Worked Example 21.4.8 If |A| = k and |B| = n, with k ≤ n, how many injective
functions f : A → B exist?

Compare. See Worked Example 20.3.13.
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Solution. Fix an ordering a1,a2, . . . ,ak of the elements of A. Then from any
ordering b1,b2, . . . ,bk of size k from B, we get an injective function f : A ,→ B by
the following table of values.

x a1 a2 · · · ak

f (x) b1 b2 · · · bk

That is, every permutation of B of size k corresponds to an injection f : A ,→ B,
and so the number of such injections is P(n,k). □

21.5 Activities

If you know what the choose function is, for this activity set pretend that you
don’t.

Activity 21.1 Write down all permutations of the set A = {c,a, t}. Express your
permutations as functions from A to itself.

Activity 21.2 Write down some example permutations of size 3 from the set
A = {t, r,u, c,k}.

Activity 21.3 Verify the equality

(n+1)!
(k+1)!(n−k)!

= n!
k!(n−k)!

+ n!
(k+1)!(n−k−1)!

.

Activity 21.4 A child has the following set of refrigerator magnets: {A,B,C,D,E,F,G,H, I, J}.

(a) How many four-letter words can the child form? (Nonsense words allowed.)

(b) How many five-letter words can the child form if the middle letter must
always be a vowel?

(c) If the child were able to form one word per second, and never stopped to
eat or sleep, how many days would it take to form every possible word that
uses all of the magnets?

Activity 21.5

(a) How many ways could student groups have been formed today if both group
membership and group station location matter? (But assume that each
station always has the number of students it has now.)

(b) How many ways could student groups have been formed today if only group
membership matters? (Again assume that each group station always has
the number of students it has now.)

Activity 21.6

(a) How many binary words of length 10 contain at least two zeros?

(b) How many binary words of length 10 contain at least at least three ones?

Activity 21.7 Consider the letters in the word PEANUT.

(a) How many six-letter words can be formed using these letters? (Each letter
can only appear once.)

(b) How about if the vowels must be at the beginning?

(c) How about if no consonant may be isolated between two vowels?
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Activity 21.8 You’re cleaning up your shop and it’s time to hang all your screw-
drivers in a row on your pegboard. You have two slot-head screwdrivers, three
Phillips-head screwdrivers, and four Robertson-head screwdrivers. (Assume that
screwdrivers of the same type are of different sizes.)

(a) In how many different orders can you arrange your screwdrivers?

(b) How about if all the slot-heads are arranged on the left, all the Phillips-
heads in the middle, and all the Robertson-heads are arranged on the
right?

(c) How about if all screwdrivers of a particular type are arranged together,
but the types are arranged in no particular order?

Activity 21.9 You’re cleaning up your shop and it’s time to hang all your screw-
drivers in a row on your pegboard. You have five screwdrivers of each type:
slot-head, Phillips-head, and Robertson-head. (Assume that screwdrivers of the
same type are all of different sizes.)

(a) In how many different orders can you arrange your screwdrivers if the types
must alternate: first slot-head, then Phillips-head, then Robertson-head,
then slot-head, then Phillips-head, then . . . .

(b) How about if the types must alternate, but with no restriction on the order
of the types?

Activity 21.10

(a) How many ways are there to arrange six people in a circle?

(b) How about if there are two people who cannot sit beside each other?

(c) How about if there is one person who cannot sit directly to the right of
some other person?

Activity 21.11

(a) How many ways are there to arrange three professors and three students
in a circle so that professors and students alternate?

(b) Answer the same question for n professors and n students.

Activity 21.12 How many ways could you choose numbers a,b, c from the set
N<11, allowing repetition, so that the sum a+b+c is at least 5?
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Combinations

22.1 Motivation

Worked Example 22.1.1 How many different f our-member study groups could
be formed from a class of twenty students?

Solution. We will use the Division Rule, first imposing additional structure on
each possible study group. Within a study group, create positions of President,
Vice-President, Secretary, and Janitor (cards, anyone?). Then there are P(20,4)
such structured groups.

But a real study group doesn’t have this structure, so we’ll consider two
structured groups to be equivalent when they have the same membership,
regardless of positions. How many equivalent structured groups with a given
membership are there? Within a group of four, the additional structure is just an
ordering, and the number of orderings of a given group is 4! So

#{study groups}= #{structured groups}
#{equivalent groups with a given membership}

= P(20,4)
4!

= 20!
4!(20−4)!

.

□
Note 22.1.2 What we have counted in Worked Example 22.1.1 is the number of
subsets of size 4 in the set of students enrolled in the hypothetical class.

22.2 Basics

combination
a finite subset of a given set

C(n,k) the number of combinations of size k taken from a set of size n
Cn

k , nCk alternative notation choices for C(n,k)

choose function
the function (n,k) 7→ C(n,k)

Checkpoint 22.2.1 What are the domain and codomain of the choose function?

245
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Warning 22.2.2 Permutations and combinations are different. A permu-
tation is a bijection from a set to itself. Given a fixed chosen ordering of the
set elements in a list (considered as inputs), a permutation is essentially an
re-ordering of the set elements into a second list, to line up outputs with inputs.
So order matters in a permutation. On the other hand, a combination is just
a set, and order does not matter in a set, only membership matters. That is, two
listings of some of the elements from a set are the same combination if all the
same elements are listed, regardless of the order of the elements in the two lists.
So order does not matter in a combination.

Theorem 22.2.3 Computing C(n,k). We have

C(n,k)= P(n,k)
k!

= n!
k! (n−k)!

.

Proof. Suppose |A| = n. Using the solution to Worked Example 22.1.1 as a model
for our proof, we note that each ordered list of k elements taken from A defines
a combination from A, but different orderings of the same k elements yield
the same combination. Define two permutations to be “equivalent” if they are
orderings of the same elements, so that equivalent permutations are associated
to the same combination. Since there are k! elements in each equivalence class
of permutations, we may apply the Division Rule to obtain

C(n,k)= #{combinations}

= #{permutations}
#{equivalent permutations in each class}

= P(n,k)
k!

.

Finally, to obtain the rightmost formula in the statement of the theorem, we just
need to combine the above formula relating C(n,k) and P(n,k) with the formula
for P(n,k) from Theorem 21.4.3. ■
Corollary 22.2.4 We also have C(n,n−k)= C(n,k).

Proof. Calculate

C(n,n−k)= n!
(n−k)!

(
n− (n−k)

)
!
= n!

(n−k)!k!
= C(n,k).

■
Remark 22.2.5 Choosing is equivalent to rejecting. Interpret this last
corollary as follows: from a set of n objects, choosing to include k elements in a
combination is equivalent to choosing n−k objects to reject.

Worked Example 22.2.6 Choosing ice cream. How many double-scoop ice
cream combinations are possible if the local ice cream shop features thirty-one
different flavours? (Note: Only flavour combinations are relevant, not which
flavour goes on the cone first.)
Solution. From thirty-one flavours, there are

C(31,2)= 31!
2!29!

= 31 ·30
2

= 31 ·15= 465

possibilities for double-scoop cones with two distinct flavours. However, there are
an additional 31 possibilities for double-scoop cones with two scoops the same
flavour. So the answer is

465+31= 496.

□
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Worked Example 22.2.7 Counting colour patterns (revisited). How many
different colour patterns can we achieve by placing three red bottles and five blue
bottles on a shelf? (Assume the bottles are indistinguishable except by colour.)

