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We study the hydrodynamics of colloidal crystals in a thin-film cell using dynamic-light-scattering
techniques. The measured time dependence of the fluctuating scattered light intensity reflects the
characteristic frequencies of crystal modes. At variance with the theory of hydrodynamic interactions in
colloidal crystals, photon-correlation functions of light scattered by longitudinal modes are nonexponen-
tial. In the long-wavelength limit, transverse modes acquire a finite damping due to the finite sample
thickness. We systematically investigate this effect as a function of cell separation.

PACS number(s): 82.70.Dd, 42.25.Fx, 63.20.—e

I. INTRODUCTION

Characterizing the hydrodynamics of concentrated
suspensions is an important problem of statistical phys-
ics. Its difficulty lies in the long-range character of the
interaction between particles that is mediated through
the fluid in which they are suspended. In a colloidal,
highly deionized dispersion the suspended particles may
acquire a net electric charge which causes them to order
into a crystalline state [1]. Perhaps surprisingly, the hy-
drodynamic interaction in such an ordered state is much
stronger than that in the disordered case. For example,
for the sedimentation velocity of a cubic lattice of
spheres, Hasimoto has shown that the correction to the
single-sphere Stokes law scales with the volume fraction
# as ¢'/3, whereas it is to lowest order proportional to ¢
in the disordered case [2].

The lattice dynamics of colloidal crystals presents a
nice testing ground for theories of hydrodynamic interac-
tion. The colloidal crystals that are discussed in this pa-
per are formed of monodisperse spheres with a typical ra-
dius of @ =0.05 um suspended in water. The bcc-lattice
parameter R is typically 1 um, so that crystallography
can be done with visible light. Lattice waves are excited
by Brownian forces and damped by hydrodynamic fric-
tion. The thermally excited crystal diffusively scatters
light outside Bragg reflections. A judicious choice of the
scattering geometry allows one to distinguish experimen-
tally the various modes of motion of the crystal. The
(complex) characteristic frequency of these modes is then
accessible through analysis of the fluctuations in the scat-
tered light intensity. It turns out that these techniques,
which are analogous to those using neutron scattering in
the case of atomic crystals, provide a fine probe of mi-
crohydrodynamics.

Different modes of motion in the colloidal crystal are
characterized by different types of hydrodynamic interac-
tion. For example, in longitudinal waves the relative
motion of fluid and particles is largest and the friction
forces are strongest. It is quite the opposite in case of
transverse modes where in the long-wavelength limit the
motion of the spheres and surrounding fluid is perfectly
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synchronized. Because the fluid is in a highly deionized
state, electrodynamic effects that are associated with the
motion of the counterions that surround each charged
sphere and shield its Coulomb field may come into play in
subtle ways.

Seminal work on the lattice dynamics of colloidal crys-
tals was done by Hurd et al. [3], who studied the disper-
sion of lattice waves using photon-correlation spectrosco-
py. Based on the early work of Hasimoto [2], the same
authors have also developed a theory of hydrodynamic
interaction in colloidal crystals [4]. The theory involves
the linear Navier-Stokes equations in the Stokes regime;
retardation effects associated with fluid inertia have not
yet been considered.

To prevent multiple scattering, Hurd et al. [3] studied
crystals in a 38-um-wide thin-film cell. It was anticipat-
ed, but not demonstrated experimentally, that such a
configuration would introduce wall effects. The impor-
tance of wall interaction in the thin-film cell was illustrat-
ed by considering a very simple model of a string of
spheres near a wall [4].

The theory of hydrodynamic interaction in a colloidal
crystal predicts that the damping of transverse modes
vanishes in the long-wavelength limit. In striking
discrepancy with this prediction, Hurd et al. [3] found
that the damping remained finite instead. This discrepan-
cy prompted Felderhof and Jones [5] to reconsider the
original hydrodynamic theory and to introduce electro-
dynamic effects caused by the motion of the counterions
surrounding the charged spheres [6]. Felderhof and
Jones were indeed able to reconcile the discrepancy be-
tween theory and the experiments of Hurd et al. [3].
They argued that the dipole forces due to the lag of coun-
terions about the moving spheres caused a finite damping
of transverse phonons at ¢ =0.

The present paper carefully reconsiders the original ex-
periments of Hurd et al. [3]. By performing a series of
measurements for a range of thin-film thicknesses
[27-128 um], we show that wall effects are indeed impor-
tant and cause a finite damping of shear waves in a range
of g values, g <q,, where g, increases with decreasing
cell spacing. This adequately explains the finite damping
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of shear waves that was found by Hurd et al. [3], who
used a thin-film cell 38 um wide. The widest cell (128
pm) we used exhibited a vanishing damping at the small-
est ¢ measured. These findings raise profound questions
about Felderhof and Jones’s theory [6] that explained the
finite damping of long shear waves in terms of electro-
dynamic effects but did not consider the effect of the finite
cell spacing.

The dynamics of overdamped crystal shear waves has
two experimentally accessible characteristic time scales, a
slow one that is determined by the interplay of crystal
elasticity and hydrodynamic damping and a fast time
scale that, in the limit of long wavelength, reflects the
damping of pure hydrodynamic shear waves. The ratio
of these time scales is O(1073). We measured correlation
functions on both time scales and propose a tentative ex-
planation of these results in terms of the discrete charac-
ter of hydrodynamic modes with wave vector perpendicu-
lar to the cell walls.

Dispersion functions of Brownian crystal waves are
generally extracted from a series of correlation spectra
measured in various scattering configurations. We will
argue that the shape of those correlation functions forms
an important body of qualitative information. Namely,
only if the characteristic frequencies of crystal dynamics
are spaced far enough apart on the imaginary axis, will
the correlation function exhibit simple exponential be-
havior on its slowest time scale. A severe drawback of
the thin-film configuration in studying the shape of corre-
lation functions is the large and varying fraction of the
incident beam that scatters off glass surfaces. This
reflected light causes an unknown heterodyne contribu-
tion to the correlation function which affects its shape
and renders its interpretation ambiguous. We have cured
this problem by designing a mechanically flexible hetero-
dyne spectrometer employing single-mode optical fibers.
This enabled us to precisely measure the shape of correla-
tion functions and compare it to theory, that predicts
simple-exponential correlation functions. It will turn out
that, quite contrary to this prediction, correlation func-
tions of light scattered by longitudinal modes are not sim-
ple exponential.

Colloidal crystals exhibit phenomena that have analogs
in simple liquids and molecular solids. Phase transitions
[7] and nonequilibrium phenomena [8] have been studied
using visible light. Of particular interest are the measure-
ments of dynamic structure factors that revealed the
presence of a hexatic phase in two-dimensional colloidal
crystals [9]. The macroscopic, rheological properties of
strongly deionized fluids have been studied for many
years [10].