Solution. There are 8 possible positions in which to place a bottle. To create
an arbitrary colour pattern, we can choose 3 of the positions to be filled by red
bottles, then place blue in the remaining positions. So the answer is

C(8,3)= 8!
3!5!

= 56.

□
Remark 22.2.8 Compare the above solution for Worked Example 22.2.7 with the
solution for the identical problem in Worked Example 21.3.8.

Worked Example 22.2.9 Choosing with constraints. How many ways are
there to choose a team of five people from a pool of six first-year students and
four senior students if the team must have three first-years and two seniors?

Solution. Choose the seniors for team, then the first-years (or vice-versa).
Applying the Multiplication Rule to these independent, consecutive tasks yields
answer

C(4,2) ·C(6,3)=
(

4!
2!2!

)(
6!

3!3!

)
= 120.

□
Worked Example 22.2.10 Creating several non-overlapping combina-
tions. How many ways are there to choose three teams of four members each
from a pool of twenty people, where no person can be on more than one team?
Solution 1. Choose the first team (C(20,4) ways), then the second team (C(16,4)
ways), then the third team (C(12,4) ways). Applying the Multiplication Rule
yields a total of

C(20,4) ·C(16,4) ·C(12,4)=
(

20!
4!��16!

)(
��16!

4!HH12!

)( HH12!
4!8!

)
= 20!

8!(4!)3
.

possible teams. However, the way in which we have constructed our teams
has imposed an order on the collection of teams (first, second, and third team),
when there is no reason to assume such structure. Given a collection of teams,
re-ordering the teams themselves (not the people within each team) produces an
equivalent collection of teams by membership. As there are 3! ways to reorder
the three teams, applying the Division Rule gives us a final answer of

20!
3!8!(4!)3

.

Solution 2. Initially choose the twelve people who will make up the three
teams, but without yet assigning anyone to a particular team (C(20,12) ways).
Then, from this reduced pool of candidates, choose the first team (C(12,4) ways)
and the second team (C(8,4) ways). The third team will now consist of the
remaining four people from the twelve initially chosen. The Multiplication Rule
gives a preliminary total of

C(20,12) ·C(12,4) ·C(8,4)=
(

20!
��12!8!

)(
��12!
4!@8!

)(
@8!

4!4!

)
= 20!

8!(4!)3
.

But as in the first solution above, we need to account for the fact that we have
artificially ranked teams as first, second, and third. Applying the Division Rule
gives us a final answer of

20!
3!8!(4!)3

.
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□

22.3 Applications

22.3.1 Distributing/choosing indistinguishable objects
Worked Example 22.3.1 How many ways are there to distribute seven coins
amongst three children? (Assume the coins are indistinguishable. But children
are obviously distinguishable.)

Solution. Here is one scheme by which we can decide how many coins each
child will get. Line the children up in some order. (There is no need to count the
number of ways to do this — see the end of the solution.) Also lay out the coins
in a line:

◦◦◦◦◦◦◦.

Now grab two Hickory Sticks™ from the snack table to act as dividers to split
the coins up into three groups. For example,

◦|◦◦◦◦|◦◦

means that the first child will receive one coin, the second will receive four, and
the third child will receive two, whereas

◦◦◦◦◦◦◦||

means that the first child gets all seven coins.
We are now back to the red bottle, blue bottle problem (see Worked Exam-

ple 21.3.8 and Worked Example 22.2.7): how many different symbol patterns can
we obtain by arranging two indistinguishable | symbols and seven indistinguish-
able ◦ symbols? Just choose two of the nine available positions in the pattern to
place the | symbols. And so we have arrived at the answer C(9,2)= 36.

Now, why do we not have to take into account the ordering of the children
at the beginning? Let c1, c2, c3 represent the three children. Relative to that
ordering of children, the symbol pattern

◦◦◦◦◦◦◦||

means that the child c1 gets all seven coins, as above. But relative to the ordering
c3, c2, c1, the different symbol pattern

||◦◦◦◦◦◦◦

also means that child c1 gets all seven coins, which is the same result. So if we
allow both symbol patterns and orderings of children to vary, we will end up
over-counting. □
Theorem 22.3.2 There are C(n+k−1,k−1) ways to distribute n indistinguishable
objects amongst k distinguishable containers.

Proof. Just as in the last example, use n ◦ symbols to represent the indistinguish-
able objects and k−1 indistinguishable | symbols to represent the division into
k containers. So each word from the alphabet Σ= {◦, |} that contains exactly n ◦
symbols and k−1 | symbols represents a unique way to divide the objects into
the containers. The length of such a word is n+k−1, and every such word can
be constructed by choosing k−1 positions for the | symbols from the n+ k−1
available letter positions. ■
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Worked Example 22.3.3 Your professor throws a discrete math party, but only
nine students show up (sad face). The professor sends one of the students to the
corner store to get cans of soda pop for everyone. The student decides to get a
mix of four different varieties. How many possible mixes of soda varieties can
the student come back with? (Assume that the cans are indistinguishable except
by variety, and that the store has more than ten cans of each variety available.)

Solution. Here is one scheme by which the student can decide how to choose
ten cans in some combination of soda varieties. Make four boxes labelled by
soda variety. Have the student choose the soda cans while blindfolded, but has
the store clerk place each can in the appropriate box as the cans are chosen (a
permissible assumption, since it has no bearing on the outcome). In this way, we
may assume that the cans are initially indistinguishable and remain so until
they are placed in the appropriate box, at which time they magically become the
variety specified by the box’s label. The previous theorem now tells us that there
are

C(10+4−1,4−1)= C(13,3)= 286

ways to do this. □
Corollary 22.3.4 There are C(n+k−1,k−1) ways to choose n objects from amongst
k types of object, where objects are indistinguishable except by type, and there are
at least n objects of each type available.

Proof idea. Appeal to Theorem 22.3.2 exactly as in Worked Example 22.3.3. ■

22.3.2 Counting edges in connected graphs

Proposition 22.3.5 Edges in a complete graph. For n ≥ 2, the complete
graph with n vertices has C(n,2) edges.

Proof. A complete graph has no loops and exactly one edge between each pair of
vertices. So to count the edges we can just count the number of pairs of vertices,
which is C(n,2) for n ≥ 2. ■

Let’s summarize what we know about the number of edges in an arbitrary
connected graph.

1. A connected graph with n vertices has at least n−1 edges (Theorem 15.3.11).

2. A connected graph with n vertices is a tree if and only if it has exactly n−1
edges (Theorem 16.3.1).

3. A simple graph with n ≥ 2 vertices is complete if and only if it has exactly
C(n,2) edges (Proposition 22.3.5 in the forward direction, Statement 3 of
Proposition 14.2.11 in the reverse direction).

The first fact tells us the minimum number of edges a connected graph must
have, but it does not guarantee that a graph with that many edges must be
connected, even if the graph is simple. The following is something of a converse
to this fact, as it does provide such a guarantee: it tells use how many edges a
(simple) graph must have before we can be certain that it is connected.

Theorem 22.3.6 If G = (V ,E) is a simple graph such that |V | = n and |E| >
C(n−1,2), then G is connected.

Proof idea. Considering the contrapositive, assume that G is simple but not
connected. In Activity 15.6, we discovered that such a G will be maximal when it
has exactly two connected components, each of which is a complete graph. Among
graphs with those two characteristics (and still n vertices), the largest possible
value for |E| occurs when the connected components of G are an isolated vertex v
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and the complete graph Kn−1, in which case the number of edges is C(n−1,2)
(Proposition 22.3.5 for Kn−1). All other nonconnected, simple graphs will then
have |E| ≤ C(n−1,2), as required to complete the proof by contrapositive. ■

22.4 Properties

Note: In this section we will use the alternative notation Cn
k in place of C(n,k).

The combination values Cn
k as we vary n and k exhibit some patterns — see

Figure 22.4.1 below.

C0
0

C1
0 C1

1

C2
0 C2

1 C2
2

C3
0 C3

1 C3
2 C3

3

C4
0 C4

1 C4
2 C4

3 C4
4

C5
0 C5

1 C5
2 C5

3 C5
4 C5

5

C6
0 C6

1 C6
2 C6

3 C6
4 C6

5 C6
6

...

−→

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1
...

Figure 22.4.1 Pascal’s triangle.

Studying the version of Pascal’s triangle involving the actual combination
values, here are some of the patterns we observe.

• The values are symmetric about a vertical line through the centre of the
triangle.

• It appears that every entry is the sum of the two entries immediately
above.

• It appears that each row sums to a power of 2.

We have already observed the first pattern as arising from the equivalence of
choosing versus rejecting elements to form a subset (see Corollary 22.2.4 and
Remark 22.2.5).

The next two propositions confirm that the other two observed patterns
continue throughout the triangle.

Proposition 22.4.2 For n ≥ 2 and 1≤ k ≤ n−1, we have Cn
k = Cn−1

k−1 +Cn−1
k .

Proof. We could prove this equality just by comparing the factorial formulas
involved on the left-hand and right-hand sides. But instead we will consider each
of these combination values as representing the number of subsets of a certain
size.

Write
A =N<n = {0,1,2, . . . ,n−1}

so that |A| = n. Then the left-hand side of the equality in the statement of the
proposition represents the number of subsets of A of size k. Let’s break that
collection of subsets into two subcollections.

Subsets of A of size k that contain 0. Each of these subsets will consist of 0 along
with k−1 nonzero elements. As A contains n−1 nonzero elements from which to
choose, there are Cn−1

k−1 ways to select those additional subset elements from A.
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Subsets of A of size k that do not contain 0. Each of these subsets must consist of
k nonzero elements. As A contains n−1 nonzero elements from which to choose,
there are Cn−1

k ways to select those subset elements from A. Adding these two
disjoint cases together using the Addition Rule yields the right-hand side of the
equality. ■

Proposition 22.4.3 For n ≥ 0, we have
n∑

k=0
Cn

k = 2n.

Proof. First, recall that the notation on the left-hand side is summation nota-
tion:

n∑
k=0

Cn
k = Cn

0 +Cn
1 +·· ·+Cn

n.

Let A = N<n, so that |A| = n. Then |P (A)| = 2n (Theorem 12.2.9). So the
right-hand side of the equality represents the number of possible subsets of A.

On the other hand, for each index k in the sum on the left-hand side, the term
Cn

k is the number of subsets of A of size k. Using the Addition Rule, the sum of
these terms must also be the total number of possible subsets of A. ■

Here is one further property of the choose function.

Proposition 22.4.4 For 0≤ m ≤ n, we have

Cn+1
m+1 =

n∑
k=m

Ck
m.

Proof. Suppose A is a finite set with |A| = n+1. (For example, we could use
A =N<n+1, but that might get confusing between numbers as elements of A and
numbers as cardinalities of subsets of A.) Then the left-hand side of the equality
is the number of subsets of A of size m+1. Here is a systematic way we could
create that those subsets.

Choose an ordering of the elements of A, so that

A = {a1,a2, . . . ,an+1},

though we will not count this choice of ordering. Then, proceed as follows.

1. Write
B1 = {a1,a2, . . . ,am+1},

so that B1 ⊆ A with |B1| = m+1. Then there is exactly 1= Cm+1
m+1 subset of

B1 of size m+1, which is B1 itself. And this subset of B1 is also a subset of
A.

2. Write
B2 = {a1,a2, . . . ,am+1,am+2},

so that B1 ⊆ B2 ⊆ A with |B2| = m+2. Using only the elements of B2, to
create a new subset X ⊆ A of size m+1 that we have not already counted
we must include the new element am+2, with the remaining m elements to
make up X chosen from B1. So we get Cm+1

m new subsets of A of size m+1
from B2.

3. Write
B3 = {a1,a2, . . . ,am+1,am+2,am+3},

so that B2 ⊆ B3 ⊆ A with |B3| = m+3. Using only the elements of B3, to
create a new subset of X ⊆ A of size m+1 that we have not already counted
we must include the new element am+3, with the remaining m elements to
make up X chosen from B2. So we get Cm+2

m new subsets of A of size m+1
from B3.
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And so on. The last step in this process is when we create new subsets of size
m+ 1 by first choosing to include an+1, and then choosing the remaining m
elements from A∖ {an+1}, giving us Cn

m new subsets.
Every subset X ⊆ A of size m+1 is accounted for in the above process, since

every such subset must contain at least one element with index m+1 or larger.
If aN is the element in X with the largest index, then X is one of the subsets
considered in step ℓ, where N = m+ℓ.

So adding up each of these disjoint cases using the Addition Rule must yield
the total number of subsets of A of size m+1. Replacing the Cm+1

m+1 total from
the first step with Cm

m (since both are equal to 1) to match the pattern of the
subsequent steps, we obtain

Cn+1
m+1 = Cm

m +Cm+1
m +·· ·+Cn

m,

as desired. ■

22.5 Activities

Activity 22.1 From a pool of eleven students (five first-year, six senior), how
many ways are there to form:

(a) A committee of three students?

(b) A committee consisting of three first-year students and four senior stu-
dents?

(c) A committee of six students if two of the senior students refuse to be
together on the committee?

(d) A committee consisting of four first-year students and three senior students
if two of the first-year students refuse to be together on the team?

Activity 22.2 From the alphabet Σ= {0,1}:

(a) How many words of length 10 contain exactly six 0s?

(b) How many contain at least three 1s?

Activity 22.3 From the alphabet Σ= {0,1,2}:

(a) How many words of length 10 contain exactly four 2s?

(b) How many contain at most seven 0s?

Activity 22.4 Figure 22.5.1 contains a diagram in a pyramid shape. The unfilled
circles represent “positions” in the pyramid, and the smaller dots represent
“dividers” between positions. Consider “paths” through this pyramid that begin
at the peak position and end on the lowest level. The filled circles joined by line
segments represent one such path.

Figure 22.5.1 A Plinko™-style pyramid.
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(a) How many such paths are there?

(b) How many paths are there that change direction exactly once? Exactly
twice? At every step?

(For each case described in this task, you should be able to arrive at an
answer without explicitly determining all such paths.)

Activity 22.5 You get to the final exam of one your courses and are faced with
twelve questions. In how many ways can you fulfill the requirements exam if the
instructions ask you to:

(a) Answer any ten of the questions?

(b) Answer any seven of the first eight questions and any three of the last four
questions?

(c) Answer ten of the questions, at least five of which must be from the first
eight questions and at least three of which must be from the last four
questions?

Activity 22.6 A course instructor for a class of twenty is feeling particularly lazy
and doesn’t bother to mark the final exams. Instead, she decides that for each
of the letter grades A, B, C, she will randomly assign that grade to exactly six
students, and the last two unlucky students will be assigned a grade of D. How
many different course outcomes are there?

Activity 22.7 How many ways are there to split mn people into m groups of
equal size?