In Sec. II, we will summarize the theory of hydro-
dynamic interactions in a colloidal crystal and discuss the
relevance of electrodynamic effects [6]. We also show in
what manner the spectrum of characteristic frequencies is
folded into measured photon-correlation spectra. Our
treatment lacks detail, detail that is dealt with extensively
in the original treatments of Hurd et al. [4] and Fel-
derhof and Jones [5,6]. In Sec. III the experimental setup
is described and the techniques to measure heterodyne
correlation functions of light scattered by crystal waves
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are detailed. The results are discussed in Sec. IV, where
we present correlation spectra and dispersion functions of
longitudinal and transverse phonons.

II. CRYSTAL DYNAMICS
AND SCATTERED-LIGHT CORRELATION FUNCTIONS

A. Crystal hydrodynamics

The physics of colloidal crystals embodies an intricate
interplay between well-known concepts of solid-state
physics and the (hydro)dynamics of colloids. Because our
prime interest is in the latter, we would like to unravel
both aspects and delineate their contribution to the quan-
tities of experimental interest, i.e., the characteristic fre-
quencies of the crystal. The fundamental building blocks
of a theory of colloidal crystal dynamics are the linear
Navier-Stokes equations for incompressible and low-
Reynolds-number flow

—iwpv=nVv—Vp+f ,
V-v=0,

(1)

where the frequency notation has been used
[v(t)=v(w)exp(—iwt)], and the Langevin equation for
the motion of a sphere with index j

—iomu;=F;,—f,+X, . ()

In the equations of motion v(r,w) is the velocity field of
the fluid with pressure p(r,w), density p, and dynamic
viscosity 7, and u; is the velocity of sphere j. The ensem-
ble of spheres exerts a force density f on the fluid that is
assumed a sum of point forces concentrated at the lattice
sites R;, f(r,7)=3;f;(£)8(r—R;).

The associated reaction force on each of the spheres is
represented by the term — f; in the equation of motion of
the spheres, Eq. (2). Each of the spheres is bound into
the crystal lattice by a short-range electrostatic force F;
between it and its nearest and next-nearest neighbors.
The stochastic force X; that drives Brownian lattice vi-
brations is assumed white noise and uncorrelated at
different lattice sites.

In the harmonic approximation the electrostatic forces
define the well-known crystal elastic tensor D

F;=—3 D(R;—Ry)(s;—s;), @)
ey

where s; is the displacement of a sphere from its equilib-
rium position R;. A description in terms of linear hydro-
dynamics implies a linear relationship between the flow
field at location r and the point forces f ; at the lattice
sites that induce it.

2(r,0)=3T(r—R,0)f (o) . @)
k

In the zero-frequency limit, the tensor T equals the well-
known Oseen tensor [11].

The unknown forces f; can be eliminated from Eqgs. (1)
and (2) through prescription of the boundary condition

on the sphere surface. The condition that the particle ve-
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locity be equal to the fluid velocity averaged over the
sphere surface was first proposed by Burgers [12]

—ios; =S (T(r=Ry,a)), fy , (5)
k

where ( ),

of particle ]

Equations (2) and (5) embody the essential physics of
hydrodynamic interactions in colloidal crystals. They are
in the form of infinite-dimensional matrix equations. As
is well known from solid-state theory [13], these equa-
tions can be turned into ordinary three-dimensional ma-
trix equations for each crystal wave vector q by expand-
ing s, X, D and (T), ’ in normal modes, for example

denotes an average over the spherical surface

R, iq(R,—R;
s;=3,a,e' ", and D,jzqu(q,w)eq(R‘ %' This
leads to the equation of motion

_ 1
Maq—;z—xq
with (6)
M(g0)=—o+--D(q)— 2T (q0),
m m

where D(q) and T(q,w) are the lattice transforms of the
potential and hydrodynamic friction matrices, respective-
ly, and I is the unit tensor.

While the imaginary part of the friction matrix T can
be expressed as an effective mass u(q) multiplying the in-
ertia term —w?I in Eq. (6), its real part is

T(q,w)=S(q)+Y(q,0), (7
with

Y(g0)= € __singa) ;_aa) )

’ ven ¢*—(wp/m)? qa ’

and

S — — 1/3

(q) p— [I—«(q)$'”*],

where v, is the volume of the unit bee cell (v, =R} /2),

and a is the radius of a sphere. The matrix Y embodies
the shear friction; it vanishes for longitudinal waves. The
matrix S reflects the friction between spheres and fluid; it
is gauged by the Stokes friction (S ~'=6mna), and con-
tains the matrix x(q) that has been tabulated for several
values of q by Hurd et al. [4]. The derivation of the lat-
tice sum S is discussed in detail in Hasimoto’s treatment
of the sedimentation of regular arrays of spheres.

The normal modes of the crystal are defined through
the matrix N, that diagonalizes M(q,®). For the special
choices of q that are considered here, the normal modes
are very simple. For q in the [100] direction they fall
along the elementary axes of the simple cubic reciprocal
lattice, whereas for q in the [110] direction the longitudi-
nal mode has the components (1/v2,1/V2,0).

The zeros of the characteristic equation, |M(q,)| =0,
are the key quantities of interest in a light-scattering ex-
periment. As will be explained in Sec. II B, these zeros
determine the time dependence of the scattered-light in-

JOS DERKSEN AND WILLEM van de WATER 45

tensity. The characteristic frequencies of longitudinal
and transverse modes are determined by the appropriate
element of M

MYT(q,0)=0,
or explicitly
pb? o’ — (k"2 +iorkT(w)=0 . 9)

For the colloidal crystals studied so far, the zeros of the
characteristic equation are almost always purely imagi-
nary and, consequently, the correlation function of light
scattered by crystal waves is a sum of decaying exponen-
tials with the characteristic frequencies as decay rates. It
is a well-known fact that such measured functions can
only be interpreted unequivocally if these characteristic
frequencies are spaced far enough apart on the imaginary
axis [14].

For longitudinal waves in the [100] direction, Eq. (9)
has two imaginary roots

wh=—iA/uf, w;‘2=—i(w1“)2/7»1’ .
In dilute crystals the friction }\L equals the Stokes fric-
tion, )»L~6Tr7]a /m. The first zero wa, therefore, is asso-
ciated w1th the rapid decay of the velocity autocorrela-
tion of Brownian motion, 1/|ef;|=0(10"% s). The
second zero reflects the interplay between crystal elastici-
ty and hydrodynamic friction; it is much smaller than the
first, 1/|w 2] =0(1073%5s). Because the crystal elastic fre-
quency a)Lq—l/D /m vanishes as a) ~gq for large wave-
lengths, wg, approaches zero at the zone center.