Activity 22.8 Suppose you have 2n teddy bears that are identical except for a
number stitched into the paw of the right foot. Of these bears, n have the number
0 on their foot, and the remaining n bears have a unique number from 1,2,3, . . . ,n.
How many ways can you choose n of the bears, with the understanding that any
of the bears labelled 0 are interchangeable?

Hint. Break into cases based on how many bears labelled 0 will be in your
collection.

Activity 22.9 Consider the set {1,2,3, . . . ,2n}. How many subsets of size 2 are
there such that the two elements therein have an even sum?

Activity 22.10 Consider the set {1,2,3, . . . ,n}. How many subsets of size 3 are
there such that no two of the three elements therein are consecutive?

Hint. It might be easier to count the subsets of size 3 that do contain (at least)
two consecutive numbers.

22.6 Exercises

Evaluating the combination formula. In each of Exercises 1–6, compute the
value of the combination or formula of combinations. To obtain exact answers,
you should simplify the factorial expressions before computing.

1. C(4,4) 2. C(13,5)
3. C(1000000,999998) 4. C(7,0)
5. C(10,6) ·C(6,3) 6. C(10,9)/C(5,2)

Combination formula identities. In each of Exercises 7–10, verify the
equality of combination formulas. Remember to consider the left-hand and right-
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hand sides of each equality separately, manipulating/simplifying one or the
other or both sides until they are the same expression.

7. C(n,k)= n
k
·C(n−1,k−1) 8. C(n,k)= n

n−k
·C(n−1,k)

9. C(n,k)= n−k+1
k

·C(n,k−1)
10. C(n+k,n)= C(n+k,k)

11. Choose a value for m so that the equality in Proposition 22.4.4 becomes a
formula for the sum 1+2+3+·· ·+n.



CHAPTER 23

Binomial and multinomial coeffi-
cients

23.1 Binomial coefficients

binomial an expression of the form (x+ y)n, where n ∈ N and x, y are real
numbers (or elements of any commutative ring with identity)

Example 23.1.1 Expanding binomials. Expanding binomials gets more
complicated as n increases.

(x+ y)2 = x2 +2xy+ y2

(x+ y)3 = (x+ y)(x2 +2xy+ y2)= x3 +3x2 y+3xy2 + y3

(x+ y)4 = (x+ y)(x3 +3x2 y+3xy2 + y3)= x4 +4x3 y+6x2 y2 +4xy3 + y4

(x+ y)5 = (x+ y)(x4 +4x3 y+6x2 y2 +4xy3 + y4)

= x5 +5x4 y+10x3 y2 +10x2 y3 +5xy4 + y5

...

The symmetry in each of these expansions should be expected: we would get the
same expression in the summation opposite order if we swapped x and y, since
(x+ y)n = (y+ x)n. □

binomial coefficient
a number appearing as a coefficient in the expansion of (x+ y)n

(
n
k

)
the kth coefficient in the expansion of (x+ y)n (0≤ k ≤ n)

To better understand the complexity of binomial expansions, we should look
for and exploit patterns. We have already expanded some binomial expressions
for small exponents in Example 23.1.1 — let’s extract the binomial coefficients
from those expressions.

255
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Figure 23.1.2 Pascal’s triangle.

Remark 23.1.3 Figure 23.1.2 above sure looks a lot like Figure 22.4.1.

Theorem 23.1.4 Binomial Theorem. For every x, y ∈ R and every n ∈N, we
have

(x+y)n =
n∑

k=0

(
n
k

)
xn−k yk =

(
n
0

)
xn+

(
n
1

)
xn−1 y+

(
n
2

)
xn−2 y2+·· ·+

(
n

n−1

)
xyn−1+

(
n
n

)
yn,

where (
n
k

)
= Cn

k = n!
k! (n−k)!

.

Informal direct proof outline. Write (x+ y)n = (x+ y)(x+ y) · · · (x+ y), with n factors.
To expand this out, we generalize the FOIL method: from each factor, choose
either x or y, then multiply all your choices together. Then add the results of all
possible such products. For example,

(x+ y)2 = xx+ xy+ yx+ yy= x2 +2xy+ y2,

(x+ y)3 = xxx+ xxy+ xyx+ xyy+ yxx+ yxy+ yyx+ yyy= x3 +3x2 y+3xy2 + y3.

When forming a specific product, if you chose y for k out of n choices, you must
have chosen x for the remaining n−k of the n choices. The result will be xn−k yk.
So to figure out the coefficient on xn−k yk, just count how many ways there are
to choose y for k of the n choices. This is just Cn

k , where we choose k factors of
(x+ y) to give us a y, and the rest to give us an x. ■

Induction proof outline.

Base case. The cases of n = 0,1 are trivially true.

Induction step. Use the binomial formula for (x+ y)n−1 to obtain the binomial
formula for (x+ y)n, by manipulating

(x+ y)n = (x+ y)(x+ y)n−1

= (x+ y)
(
Cn−1

0 xn−1 +Cn−1
1 xn−2 y+·· ·+Cn−1

n−1 yn−1)
.

■
Worked Example 23.1.5 Expanding a binomial. Expand (x−2)5.

Solution. We saw that the n = 5 row of Pascal’s triangle is 1,5,10,10,5,1.

(x−2)5
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(
x+ (−2)

)5

=
(
5
0

)
x5 +

(
5
1

)
x4(−2)+

(
5
2

)
x3(−2)2 +

(
5
3

)
x2(−2)3 +

(
5
4

)
x(−2)4 +

(
5
5

)
(−2)5

= x5 −10x4 +40x3 −80x2 +80x−32.

□
Worked Example 23.1.6 Determining a specific coefficient in a binomial
expansion. What is the coefficient on the x4 y9 term in the expansion of (3x+
y)13?

Solution. Considering

(3x+ y)13 = (
(3x)+ y

)13,

the x4 y9 term is
(
13
9

)
(3x)4 y9 = 13!

9!4!
·34x4 y9

= 13 ·12 ·11 ·10 ·27 ·3
4 ·3 ·2 x4 y9

= (13 ·3 ·11 ·5 ·27)x4 y9.

So the desired coefficient is 57,915. □

23.2 Multinomial Coefficients

Theorem 23.2.1 Trinomial Theorem. The expansion of the trinomial (x+y+z)n

is the sum of all possible products

n!
i! j!k!

xi y j zk,

where 0≤ i, j,k ≤ n such that i+ j+k = n.

Proof idea. Similarly to the proof of the Binomial Theorem, write

(x+ y+ z)n = (x+ y+ z)(x+ y+ z) · · · (x+ y+ z), (*)

with n factors. To expand this out, we generalize the FOIL method: from each
factor, choose either x, y, or z, then multiply all your choices together. For any
such product, the powers on x, y, and z must sum to n. To get the final expansion,
add the results of all possible such products.

But we can collect terms that have the same exponent on each of x, y, and z.
How many ways can we form a specific term xi y j zk, for 0≤ i, j,k ≤ n such that
i+ j+k = n? We have Cn

i ways to choose i factors from the right-hand side of (*)
from which to take x, then Cn−i

j ways to choose j factors from which to take y.
But now from all remaining factors we must choose z, and there is only 1 way to
do this. So the coefficient on xi y j zk is

(
n
i

)(
n− i

j

)
=

(
n!

i! (n− i)!

) (
(n− i)!

j! (n− i− j)!

)
= n!

i! j!k!
.

■
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Alternative proof idea. Use the Binomial Theorem on
(
x+ (y+ z)

)n, then again on
(y+ z)k for each term Cn

k xn−k(y+ z)k. (This would be very tedious!) ■

Worked Example 23.2.2 Expanding a trinomial. Determine the terms in
the expansion of (2x+ y−3z)3.

Solution. First, rewrite

(2x+ y−3z)3 = (
(2x)+ y+ (−3z)

)3.

So the terms in the expansion involve products

(2x)i y j(−3z)k.

We need to account for all triples of exponents i, j,k that sum to 3.

i j k n!
i! j!k! term simplified

3 0 0 1 (2x)3 8x3

0 3 0 1 y3 y3

0 0 3 1 (−3x)3 −27z3

2 1 0 3 3(2x)2 y 12x2 y
2 0 1 3 3(2x)2(−3z) −36x2z
1 2 0 3 3(2x)y2 6xy2

0 2 1 3 3y2(−3z) −9y2z
1 0 2 3 3(2x)(−3z)2 −54xz2

0 1 2 3 3y(−3z)2 −9yz2

1 1 1 3! 6(2x)y(−3z) −36xyz

Collecting this together, we have

(2x+ y−3z)3

= 8x3 + y3 −27z3 +12x2 y−36x2z

+6xy2 −9y2z−54xz2 −36xyz.

□
Worked Example 23.2.3 Determining a specific coefficient in a trinomial
expansion. Determine the coefficient on x5 y2z7 in the expansion of (x+ y+ z)14.

Solution. Here we don’t have any extra contributions to the coefficient from
constants inside the trinomial, so using n = 14, i = 5, j = 2, k = 7, the coefficient
is simply

14!
5!2!7!

= 14 ·13 ·12 ·11 ·10 ·9 ·8
5 ·4 ·3 ·2 ·2 = 14 ·13 ·11 ·9 ·4= 72,072.

□
The pattern of the Binomial Theorem and Trinomial Theorem continues.

Theorem 23.2.4 Multinomial Theorem. The expansion of (x1 + x2 +·· ·+ xm)n

is the sum of all possible products

n!
i1! i2! · · · im!

xi1
1 xi2

2 · · ·xim
m ,

where the exponents i1, i2, . . . , in sum to n.

Proof idea. Use the same generalized FOIL method argument as in the Binomial
and Trinomial Theorem proofs, and simplify the product of combination formulas
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obtained. ■

Worked Example 23.2.5 Determining a specific coefficient in a multi-
nomial expansion. Determine the coefficient on x2 yz6 in the expansion of
(3x+2y+ z2 +6)8.

Solution. Rewriting

(3x+2y+ z2 +6)8 = (
(3x)+ (2y)+ (z2)+6

)8,

we see that the four terms in this multinomial are

3x, 2y, z2, 6.

So what we really want to know is the total coefficient on the term involving

(3x)2(2y)1(z2)362.

The Multinomial Theorem tells us that there will be

8!
2!1!3!2!

= 1,680

such terms in the expansion of the multinomial. Therefore, we obtain the term

(1,680)(3x)2(2y)1(z2)362 = (1,088,640)x2 yz6

with a total coefficient of 1,088,640. □

multinomial coefficient
a number appearing as a coefficient in the expansion of (x1+x2+·· ·+
xm)n

( n
i1,i2,...,im

)
the coefficient on the term xi1

1 xi2
2 · · ·xim

m in the expansion of (x1 + x2 +
·· ·+ xm)n, where the exponents i1, i2, . . . , im must sum to n

Note 23.2.6

• The Multinomial Theorem tells us

(
n

i1, i2, . . . , im

)
= n!

i1! i2! · · · im!
.

• In the case of a binomial expansion (x1 + x2)n, the term xi1
1 xi2

2 must have
i1 + i2 = n, or i2 = n− i1. The Multinomial Theorem tells us that the
coefficient on this term is

(
n

i1, i2

)
= n!

i1! i2!
= n!

i1! (n− i1)!
=

(
n
i1

)
.

Therefore, in the case m = 2, the Multinomial Theorem reduces to the
Binomial Theorem.

23.3 Applications

Proposition 23.3.1 Counting partitions of a finite set. If |A| = n, then the
number of ways to partition A into m disjoint subsets A1, A2, . . . , Am, with each
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subset of predetermined size
∣∣A j

∣∣= i j, is
(

n
i1, i2, . . . , im

)
.

Proof idea. There are Cn
i1

possibilities for A1. After choosing A1, there are Cn−i1
i2

possibilities for A2. After choosing A2, there are Cn−i1−i2
i3

possibilities for A2.
Continue in this fashion, all the way to Am, then multiply all the combination
formula expressions together. ■

Alternative proof idea. Going back to basic counting principles, we can approach
this in the same way that we came up with the factorial formula for the choose
function. Choosing a permutation of A (n! ways) gives us an instance of the
desired partition of A by setting A1 to be the subset consisting of the first i1
objects in the permutation, then setting A2 to be the subset consisting of the next
i2 objects in the permutation, and so on. However, the ordering of the elements
inside any such subset A j does not matter, and we would get the same partition
if we took our permutation of A and again permuted the “clusters” corresponding
to each subset A j. Since there are i j! ways to permute subset A j, we should
divide n! by each of the factorials i j!. ■

Warning 23.3.2 In the above theorem, the order A1, A2, . . . , Am matters!

Proposition 23.3.3 Counting words with a fixed composition of letters.
Suppose x1, x2, . . . , xm are distinct letters in the alphabet Σ. For i1+ i2+·· ·+ im = n,
the number of words in Σ∗ of length n which consist of exactly i1 x1’s, i2 x2’s, . . .,
and im xm ’s is the multinomial coefficient

(
n

i1, i2, . . . , im

)
.

Proof idea. If we view each letter xi as a variable and each word made up of
the letters x1, . . . , xm as a product of these variables, then each of the words we
want to count gives us one way to achieve a term of xi1

1 · · ·xim
m in the expansion of

(x1 +·· ·+ xm)n. The number of such ways is the multinomial coefficient. ■
Worked Example 23.3.4 How many different 9-digit integers can we form from
three 3s, four 6s and two 9s?

Solution. The number of integers of the desired digit composition is the multi-
nomial coefficient

(
9

3,4,2

)
= 9!

3!4!2!
= 9 ·8 ·7 ·6 ·5

3 ·2 ·2 = 9 ·4 ·7 ·5= 1,260.

□

23.4 Exercises

1. Choose numbers x, y so that the equality in the Binomial Theorem becomes

n∑
k=0

(
n
k

)
2k = 3n.

2.

(a) Choose numbers x, y so that the equality in the Binomial Theorem
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becomes
(
n
0

)
−

(
n
1

)
+

(
n
2

)
−

(
n
3

)
+ ·· · + (−1)n

(
n
n

)
= 0.

(b) The equality from Task a can be rearranged to yield
(
n
0

)
+

(
n
2

)
+

(
n
4

)
+ ·· · +

(
n

m1

)

=
(
n
1

)
+

(
n
3

)
+

(
n
5

)
+ ·· · +

(
n

m2

)
,

where

m1 =
{

n, n even,

n−1, n odd,
m2 =

{
n−1, n even,

n, n odd.

What does this rearranged formula tell you about the subsets of a set
of size n?

Hint. What is the sum on the left counting? What is the sum on the
right counting?