In the case of transverse waves the characteristic equa-
tion is third order with three widely separated zeros on
the imaginary axis.

.6mma
a,quE_,._”’I_,
m
T _ __ 2Ty, T
W= —ikg/uy ,
T — _ (. T\2 /2T
g3 t(wq)/kq.

The first root is again the rapid decay of the Brownian
velocity autocorrelation. Contrary to that of longitudinal
modes, the damping AqT of transverse waves vanishes at
long wavelengths where the particles and spheres move in
concert. There, the relaxation rate reduces to that of
pure hydrodynamic shear waves, @ qu —ing?/p, and the
third zero qu} remains finite at the zone center. In gen-
eral o 2>>wq3, except at very small values of g where
transverse waves may even turn from overdamped to
propagating [A] <20l (u])'"?].

Scattered-light correlation functions will be dominated
by their slowest decaying component. In the framework
of a purely hydrodynamic theory this slowest component
has a time constant 1/|wJs| or 1/|wy,|, for transversal
and longitudinal modes, respectively. An important con-
clusion then is that these time constants are well separat-
ed from other decay constants, except perhaps near g =0.

Felderhof and Jones [6] have criticized such a purely
hydrodynamic theory, noticing the importance of ion dy-
namics in colloidal crystals. In the static situation each
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sphere with charge Ze at lattice site R; is surrounded by
its Debye cloud which evokes a screened electrostatic po-
tential

e —k|r— Rj\
Y(r)=Ze————— , 10
() e41-re|r—le 10
where « is the inverse Debye  length,

k*=nyz%e?/ekyT, n, the density of counterions with

charge ze,kg the Boltzmann constant, and € the dielec-
tric constant of the fluid. When the particles oscillate
about their equilibrium positions, the cloud of coun-
terions around each sphere is perturbed both due to the
motion of the particle itself and due to long-range in-
teractions with induced dipoles associated with all other
particles that have moved from their equilibrium posi-
tions. Ignoring the convection of ions by the flowing sol-
vent, Felderhof and Jones describe the motion of the sea
of counterions by a generalized diffusion equation. Ac-
cordingly, the electrodynamic force on particle j can be
split into two parts, H; and G, that enter the right-hand
side of the Langevin equation [Eq. (2)]. The contribution
G; is the friction force on sphere j due to deformation of
its own Debye cloud by the particle itself and the term
H; embodies long-range dipole interactions. The self-
force G; is proportional to the particle velocity u; and
would also be present in very dilute, random colloids. In
the frequency notation

G (w)= (K 7»)Zze2

J 12
where A>=«k?*—iw/D’, with D' the ion-diffusion constant.
The frequency-dependent dipole force on particle j is

222
£ 5 UR,~R)s;, (12
47TD)\,6,(¢J)

=iof,(0)s; , (11

H;(r,0)=—io

where U(r) is the dipole tensor, U(r)=(3tT—1)/r’.

Both electrodynamic effects, the ion-diffusion self-force
and the induced dipole force, give rise to extra contribu-
tions in the equation of motion of a longitudinally polar-
ized lattice wave. The enhanced equation is similar to
Eq. (6), except that the hydrodynamic friction term
S 1(q) needs be replaced by S (q)+H(q,0)+¢, (@)
where H(q,®) is the lattice transform of the dipole force.
The frequency dependence of H(q,w) introduces a new
zero of the characteristic equation that is related to the

|

1(k,7)=(E(0)E*(7)) /{EE*)

87> g

¢ !

q9 B i

E[IP(k—K,)P 1-3 S CE3 (kN PYpB(0) +E|Pk q— K1)|22CBEkN:ﬂ2 5(r)
B
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time a counterion needs to diffuse over a Debye length,

ot =—iD'k*. For Debye lengths of 0.3 um, this charac-
terlstlc time is approximately 10 us. It would be inter-
mediate between the fastest hydrodynamic time scale,
that is the velocity autocorrelation time, and the next
fastest, that is the decay time of hydrodynamic shear fluc-
tuations. Ionic effects should be manifest in correlation
functions measured on this time scale, especially in the
case of longitudinal waves where the relative motion of
spheres and fluid is strongest.

The damping of transverse waves can in the long-
wavelength limit be approximated similarly to that in the
pure hydrodynamic case, A]=[(Ze/DA*)U,,(q)
+&.(w)]/m. In striking contrast with the case with only
hydrodynamic interactions, the damping now remains
finite at infinite wavelengths

(13)

A peculiar consequence of this description of electro-
dynamics is that the damping of long shear waves may
turn negative if the Debye length becomes larger than a
critical value kR $3.7. Although it is not clear whether
larger Debye lengths actually lead to an instability of
shear waves, a crude estimate of the Debye length in our
samples (kR,=10, see Sec. IV) actually satisfies this cri-
terion.

The values of the characteristic frequencies reflect the
elementary physical processes that characterize colloidal
dynamics: elastic interaction, friction between the
spheres and the fluid, internal friction in the fluid alone,
and, possibly, the relaxation of ion clouds through
diffusion. The analysis of the experiment is simplified
considerably if these time scales are very different. We
conclude that they actually are, with the possible excep-
tion of the ion-diffusion time scale which may become of
the same order as the relaxation time of hydrodynamic
shear modes.

B. Scattered-light correlation function

In the case of particle excursions s; that are small with
respect to the inverse wave vector of scattered light,
k-s; <<1, the normalized scattered electric field correla-
tion function is

) (14)

where the constant C; B= ZAEkB T /m is a reflection of the thermal equilibrium between excited lattice waves and their
environment. The tlme dependence of the correlation function is embodied by the function pq(r) that is determined by

the characteristic frequencies of the crystal

—ioT

e

on=[d
i [ (B —pBw? —iwrB][(wh)?

— B2+ ’
Hqo +zwkg]

(15)
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The first term in the right-hand side of Eq. (14) describes
Bragg reflections. These are modulated in scattering
space by the profile function P(k), that is defined through
the lattice transform of the incident field distribution
over the scattering volume,

J !

Because the linear size of the scattering volume is large
with respect to the wavelength of light, the function P(k)
will be sharply peaked in the origin.

Diffuse scattering outside Bragg reflections is con-
tained in the second term of Eq. (14). The wave vector of
thermally excited lattice waves can be selected experi-
mentally as the difference between the scattering vector
and the nearest reciprocal lattice point. The experiment
can also be arranged such that a single polarization direc-
tion 3 is selected. If the particle excursions are no longer
small, this selectivity fails and the correlation function
contains a contribution of all crystal wave vectors simul-
taneously. Scattered-light correlation functions will then
in general be nonexponential.