Appendices

263





APPENDIX A

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://www.fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

0. PREAMBLE. The purpose of this License is to make a manual, textbook,
or other functional and useful document “free” in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while
not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS. This License applies to any man-
ual or other work, in any medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as
“you”. You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus,
if the Document is in part a textbook of mathematics, a Secondary Section may
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not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, that
is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent
if used for any substantial amount of text. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML using
a publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that
can be read and edited only by proprietary word processors, SGML or XML
for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title page
as such, “Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the
Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”,
or “History”.) To “Preserve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.
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2. VERBATIM COPYING. You may copy and distribute the Document in any
medium, either commercially or noncommercially, provided that this License,
the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY. If you publish printed copies (or copies in media
that commonly have printed covers) of the Document, numbering more than 100,
and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The
front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-network
location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

4. MODIFICATIONS. You may copy and distribute a Modified Version of the
Document under the conditions of sections 2 and 3 above, provided that you
release the Modified Version under precisely this License, with the Modified Ver-
sion filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must
do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsi-
ble for authorship of the modifications in the Modified Version, together
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with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network lo-
cations given in the Document for previous versions it was based on. These
may be placed in the “History” section. You may omit a network location for
a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties — for example,
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statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS. You may combine the Document with other
documents released under this License, under the terms defined in section 4
above for modified versions, provided that you include in the combination all of
the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that
you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in
the various original documents, forming one section Entitled “History”; likewise
combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS. You may make a collection consisting
of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS. A compilation of the
Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not apply to
the other works in the aggregate which are not themselves derivative works of
the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
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within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION. Translation is considered a kind of modification, so you
may distribute translations of the Document under the terms of section 4. Re-
placing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Docu-
ment, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”,
or “History”, the requirement (section 4) to Preserve its Title (section 1) will
typically require changing the actual title.

9. TERMINATION. You may not copy, modify, sublicense, or distribute the
Document except as expressly provided under this License. Any attempt other-
wise to copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and until
the copyright holder explicitly and finally terminates your license, and (b) per-
manently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated per-
manently if the copyright holder notifies you of the violation by some reasonable
means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses
of parties who have received copies or rights from you under this License. If your
rights have been terminated and not permanently reinstated, receipt of a copy of
some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE. The Free Software Founda-
tion may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License “or
any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this License can be used,
that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Document.
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11. RELICENSING. “Massive Multiauthor Collaboration Site” (or “MMC
Site”) means any World Wide Web server that publishes copyrightable works and
also provides prominent facilities for anybody to edit those works. A public wiki
that anybody can edit is an example of such a server. A “Massive Multiauthor
Collaboration” (or “MMC”) contained in the site means any set of copyrightable
works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license
published by Creative Commons Corporation, a not-for-profit corporation with a
principal place of business in San Francisco, California, as well as future copyleft
versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part,
as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and
if all works that were first published under this License somewhere other than
this MMC, and subsequently incorporated in whole or in part into the MMC, (1)
had no cover texts or invariant sections, and (2) were thus incorporated prior to
November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009, provided
the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents. To use this
License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title
page:

Copyright (C) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace
the “with. . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.
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Index of Notation

Symbol Description Page

¬A logical negation of statement A 5
A∧B logical conjunction of statements A and B 5
A∨B logical disjunction of statements A and B 5
A → B logical conditional where statement A implies

statement B
5

A ↔ B logical biconditional where each of statements A
and B implies the other

5

A ⇒ B statement A logically implies statement B, so
that conditional A → B is a tautology

10

A ⇔ B statements A and B are equivalent 15
x′ Boolean negation 24
A(x) a predicate statement A whose truth value de-

pends on the free variable x
29

A(x, y) a predicate statement A whose truth value de-
pends on the free variables x and y

29

∀x the universal quantifier applied to the free vari-
able x

30

∃x the existential quantifier applied to the free vari-
able x

30

A1, A2, . . . , Am ∴C an argument with premises A1, A2, . . . , Am and
conclusion C

41

A1

A2
...

Am

C

an argument with premises A1, A2, . . . , Am and
conclusion C

41

x ∈ S object x is an element of set S 76
{a,b, c, . . . } a set defined by listing its elements, enclosed in

braces
76

N the set of natural numbers 76
Z the set of integers 76
Q the set of rational numbers 76
R the set of real numbers 76
∅ the empty set 78

(Continued on next page)
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Symbol Description Page

A ⊆ B set A is a subset of set B 78
A ⫋B set A is a proper subset of set B 80
Ac the complement of A relative to some universal

set
81

B∖ A the complement of A relative to some universal
set

81

I the set of irrational real numbers 81
A∪B the union of sets A and B 82
A∩B the intersection of A and B 82
A⊔B the disjoint union of sets A and B 83
A×B the Cartesian product of A and B 84
An the Cartesian product A×A×·· ·×A involving n

copies of A
85

Σ∗ the set of words using alphabet set Σ 86
|w| length of the word w ∈Σ∗ 87
Σ∗

n for n ∈N, the subset of Σ∗ consisting of all words
of length n

87

; the empty word 87
P (A) the power set of the set A 88
f : A → B f is a function with domain A and codomain B 93
f (a)= b function f : A → B associates the codomain ele-

ment b ∈ B to the domain element a ∈ A
93

a 7→ b alternative notation for f (a)= b 93
∆( f ) graph of function f 96
f (A) the image of function f : A → B 98
f (A′) the image of function f : A → B on a subset A′ ⊆

A
99

f : A ↠B function f is surjective 100
f : A ,→ B function f is injective 100
idA : A → A the identity function on on set A 102
ιXA : A → X the inclusion function on subset A ⊆ X 102
ρ i : A1 × A2 ×·· ·× An → A i the projection function onto the ith factor A i in

the Cartesian product

A1 × A2 ×·· ·× An

103

proji : A1 × A2 ×·· ·× An → A i alternative notation for ρ i 103
f |A restriction of function f : X →Y to subset A ⊆ X 103
f |A alternative domain restriction notation 103
resX

A f alternative domain restriction notation 103
g ◦ f the composition of functions f and g 105
f −1 (C) the inverse image of the subset C ⊆ B under the

function f : A → B
107

f −1 : B → A the inverse function associate to bijective func-
tion f : A → B

108

N<m the set of natural numbers that are less than m 115
ak kth term in a sequence 115
{ak} the collection of terms in a sequence 115

(Continued on next page)
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Symbol Description Page

{ak}m
0 the collection of terms in a finite sequence 115

{ak}∞0 the collection of terms in an infinite sequence 115
|A| cardinality of the set A 123
card A alternative notation for the cardinality of the set

A
123

#{. . . } alternative notation for the cardinality of the set
defined by {. . . }

123

|A| =∞ set A is infinite 127
|A| <∞ set A is finite 127
degv degree of vertex v 149
|E| the number of edges in the graph G = (V ,E) 150
G′ ⪯G graph G′ is a subgraph of graph G 150
Kn the unique complete graph with n vertices 151
a R b element a ∈ A is related to element b ∈ B by

relation R
185

R1 ∪R2 union of relations R1,R2 186
R1 ∩R2 intersection of relations R1,R2 186
Rc complement of relation R 186
a ̸ R b alternative notation for a Rc b 186
R−1 inverse of the relation R 187
a∅ b the empty relation between elements a and b

(always false)
187

a U b the universal relation between elements a and b
(always true)

187

a ≡ b a is related to b by the equivalence relation ≡;
in other words, a is somehow equivalent to b

195

m1 ≡n m2 integers m1,m2 are equivalent modulo n 196
[a] the equivalence class of the element a ∈ A rel-

ative to some specific equivalence relation on
A

196

A/≡ the quotient of A relative to equivalence relation
≡

200

a⪯b a is related to b by the partial order ⪯; in other
words, a is somehow “smaller than or same size
as” b

208

a ≺ b a ⪯ b but a ̸= b 208
n! factorial n!= n(n−1)(n−2) · · ·2 ·1 237
P(n,k) the number of permutations of size k taken from

a set of size n
241

Pn
k alternative notation for P(n,k) 241

nPk alternative notation for P(n,k) 241
C(n,k) the number of combination of size k taken from

a set of size n
245

Cn
k alternative notation for C(n,k) 245

nCk alternative notation for C(n,k) 245(n
k
)

the kth coefficient in the expansion of (x+ y)n 255( n
i1,i2,...,im

)
the coefficient on the term xi1

1 xi2
2 · · ·xim

m in the
expansion of (x1 + x2 +·· ·+ xm)n

259





Index

acyclic graph, 172
Addition Rule, 225
adjacent

edges, 148
vertices, 148

Algorithm
breadth-first search, 176
depth-first search, 175
topological sorting, 216

alphabet, 86
alphabetic order, 208
and (logical connective), 4

notation for, 5
truth table for, 7

antisymmetric relation, 188
argument, 41

valid, 42
Test, 42

articulation vertex, 165
associativity

of logical connectives, 17
of set operations, 83

axiom, 67
axiomatic system, 67

base
case (in mathematical

induction), 62
clause (inductive definition),

118
biconditional, 4

notation for, 5
truth table for, 7

bijection, 101
binary

relation, 186
search, 178
string, See binary word
word, 87

binomial, 255
coefficient, 255

Binomial Theorem, 256
Boolean

polynomial, 24
breadth-first

search, 176
spanning tree, 177

bridge, 165

candidate-condition notation, 77
Cantor’s

diagonal argument, 136
Theorem, 139

cardinality, 123
Cartesian product, 84
choose function, 245
class (for an equivalence relation),

196
representative, 197

complete set, 197
codomain (of a function), 93
coefficient

binomial, 255
multinomial, 259

combination, 245
commutativity

of logical connectives, 16
of set operations, 83

comparable, 211
complement

double, 83
of a relation, 186
of a simple graph, 157
set, 81

relative, 81
complete graph, 151
composition (of functions), 105
compound

statement, 3
conclusion (in an argument), 41
conditional, 4

277
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construction from negation and
disjunction, 17

contrapositive, 18
converse, 18
inverse, 18
notation for, 5
truth table for, 7

conjuction, 4
notation for, 5
truth table for, 7

conjunctive normal form, 27
connected

component of a graph, formal
definition, 163

component of a graph, working
definition, 163

graph, 162
vertices (in a graph), 162

connective(s), 3, 4
truth tables for, 7

contradiction, 9
propositional calculus rules, 16

Contradiction, Law of, 8
contrapositive, 18
converse, 18
countable, 135
countably infinite, 135
counterexample, 54
cycle, 172

proper, 172

defined term, 68
definition, 68
degree (of a vertex), 149
DeMorgan’s Laws

for logical connectives, 17
for set operations, 84

depth-first
search, 175
spanning tree, 177

diagonal embedding, 111
dictionary order, 208
direct proof, 50
directed graph

formal definition, 152
working definition, 152

disjoint
sets, 82
union, 83

disjunction, 4
notation for, 5
truth table for, 7

disjunctive normal form, 25
distributivity

of logical connectives, 17
of set operations, 83

Division Rule, 229
domain

of a variable in a predicate
statement, 29

domain (of a function), 93
double

complement, 83
negation, 16

dual order, 209
duality

of truth/falsity, 16
of universal/empty sets, 83

edge, 147
adjacent, 148
bridge, 165
connectivity, 165
incident vertex, 148
loop, 149
parallel, 149

element, 76
image under a function, 93
maximal, 213

Test, 213
maximum, 212
minimal, 213

Test, 213
minimum, 212

embedding, 100
empty

function, 124
graph, 147
relation, 187
set, 78, 83
word, 87

equality
of functions, 98
of sets, 79

test, 80
equivalence

class, 196
representative, 197
set of representatives, 197

modulo, 196
relation, 195

quotient, 200
equivalent

logical statements, 15
Test, 15

polynomials, 24
Euler circuit, 167
Excluded Middle, Law of the, 8
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exclusive or, 4
existential

quantifier, 30
extension (of a function), 104

by zero, 105

factorial, 237
finite

sequence, 115
set, 123

forest, 172
form-parameter notation, 77
function

bijective, 101
choose, 245
codomain, 93
composition, 105
definition

formal, 97
working, 93

domain, 93
embedding, 100
equality, 98
extension, 104

by zero, 105
graph, 96
identity, 102
image, 98

on a subset, 99
inclusion, 102
injective, 100

Test, 100
input-output rule, 93
inverse, 108
one-to-one, 100, 101
onto, 100
permutation, 237
projection, 102
restricting the codomain, 104
restriction (of the domain), 103
surjective, 100

Test, 100
undefined on domain element,

97
well-defined, 98

graph
acyclic, 172
binary search tree, 178
breadth-first

search, 176
spanning tree, 177

complement, 157
complete, 151

connected, 162
component (formal

definition), 163
component (working

definition), 163
vertices, 162

cycle, 172
proper, 172

depth-first
search, 175
spanning tree, 177

directed
formal definition, 152
working definition, 152

edge, 147
adjacent, 148
bridge, 165
connectivity, 165
incident vertex, 148
loop, 149
parallel, 149

empty, 147
Euler circuit, 167
forest, 172
formal definition, 147
incident edge/vertex, 148
node, 147
of a function, 96
path, 159

trivial, 172
simple, 149
sub-, 150
trail, 159
tree, 172
vertex, 147

adjacent, 148
articulation, 165
degree, 149
incident edge, 148
isolated, 149

walk, 159
closed, 159
open, 159

weighted
formal definition, 152
working definition, 151

working definition, 147
greatest lower bound, 212
Gödel’s First Incompleteness

Theorem, 70

Hasse diagram, 210
hypothesis

in an argument, 41
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induction, 62

idempotence
of logical connectives, 16
of set operations, 83

identity function, 102
if . . . then . . . (logical connective), 4

notation for, 5
truth table for, 7

if and only if (logical connective), 4
notation for, 5
truth table for, 7

image
inverse

of a set, 107
of an element, 108

of a domain element, 93
of a function, 98
of a function on a subset, 99

incident edge/vertex, 148
inclusion function, 102
inclusive or, 4
incomparable, 211
Incompleteness Theorem, Gödel’s