The integration in Eq. (15) can be closed in the com-
plex plane, with for a frequency-independent damping }J;
the result

—iwyT

—1w,T
2
e

o

(] W)

phir)~ , (16)

kg,u’qg (0, —w,)
where ,,,0,>w,, are the zeros of the second-order
characteristic equation. Similarly, when there are more
than two characteristic (imaginary) frequencies, the
correlation function is an alternating sum of exponen-
tials, each term approximately weighted by its associated
decay time. This observation provides valuable guidance
for the experimental detection of fast relaxation modes
because it implies that the signal-to-noise ratio must be
increased when detecting physical processes with smaller
time scales.

If the scattered field has Gaussian statistics, the electric
field correlation function is related to the experimentally
more easily accessible intensity correlation function
g,(k,7) through the Siegert relation g, =1+g? [15]. The
validity of this relation under the present circumstances
has been questioned because light scattered by an orderly
medium would not a priori have Gaussian statistics [16].
However, the excursions s; of harmonically bound parti-
cles are proportional to the stochastic driving forces X,
whereas for small S k-sj << 1, there is a linear relation
between the scattered electric field and s;. The statistical
properties of the scattered electric field are therefore in-
herited from the Brownian forces that are Gaussian.
Outside Bragg reflections the scattered field is Gaussian
and the Siegert relation applies. In summary, both the
Gaussian statistics of the scattered light and the crystal-
wave-vector selectivity of measured correlation functions
are only guaranteed if particle excursions remain small.
We will, therefore, assess the validity of the assumption
of small particle excursions by experimental tests of both
the statistics of scattered light and the shape of correla-
tion functions.
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laser

photo
multiplier

photon
correlator
FIG. 1. Schematic view of the experiment for measuring col-
loidal crystal dynamics. The crystals are grown in a thin-film
cell. Scattered light is detected with help of a photomultiplier.
The scattered light may be mixed on the surface of the detector
with a reference beam that is guided through an optical fiber.

III. EXPERIMENT

Figure 1 gives a schematic overview of the experimen-
tal setup. The colloidal crystal is contained in a thin-film
cell with adjustable thickness (20-400 pm). It is il-
luminated by light from a HeNe laser (wavelength 633
nm) and the scattered light is mixed with a fraction of the
incident beam that is transported through an optical
fiber. The thin-film concept has been adopted from Hurd
et al. [3]; however, the optical setup is rather different.

The thin-film cell shown in Fig. 2 was manufactured
from optically flat quartz windows that were separated by
an O ring that served both to seal the colloid reservoir
and as a spring to allow cell spacing adjustment. In one
window an annular groove was machined with three radi-

- C section cc

FIG. 2. Schematic view of the thin-film cell. The two quartz
windows (1) and (3) are held apart by an O ring (2). The three
micrometer screws (4) to adjust the cell separation are placed
under an angle of 30° to facilitate access of the incident laser
beam. Three windows for interferometric measurement of cell
separation surround the central 15 mm diameter thin-film re-
gion.
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al filling channels. This groove held the O-ring and
formed the reservoir for ion-exchange resin particles.
The diameter of the actual thin film was 15 mm. Three
differential micrometers with a pitch of 50 um were used
to adjust the cell separation. They were mounted under
an angle to facilitate access of the incident laser beam at
large scattering angles. The three windows outside the
O-ring perimeter are used for interferometric measure-
ment of the cell spacing that could be adjusted with an
accuracy of 1 um.

The thin-film cell virtually eliminates multiple scatter-
ing; for crystals formed of polystyrene spheres (radius
a=0.053 um) in water with a typical lattice parameter of
R,=0.8 um the optical mean free path is 5 mm. Howev-
er, scattering of the incident beam off cell surfaces and in-
tense flares due to other reflections in the cell causes the
detection optics to simultaneously accept direct light and
light scattered from the crystal. This leads to an un-
known heterodyne component of the measured intensity
correlation function that decays with twice the ordinary
homodyne decay time. Although the strength of this
heterodyne component depends on the scattering
geometry, it is impossible to control and leads to an am-

FIG. 3. Schematic view of the complete optical setup. A
horizontally polarized beam emerges from a HeNe laser. A lo-
cal oscillator is divided off in the beamsplitter bs, and guided to
the detector through a single-mode optical fiber sm. The right-
angle prisms p,, p,, and p; transport the incident beam (wave
vector k;) to the scattering cell; the vertical translation over the
thin film is achieved by horizontally translating p,. In the
detector the scattered beam (wave vector k) is merged with the
local oscillator in a beamsplitter bs,. The mixed light passes a
pinhole ph and is transported through a multimode fiber to the
photomultiplier.
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biguous interpretation of measured correlation functions.

We have sought to cure this problem by overwhelming
possible reflected light with a strong local oscillator so
that always a heterodyne correlation function was mea-
sured. The use of heterodyne scattering in our experi-
ment required an extremely stable mechanical setup that
should at the same time be flexible enough to realize a
large variety of scattering geometries. These seemingly
contradictory requirements were satisfied by using an op-
tical fiber to transport the local oscillator beam. The re-
sulting optical setup is detailed in Fig. 3.

The scattered light was mixed with a fraction of the in-
cident beam that was transported through a
polarization-preserving monomode optical fiber with a
core diameter of 4 um (Newport F-SPA). The scattering
geometry was defined through pinholes in the light col-
lecting optics. The coherent mixture of scattered and lo-
cal oscillator light was transported through a multimode
optical fiber to a cooled photomultiplier. The photo-
pulses were amplified, discriminated and subsequently
time correlated in a digital photon correlation (ALV-
3000).

The crystalline samples were prepared in quartz cu-
vettes by diluting monodisperse latex in clean, filtered
(0.2 pum pore size) and deionized water. After adding an
ample quantity of mixed-bed ion-exchange resin (Amber-
lite IRN-150) and stirring, the colloid crystalized spon-
taneously. The cell-quartz windows were cleaned with
water and soap and with warm sulfochromic acid.
Thereafter they were extensively rinsed with clean water.
The silicon O ring was cleaned in an ultrasonic bath and
in boiling water. The lattice parameter of the bcc crys-
tals ranged from 0.80 to 0.74 pm; it was stable during the
measurement of a dispersion curve. Single crystals with a
typical size of a few mm that filled the cell gap could easi-
ly be identified in white light. The diffraction-limited an-
gular size of the Bragg reflections was consistent with the
diameter (60 um) of the laser beam in the cell. Because
the lattice parameter is relatively small, the largest angle
that could be used as a starting point for the measure-
ment of a dispersion function was a [110] Bragg
reflection. The stability of the crystal was checked from
the quality of this reflection when, after measuring a
series of correlation functions in different scattering
geometries, the cell was rotated back to its initial orienta-
tion. It appeared that this stability, especially the orien-
tation change of the crystal with respect to an axis nor-
mal to the cell, depended on the cell width. The stability
was greatest at the smallest cell separations.

In this paper we present measured dispersion functions
of [100] and [110] modes only. Figure 4 illustrates the
measurement of pure longitudinal waves in the [110]
direction. Let us assume the incident and scattered wave
vector to be in the horizontal plane. The bcc crystal has
its most densely packed plane [the (110) plane] parallel to
the cell walls. The cell is then rotated around a vertical
axis and around an axis normal to the cell walls until the
[110] Bragg reflection is observed in the horizontal plane.
Further rotation of the cell over an angle 6 and of the
detector over an angle 26 around a vertical axis leads to a
situation where the scattering wave vector k and the
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(a)

beam

Ve detector

(b)

beam K detector

\[E;noo]
K, (1101

FIG. 4. (a) Scattering configuration for detecting longitudinal
modes with wave vector q in the [110] direction. The angles 6,
correspond to the setting with q=0. (b) Frontal view of the
scattering configuration for detecting transverse modes with q
in the [100] direction.

wave vector q of crystal waves are parallel and only the
longitudinal mode is detected.

The detection of pure transverse waves in symmetry
directions of the crystal is not possible with a single-
beam, single detector setup and one is necessarily left
with the measurement of a mode mixture [17]. Such a
mixture is impossible to unravel experimentally because
the weights of its components in the correlation function
depend upon the characteristic frequencies. Hurd et al.
[3] present a transverse mode dispersion curve which was
deduced from a mixed-mode measurement with help of a
theoretical model that was fitted to a measured longitudi-
nal dispersion curve. For relatively small wave vectors,
however, the transverse mode dominates the correlation
function of a mixed-mode measurement. The starting
point of measuring the dispersion of [100] phonons is
again a [110] Bragg reflection (q=0 in Fig. 4). Further
rotation of the cell over an angle ¢ around an axis normal
to the cell surfaces leaves us with
kT[=3,(k,NT)]=k cosp/2 and k'=k sing/2 so that
for angles @ <20°, (kL)*<0.05(kT)%. The weights of the
transverse and longitudinal components in the correla-
tion function are (k T)z/(qu)z and (kL)Z/(a)fI‘)z, respec-
tively. For the range of g values of interest the crystal
elastic frequencies are of the same order of magnitude.

IV. RESULTS

In order to understand ionic friction in a highly deion-
ized fluid similar to that from which our crystals were
grown we will first present the result of an experiment on
more dilute random dispersions. Next we will discuss the
results of an experiment that was aimed at establishing
the statistical character of light scattered diffusively off
colloidal crystals. Finally we will present a series of mea-
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surements both of the correlation functions and disper-
sion curves of longitudinal and transverse waves and
show the influence of the finite thickness of the crystal.

The two parameters that characterize electric interac-
tions in our fluid are the Debye length k! and the sur-
face charge Z of each sphere. The concentration of coun-
terions n,, and consequently the Debye length, can be in-
ferred from the conductivity of the fluid, whereas the sur-
face charge Z follows from an electrophoresis experi-
ment. The present design of our thin-film cell prevents
an in situ measurement of these parameters. However, if
we assume the fluid to be highly deionized it follows that
nZ =nyz. A measurement of the diffusion constant in a
disordered deionized fluid contained in the thin-film cell
can then be used to indirectly measure Z and «.

According to Eq. (12), the friction of a charged sphere
would be increased by

2,2
£ (0=0)=X£¢_ (17)
247D'e

due to the ions in the surrounding Debye sphere that
need be dragged along. The expression in Eq. (20) is also
an approximation to a theory by Ohshima, Healy, and
White [18]. We have measured the diffusion constant in a
dilute solution of polystyrene spheres (@ =0.099 um,
number concentration n=7X10'® m™3) in water. The
sample, contained in the thin-film cell, was kept in a
highly deionized state by the presence of ion-exchange
resin. Heterodyne photon-correlation functions were
measured over a range of scattering angles. The effect of
particle interactions was minimized by keeping the
scattering vector larger than the characteristic wave
number of the suspension 27n!/?=2.6X10® m™!). The
measured correlation functions could be represented well
by single exponentials and diffusion constants were com-
puted from their decay rates. Figure 5 shows the
diffusion constant as a function of wave vector k, both for

2.2 : :
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FIG. 5. Vertical error bars: measured diffusion constant as a
function of the length of the scattering vector k for a =0.099
um spheres with number density 7X 10° m~? in deionized water
of T=20°C. Crosses: measured diffusion constant in distilled
water. Dashed line: the Stokes diffusion constant kT /67na.
K,, is the characteristic wave number of the suspension and
points to the value 27n /3,
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the highly deionized dispersion as well as for a solution of
the same polystyrene spheres in distilled water. The
diffusion constant in the deionized fluid appears to be
(412)% smaller than that measured in the absence of ion-
ic friction. It is consistent with the following estimates:
Z =1400, ka =0.14.

Although the results of these experiments are only
qualitative, we believe that the above constants charac-
terizing our working fluid are indicative for those in the
case of our experiments on colloidal crystals. If we as-
sume the counterion density to be scalable by the particle
concentration, the Debye length in the Ry =1.8 um crys-
tal should be approximately x~'=0.2 um, or kR ;= 10.

Information about the statistics of scattered light was
obtained from a comparison of heterodyne and homo-
dyne correlation functions of light that was scattered by
longitudinal crystal waves with (reduced) wave vector
Q (=qR,V'2/47)=0.14 in the [110] direction. The
crystal was formed out of a =0.099 pum radius spheres
and had an Ry=1.8 um lattice parameter; it was con-
tained in a cell with spacing L =43 um. In the hetero-
dyne measurement, which detects the second moment of
the electric-field distribution, a local oscillator was mixed
with the scattered light with an intensity ratio of about
50. The homodyne setup, in which the fourth moment of
the field distribution is measured, was arranged such as to
eliminate reflected light as well as possible. The mea-
sured heterodyne correlation function Gy, was used to
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FIG. 6. (a) Homodyne correlation function Gy, of light

scattered by a longitudinal crystal wave shown overlayed with a
functional of the measured heterodyne correlation function
G=c,+¢,Gp(7)+¢3[Gpee(T)]%, with ¢, =0.00164, c,=0.34,
and ¢3;=0.65. The crystal wave has Q =0.14 in the [110] direc-
tion. (b) Difference G},op(7)— G (7).
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form the functional
G(1)=c, +CZGhet(T)+c3[Ghet(T)]2 R

where the constants c, , ; were adjusted to minimize the
squared difference between G(7) and G, (7) with the re-
sult ¢;=0.0016, c,=0.34, and c;=0.65. The quality of
the fit in Fig. 6(a) is demonstrated in Fig. 6(b) that shows
the residue G(7)— Gy, (7). It is consistent with the as-
sumption of Gaussian statistics of scattered light. The
magnitude of the residues G(7)—Gy,,(7) is also con-
sistent with the ratio of local oscillator to scattered light
intensity. The nonvanishing constant c, indicates that
the homodyne measurement was not pure due to the una-
voidable presence of optical flares. This precisely
prompted us to perform subsequent measurements using
the heterodyne scattering setup.