First, 70
induction

hypothesis, 62
step, 62

Induction, Mathematical, 61
strong form, 65

inductive
clause, 118
definition, 118

base clause, 118
inductive clause, 118
limiting clause, 119

infinite
sequence, 115

infinite set, 127
initial node (in a binary search

tree), 178
injection, 100
input-output rule (of a function), 93
integers, set of, 76
intersection

of relations, 186
of sets, 82

inverse
conditional, 18
function, 108
image

of a set, 107
of an element, 108

relation, 187

irrational number(s)
set of, 81

isolated
prime, 58, 60
vertex, 149

Law
DeMorgan’s

for logical connectives, 17
for set operations, 84

of Contradiction, 8
of Syllogism, 45

extended, 45, 64
of the Excluded Middle, 8

least upper bound, 212
length, of a word, 87
letters, 86
lexicographic order, 208, 209
limiting clause (inductive

definition), 119
logical

analysis, 6
biconditional, 4

notation for, 5
conditional, 4

notation for, 5
conjuction, 4

notation for, 5
connectives, 4
disjunction, 4

notation for, 5
negation, 4

notation for, 5
statement(s), 3

equivalent, 15
Test, 5

substatement, 3
logically

false, See contradiction
implies, 10
true, See tautology

loop, 149
lower bound, 212

greatest, 212

Mathematical Induction, 61
strong form, 65

maximal element, 213
Test, 213

maximum element, 212
membership (in a set), 76
minimal element, 213

Test, 213
minimum element, 212
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model (for an axiomatic system), 69
modulo, 196
modus ponens, 44
modus tollens, 19

standard argument, 44
multinomial

coefficient, 259
Multinomial Theorem, 258
Multiplication Rule, 227

naive set theory, 76
natural

numbers, set of, 76
projection, 201

negation, 4
double, 16
notation for, 5
truth table for, 7

node, 147
initial (in a binary search tree),

178
terminal (in a binary search

tree), 178
nonconnected graph, See connected

graph
not (logical connective), 4

notation for, 5
truth table for, 7

numbers
integers, 76
natural, 76
rational, 76
real, 76

object (informal definition), 75
one-to-one, 100, 101
onto, 100
or (logical connective), 4

notation for, 5
truth table for, 7

order
alphabetic, 208
dictionary, 208
dual, 209
lexicographic, 208, 209
partial, 208
total, 211

compatible, 215

parallel edges, 149
partial order, 208

dual, 209
strict relationship, 208
total, 211

compatible, 215

partially ordered set, 208
comparable elements, 211
incomparable elements, 211
lower bound, 212

greatest, 212
maximal element, 213

Test, 213
maximum element, 212
minimal element, 213

Test, 213
minimum element, 212
topological sorting, 216
upper bound, 212

least, 212
partition, 198

cell, 198
Pascal’s triangle, 250, 256
path

trivial, 172
path (in a graph), 159
permutation, 237

of size k, 241
Pigeonhole Principle, 231

formal version, 231
strong form (formal version),

232
strong form (informal version),

233
power set, 88
predicate, 29
premise (in an argument), 41
prime number, 49
primitive term, 67
Principle

of Mathematical Induction, 61
strong form, 65

Pigeonhole, 231
formal version, 231
strong form (formal version),

232
strong form (informal

version), 233
Procedure

direct proof, 50
proof by contradiction, 55
proof by induction, 62
proof by proving the

contrapositive, 53
proof by strong induction, 65
proof of conditional involving

disjunction, 52
proving a biconditional, 54
proving uniqueness, 56
reduction to cases, 51
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procedure
disjunctive normal form, 25

projection
function, 102
natural (onto a quotient), 201

proof
by contradiction, 55
by induction, 62
by proving the contrapositive,

53
by reduction to cases, 51
by strong induction, 65
direct, 50
of a biconditional, 54
of conditional involving

disjunction, 52
of uniqueness, 56

proper
cycle, 172
subset, 80

Test, 80
propositional calculus

rules of, 16

quantifier, 30
distribution of, 34
existential, 30
negation of, 33
universal, 30

quotient, 200

rational numbers, set of, 76
real numbers, set of, 76
recurrence relation, 116
recursively-defined sequence, 116
reduction to cases, 51
reflexive relation, 188
relation

partial order, 208
dual, 209
strict relationship, 208
total, 211

relation(s)
antisymmetric, 188

Test, 189
binary, 186
complement of, 186
empty, 187
equivalence, 195

quotient, 200
formal definition, 185
intersection of, 186
inverse, 187
reflexive, 188

Test, 188
symmetric, 188

Test, 188
ternary, 186
transitive, 189

Test, 189
union of, 186
universal, 187
working definition, 185

relative complement, 81
restriction

of the codomain of a function,
104

of the domain of a function, 103
Rule(s)

Addition, 225
Division, 229
for Operations on Sets, 83
Multiplication, 227
of Predicate Calculus

distribution of quantifiers,
34

negation of quantifiers, 33
of Propositional Calculus, 16
Substitution

for equivalent statements,
17

into a tautology or
contradiction, 9

into an argument, 46
Subtraction, 226

Russell’s Paradox, 88

same size (for sets), 128
sequence, 115

finite, 115
infinite, 115
recursively-defined, 116

set operations
rules for, 83

set(s)
alphabet, 86
cardinality, 123
Cartesian product, 84
combination, 245
complement, 81, 83
countable, 135
countably infinite, 135
defining, 76

by listing, 76
candidate-condition notation,

77
form-parameter notation, 77

disjoint, 82
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union, 83
element, 76
empty, 78, 83
equality, 79

test, 80
finite, 123
infinite, 127
informal definition, 75
intersection, 82
larger, 138

Test, 138
letters, 86
membership, 76
of irrational numbers, 81
of words, 86
partially ordered, 208

comparable elements, 211
greatest lower bound, 212
incomparable elements, 211
least upper bound, 212
lower bound, 212
maximal element, 213
maximal element, Test for,

213
maximum element, 212
minimal element, 213
minimal element, Test for,

213
minimum element, 212
topological sorting, 216
upper bound, 212

partition, 198
cell, 198

permutation, 237
power, 88
same size, 128
smaller, 138

Test, 138
sub-, 78

proper, 80
Test, 79

totally ordered, 211
uncountable, 135
union, 82
universal, 81, 83

simple
graph, 149
statement, 3

spanning
subgraph, 177
tree, 177

square
free, 59
number, 59

statement (in logic)
compound, 3
connective, 3

truth tables for, 7
simple, 3
sub-, 3

statement(s) (in logic), 3
equivalent, 15

Test, 15
Test, 5

strict partial order relationship, 208
subgraph, 150

spanning, 177
subset, 78

image under a function, 99
proper, 80

Test, 80
Test, 79

substatement, 3
Substitution Rule

for equivalent statements, 17
into a tautology or

contradiction, 9
into an argument, 46

Subtraction Rule, 226
surjection, 100
Syllogism, Law of, 45

extended, 45, 64
symmetric relation, 188

tautology, 8
propositional calculus rules, 16

term
defined, 68
primitive, 67

terminal node (in a binary search
tree), 178

ternary relation, 186
Test

argument validity, 42
for equivalence of logical

statements}, 15
injective function, 100
larger/smaller set, 138
maximal/minimal elements,

213
relation

antisymmetric, 189
reflexive, 188
symmetric, 188
transitive, 189

set equality, 80
statement, 5
subset, 79
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proper, 80
surjective function, 100

Theorem
Binomial, 256
Cantor’s, 139
Cantor-Bernstein, 140
Gödel’s First Incompleteness,

70
Multinomial, 258
Trinomial, 257

topological sorting, 215
total order, 211

compatible, 215
totally ordered set, 211
trail (in a graph), 159
transitive relation, 189
tree, 172

binary search, 178
spanning, 177

Trinomial Theorem, 257
truth

table, 6
for each of the connectives, 7

value, 6

uncountable, 135
union

of relations, 186
of sets, 82

disjoint, 83
universal

quantifier, 30
relation, 187
set, 81, 83

upper bound, 212
least, 212

vacuously true, 35
valid argument, 42

Test, 42
vertex, 147

adjacent, 148
articulation, 165
connected, 162
degree, 149
incident edge, 148
initial (in a binary search tree),

178
isolated, 149
terminal (in a binary search

tree), 178
vertices, See vertex

walk (in a graph), 159
closed, 159
open, 159

weighted graph
formal definition, 152
working definition, 151

word, 86
empty, 87
length, 87
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