Figure 7 shows a correlation function G%(q,7) of light
scattered by longitudinal waves with wave vector
Q0 =0.11 in the [110] direction. The crystal was formed
out of 0.053 um radius spheres and had a 0.8 um lattice
parameter; the cell spacing was 36 um. We have at-
tempted to represent GL(q,7) by a single exponential,
Gi=c,e T"+c,, and have determined ¢, and I in a
least-squares procedure over the time delay interval
[0,5T"!]. As is evident from the quality of the fit, longi-
tudinal correlation functions are not simple exponentials.
We would like to emphasize that this observation is at
variance with the hydrodynamic theory that predicts a
slowest decaying component of the correlation function
whose decay rate is well separated from that of other
components.

To approximately account for this nonexponentiality
in a quite arbitrary fashion we have sought to represent
G by G =c,(1+k,m)e T"+c,, where the value of the
second cumulant k, and the constants ¢, , and " were
determined in a least-squares procedure over the time in-
terval [0,5T ~!]. This allowed us to extract the longitudi-
nal dispersion function shown in Fig. 8 from a series of
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FIG. 7. Dots: measured correlation function G of light scat-
tered by a longitudinal wave with a reduced wave vector
Q=qV2R,/4m=0.11 in the [110] direction. Line: fit of
G=cexp(—TI'71)+c,, with T=917 Hz, ¢;=9.5X1073, and
¢, =1.013.
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measurements at different q. Some points taken at the
other side of the zone center Q=0 illustrate the crystal
symmetry in reciprocal space. This symmetry is demon-
strated even more convincingly in the Appendix where
we experimentally prove the existence of cross correla-
tions across an inverse lattice parameter. The question-
able quality of the fits that were used to determine the de-
cay rates is expressed in terms of the quantity k,I" "2 in
Fig. 8(b) that involves the second cumulant k,. Although
this figure provides only qualitative information on the
presence of more than a single characteristic decay time
constant in the time interval of interest, there is a tenden-
cy that the fit is poorest for values of Q very close to the
zone center and halfway through the first Brillouin zone.
We emphasize that the poor quality of the fits is not due
to the presence of flares of reflected light; all these mea-
surements were done in a heterodyne setup.

The hydrodynamic theory of lattice dynamics predicts
the dependence of the relaxation rate I" of the correlation
function on the wave vector Q

1

F=W(8A1+8A2+16B,/3+4Bz)sin2(7rQ)
X [1—kf0(Q)$' 3], (18)

8ha) T '
o / * |
+ 1
St :
T T
< [ 7 ]
2\ » .' -
o- . l... Loa .

. — —— —
+ (b) 4
0.20+ ¢ . 4
‘\l‘ )’ ° b
2\4 r Y ® e . J
015, * . . ‘]
3 1
—_ 1 1 1
-0.2 0 0.2 04
Q

FIG. 8. (a) Dots: measured dispersion function of longitudi-
nal waves in the [110] direction as a function of reduced wave
vector Q=¢V2R,/4w. Line: fit of hydrodynamic theory by
adjusting the crystal elastic parameter. (b) Normalized second
cumulant of measured heterodyne correlation functions as a
function of (reduced) wave vector Q.
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FIG. 9. Dots: measured correlation function G of light scat-
tered by a transverse wave with Q =0.06 in the [100] direction.
Line: fit of G=cexp(—I'7)+c,, with TI'=535 Hz,
¢,=2.5X10"2 and ¢, =1.001.

where we have used the well-known expression for the
elasticity tensor D(q) in a bcc lattice with parameters
A,, and B, that characterize potential interactions V'
with nearest neighbors (4,,B,) and next-nearest neigh-
bors (A4,,B,) in the lattice. These interactions are

rkHz)

FIG. 10. Dots: measured transverse mode dispersion func-
tions as a function of reduced [100] wave vector Q =gR /4 for
various cell separations L =128, 78, 49, 34, and 27 um in frames
(a)-(e), respectively. The corresponding lattice parameters are
R;,=0.74, 0.76, 0.79, 0.77, and 0.79 pm, respectively. Lines: fit
of hydrodynamic theory by adjusting the crystal elastic parame-
ters and the residual zero-wave-vector damping (see text).
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FIG. 11. Normalized second cumulant of measured hetero-
dyne correlation functions of light scattered by transverse waves
as a function of wave vector Q at a cell separation of 78 um [see
Fig. 10(b)].

represented as second-order tensors V=A I +B,ﬁﬁ,
and similarly for those between next-nearest neighbors in-
volving the constants A4,,B,. The value of
(84,+8A4,+16B,/3+4B,)=1.03X107> Nm™' was
determined in a least-squares procedure.

Figure 9 shows a transverse correlation function mea-
sured from the same crystal and at the same cell separa-
tion as the longitudinal curve of Fig. 7. Light was scat-
tered by transverse waves in the [100] direction with re-
duced wave vector Q(=¢qR,/4m)=0.06. A qualitative
but essential observation is that, contrary to the longitu-
dinal case, transverse correlation functions do show sim-
ple exponential behavior. This is demonstrated by the
quality of the fit GT=c,+c,e "I that is also shown in
Fig. 9. Therefore transverse correlation functions can be
condensed adequately into dispersion functions.

Figure 10 shows a series of dispersion functions of
transverse crystal waves for Q values smaller than
Q0 =0.2. The crystals were grown from solutions of 0.053
pm radius spheres in deionized water. In order to study
the influence of possible wall effects, the cell separation
was varied from 128 um [Fig. 10(a)] to 27 um [Fig. 10(e)].
Each measured point in Fig. 10 is the decay rate I" of an
exponential fitted to a measured heterodyne correlation
function; the fits extended over a time interval [0,5T ~!].

TABLE 1. Lattice parameter (R,), elastic constant (c;) and
residual damping of shear waves (7C(!)/p) as a function of the
cell spacing (L) of the crystalline samples that were used to
study the effects of boundaries on the dispersion of shear waves
(see also Figs. 10, 13, and 14).

L R, nC()/p ¢
(um) (um) (kHz) (107 Nm™))
128 0.74 2.1 1.8

78 0.76 5.1 1.8

49 0.79 4.6 1.7

34 0.77 13.1 1.8

27 0.79 27.3 1.9
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Figure 11 shows the nonexponentiality parameter k,I" 2
as a function of Q for the case shown in Fig. 10(b). Com-
parison with that of longitudinal correlation functions
shows that it is more than a factor of 2 smaller for trans-
verse correlation functions. The adjustment of the cell
spacing caused melting of or at least severe damage to the
crystals. Therefore all curves in Fig. 10 are from
different crystals, each with its own lattice parameter and
crystal-elastic constant; these are listed in Table 1.

The dramatic influence of the bounding walls of the
thin-film cell is clearly demonstrated in Fig. 10. At the
largest cell separation (128 pm), the relaxation rate tends
to a finite value at the zone center where the damping
vanishes as }»qT ~g?. For smaller cell separations L the re-
laxation rate I still apparently tends to a finite value for
decreasing Q, but for Q <Q, sharply drops to zero. It
appears that the value of Q, is of the order of the small-
est possible wave number in a direction perpendicular to
the cell walls Q =R, /2L =10"2. Incidentally we notice
that our scattering vectors are parallel to the glass sur-
faces of the cell so that the sharpness of Bragg reflections
and the definition of the wave vector Q does not depend
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FIG. 12. Homodyne correlation functions of long-
wavelength phonons. (a) Dots: transverse mode with
0=0.0062 in the [100] direction. Line: fit of
G=c,— I 7—cyexp(—T,7) with ¢,=1.75, ¢,=0.016,

'=4.4X10* s7!, and I',=2.3X10* s™'. (b) Longitudinal
mode correlation function with 9 =0.013 in the [110] direction.
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on the cell separation.

So far, our experimental results were for the smallest of
the characteristic frequencies of longitudinal and trans-
verse modes that were introduced in Sec. II as wf and o7,
respectively. However, for transverse waves the hydro-
dynamic theory predicts the existence of a relaxation
time 1/|wJ]| that is intermediate between the slowest time
scale for these waves and the fast relaxation time of the
Brownian velocity autocorrelation. This intermediate
time scale is in the long-wavelength limit associated with
the relaxation of pure hydrodynamic shear modes,
wl=ing?/p.

Figure 12 shows small-time correlation functions of
light scattered by very long transverse and longitudinal
waves. The curves were measured in a homodyne
scattering setup that offered a slightly better signal-to-
noise ratio. It was checked, however, that the results
were in accord with a heterodyne measurement. The
crystal parameters were a =0.053 um, R, =0.67 um, and
the cell separation L =31 um. Longitudinal waves were
with @ =0.013 in the [110] direction; transverse waves
had Q =0.0062 in the [100] direction. The overall down-
ward slope of the correlation functions is on the slowest
time scale, 1/2|o}| and 1/2|0]| for longitudinal and
transverse waves, respectively. For 7<40 us the trans-
verse correlation function has a negative exponential con-
tribution that is absent in the longitudinal correlation
function. This observation is in perfect agreement with
the theory sketched in Sec. II. In order to extract the re-
laxation rate I', of this swiftly decaying component, we
represented measured transverse correlation functions by
G(1)=c¢,—T7—cexp(—T,7), and determined I', in a
least-squares procedure. Figure 13 shows the relaxation
rate ', as a function of ng?/p. The theoretical predic-
tion is that the relaxation of long-wavelength shear waves
should equal that of pure hydrodynamic shear waves,
I'=nq%/p. Figure 13 also contains points that were de-
duced from the small-Q part of the transverse dispersion
curves of Figs. 10(d) and 10(e) using elastic constants that
were deduced from their large-Q parts.

A remarkable conclusion is that the measured relaxa-
tion rates approximately follow those of hydrodynamic
shear modes in an infinite medium, but are shifted up-
wards by approximately 30 kHz at this thin-film thick-
ness. Another qualitative but important observation is
that longitudinal correlation functions do not show the
presence of an intermediate time scale [0(107° s)]. As
argued in Sec. II, the presence of such a time scale would
be expected on the basis of electrodynamic effects related

a)g,TI—i{(SAl+B1/3)[1—cos(21rQ)]+4A2sin2(27rQ)]—677_1—170 1—kT (@)1 3+

This expression has been used to represent our data mea-
sured in a range of cell separations that are shown in Fig.
10. The constants ¢, =8 4; + B, /3 (nearest-neighbor in-
teraction) and C(L) were determined in a least-squares
procedure, the constant involving next-near-neighbor in-
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FIG. 13. Dots: measured dispersion function of the shear re-
laxation I';=iw] as a function of 7g?/p at a cell separation of
L=27 pm. Line: T,=ng?/p. Crosses and plusses: Al/ul de-

duced from Figs. 10(d) and 10(e), respectively (see text).

to ion diffusion, effects that would be strongest in the case
of longitudinal waves where the relative motion of fluid
and spheres is largest. In this respect, the absence of
structure on the smallest measured time scale in Fig.
12(b) sets an upper bound on the Debye length k! in our
samples, kR > 2.

Figure 13 suggests that the damping A of shear waves
in a crystal of finite thickness L can be parametrized by
A=(n/p)[g*+C(L)]. The following simple argument
shows that such behavior may be explained by the
discreteness of the hydrodynamic mode structure in a
narrow slit. This discreteness owes to the necessary satis-
faction of no-slip boundary conditions at the cell sur-
faces, z=0,L. Fluctuations of the fluid velocity field
have therefore the structure

(g x+q,y) .
ﬁ,,(qx,qy,t)Eelq‘x Y sin(nmz /L)

*(n/p)(qf+qy2+nl1rz/L2)t

Xe (19)

In our experiment q is parallel to the cell surface and Eq.
(19) implies that a finite relaxation rate nn 272 /pL*
remains at ¢ =0, so that C(L)=c/L 2, The finite residual
damping of shear phonons also determines the shape of
the dispersion functions of the complementary slow mode
a)3T=—i(a)qT)Z/?»qT shown in Fig. 10. Use of the known
form of the crystal elasticity D(q=[100]) then predicts
for this relaxation rate

3a
47R,(Q*+R3C(L)/167%) |

(20)

-

teraction turned out to be much smaller than ¢, and was
put to zero in the fit. The fair quality of the fits is demon-
strated in Fig. 10; the constants used are listed in Table L.
The residual damping at infinite wavelength nC(L)/p is
shown as a function of L 2 in Fig. 14. The measured
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FIG. 14. Dots: the residual damping C(L) of zero-wave vec-
tor transverse waves in the [100] direction as a function of L ~2,
where L is the cell separation.

dependence is indeed consistent with the predicted
C(L)=cL "% however, the measured proportionality
constant is about a factor of 2 larger than that predicted
by Eq. (22) with n=1, the first nontrivial transverse
mode. A possible explanation for this discrepancy is that
the damping of waves polarized parallel to the cell walls
is not just that of pure hydrodynamic shear modes, but is
influenced partly by hydrodynamic interaction between
the wall and the lattice of spheres.

V. CONCLUSION

Our experiments have shown that the damping of
shear modes remains finite in the long-wavelength limit
because of the finite separation of the cell walls. A tenta-
tive theory involving the discreteness of the hydrodynam-
ic mode structure has been proposed and we speculate
that the behavior of shear modes can be understood sole-
ly in terms of hydrodynamics. This leaves us with pro-
found questions about the relevance of electrodynamic
effects associated with the motion of counterions. The
theory by Felderhof and Jones [6] that is sketched in Sec.
IT states that one needs these electrodynamic effects to
explain the finite damping of long shear waves.

We speculate that electrodynamic effects are responsi-
ble for the nonexponential behavior of measured correla-
tion functions of light scattered by longitudinal modes.
This nonexponentiality is another significant result of our
work. It has been noticed earlier by Hurd et al. [3], who
attribute it to the presence of a heterodyne component of
the correlation function, to possible multiphonon pro-
cesses, and to memory effects in the dynamics of shear
modes. The first of these explanations can now be ruled
out: explicit heterodyne measurements of longitudinal
waves remain nonexponential, whereas heterodyne corre-
lation functions of light scattered by transverse modes are
characterized by single-exponential decay. It further is
hard to imagine why longitudinal modes would be
affected more strongly by anharmonicity (multiphonon)
effects than transverse modes.

The nonexponentiality of longitudinal correlation func-
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tions is apparently not implied by a theory of electro-
dynamic effects based on diffusive counterion dynamics
alone [6]. Neither has the presence of an ion-diffusion
time scale been observed in our experiment. However,
we have not yet probed fast enough time scales. As was
already suggested by Felderhof and Jones, we believe a
complete theory should also account for electrophoretic
effects: the convection of counterions by flowing solvent
fluid. Further work with samples whose electrical prop-
erties can be characterized precisely in situ is clearly
needed to resolve the discrepancies between the theory of
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FIG. 15. (a) Measured homodyne autocorrelation function at
6,=2.5°. (b) Homodyne autocorrelation function at 6,=80.5°.
(c) Measured homodyne cross-correlation function between the
detectors at 6;=2.5° and 6,=80.5°.
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electrical interactions and experiment. For this, a novel
design of the scattering cell is needed.

The possibility of thermally driven underdamped shear
modes remains an intriguing aspect of the dynamics of
colloidal crystals. These modes would give rise to oscilla-
tory correlation functions. We have shown that, so far,
they have remained unobserved because of the finite
thickness of the thin-film samples used. The numbers ex-
tracted from the results displayed in Figs. 10 and 13 sug-
gest that in our samples propagating modes would occur
first at Q =0.75X 1073, and a cell separation of L =0.35
mm.

We finally notice that information on hydrodynamic
shear modes would be very hard to come by in isotropic
fluids [19]. In colloidal crystals the lattice of spheres acts
as a tracer that in the long-wavelength limit faithfully fol-
lows the flow.
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gi1(k,ky7)= 3 FPI(k—q—K; Py (k,—q— K, ) Skfkipli(7) ,
g B

11‘12

where P (k) is the profile function of the scattering
volume that is observed by the first detector and P,(k) is
the profile function of the second detector. The condition
for observing Cross correlations is that
kl—kZEK,l ——K,Z, within the uncertainty set by the
profile functions P, and P,. The width Ak of these func-
tions is inversely proportional to the linear size d of the
scattering volume. Therefore the detectors have to be
aligned with a scattering angle accuracy A0=A/27d. In
our setup angles can be adjusted to 0.2°, therefore d has
to be approximately 30 um.

The two detectors were separated precisely by an in-
verse lattice distance by rotating the crystal such that one
detector accepted Bragg-reflected light, whereas the other
one was placed in the incident beam. Next the cell and
the two detectors were rotated over an angle 6, around a
vertical axis and a homodyne cross-correlation function
is measured.
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APPENDIX: CROSS CORRELATIONS
IN COLLOIDAL CRYSTALS

Due to crystal symmetry a single phonon scatters light
in directions that have translation symmetry in reciprocal
space. This is expressed by the symmetry of measured
dispersion functions around zone centers and zone boun-
daries (See Fig. 8). While this symmetry is that of a
time-averaged quantity, it should also apply to the instan-
taneous scattered light intensity. Specifically, the fluctua-
tions measured in two points that are separated by an in-
verse lattice distance should be in phase [20]. In this ap-
pendix we will experimentally demonstrate the existence
of cross correlations between the intensity detected at
these two points. While the existence of these cross
correlations may be trivial in theory, its actual
verification in the experiment is a strong justification of
the experimental techniques used.

The study of fluctuations in colloidal crystals by
scattering visible light is analogous to the technique of
neutron or x-ray scattering off atomic crystals. In fact,
the analysis of fluctuations by correlation functions as
sketched in Sec. II dates back to the early papers by
Wang and Uhlenbeck [21]. Proving the existence of simi-
lar cross correlations in experiments on atomic crystals is
elusive, but can quite easily be done for visible light scat-
tered by colloidal crystals.

In the scattering experiment, two separate detectors
detect light with scattering vectors k; and k,. The cross-
correlation function of the scattered electric field is, in
analogy with Eq. (14)

(A1)

The experiment was done on a L =31 um thick crystal
of 0.053 um polystyrene spheres with lattice parameter
R;,=0.71 um. The incident beam was focused in the cell
to a diameter of 40 um. For practical reasons the scatter-
ing angle 0, was restricted to small values. Figure 15
shows two homodyne autocorrelation functions measured
for detector 1 and 2 and their cross-correlation function.
The contrast in the measurement using the detector that
is closest to the incident beam direction is lower than that
from detector 2 that is placed at k,=k;+K,;o. This is
most probably due to partial heterodyning at detector 1
due to stray light from the incident beam and is con-
sistent with the slight differences in the decay time scales
of the three correlation functions. The low contrast of
the cross-correlation function must be caused by a slight
mismatch in the difference of scattering vectors with
respect to K.
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